1
|
Barbosa GG, Silva TL, de Oliveira APS, de Albuquerque Lima T, da Silva PM, de Santana CJC, Vieira JRC, de Sousa DR, Souza FAL, Pereira R, Zingali RB, Costa RMPB, Paiva PMG, Rodrigues GG, Castro MS, Napoleão TH. Cutaneous glands of the striped toad, Rhinella crucifer (Wied-Neuwied, 1821) (Amphibia: Bufonidae): Histological study and bioactivities of glandular secretions. Comp Biochem Physiol B Biochem Mol Biol 2024; 273:110983. [PMID: 38688407 DOI: 10.1016/j.cbpb.2024.110983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
This study investigated the morphology of Rhinella crucifer cutaneous glands, as well as the protein/peptide profiles and bioactivities of body gland secretions (BGS) and parotoid macrogland secretions (PS). The parotoid as well as dorsal and ventral skin fragments of male and female individuals were processed for histological analysis. The protein and peptide profiles of male and female gland secretions were evaluated. Male secretions were also assessed for proteolytic, trypsin inhibiting, hemagglutinating, hemolytic, antimicrobial, and anticoagulant activities. The R. crucifer skin structure presented protuberances that are clearly visible and formed by the integument, which has cutaneous glands throughout the body. An average of 438 and 333 glands were identified in males in females, respectively. No significant differences were observed in the distribution of glands across the body as well as for area and perimeter of glands. Differences were observed in protein composition between the PS and BGS from males and females, and secretions from animals collected from undisturbed and anthropogenically disturbed areas. Proteins with similarities to catalase and elongation factor 1-alpha were detected in the PS. Zymography revealed proteolytic activity in both male BGS and PS. Male BGS showed antibacterial activity against Enterococcus faecalis and Escherichia coli and anticoagulant activity, being able to prolong prothrombin time by 6.34-fold and activated partial thromboplastin time by 2.17-fold. Finally, male PS and BGS caused a maximum hemolysis degree of 1.4%. The data showed that the cutaneous secretions of R. crucifer are potentially promising for biotechnological prospecting.
Collapse
Affiliation(s)
- Géssica Gomes Barbosa
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Tulíbia Laurindo Silva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | | | - Thâmarah de Albuquerque Lima
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Pollyanna Michelle da Silva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Carlos José Correia de Santana
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Distrito Federal, Brazil
| | | | - Dyeime Ribeiro de Sousa
- Departamento de Morfologia e Fisiologia Animal, Universidade Federal Rural de Pernambuco, Recife, Pernambuco, Brazil
| | - Francisco Assis Leite Souza
- Departamento de Morfologia e Fisiologia Animal, Universidade Federal Rural de Pernambuco, Recife, Pernambuco, Brazil
| | - Rafael Pereira
- Departamento de Biologia, Universidade Federal Rural de Pernambuco, Recife, Pernambuco, Brazil
| | - Russolina Benedeta Zingali
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Patrícia Maria Guedes Paiva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | | | - Mariana S Castro
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Distrito Federal, Brazil
| | - Thiago Henrique Napoleão
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil.
| |
Collapse
|
2
|
Asrorov AM, Kayumov M, Mukhamedov N, Yashinov A, Mirakhmetova Z, Huang Y, Yili A, Aisa HA, Tashmukhamedov M, Salikhov S, Mirzaakhmedov S. Toad venom bufadienolides and bufotoxins: An updated review. Drug Dev Res 2023; 84:815-838. [PMID: 37154099 DOI: 10.1002/ddr.22072] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/14/2023] [Accepted: 04/20/2023] [Indexed: 05/10/2023]
Abstract
Bufadienolides, naturally found in toad venoms having steroid-like structures, reveal antiproliferative effects at low doses. However, their application as anticancer drugs is strongly prevented by their Na+ /K+ -ATPase binding activities. Although several kinds of research were dedicated to moderating their Na+ /K+ -ATPase binding activity, still deeper fundamental knowledge is required to bring these findings into medical practice. In this work, we reviewed data related to anticancer activity of bufadienolides such as bufalin, arenobufagin, bufotalin, gamabufotalin, cinobufotalin, and cinobufagin and their derivatives. Bufotoxins, derivatives of bufadienolides containing polar molecules mainly belonging to argininyl residues, are reviewed as well. The established structures of bufotoxins have been compiled into a one-page figure to review their structures. We also highlighted advances in the structure-modification of the structure of compounds in this class. Drug delivery approaches to target these compounds to tumor cells were discussed in one section. The issues related to extraction, identification, and quantification are separated into another section.
Collapse
Affiliation(s)
- Akmal M Asrorov
- Institute of Bioorganic Chemistry of Uzbekistan Academy of Sciences, Tashkent, Uzbekistan
- Department of Natural Substances Chemistry, National University of Uzbekistan, Tashkent, Uzbekistan
- Shanghai Institute of Materia Medica, CAS, Shanghai, China
| | - Muzaffar Kayumov
- Institute of Bioorganic Chemistry of Uzbekistan Academy of Sciences, Tashkent, Uzbekistan
| | - Nurkhodja Mukhamedov
- Institute of Bioorganic Chemistry of Uzbekistan Academy of Sciences, Tashkent, Uzbekistan
| | - Ansor Yashinov
- Shanghai Institute of Materia Medica, CAS, Shanghai, China
- University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Ziyoda Mirakhmetova
- Institute of Bioorganic Chemistry of Uzbekistan Academy of Sciences, Tashkent, Uzbekistan
| | - Yongzhuo Huang
- Shanghai Institute of Materia Medica, CAS, Shanghai, China
- University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Abulimiti Yili
- Xinjiang Technical Institute of Physics and Chemistry, CAS, Urumqi, China
| | - Haji Akber Aisa
- Xinjiang Technical Institute of Physics and Chemistry, CAS, Urumqi, China
| | | | - Shavkat Salikhov
- Institute of Bioorganic Chemistry of Uzbekistan Academy of Sciences, Tashkent, Uzbekistan
| | | |
Collapse
|
3
|
Ferreira PMP, Sousa LQD, Sousa RWRD, Rodrigues DDJ, Monção Filho EDS, Chaves MH, Vieira Júnior GM, Rizzo MDS, Filgueiras LA, Mendes AN, Lima DJB, Pessoa C, Sousa JMDCE, Rodrigues ACBDC, Soares MBP, Bezerra DP. Toxic profile of marinobufagin from poisonous Amazon toads and antitumoral effects on human colorectal carcinomas. JOURNAL OF ETHNOPHARMACOLOGY 2023; 310:116406. [PMID: 36965547 DOI: 10.1016/j.jep.2023.116406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/10/2023] [Accepted: 03/18/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE South Americans natives have extensively used the toad "kururu" to reduce/treat skin infections, cutaneous lesions and sores. They release secretions rich in bufadienolides, polyhydroxy steroids with well-documented cardiotonic and antiproliferative actions, but in vivo antitumoral evaluations in mammals are rare, and toxicological safety has been left in second place. AIMS OF THE STUDY This investigation used in silico, in vitro and in vivo tools to evaluate acute and subacute toxic effects of marinobufagin and the anticancer action in tumor-bearing mice models. MATERIALS AND METHODS Initially, in silico toxic predictions were performed, followed by in vitro assays using human and murine normal and tumor lines. Next, acute and subacute studies on mice investigated the behavior, hematological and intestinal transit profile and antitumoral activity of marinobufagin in sarcoma 180- and HCT-116 colorectal carcinoma-transplanted mice for 7 and 15 days, respectively. Ex vivo and in vivo cytogenetic assays in Sarcoma 180 and bone marrow cells and histopathological examinations were also executed. RESULTS In silico studies revealed ecotoxicological effects on crustaceans (Daphnia sp.), fishes (Pimephales promelas and Oryzias latipes), and algae. A 24-h marinobufagin-induced acute toxicity included signals of central activity, mainly (vocal frenzy, absence of body tonus, increased ventilation, ataxia, and equilibrium loss), and convulsions and death at 10 mg/kg. The bufadienolide presented effective in vitro cytotoxic action on human lines of colorectal carcinomas in a similar way to ouabain and tumor reduction in marinobufagin-treated SCID-bearing HCT-116 heterotopic xenografts. Animals under subacute nonlethal doses exhibited a decrease in creatinine clearance with normal levels of blood urea, probably as a result of a marinobufagin-induced renal perfusion fall. Nevertheless, only minor morphological side effects were identified in kidneys, livers, hearts and lungs. CONCLUSIONS Marinobufagin has in vitro and in vivo anticancer action on colorectal carcinoma and mild and reversible alterations in key metabolic organs without direct chemotherapy-induced gastrointestinal effects at subacute exposure, but it causes acute ataxia, equilibrium loss, convulsions and death at higher acute exposure.
Collapse
Affiliation(s)
- Paulo Michel Pinheiro Ferreira
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, 64049-550, Teresina, Brazil.
| | - Lívia Queiroz de Sousa
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, 64049-550, Teresina, Brazil
| | - Rayran Walter Ramos de Sousa
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, 64049-550, Teresina, Brazil
| | - Domingos de Jesus Rodrigues
- Institute of Natural, Humanities and Social Sciences, Federal University of Mato Grosso, 78550-728, Sinop, Brazil
| | | | - Mariana Helena Chaves
- Laboratory of Natural Products, Department of Chemistry, Federal University of Piauí, 64049-550, Teresina, Brazil
| | - Gerardo Magela Vieira Júnior
- Laboratory of Natural Products, Department of Chemistry, Federal University of Piauí, 64049-550, Teresina, Brazil
| | | | - Lívia Alves Filgueiras
- Laboratory of Innovation in Science and Technology (Lacitec), Department of Biophysics and Physiology, Federal University of Piauí, 64049-550, Teresina, Brazil
| | - Anderson Nogueira Mendes
- Laboratory of Innovation in Science and Technology (Lacitec), Department of Biophysics and Physiology, Federal University of Piauí, 64049-550, Teresina, Brazil
| | - Daisy Jereissati Barbosa Lima
- Laboratory of Experimental Oncology (LOE), Department of Physiology and Pharmacology, Federal University of Ceará, 60430-270, Fortaleza, Brazil
| | - Cláudia Pessoa
- Laboratory of Experimental Oncology (LOE), Department of Physiology and Pharmacology, Federal University of Ceará, 60430-270, Fortaleza, Brazil
| | - João Marcelo de Castro E Sousa
- Laboraroty of Toxicological Genetics (Lapgenic), Department of Biochemistry and Pharmacology, Federal University of Piauí, 64049-550, Teresina, Brazil
| | | | | | - Daniel Pereira Bezerra
- Laboratory of Tissue Engineering and Immunopharmacology, Oswaldo Cruz Foundation, 40296-710, Salvador, Brazil
| |
Collapse
|
4
|
Oliveira CBDS, Barros EDS, de Oliveira SR, Barbosa Júnior F, Vieira Júnior GM, Lopes Júnior CA. Preliminary ionome of the parotoid gland secretion from Rhinella jimi toad. Toxicon 2023; 225:107059. [PMID: 36822515 DOI: 10.1016/j.toxicon.2023.107059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/23/2023]
Abstract
The cururu toad (Rhinella jimi) is an anuran belonging to the fauna of the Brazilian northeast region, which releases a secretion with toxins from your parotoid glands. Although it has some information about secondary metabolites and proteins, the elemental composition of the released secretion is unknown. Therefore, this is the first report on the ionome of the secretion of the parotoid glands from R. jimi, investigating the influences of abiotic factors such as biome, seasonality, and gender. ICP-MS was used for measurements combined with principal component analysis (PCA). A screening of the secretion sample detected 68 elements which the total concentration of 18 elements was determined. PCA revealed that biome and seasonality factors have a greater influence on the ionomic profile of parotoid secretion. The presence of toxic metals in the secretion samples indicates that the R. jimi toad can be considered a potential bioindicator. These findings may contribute to understanding the metabolism, lifestyle, and interaction of the R. jimi toad with environmental factors as well as open new perspectives to investigate the relationships of the ionome with other biomolecules, for example, metalloproteins and their physiological functions.
Collapse
Affiliation(s)
| | - Elcio Daniel Sousa Barros
- Department of Chemistry, Federal University of Piauí - UFPI, CEP: 64049-550, Teresina, Piauí, Brazil
| | - Silvana Ruella de Oliveira
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, University of São Paulo - USP, Avenida do Café s/n, Monte Alegre, CEP: 14040-903, Ribeirão Preto, São Paulo, Brazil
| | - Fernando Barbosa Júnior
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, University of São Paulo - USP, Avenida do Café s/n, Monte Alegre, CEP: 14040-903, Ribeirão Preto, São Paulo, Brazil
| | | | - Cícero Alves Lopes Júnior
- Department of Chemistry, Federal University of Piauí - UFPI, CEP: 64049-550, Teresina, Piauí, Brazil.
| |
Collapse
|
5
|
Ibarra-Vega R, Galván-Hernández AR, Salazar-Monge H, Zataraín-Palacios R, García-Villalvazo PE, Zavalza-Galvez DI, Valdez-Velazquez LL, Jiménez-Vargas JM. Antimicrobial Compounds from Skin Secretions of Species That Belong to the Bufonidae Family. Toxins (Basel) 2023; 15:145. [PMID: 36828459 PMCID: PMC9968139 DOI: 10.3390/toxins15020145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/30/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
Skin secretions of toads are a complex mixture of molecules. The substances secreted comprise more than 80 different compounds that show diverse pharmacological activities. The compounds secreted through skin pores and parotid glands are of particular interest because they help toads to endure in habitats full of pathogenic microbes, i.e., bacteria, fungi, viruses, and protozoa, due to their content of components such as bufadienolides, alkaloids, and antimicrobial peptides. We carried out an extensive literature review of relevant articles published until November 2022 in ACS Publications, Google Scholar, PubMed, and ScienceDirect. It was centered on research addressing the biological characterization of the compounds identified in the species of genera Atelopus, Bufo, Duttaphrynus, Melanophryniscus, Peltopryne, Phrynoidis, Rhaebo, and Rhinella, with antibacterial, antifungal, antiviral, and antiparasitic activities; as well as studies performed with analogous compounds and skin secretions of toads that also showed these activities. This review shows that the compounds in the secretions of toads could be candidates for new drugs to treat infectious diseases or be used to develop new molecules with better properties from existing ones. Some compounds in this review showed activity against microorganisms of medical interest such as Staphylococcus aureus, Escherichia coli, Bacillus subtilis, Coronavirus varieties, HIV, Trypanosoma cruzi, Leishmania chagasi, Plasmodium falciparum, and against different kinds of fungi that affect plants of economic interest.
Collapse
Affiliation(s)
- Rodrigo Ibarra-Vega
- Facultad de Ciencias Químicas, Universidad de Colima, Coquimatlán 28040, Mexico
| | | | | | | | | | | | | | - Juana María Jiménez-Vargas
- Facultad de Ciencias Químicas, Universidad de Colima, Coquimatlán 28040, Mexico
- Consejo Nacional de Ciencia y Tecnología (CONACYT), Mexico City 03940, Mexico
| |
Collapse
|
6
|
Sousa Barros ED, Santos Monção Filho ED, Fonseca Pio YP, Amorim MRD, Berlinck RGS, Cássia Moura RD, Fonseca MG, Dantas C, Coelho RC, Silva GRD, Chaves MH, Vieira Júnior GM. Comparative study of composition of methanolic extracts of the paratoid gland secretions (PGS) of Rhinella jimi (cururu toad) from northeastern Brazil: Gender, seasonality and geographic occurrence. Toxicon 2022; 214:37-46. [PMID: 35562061 DOI: 10.1016/j.toxicon.2022.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 10/18/2022]
Abstract
Toads belonging to the Bufonidae family have a pair of paratoid glands that store highly toxic a biological secretion with varied chemical composition, that act as a chemical defense against microbial infections and predators. The paratoid gland secretion (PGS) of bufonids is rich in bioactive steroids, alkaloids, proteins, bufadienolides and bufotoxins. In the present investigation we performed a systematic analysis of the chemical profile of PGS obtained from the Bufonidae toad Rhinella jimi ("Cururu" toad) collected at three different regions of Piauí state, Northeastern Brazil. Our aim was to investigate the PGS variation related to the season of animals collection, geographic distribution and gender of the animals. The methanolic extracts of PGS were analyzed by UPLC-QToF-MS/MS. Principal component analysis (PCA) were applied to the data set obtained by the UPLC-QToF-MS/MS analyses. Among 23 compounds identified, dehydrobufotenine, suberoyl arginine, 3-(N-suberoyl-argininyl) telocinobufagin, 3-(N-suberoyl-argininyl) marinobufagin, telocinobufagin, marinobufagin and 3-(N-suberoyl-argininyl) bufalin were detected in all PGS. Minimal variations in the composition of paratoid secretions of R. jimi were observed related to distinct geographical and seasonal parameters. R. jimi female animals presented the most diverse chemical composition in its PGS. With this comparative study, unprecedented for the species, it was possible to observe that the secretions of the paratoid glands produced by R. jimi from different regions of the state of Piauí, at different times of the year, presented consistent chemical composition, with discrete particularities in the number and nature chemistry of its constituents.
Collapse
Affiliation(s)
- Elcio Daniel Sousa Barros
- Laboratory of Natural Products, Department of Chemistry, Federal University of Piauí, Cep: 64049-550, Teresina, Piauí, Brazil; Department of Teaching, Research and Extension, Federal Institute of Maranhão, Cep 65620-000, Coelho Neto, Maranhão, Brazil
| | - Evaldo Dos Santos Monção Filho
- Laboratory of Natural Products, Department of Chemistry, Federal University of Piauí, Cep: 64049-550, Teresina, Piauí, Brazil
| | - Yara Polianna Fonseca Pio
- Laboratory of Natural Products, Department of Chemistry, Federal University of Piauí, Cep: 64049-550, Teresina, Piauí, Brazil
| | - Marcelo Rodrigues de Amorim
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, Cep.13560-970, São Carlos, São Paulo, Brazil
| | - Roberto G S Berlinck
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, Cep.13560-970, São Carlos, São Paulo, Brazil
| | - Rita de Cássia Moura
- Biology Coordination, Federal University of Piauí, Cep: 64607-670, Picos, Piauí, Brazil
| | | | - Clécio Dantas
- Laboratório de Química Computacional Inorgânica e Quimiometria - LQCINMETRIA, State University of Maranhão, Cep: 65604-380, Caxias, Maranhão, Brazil
| | - Ronaldo Cunha Coelho
- Teacher Training Department, Federal Institute of Piauí, Cep: 64000-040, Teresina, Piauí, Brazil
| | | | - Mariana Helena Chaves
- Laboratory of Natural Products, Department of Chemistry, Federal University of Piauí, Cep: 64049-550, Teresina, Piauí, Brazil
| | - Gerardo Magela Vieira Júnior
- Laboratory of Natural Products, Department of Chemistry, Federal University of Piauí, Cep: 64049-550, Teresina, Piauí, Brazil.
| |
Collapse
|