1
|
Mu J, Kang Z, Lu J, Fang J, Zhang L, Zhou K. Investigation on the inactivation of Prorocentrum lima and degradation of diarrhetic shellfish toxins via peroxymonosulfate-based advanced oxidation process. MARINE POLLUTION BULLETIN 2025; 216:118025. [PMID: 40286414 DOI: 10.1016/j.marpolbul.2025.118025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Revised: 04/18/2025] [Accepted: 04/18/2025] [Indexed: 04/29/2025]
Abstract
Prorocentrum lima, a frequent harmful algal bloom species, secretes diarrhetic shellfish toxins (DSTs) that cause severe human gastrointestinal disorders. This study investigated a peroxymonosulfate (PMS)-based advanced oxidation process utilizing sulfate radicals for simultaneous algal inactivation and toxin degradation, addressing the current research gap in marine algal control. Microscopic analyses (optical/SEM) revealed structural disintegration and cytoplasmic leakage in treated cells. The observed 45.55-69.24 % reduction in chlorophyll a concentration critically impaired photosynthetic activity and DSTs biosynthesis. A 94.68 % decrease in viable cell ratio after 5 h PMS exposure confirmed effective algal eradication. Complementary mouse bioassays and LC-MS quantification demonstrated progressive toxin detoxification, evidenced by extended survival times and reduced DSTs concentrations. Membrane integrity analysis showed characteristic oxidative stress responses: malondialdehyde (MDA) levels surged during initial exposure (0-15 min), followed by superoxide dismutase (SOD) activity elevation (15-30 min) as cellular defense activation. The combined cell mortality and toxin attenuation confirm the dual efficacy of this approach. This cost-effective, operationally simple method presents a viable strategy for mitigating P. lima blooms and associated toxin hazards in marine environments.
Collapse
Affiliation(s)
- Jiahang Mu
- Key Laboratory of the Coastal and Wetland Ecosystems, Ministry of Education, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Zhang Kang
- Key Laboratory of the Coastal and Wetland Ecosystems, Ministry of Education, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Jinjin Lu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Junhua Fang
- Key Laboratory of the Coastal and Wetland Ecosystems, Ministry of Education, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Li Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Kefu Zhou
- Key Laboratory of the Coastal and Wetland Ecosystems, Ministry of Education, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China.
| |
Collapse
|
2
|
Zheng D, Zou L, Zou J, Li Q, Lu S. Refining taxonomic identification of microalgae through molecular and genetic evolution: a case study of Prorocentrum lima and Prorocentrum arenarium. Microbiol Spectr 2024; 12:e0236723. [PMID: 38572997 PMCID: PMC11064606 DOI: 10.1128/spectrum.02367-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 02/08/2024] [Indexed: 04/05/2024] Open
Abstract
Species delimitation based on lineage definition has become increasingly popular. However, these methods have been limited, especially for species that lack genomic data and are morphologically similar. The trickiest part for the species identification is that the interspecific and intraspecific boundaries are vague. Taking Prorocentrum (Dinophyta) as an example, analysis of cell morphology, growth, and toxin synthesis in both species of P. lima and P. arenarium does not provide a reliable basis for species delineation. However, through phylogenetic and genetic distance analyses of their ITS and LSU sequences, establishment of evolutionary tree based on orthologous gene sequences, and combining the results of automatic barcode gap discovery and Poisson tree processes models, it was sustained that P. arenarium does not belong to the P. lima complex and should be considered as an independent species. Interspecies genetic evolution analysis revealed that P. lima and P. arenarium may contribute to evolutionary direction that favors combating reverse environmental factors. In P. lima, viral invasion may be one of the reasons for its large genome size. In the study, P. lima complex has been selected as an example to enhance the taxonomic identification of microalgae through molecular and genetic evolution, offering valuable insights into refining taxonomic identification and promoting microbial biodiversity research in other species.IMPORTANCEMicroalgae, especially the species known as Prorocentrum, have received significant attention due to their ability to trigger harmful algal blooms and produce toxins. However, the boundaries between species and within species are ambiguous. Clear and comprehensive species delineation indicates that Prorocentrum arenarium should be considered as an independent species, separate from the Prorocentrum lima complex. Improving the classification and identification of microalgae through molecular and genetic evolution will provide reference points for other cryptic species. Prorocentrum occupy multiple ecological niches in marine environments, and studying their evolutionary direction contributes to understanding their ecological adaptations and community succession.
Collapse
Affiliation(s)
- Danlin Zheng
- College of Life Science and Technology, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Jinan University, Guangzhou, China
| | - Ligong Zou
- College of Life Science and Technology, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Jinan University, Guangzhou, China
| | - Jian Zou
- College of Life Science and Technology, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Jinan University, Guangzhou, China
| | - Qun Li
- College of Life Science and Technology, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Jinan University, Guangzhou, China
| | - Songhui Lu
- College of Life Science and Technology, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Jinan University, Guangzhou, China
| |
Collapse
|
3
|
Wan X, Yao G, Wang K, Liu Y, Wang F, Jiang H. Transcriptomic Analysis of the Response of the Toxic Dinoflagellate Prorocentrum lima to Phosphorous Limitation. Microorganisms 2023; 11:2216. [PMID: 37764060 PMCID: PMC10535992 DOI: 10.3390/microorganisms11092216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Some dinoflagellates cause harmful algal blooms, releasing toxic secondary metabolites, to the detriment of marine ecosystems and human health. Phosphorus (P) is a limiting macronutrient for dinoflagellate growth in the ocean. Previous studies have been focused on the physiological response of dinoflagellates to ambient P changes. However, the whole-genome's molecular mechanisms are poorly understood. In this study, RNA-Seq was utilized to compare the global gene expression patterns of a marine diarrheic shellfish poisoning (DSP) toxin-producing dinoflagellate, Prorocentrum lima, grown in inorganic P-replete and P-deficient conditions. A total of 148 unigenes were significantly up-regulated, and 30 unigenes were down-regulated under 1/4 P-limited conditions, while 2708 unigenes were significantly up-regulated, and 284 unigenes were down-regulated under 1/16 P-limited conditions. KEGG enrichment analysis of the differentially expressed genes shows that genes related to ribosomal proteins, glycolysis, fatty acid biosynthesis, phagosome formation, and ubiquitin-mediated proteolysis are found to be up-regulated, while most of the genes related to photosynthesis are down-regulated. Further analysis shows that genes encoding P transporters, organic P utilization, and endocytosis are significantly up-regulated in the P-limited cells, indicating a strong ability of P. lima to utilize dissolved inorganic P as well as intracellular organic P. These transcriptomic data are further corroborated by biochemical and physiological analyses, which reveals that under P deficiency, cellular contents of starch, lipid, and toxin increase, while photosynthetic efficiency declines. Our results indicate that has P. lima evolved diverse strategies to acclimatize to low P environments. The accumulation of carbon sources and DSP toxins could provide protection for P. lima to cope with adverse environmental conditions.
Collapse
Affiliation(s)
| | | | | | | | | | - Hui Jiang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China; (X.W.); (G.Y.); (K.W.); (Y.L.); (F.W.)
| |
Collapse
|
4
|
Mussai P, Larsen J, Alrefaei AF, Jeewon R. Ribosomal DNA Sequence-Based Taxonomy and Antimicrobial Activity of Prorocentrum spp. (Dinophyceae) from Mauritius Coastal Waters, South-West Indian Ocean. Mar Drugs 2023; 21:md21040216. [PMID: 37103354 PMCID: PMC10143094 DOI: 10.3390/md21040216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Microalgae are unicellular organisms and commonly present in the euphotic zone of marine ecosystems. From the western coast of Mauritius, three strains of Prorocentrum species were isolated from macrophytes and cultured under standard laboratory conditions. Morphologies were examined by light, fluorescence, and scanning electron microscopy, and phylogenetic analyses were based on partial large subunit LSU rDNA (D1-D2) and ITS1-5.8S-ITS2 (ITS) regions. Three Prorocentrum species, including the P. fukuyoi complex, P. rhathymum, and P. lima complex, were identified. The antimicrobial activities were assayed against potential human pathogenic bacterial strains. The highest zone of inhibition was recorded for intracellular and extracellular protein extracts of Prorocentrum rhathymum against Vibrio parahaemolyticus. The polysaccharide extracts of the Prorocentrum fukuyoi complex had a higher zone of inhibition (24 ± 0.4 mm) against MRSA at a minimum concentration of 0.625 μg/mL. The extracts from the three Prorocentrum species had different levels of activity against the pathogens used, and this can be of scientific interest in the search for antibiotics from natural marine sources.
Collapse
Affiliation(s)
- Prakash Mussai
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Reduit 80837, Mauritius
| | - Jacob Larsen
- IOC Science and Communication Centre on Harmful Algae, Biological Institute, University of Copenhagen, Universitetsparken 4, DK-2100 Copenhagen, Denmark
| | - Abdulwahed Fahad Alrefaei
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Rajesh Jeewon
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Reduit 80837, Mauritius
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Correspondence:
| |
Collapse
|
5
|
Wan X, Yao G, Wang K, Bao S, Han P, Wang F, Song T, Jiang H. Transcriptomic analysis of polyketide synthesis in dinoflagellate, Prorocentrum lima. HARMFUL ALGAE 2023; 123:102391. [PMID: 36894212 DOI: 10.1016/j.hal.2023.102391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/31/2022] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
The benthic dinoflagellate Prorocentrum lima is among the most common toxic morphospecies with a cosmopolitan distribution. P. lima can produce polyketide compounds, such as okadaic acid (OA), dinophysistoxin (DTX) and their analogues, which are responsible for diarrhetic shellfish poisoning (DSP). Studying the molecular mechanism of DSP toxin biosynthesis is crucial for understanding the environmental driver influencing toxin biosynthesis as well as for better monitoring of marine ecosystems. Commonly, polyketides are produced by polyketide synthases (PKS). However, no gene has been confirmatively assigned to DSP toxin production. Here, we assembled a transcriptome from 94,730,858 Illumina RNAseq reads using Trinity, resulting in 147,527 unigenes with average sequence length of 1035 nt. Using bioinformatics analysis methods, we found 210 unigenes encoding single-domain PKS with sequence similarity to type I PKSs, as reported in other dinoflagellates. In addition, 15 transcripts encoding multi-domain PKS (forming typical type I PKSs modules) and 5 transcripts encoding hybrid nonribosomal peptide synthetase (NRPS)/PKS were found. Using comparative transcriptome and differential expression analysis, a total of 16 PKS genes were identified to be up-regulated in phosphorus-limited cultures, which was related to the up regulation of toxin expression. In concert with other recent transcriptome analyses, this study contributes to the building consensus that dinoflagellates may utilize a combination of Type I multi-domain and single-domain PKS proteins, in an as yet undefined manner, to synthesize polyketides. Our study provides valuable genomic resource for future research in order to understand the complex mechanism of toxin production in this dinoflagellate.
Collapse
Affiliation(s)
- Xiukun Wan
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Ge Yao
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Kang Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Shaoheng Bao
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Penggang Han
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Fuli Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Tianyu Song
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Hui Jiang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| |
Collapse
|