1
|
Mudge EM, Wilkins AL, Murray JS, Rise F, Miles CO. Investigation of 44-methylgambierone reactivity with periodate: Structural reassignment, solvent instability and formation of a furanoid analogue. Toxicon 2024; 251:108154. [PMID: 39490818 DOI: 10.1016/j.toxicon.2024.108154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Gambierones are sulfated polyethers produced by benthic dinoflagellates in the genera Gambierdiscus, Coolia and Fukuyoa. While relative toxicity data for gambierones suggests they are low compared with ciguatoxin analogues, gambierones have been suggested for use as marker compounds for environmental monitoring programs for the presence of Gambierdiscus in marine waters. The published structure of gambierone and analogues of it, including 44-methylgambierone (44-MeGAM), have been reported to possess 1,2- and 4,5-cis diols, while only the 1,2- diol unit has been shown to undergo periodate oxidation. An in-depth analysis of previously reported NMR data for 44-MeGAM in CD3OD showed that the C-4 stereochemistry of 44-MeGAM and other gamberiones was mis-assigned, that the 4-CH2-CHOH-CH2OH and OH groups are equatorially and axially oriented, respectively, rather than vice versa as previously reported. This re-examination of existing 44-MeGAM NMR data also showed that its C-12 and C-13 assignments (and those for other gambierones) should be reversed. In an effort to better understand the C-4 stereochemical and periodate reaction characteristics of gambierones (C-4 is an epimerizable hemiacetal carbon), additional NMR data was acquired in D6-DMSO. Unexpectedly, progressive conversion of 44-MeGAM to a long-term stable ring-A furanoid analogue was observed. A subsequent series of microscale stability trials identified several solvents that affected the solution-stability of 44-MeGAM, and these findings should be taken into consideration during isolation, handling, storage and bioassay evaluations of gambierones in future studies.
Collapse
Affiliation(s)
- Elizabeth M Mudge
- Biotoxin Metrology, National Research Council Canada, 1411 Oxford Street, Halifax, NS, B3H 3Z1, Canada.
| | - Alistair L Wilkins
- School of Science, University of Waikato, Private Bag 3105, Hamilton, 3240, New Zealand
| | - J Sam Murray
- Cawthron Institute, Private Bag 2, Nelson, 7040, New Zealand
| | - Frode Rise
- Department of Chemistry, University of Oslo, Blindern, P.O. Box 1033, NO-0315, Oslo, Norway
| | - Christopher O Miles
- Biotoxin Metrology, National Research Council Canada, 1411 Oxford Street, Halifax, NS, B3H 3Z1, Canada; Norwegian Veterinary Institute, P.O. Box 64, 1431, Ås, Norway
| |
Collapse
|
2
|
Mudge EM, Robertson A, Uhlig S, McCarron P, Miles CO. 3-Epimers of Caribbean ciguatoxins in fish and algae. Toxicon 2024; 237:107536. [PMID: 38043714 PMCID: PMC10826338 DOI: 10.1016/j.toxicon.2023.107536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/21/2023] [Accepted: 11/21/2023] [Indexed: 12/05/2023]
Abstract
Ciguatera poisoning (CP) is endemic to several subtropical and tropical regions and is caused by the consumption of fish contaminated with ciguatoxins (CTXs). The recent discovery of Caribbean CTXs (C-CTXs) in Gambierdiscus spp. isolated from the Caribbean resulted in the identification of a precursor analogue, C-CTX5, that is reduced into C-CTX1. C-CTX5 has two reducible sites, a ketone at C-3 and hemiketal at C-56. Chemical reductions of C-CTX5 into C-CTX3/4 resulted in two peaks in the LC-HRMS chromatograms with a ratio that differed markedly from that observed in fish extracts and the reduction of C-CTX1 isolated from fish. Reduction of C-CTX5 should have produced four diastereoisomers of C-CTX3/4, prompting a more detailed study of the reduction products. LC-HRMS with a slow gradient was used to separate and detect the four stereoisomers of C-CTX3/4, and to determine the distribution of these analogues in naturally contaminated fish tissues and following chemical reduction of isolated analogues. The results showed that in naturally contaminated fish tissues C-CTX1/2 is a mixture of two diastereoisomers at C-3 and that C-CTX3/4 is a mixture of two pairs of diastereoisomers at C-3 and C-56. The data suggests that there is variability in the enzymatic reduction at C-3 and C-56 of C-CTXs in reef fish, leading to variations in the ratios of the four stereoisomers. Based on these findings, a naming convention for C-CTXs is proposed which aligns with that used for Pacific CTX congeners and will aid in the identification of the structure and stereochemistry of the different CTX analogues.
Collapse
Affiliation(s)
- Elizabeth M Mudge
- Biotoxin Metrology, National Research Council Canada, 1411 Oxford Street, Halifax, NS, B3H 3Z1, Canada.
| | - Alison Robertson
- Stokes School of Marine and Environmental Sciences, University of South Alabama, 600 Clinic Drive, Mobile, AL, 36688, USA; Marine Ecotoxicology Lab, Dauphin Island Sea Lab, Dauphin Island, AL, 36528, USA
| | - Silvio Uhlig
- Norwegian Veterinary Institute, P.O. Box 64, 1431, Ås, Norway
| | - Pearse McCarron
- Biotoxin Metrology, National Research Council Canada, 1411 Oxford Street, Halifax, NS, B3H 3Z1, Canada
| | - Christopher O Miles
- Biotoxin Metrology, National Research Council Canada, 1411 Oxford Street, Halifax, NS, B3H 3Z1, Canada
| |
Collapse
|
3
|
Crone KK, Jomori T, Miller FS, Gralnick JA, Elias MH, Freeman MF. RiPP enzyme heterocomplex structure-guided discovery of a bacterial borosin α- N-methylated peptide natural product. RSC Chem Biol 2023; 4:804-816. [PMID: 37799586 PMCID: PMC10549244 DOI: 10.1039/d3cb00093a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/18/2023] [Indexed: 10/07/2023] Open
Abstract
Amide peptide backbone methylation is a characteristic post-translational modification found in a family of ribosomally synthesized and post-translationally modified peptide natural products (RiPPs) called borosins. Previously, we bioinformatically identified >1500 putative borosin pathways in bacteria; however, none of the pathways were associated with a known secondary metabolite. Through in-depth characterization of a borosin pathway in Shewanella oneidensis MR-1, we have now identified a bacterially derived borosin natural product named Shewanellamide A. Borosin identification was facilitated by the creation and analysis of a series of precursor variants and crystallographic interrogation of variant precursor and methyltransferase complexes. Along with assaying two proteases from S. oneidensis, probable boundaries for proteolytic maturation of the metabolite were projected and confirmed via comparison of S. oneidensis knockout and overexpression strains. All in all, the S. oneidensis natural product was found to be a 16-mer linear peptide featuring two backbone methylations, establishing Shewanellamide A as one of the few borosin metabolites yet identified, and the first from bacteria.
Collapse
Affiliation(s)
- K K Crone
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota - Twin Cities St. Paul 55108 USA
| | - T Jomori
- The BioTechnology Institute, University of Minnesota - Twin Cities St. Paul 55108 USA
| | - F S Miller
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota - Twin Cities St. Paul 55108 USA
| | - J A Gralnick
- The BioTechnology Institute, University of Minnesota - Twin Cities St. Paul 55108 USA
- Department of Plant and Microbial Biology, University of Minnesota - Twin Cities St. Paul 55108 USA
| | - M H Elias
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota - Twin Cities St. Paul 55108 USA
- The BioTechnology Institute, University of Minnesota - Twin Cities St. Paul 55108 USA
| | - M F Freeman
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota - Twin Cities St. Paul 55108 USA
- The BioTechnology Institute, University of Minnesota - Twin Cities St. Paul 55108 USA
| |
Collapse
|
4
|
Wright EJ, Meija J, McCarron P, Miles CO. Preparation of 18O-labelled azaspiracids for accurate quantitation using liquid chromatography-mass spectrometry. Anal Bioanal Chem 2023; 415:5973-5983. [PMID: 37530793 PMCID: PMC10556123 DOI: 10.1007/s00216-023-04868-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 08/03/2023]
Abstract
Azaspiracids (AZAs) are a group of polyether marine algal toxins known to accumulate in shellfish, posing a risk to human health and the seafood industry. Analysis of AZAs is typically performed using LC-MS, which can suffer from matrix effects that significantly impact the accuracy of measurement results. While the use of isotopic internal standards is an effective approach to correct for these effects, isotopically labelled standards for AZAs are not currently available. In this study, 18O-labelled AZA1, AZA2, and AZA3 were prepared by reaction with H218O under acidic conditions, and the reaction kinetics and sites of incorporation were studied using LC-HRMS/MS aided by mathematical analysis of their isotope patterns. Analysis of the isotopic incorporation in AZA1 and AZA3 indicated the presence of four exchangeable oxygen atoms. Excessive isomerization occurred during preparation of 18O-labelled AZA2, suggesting a role for the 8-methyl group in the thermodynamic stability of AZAs. Neutralized mixtures of 18O-labelled AZA1 and AZA3 were found to maintain their isotopic and isomeric integrities when stored at -20 °C and were used to develop an isotope-dilution LC-MS method which was applied to reference materials of shellfish matrices containing AZAs, demonstrating high accuracy and excellent reproducibility. Preparation of isotopically labelled compounds using the isotopic exchange method, combined with the kinetic analysis, offers a feasible way to obtain isotopically labelled internal standards for a wide variety of biomolecules to support reliable quantitation.
Collapse
Affiliation(s)
- Elliott J. Wright
- Biotoxin Metrology, National Research Council Canada, 1411 Oxford Street, Halifax, NS B3H 3Z1 Canada
| | - Juris Meija
- National Research Council, 1200 Montreal Road, Ottawa, ON K1A 0R6 Canada
| | - Pearse McCarron
- Biotoxin Metrology, National Research Council Canada, 1411 Oxford Street, Halifax, NS B3H 3Z1 Canada
| | - Christopher O. Miles
- Biotoxin Metrology, National Research Council Canada, 1411 Oxford Street, Halifax, NS B3H 3Z1 Canada
| |
Collapse
|
5
|
Pottier I, Lewis RJ, Vernoux JP. Ciguatera Fish Poisoning in the Caribbean Sea and Atlantic Ocean: Reconciling the Multiplicity of Ciguatoxins and Analytical Chemistry Approach for Public Health Safety. Toxins (Basel) 2023; 15:453. [PMID: 37505722 PMCID: PMC10467118 DOI: 10.3390/toxins15070453] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/29/2023] [Accepted: 07/01/2023] [Indexed: 07/29/2023] Open
Abstract
Ciguatera is a major circumtropical poisoning caused by the consumption of marine fish and invertebrates contaminated with ciguatoxins (CTXs): neurotoxins produced by endemic and benthic dinoflagellates which are biotransformed in the fish food-web. We provide a history of ciguatera research conducted over the past 70 years on ciguatoxins from the Pacific Ocean (P-CTXs) and Caribbean Sea (C-CTXs) and describe their main chemical, biochemical, and toxicological properties. Currently, there is no official method for the extraction and quantification of ciguatoxins, regardless their origin, mainly due to limited CTX-certified reference materials. In this review, the extraction and purification procedures of C-CTXs are investigated, considering specific objectives such as isolating reference materials, analysing fish toxin profiles, or ensuring food safety control. Certain in vitro assays may provide sufficient sensitivity to detect C-CTXs at sub-ppb levels in fish, but they do not allow for individual identification of CTXs. Recent advances in analysis using liquid chromatography coupled with low- or high-resolution mass spectrometry provide new opportunities to identify known C-CTXs, to gain structural insights into new analogues, and to quantify C-CTXs. Together, these methods reveal that ciguatera arises from a multiplicity of CTXs, although one major form (C-CTX-1) seems to dominate. However, questions arise regarding the abundance and instability of certain C-CTXs, which are further complicated by the wide array of CTX-producing dinoflagellates and fish vectors. Further research is needed to assess the toxic potential of the new C-CTX and their role in ciguatera fish poisoning. With the identification of C-CTXs in the coastal USA and Eastern Atlantic Ocean, the investigation of ciguatera fish poisoning is now a truly global effort.
Collapse
Affiliation(s)
- Ivannah Pottier
- Normandie Univ, UNICAEN, UNIROUEN, ABTE, 14000 Caen, France;
| | - Richard J. Lewis
- Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Australia
| | | |
Collapse
|
6
|
Mudge EM, Miles CO, Ivanova L, Uhlig S, James KS, Erdner DL, Fæste CK, McCarron P, Robertson A. Algal ciguatoxin identified as source of ciguatera poisoning in the Caribbean. CHEMOSPHERE 2023; 330:138659. [PMID: 37044143 DOI: 10.1016/j.chemosphere.2023.138659] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/06/2023] [Accepted: 04/08/2023] [Indexed: 05/03/2023]
Abstract
Ciguatera poisoning (CP) is a severe seafood-borne disease, caused by the consumption of reef fish contaminated with Caribbean ciguatoxins (C-CTXs) in the Caribbean and tropical Atlantic. However, C-CTXs have not been identified from their presumed algal source, so the relationship to the CTXs in fish causing illness remains unknown. This has hindered the development of detection methods, diagnostics, monitoring programs, and limited fundamental knowledge on the environmental factors that regulate C-CTX production. In this study, in vitro and chemical techniques were applied to unambiguously identify a novel C-CTX analogue, C-CTX5, from Gambierdiscus silvae and Gambierdiscus caribaeus strains from the Caribbean. Metabolism in vitro by fish liver microsomes converted algal C-CTX5 into C-CTX1/2, the dominant CTX in ciguatoxic fish from the Caribbean. Furthermore, C-CTX5 from G. silvae was confirmed to have voltage-gated sodium-channel-specific activity. This finding is crucial for risk assessment, understanding the fate of C-CTXs in food webs, and is a prerequisite for development of effective analytical methods and monitoring programs. The identification of an algal precursor produced by two Gambierdiscus species is a major breakthrough for ciguatera research that will foster major advances in this important seafood safety issue.
Collapse
Affiliation(s)
- Elizabeth M Mudge
- Biotoxin Metrology, National Research Council, 1411 Oxford Street, Halifax, NS, B3H 3Z1, Canada.
| | - Christopher O Miles
- Biotoxin Metrology, National Research Council, 1411 Oxford Street, Halifax, NS, B3H 3Z1, Canada
| | - Lada Ivanova
- Chemistry and Toxinology Research Group, Norwegian Veterinary Institute, P.O. Box 64, 1431 Ås, Norway
| | - Silvio Uhlig
- Chemistry and Toxinology Research Group, Norwegian Veterinary Institute, P.O. Box 64, 1431 Ås, Norway
| | - Keiana S James
- School of Marine & Environmental Sciences, University of South Alabama, 600 Clinic Drive, AL, 36688, USA; Marine Ecotoxicology Group, Dauphin Island Sea Lab, 101 Bienville Blvd, Dauphin Island, Dauphin Island, AL, 36528, USA
| | - Deana L Erdner
- Marine Science Institute, University of Texas at Austin, 750 Channel View Dr, Port Aransas, TX, 78373, USA
| | - Christiane K Fæste
- Chemistry and Toxinology Research Group, Norwegian Veterinary Institute, P.O. Box 64, 1431 Ås, Norway
| | - Pearse McCarron
- Biotoxin Metrology, National Research Council, 1411 Oxford Street, Halifax, NS, B3H 3Z1, Canada
| | - Alison Robertson
- School of Marine & Environmental Sciences, University of South Alabama, 600 Clinic Drive, AL, 36688, USA; Marine Ecotoxicology Group, Dauphin Island Sea Lab, 101 Bienville Blvd, Dauphin Island, Dauphin Island, AL, 36528, USA.
| |
Collapse
|