Takhteh A, Hosseininejad-Chafi M, Oghalaie A, Behdani M, Kazemi-Lomedasht F. Development and Characterization of an Anti-PD-L1 Immunotoxin for Targeted Cancer Therapy.
Curr Pharm Biotechnol 2025;
26:854-862. [PMID:
39238385 DOI:
10.2174/0113892010321088240823062243]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 09/07/2024]
Abstract
BACKGROUND
Immunotoxins (ITs) represent a novel class of therapeutics with bifunctional structures that facilitate their penetration through cell membranes to induce target cell destruction. Programmed cell death ligand-1 (PD-L1), a human cell surface protein, is overexpressed in various cancers. This study aimed to construct a novel IT by genetically fusing an anti-PD-L1 Nanobody (Nb) to a truncated diphtheria toxin (DT).
METHODS
The IT construct comprised a 127-amino acid anti-PD-L1 Nb fused to a 380-amino acid fragment of DT, with an N-terminal 6x-His tag. Molecular cloning techniques were employed, followed by transformation and verification through colony-PCR, enzyme digestion, and sequencing. The anti-PD-L1 Nb was expressed in WK6 E. coli cells induced by Isopropyl β-D-1- Thiogalactopyranoside (IPTG) and purified from periplasmic extracts using immobilized Metal Ion Affinity hromatography (IMAC). The IT was similarly expressed, purified, and validated via SDS-PAGE and Western blot analysis.
RESULTS
ELISA confirmed the binding activity of both Nb and IT to immobilized PD-L1 antigen, whereas truncated DT exhibited no binding. MTT assays demonstrated significant cytotoxicity of IT on A-431 cell lines compared to Nb and truncated DT controls. Statistical analyses underscored the significance of these findings.
CONCLUSION
This study provides a thorough characterization of the constructed IT, highlighting its potential as a therapeutic agent targeting PD-L1-expressing cancer cells. The results support the potential of this IT in cancer immunotherapy, emphasizing the need for further investigation into its efficacy and safety profiles.
Collapse