1
|
Peterson LA, Stanfill SB, Hecht SS. An update on the formation in tobacco, toxicity and carcinogenicity of N'-nitrosonornicotine and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone. Carcinogenesis 2024; 45:275-287. [PMID: 38437625 PMCID: PMC11102769 DOI: 10.1093/carcin/bgae018] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/14/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024] Open
Abstract
The tobacco-specific nitrosamines N'-nitrosonornicotine (NNN) and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) are considered 'carcinogenic to humans' by the International Agency for Research on Cancer (IARC) and are believed to be important in the carcinogenic effects of both smokeless tobacco and combusted tobacco products. This short review focuses on the results of recent studies on the formation of NNN and NNK in tobacco, and their carcinogenicity and toxicity in laboratory animals. New mechanistic insights are presented regarding the role of dissimilatory nitrate reductases in certain microorganisms involved in the conversion of nitrate to nitrite that leads to the formation of NNN and NNK during curing and processing of tobacco. Carcinogenicity studies of the enantiomers of the major NNK metabolite 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) and the enantiomers of NNN are reviewed. Recent toxicity studies of inhaled NNK and co-administration studies of NNK with formaldehyde, acetaldehyde, acrolein and CO2, all of which occur in high concentrations in cigarette smoke, are discussed.
Collapse
Affiliation(s)
- Lisa A Peterson
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Stephen B Stanfill
- Tobacco and Volatiles Branch, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Stephen S Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
2
|
Liu J, Chen T, Li S, Liu W, Wang P, Shang G. Targeting matrix metalloproteinases by E3 ubiquitin ligases as a way to regulate the tumor microenvironment for cancer therapy. Semin Cancer Biol 2022; 86:259-268. [PMID: 35724822 DOI: 10.1016/j.semcancer.2022.06.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/27/2022] [Accepted: 06/13/2022] [Indexed: 10/31/2022]
Abstract
The tumor microenvironment (TME) plays an important role in neoplastic development. Matrix metalloproteinases (MMPs) are critically involved in tumorigenesis by modulation of the TME and degradation of the extracellular matrix (ECM) in a large variety of malignancies. Evidence has revealed that dysregulated MMPs can lead to ECM damage, the promotion of cell migration and tumor metastasis. The expression and activities of MMPs can be tightly regulated by TIMPs, multiple signaling pathways and noncoding RNAs. MMPs are also finely controlled by E3 ubiquitin ligases. The current review focuses on the molecular mechanism by which MMPs are governed by E3 ubiquitin ligases in carcinogenesis. Due to the essential role of MMPs in oncogenesis, they have been considered the attractive targets for antitumor treatment. Several strategies that target MMPs have been discovered, including the use of small-molecule inhibitors, peptides, inhibitory antibodies, natural compounds with anti-MMP activity, and RNAi therapeutics. However, these molecules have multiple disadvantages, such as poor solubility, severe side-effects and low oral bioavailability. Therefore, it is necessary to discover the novel inhibitors that suppress MMPs for cancer therapy. Here, we discuss the therapeutic potential of targeting E3 ubiquitin ligases to inhibit MMPs. We hope this review will stimulate the discovery of novel therapeutics for the MMP-targeted treatment of a variety of human cancers.
Collapse
Affiliation(s)
- Jinxin Liu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Ting Chen
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Shizhe Li
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Wenjun Liu
- Department of Research and Development, Beijing Zhongwei Research Center of Biological and Translational Medicine, Beijing 100161, China
| | - Peter Wang
- Department of Research and Development, Beijing Zhongwei Research Center of Biological and Translational Medicine, Beijing 100161, China; Bengbu Medical College Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Anhui 233030, China.
| | - Guanning Shang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| |
Collapse
|
3
|
Yu D, Tang Z, Li B, Yu J, Li W, Liu Z, Tian C. Resveratrol against Cardiac Fibrosis: Research Progress in Experimental Animal Models. Molecules 2021; 26:6860. [PMID: 34833952 PMCID: PMC8621031 DOI: 10.3390/molecules26226860] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 11/23/2022] Open
Abstract
Cardiac fibrosis is a heterogeneous disease, which is characterized by abundant proliferation of interstitial collagen, disordered arrangement, collagen network reconstruction, increased cardiac stiffness, and decreased systolic and diastolic functions, consequently developing into cardiac insufficiency. With several factors participating in and regulating the occurrence and development of cardiac fibrosis, a complex molecular mechanism underlies the disease. Moreover, cardiac fibrosis is closely related to hypertension, myocardial infarction, viral myocarditis, atherosclerosis, and diabetes, which can lead to serious complications such as heart failure, arrhythmia, and sudden cardiac death, thus seriously threatening human life and health. Resveratrol, with the chemical name 3,5,4'-trihydroxy-trans-stilbene, is a polyphenol abundantly present in grapes and red wine. It is known to prevent the occurrence and development of cardiovascular diseases. In addition, it may resist cardiac fibrosis through a variety of growth factors, cytokines, and several cell signaling pathways, thus exerting a protective effect on the heart.
Collapse
Affiliation(s)
- Dongmin Yu
- Department of Breast Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China;
- Department of Cardiovascular Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China;
| | - Zhixian Tang
- Department of Cardiothoracic Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China; (Z.T.); (J.Y.); (W.L.)
| | - Ben Li
- Department of Cardiovascular Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China;
| | - Junjian Yu
- Department of Cardiothoracic Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China; (Z.T.); (J.Y.); (W.L.)
| | - Wentong Li
- Department of Cardiothoracic Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China; (Z.T.); (J.Y.); (W.L.)
| | - Ziyou Liu
- Department of Cardiothoracic Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China; (Z.T.); (J.Y.); (W.L.)
| | - Chengnan Tian
- Department of Cardiothoracic Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China; (Z.T.); (J.Y.); (W.L.)
| |
Collapse
|
4
|
Peterson LA, Oram MK, Flavin M, Seabloom D, Smith WE, O’Sullivan MG, Vevang KR, Upadhyaya P, Stornetta A, Floeder AC, Ho YY, Zhang L, Hecht SS, Balbo S, Wiedmann TS. Coexposure to Inhaled Aldehydes or Carbon Dioxide Enhances the Carcinogenic Properties of the Tobacco-Specific Nitrosamine 4-Methylnitrosamino-1-(3-pyridyl)-1-butanone in the A/J Mouse Lung. Chem Res Toxicol 2021; 34:723-732. [PMID: 33629582 PMCID: PMC10901071 DOI: 10.1021/acs.chemrestox.0c00350] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Tobacco smoke is a complex mixture of chemicals, many of which are toxic and carcinogenic. Hazard assessments of tobacco smoke exposure have predominantly focused on either single chemical exposures or the more complex mixtures of tobacco smoke or its fractions. There are fewer studies exploring interactions between specific tobacco smoke chemicals. Aldehydes such as formaldehyde and acetaldehyde were hypothesized to enhance the carcinogenic properties of the human carcinogen, 4-methylnitrosamino-1-(3-pyridyl)-1-butanone (NNK) through a variety of mechanisms. This hypothesis was tested in the established NNK-induced A/J mouse lung tumor model. A/J mice were exposed to NNK (intraperitoneal injection, 0, 2.5, or 7.5 μmol in saline) in the presence or absence of acetaldehyde (0 or 360 ppmv) or formaldehyde (0 or 17 ppmv) for 3 h in a nose-only inhalation chamber, and lung tumors were counted 16 weeks later. Neither aldehyde by itself induced lung tumors. However, mice receiving both NNK and acetaldehyde or formaldehyde had more adenomas with dysplasia or progression than those receiving only NNK, suggesting that aldehydes may increase the severity of NNK-induced lung adenomas. The aldehyde coexposure did not affect the levels of NNK-derived DNA adduct levels. Similar studies tested the ability of a 3 h nose-only carbon dioxide (0, 5, 10, or 15%) coexposure to influence lung adenoma formation by NNK. While carbon dioxide alone was not carcinogenic, it significantly increased the number of NNK-derived lung adenomas without affecting NNK-derived DNA damage. These studies indicate that the chemicals in tobacco smoke work together to form a potent lung carcinogenic mixture.
Collapse
Affiliation(s)
- Lisa A. Peterson
- Division of Environmental Health Sciences, University of Minnesota, Minneapolis, Minnesota 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Marissa K. Oram
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Monica Flavin
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Donna Seabloom
- AeroCore Testing Service, Department of Otolaryngology, University of Minnesota, Minneapolis, Minnesota, USA
| | - William E. Smith
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - M. Gerard O’Sullivan
- College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota 55108, USA
- Comparative Pathology Shared Resource, Masonic Cancer Center, University of Minnesota, St. Paul, Minnesota, USA
| | - Karin R. Vevang
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Pramod Upadhyaya
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Alessia Stornetta
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Andrew C. Floeder
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Yen-Yi Ho
- Division of Biostatistics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Lin Zhang
- Division of Biostatistics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Stephen S. Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Silvia Balbo
- Division of Environmental Health Sciences, University of Minnesota, Minneapolis, Minnesota 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Timothy S. Wiedmann
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
5
|
Morel KL, Ormsby RJ, Solly EL, Tran LNK, Sweeney CJ, Klebe S, Cordes N, Sykes PJ. Chronic low dose ethanol induces an aggressive metastatic phenotype in TRAMP mice, which is counteracted by parthenolide. Clin Exp Metastasis 2018; 35:649-661. [PMID: 29936575 DOI: 10.1007/s10585-018-9915-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 06/18/2018] [Indexed: 11/29/2022]
Abstract
Despite advances in prostate cancer therapy, dissemination and growth of metastases results in shortened survival. Here we examined the potential anti-cancer effect of the NF-κB inhibitor parthenolide (PTL) and its water soluble analogue dimethylaminoparthenolide (DMAPT) on tumour progression and metastasis in the TRansgenic Adenocarcinoma of the Mouse Prostate (TRAMP) model of prostate cancer. Six-week-old male TRAMP mice received PTL (40 mg/kg in 10% ethanol/saline), DMAPT (100 mg/kg in sterile water), or vehicle controls by oral gavage thrice weekly until palpable tumour formation. DMAPT treatment slowed normal tumour development in TRAMP mice, extending the time-to-palpable prostate tumour by 20%. PTL did not slow overall tumour development, while the ethanol/saline vehicle used to administer PTL unexpectedly induced an aggressive metastatic tumour phenotype. Chronic ethanol/saline vehicle upregulated expression of NF-κB, MMP2, integrin β1, collagen IV, and laminin, and induced vascular basement membrane degradation in primary prostate tumours, as well as increased metastatic spread to the lung and liver. All of these changes were largely prevented by co-administration with PTL. DMAPT (in water) reduced metastasis to below that of water-control. These data suggest that DMAPT has the potential to be used as a cancer preventive and anti-metastatic therapy for prostate cancer. Although low levels of ethanol consumption have not been shown to strongly correlate with prostate cancer epidemiology, these results would support a potential effect of chronic low dose ethanol on metastasis and the TRAMP model provides a useful system in which to further explore the mechanisms involved.
Collapse
Affiliation(s)
- Katherine L Morel
- Molecular Medicine and Pathology, Flinders Centre for Innovation in Cancer, Flinders University and Medical Centre, Bedford Park, Adelaide, SA, Australia.
| | - Rebecca J Ormsby
- Molecular Medicine and Pathology, Flinders Centre for Innovation in Cancer, Flinders University and Medical Centre, Bedford Park, Adelaide, SA, Australia
| | - Emma L Solly
- Molecular Medicine and Pathology, Flinders Centre for Innovation in Cancer, Flinders University and Medical Centre, Bedford Park, Adelaide, SA, Australia
| | - Linh N K Tran
- Molecular Medicine and Pathology, Flinders Centre for Innovation in Cancer, Flinders University and Medical Centre, Bedford Park, Adelaide, SA, Australia
| | | | - Sonja Klebe
- Department of Anatomical Pathology, Flinders University and SA Pathology at Flinders Medical Centre, Bedford Park, SA, Australia
| | - Nils Cordes
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden; Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Pamela J Sykes
- Molecular Medicine and Pathology, Flinders Centre for Innovation in Cancer, Flinders University and Medical Centre, Bedford Park, Adelaide, SA, Australia
| |
Collapse
|
6
|
Wang J, Tai G. Role of C-Jun N-terminal Kinase in Hepatocellular Carcinoma Development. Target Oncol 2017; 11:723-738. [PMID: 27392951 DOI: 10.1007/s11523-016-0446-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hepatocellular carcinoma (HCC) is among the most frequently occurring cancers and the leading causes of cancer mortality worldwide. Identification of the signaling pathways regulating liver carcinogenesis is critical for developing novel chemoprevention and targeted therapies. C-Jun N-terminal kinase (JNK) is a member of a larger group of serine/threonine (Ser/Thr) protein kinases known as the mitogen-activated protein kinase (MAPK) family. JNK is an important signaling component that converts external stimuli into a wide range of cellular responses, including cell proliferation, differentiation, survival, migration, invasion, and apoptosis, as well as the development of inflammation, fibrosis, cancer growth, and metabolic diseases. Because of the essential roles of JNK in these cellular functions, deregulated JNK is often found to contribute to the development of HCC. Recently, the functions and molecular mechanisms of JNK in HCC development have been addressed using mouse models and human HCC cell lines. Furthermore, recent studies demonstrate that the activation of JNK by oncogenes can promote the development of cancers by regulating the transforming growth factor (TGF)-β/Smad pathway, which makes the oncogenes/JNK/Smad signaling pathway an attractive target for cancer therapy. Additionally, JNK-targeted therapy has a broad potential for clinical applications. In summary, we are convinced that promising new avenues for the treatment of HCC by targeting JNK are on the horizon, which will undoubtedly lead to better, more effective, and faster therapies in the years to come.
Collapse
Affiliation(s)
- Juan Wang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Jilin, Changchun, 130021, China
| | - Guixiang Tai
- Department of Immunology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Jilin, Changchun, 130021, China.
| |
Collapse
|
7
|
Wang Y, Wan D, Zhou R, Zhong W, Lu S, Chai Y. Geraniin inhibits migration and invasion of human osteosarcoma cancer cells through regulation of PI3K/Akt and ERK1/2 signaling pathways. Anticancer Drugs 2017; 28:959-966. [PMID: 28704237 DOI: 10.1097/cad.0000000000000535] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Geraniin, an active compound isolated from Geranium sibiricum, was found to inhibit proliferation and induce apoptosis of tumor cells. However, the antimetastatic effects of geraniin remain elusive. Our study found the potential antitumor mechanisms of geraniin through inhibiting the migration and invasion of human osteosarcoma U2OS cells. The western blot, gelatin zymography, and reversed transcription-PCR analysis showed that geraniin suppressed matrix metalloproteinase-9 (MMP-9) expression in a concentration-dependent manner. Geraniin potently suppressed the phosphorylation of extracellular signal regulating kinase (ERK)1/2, phosphatidylinositide-3-kinase (PI3K), and Akt, but did not affect phosphorylation of p38 mitogen-activated protein kinase and c-Jun N-terminal kinase. Furthermore, when transforming growth factor-β1 (TGF-β1) was used as an agonist, geraniin inhibited TGF-β1-mediated cell invasion and upregulation of MMP-9. These results suggested that geraniin inhibited U2OS cell migration and invasion by reducing the expression of MMP-9 through the PI3K/Akt and ERK1/2 signaling pathways.
Collapse
Affiliation(s)
- Yanmao Wang
- aDepartment of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai bDepartment of Orthopaedics, the Fifth Hospital of Harbin, Harbin, People's Republic of China
| | | | | | | | | | | |
Collapse
|
8
|
Geraniin inhibits migration and invasion of human osteosarcoma cancer cells through regulation of PI3K/Akt and ERK1/2 signaling pathways. Anticancer Drugs 2017. [DOI: 10.1097/cad.0000000000000535 pmid: 28704237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Jeong YJ, Cho HJ, Chung FL, Wang X, Hoe HS, Park KK, Kim CH, Chang HW, Lee SR, Chang YC. Isothiocyanates suppress the invasion and metastasis of tumors by targeting FAK/MMP-9 activity. Oncotarget 2017; 8:63949-63962. [PMID: 28969043 PMCID: PMC5609975 DOI: 10.18632/oncotarget.19213] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 06/10/2017] [Indexed: 01/03/2023] Open
Abstract
Isothiocyanates, which are present as glucosinolate precursors in cruciferous vegetables, have strong activity against various cancers. Here, we compared the anti-metastatic effects of isothiocyanates (benzyl isothiocyanate (BITC), phenethyl isothiocyanate (PEITC), and sulforaphane (SFN)) by examining how they regulate MMP-9 expression. Isothiocyanates, particularly PEITC, suppressed 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced MMP-9 activity and invasion in various cancer cell lines. By contrast, N-methyl phenethylamine, a PEITC analog without an isothiocyanate functional group, had no effect. A reporter gene assay demonstrated that BITC, PEITC, and SFN suppressed TAP-induced MMP-9 expression by inhibiting AP-1 and NF-κB in U20S osteosarcoma cells. All three compounds reduced phosphorylation of FAK, ERK1/2, and Akt. In addition, MMP-9 expression was downregulated by inhibiting FAK, ERK1/2, and Akt. Isothiocyanates-mediated inhibition of FAK phosphorylation suppressed phosphorylation of ERK1/2 and Akt in U2OS and A549 cells, along with the translocation of p65 and c-Fos, suggesting that isothiocyanates inhibit MMP-9 expression and cell invasion by blocking phosphorylation of FAK. Furthermore, isothiocyanates, abolished MMP-9 expression and tumor metastasis in vivo with the following efficacy: PEITC>BITC>SFN. Thus, isothiocyanates act as anti-metastatic compounds that suppress MMP-9 activity/expression by inhibiting NF-κB and AP-1 via suppression of the FAK/ERK and FAK/Akt signaling pathways.
Collapse
Affiliation(s)
- Yun-Jeong Jeong
- Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu 705-718, Republic of Korea
| | - Hyun-Ji Cho
- Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu 705-718, Republic of Korea
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu 701-300, Republic of Korea
| | - Fung-Lung Chung
- Department of Oncology, Lambardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Xiantao Wang
- Department of Oncology, Lambardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
- National Institutes of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hyang-Sook Hoe
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu 701-300, Republic of Korea
| | - Kwan-Kyu Park
- Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu 705-718, Republic of Korea
| | - Cheorl-Ho Kim
- Department of Biological Science, Sungkyunkwan University, Suwon, Kyunggi-Do 440-746, Republic of Korea
| | - Hyeun-Wook Chang
- College of pharmacy, Yeungnam University, Gyeongsan 701-947, Republic of Korea
| | - Sang-Rae Lee
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungbuk 28116, Republic of Korea
| | - Young-Chae Chang
- Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu 705-718, Republic of Korea
| |
Collapse
|
10
|
Yang CJ, Liu YP, Dai HY, Shiue YL, Tsai CJ, Huang MS, Yeh YT. Nuclear HDAC6 inhibits invasion by suppressing NF-κB/MMP2 and is inversely correlated with metastasis of non-small cell lung cancer. Oncotarget 2016; 6:30263-76. [PMID: 26388610 PMCID: PMC4745796 DOI: 10.18632/oncotarget.4749] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 09/04/2015] [Indexed: 11/25/2022] Open
Abstract
Histone deacetylase 6 (HDAC6) is a unique member of the histone deacetylase family. Although HDAC6 is mainly localized in the cytoplasm, it can regulate the activities of the transcription factors in the nucleus. However, a correlation of intracellular distribution of HDAC6 with tumor progression is lacking. In this study, we found that a low frequency of nuclear HDAC6-positive cells in tumors was associated with distant metastasis and a worse overall survival in 134 patients with non-small cell lung cancer (NSCLC). Ectopic expression of wild-type HDAC6 promoted migration and invasion of A549 and H661 cells. However, the enforced expression of nuclear export signal-deleted HDAC6 inhibited the invasion but not the migration of both cell lines. The inhibitory effect of nuclear HDAC6 on invasion was mediated by the deacetylation of the p65 subunit of nuclear factor-κB, which decreased its DNA-binding activity to the MMP2 promoter, leading to the downregulation of MMP2 expression. Our findings indicated that the loss of nuclear HDAC6 may be a potential biomarker for predicting metastasis in patients with NSCLC.
Collapse
Affiliation(s)
- Chih-Jen Yang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Peng Liu
- Department of Genome Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hong-Ying Dai
- Department of Medical Laboratory Sciences and Biotechnology, Fooyin University, Kaohsiung, Taiwan
| | - Yow-Ling Shiue
- Institute of Biomedical Science, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Chia-Jung Tsai
- Institute of Biomedical Science, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Ming-Shyan Huang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yao-Tsung Yeh
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Medical Laboratory Sciences and Biotechnology, Fooyin University, Kaohsiung, Taiwan
| |
Collapse
|
11
|
Halder K, Banerjee S, Ghosh S, Bose A, Das S, Chowdhury BP, Majumdar S. Mycobacterium indicus pranii (Mw) inhibits invasion by reducing matrix metalloproteinase (MMP-9) via AKT/ERK-1/2 and PKCα signaling: A potential candidate in melanoma cancer therapy. Cancer Biol Ther 2015; 18:850-862. [PMID: 26390181 DOI: 10.1080/15384047.2015.1078024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Invasion and metastasis via induction of matrix metalloproteinases are the main causes of death in melanoma cancer. In this study, we investigated the inhibitory effects of heat killed saprophytic bacterium Mycobacterium indicus pranii (Mw) on B16F10 melanoma cell invasion. Mw reported to be an immunomodulator has antitumor activity however, its effect on cancer cell invasion has not been studied. Highly invasive B16F10 melanoma was found sensitive to Mw which downregulated MMP-9 expression. Mw treatment inhibited nuclear factor-κB (NF-κB) and activator protein-1 (AP-1) transcriptional activity and respective DNA binding to MMP-9 promoter. Moreover, Mw also overcame the promoting effects of PMA on B16F10 cell invasion. Mw decreased PMA-induced transcriptional activation of NF-κB and AP-1 by inhibiting phosphorylation of AKT and ERK-1/2. Furthermore, Mw strongly suppressed PMA-induced membrane localization of protein kinase C α (PKCα) since PKCα inhibition caused a marked decrease in PMA-induced MMP-9 secretion as well as AKT/ERK-1/2 activation. These results suggest that Mw may be a promising anti-invasive agent as it blocks tumor growth and inhibits B16F10 cell invasion by reducing MMP-9 activation through inhibition of PKCα/ AKT/ ERK-1/2 phosphorylation and NF-κB/AP-1 activation.
Collapse
Affiliation(s)
- Kuntal Halder
- a Division of Molecular Medicine; Bose Institute ; Kolkata , India
| | | | - Sweta Ghosh
- a Division of Molecular Medicine; Bose Institute ; Kolkata , India
| | - Anamika Bose
- a Division of Molecular Medicine; Bose Institute ; Kolkata , India
| | - Shibali Das
- a Division of Molecular Medicine; Bose Institute ; Kolkata , India
| | | | - Subrata Majumdar
- a Division of Molecular Medicine; Bose Institute ; Kolkata , India
| |
Collapse
|
12
|
Goodson WH, Lowe L, Carpenter DO, Gilbertson M, Manaf Ali A, Lopez de Cerain Salsamendi A, Lasfar A, Carnero A, Azqueta A, Amedei A, Charles AK, Collins AR, Ward A, Salzberg AC, Colacci AM, Olsen AK, Berg A, Barclay BJ, Zhou BP, Blanco-Aparicio C, Baglole CJ, Dong C, Mondello C, Hsu CW, Naus CC, Yedjou C, Curran CS, Laird DW, Koch DC, Carlin DJ, Felsher DW, Roy D, Brown DG, Ratovitski E, Ryan EP, Corsini E, Rojas E, Moon EY, Laconi E, Marongiu F, Al-Mulla F, Chiaradonna F, Darroudi F, Martin FL, Van Schooten FJ, Goldberg GS, Wagemaker G, Nangami GN, Calaf GM, Williams GP, Wolf GT, Koppen G, Brunborg G, Lyerly HK, Krishnan H, Ab Hamid H, Yasaei H, Sone H, Kondoh H, Salem HK, Hsu HY, Park HH, Koturbash I, Miousse IR, Scovassi A, Klaunig JE, Vondráček J, Raju J, Roman J, Wise JP, Whitfield JR, Woodrick J, Christopher JA, Ochieng J, Martinez-Leal JF, Weisz J, Kravchenko J, Sun J, Prudhomme KR, Narayanan KB, Cohen-Solal KA, Moorwood K, Gonzalez L, Soucek L, Jian L, D’Abronzo LS, Lin LT, Li L, Gulliver L, McCawley LJ, Memeo L, Vermeulen L, Leyns L, Zhang L, Valverde M, Khatami M, Romano MF, Chapellier M, Williams MA, Wade M, et alGoodson WH, Lowe L, Carpenter DO, Gilbertson M, Manaf Ali A, Lopez de Cerain Salsamendi A, Lasfar A, Carnero A, Azqueta A, Amedei A, Charles AK, Collins AR, Ward A, Salzberg AC, Colacci AM, Olsen AK, Berg A, Barclay BJ, Zhou BP, Blanco-Aparicio C, Baglole CJ, Dong C, Mondello C, Hsu CW, Naus CC, Yedjou C, Curran CS, Laird DW, Koch DC, Carlin DJ, Felsher DW, Roy D, Brown DG, Ratovitski E, Ryan EP, Corsini E, Rojas E, Moon EY, Laconi E, Marongiu F, Al-Mulla F, Chiaradonna F, Darroudi F, Martin FL, Van Schooten FJ, Goldberg GS, Wagemaker G, Nangami GN, Calaf GM, Williams GP, Wolf GT, Koppen G, Brunborg G, Lyerly HK, Krishnan H, Ab Hamid H, Yasaei H, Sone H, Kondoh H, Salem HK, Hsu HY, Park HH, Koturbash I, Miousse IR, Scovassi A, Klaunig JE, Vondráček J, Raju J, Roman J, Wise JP, Whitfield JR, Woodrick J, Christopher JA, Ochieng J, Martinez-Leal JF, Weisz J, Kravchenko J, Sun J, Prudhomme KR, Narayanan KB, Cohen-Solal KA, Moorwood K, Gonzalez L, Soucek L, Jian L, D’Abronzo LS, Lin LT, Li L, Gulliver L, McCawley LJ, Memeo L, Vermeulen L, Leyns L, Zhang L, Valverde M, Khatami M, Romano MF, Chapellier M, Williams MA, Wade M, Manjili MH, Lleonart ME, Xia M, Gonzalez Guzman MJ, Karamouzis MV, Kirsch-Volders M, Vaccari M, Kuemmerle NB, Singh N, Cruickshanks N, Kleinstreuer N, van Larebeke N, Ahmed N, Ogunkua O, Krishnakumar P, Vadgama P, Marignani PA, Ghosh PM, Ostrosky-Wegman P, Thompson PA, Dent P, Heneberg P, Darbre P, Leung PS, Nangia-Makker P, Cheng Q(S, Robey R, Al-Temaimi R, Roy R, Andrade-Vieira R, Sinha RK, Mehta R, Vento R, Di Fiore R, Ponce-Cusi R, Dornetshuber-Fleiss R, Nahta R, Castellino RC, Palorini R, Hamid RA, Langie SA, Eltom SE, Brooks SA, Ryeom S, Wise SS, Bay SN, Harris SA, Papagerakis S, Romano S, Pavanello S, Eriksson S, Forte S, Casey SC, Luanpitpong S, Lee TJ, Otsuki T, Chen T, Massfelder T, Sanderson T, Guarnieri T, Hultman T, Dormoy V, Odero-Marah V, Sabbisetti V, Maguer-Satta V, Rathmell W, Engström W, Decker WK, Bisson WH, Rojanasakul Y, Luqmani Y, Chen Z, Hu Z. Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: the challenge ahead. Carcinogenesis 2015; 36 Suppl 1:S254-S296. [PMID: 26106142 PMCID: PMC4480130 DOI: 10.1093/carcin/bgv039] [Show More Authors] [Citation(s) in RCA: 186] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 01/23/2015] [Accepted: 01/31/2015] [Indexed: 02/07/2023] Open
Abstract
Lifestyle factors are responsible for a considerable portion of cancer incidence worldwide, but credible estimates from the World Health Organization and the International Agency for Research on Cancer (IARC) suggest that the fraction of cancers attributable to toxic environmental exposures is between 7% and 19%. To explore the hypothesis that low-dose exposures to mixtures of chemicals in the environment may be combining to contribute to environmental carcinogenesis, we reviewed 11 hallmark phenotypes of cancer, multiple priority target sites for disruption in each area and prototypical chemical disruptors for all targets, this included dose-response characterizations, evidence of low-dose effects and cross-hallmark effects for all targets and chemicals. In total, 85 examples of chemicals were reviewed for actions on key pathways/mechanisms related to carcinogenesis. Only 15% (13/85) were found to have evidence of a dose-response threshold, whereas 59% (50/85) exerted low-dose effects. No dose-response information was found for the remaining 26% (22/85). Our analysis suggests that the cumulative effects of individual (non-carcinogenic) chemicals acting on different pathways, and a variety of related systems, organs, tissues and cells could plausibly conspire to produce carcinogenic synergies. Additional basic research on carcinogenesis and research focused on low-dose effects of chemical mixtures needs to be rigorously pursued before the merits of this hypothesis can be further advanced. However, the structure of the World Health Organization International Programme on Chemical Safety 'Mode of Action' framework should be revisited as it has inherent weaknesses that are not fully aligned with our current understanding of cancer biology.
Collapse
Affiliation(s)
- William H. Goodson
- *To whom correspondence should be addressed. William H.Goodson III, California Pacific Medical Center Research Institute, 2100 Webster Street #401, San Francisco, CA 94115, USA. Tel: +41 59 233925; Fax: +41 57 761977;
| | - Leroy Lowe
- Getting to Know Cancer, Room 229A, 36 Arthur Street, Truro, Nova Scotia B2N 1X5, Canada
- Lancaster Environment Centre, Lancaster University, Bailrigg, Lancaster LA1 4AP, UK
| | - David O. Carpenter
- Institute for Health and the Environment, University at Albany, 5 University Pl., Rensselaer, NY 12144, USA
| | | | - Abdul Manaf Ali
- School of Biotechnology, Faculty of Agriculture Biotechnology and Food Sciences, Sultan Zainal Abidin University, Tembila Campus, 22200 Besut, Terengganu, Malaysia
| | | | - Ahmed Lasfar
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers, State University of New Jersey, Piscataway, NJ 08854, USA
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla, Consejo Superior de Investigaciones Cientificas. Hospital Universitario Virgen del Rocio, Univ. de Sevilla., Avda Manuel Siurot sn. 41013 Sevilla, Spain
| | - Amaya Azqueta
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Navarra, Pamplona 31008, Spain
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Firenze, Florence 50134, Italy
| | - Amelia K. Charles
- School of Biological Sciences, University of Reading, Hopkins Building, Reading, Berkshire RG6 6UB, UK
| | | | - Andrew Ward
- Department of Biochemistry and Biology, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Anna C. Salzberg
- Department of Public Health Sciences, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
| | - Anna Maria Colacci
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, 40126 Bologna, Italy
| | - Ann-Karin Olsen
- Department of Chemicals and Radiation, Division of Environmental Medicine, Norwegian Institute of Public Health, Oslo N-0403, Norway
| | - Arthur Berg
- Department of Public Health Sciences, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
| | | | - Binhua P. Zhou
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40508, USA
| | - Carmen Blanco-Aparicio
- Spanish National Cancer Research Centre, CNIO, Melchor Fernandez Almagro, 3, 28029 Madrid, Spain
| | - Carolyn J. Baglole
- Department of Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Chenfang Dong
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40508, USA
| | - Chiara Mondello
- Istituto di Genetica Molecolare, CNR, Via Abbiategrasso 207, 27100 Pavia, Italy
| | - Chia-Wen Hsu
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892–3375, USA
| | - Christian C. Naus
- Department of Cellular and Physiological Sciences, Life Sciences Institute, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia V5Z 1M9, Canada
| | - Clement Yedjou
- Department of Biology, Jackson State University, Jackson, MS 39217, USA
| | - Colleen S. Curran
- Department of Molecular and Environmental Toxicology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Dale W. Laird
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - Daniel C. Koch
- Stanford University Department of Medicine, Division of Oncology, Stanford, CA 94305, USA
| | - Danielle J. Carlin
- Superfund Research Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27560, USA
| | - Dean W. Felsher
- Department of Medicine, Oncology and Pathology, Stanford University,Stanford, CA 94305, USA
| | - Debasish Roy
- Department of Natural Science, The City University of New York at Hostos Campus, Bronx, NY 10451, USA
| | - Dustin G. Brown
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523–1680, USA
| | - Edward Ratovitski
- Department of Head and Neck Surgery/Head and Neck Cancer Research, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Elizabeth P. Ryan
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523–1680, USA
| | - Emanuela Corsini
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Emilio Rojas
- Department of Genomic Medicine and Environmental Toxicology, Institute for Biomedical Research, National Autonomous University of Mexico, Mexico City 04510, México
| | - Eun-Yi Moon
- Department of Bioscience and Biotechnology, Sejong University, Seoul 143–747, Korea
| | - Ezio Laconi
- Department of Biomedical Sciences, University of Cagliari, 09124 Cagliari, Italy
| | - Fabio Marongiu
- Department of Biomedical Sciences, University of Cagliari, 09124 Cagliari, Italy
| | - Fahd Al-Mulla
- Department of Pathology, Kuwait University, Safat 13110, Kuwait
| | - Ferdinando Chiaradonna
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
- SYSBIO Centre of Systems Biology, Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
| | - Firouz Darroudi
- Human Safety and Environmental Research, Department of Health Sciences, College of North Atlantic, Doha 24449, State of Qatar
| | - Francis L. Martin
- Lancaster Environment Centre, Lancaster University, Bailrigg, Lancaster LA1 4AP, UK
| | - Frederik J. Van Schooten
- Department of Toxicology, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University, Maastricht 6200, The Netherlands
| | - Gary S. Goldberg
- Department of Molecular Biology, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA
| | - Gerard Wagemaker
- Hacettepe University, Center for Stem Cell Research and Development, Ankara 06640, Turkey
| | - Gladys N. Nangami
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA
| | - Gloria M. Calaf
- Center for Radiological Research, Columbia University Medical Center, New York, NY 10032, USA
- Instituto de Alta Investigacion, Universidad de Tarapaca, Arica, Chile
| | - Graeme P. Williams
- School of Biological Sciences, University of Reading, Reading, RG6 6UB, UK
| | - Gregory T. Wolf
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Gudrun Koppen
- Environmental Risk and Health Unit, Flemish Institute for Technological Research, 2400 Mol, Belgium
| | - Gunnar Brunborg
- Department of Chemicals and Radiation, Division of Environmental Medicine, Norwegian Institute of Public Health, Oslo N-0403, Norway
| | - H. Kim Lyerly
- Department of Surgery, Pathology, Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | - Harini Krishnan
- Department of Molecular Biology, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA
| | - Hasiah Ab Hamid
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, 43400 Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Hemad Yasaei
- Department of Life Sciences, College of Health and Life Sciences and the Health and Environment Theme, Institute of Environment, Health and Societies, Brunel University Kingston Lane, Uxbridge, Middlesex UB8 3PH, UK
| | - Hideko Sone
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibraki 3058506, Japan
| | - Hiroshi Kondoh
- Department of Geriatric Medicine, Kyoto University Hospital 54 Kawaharacho, Shogoin, Sakyo-ku Kyoto, 606–8507, Japan
| | - Hosni K. Salem
- Department of Urology, Kasr Al-Ainy School of Medicine, Cairo University, El Manial, Cairo 11559, Egypt
| | - Hsue-Yin Hsu
- Department of Life Sciences, Tzu-Chi University, Hualien 970, Taiwan
| | - Hyun Ho Park
- School of Biotechnology, Yeungnam University, Gyeongbuk 712-749, South Korea
| | - Igor Koturbash
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Isabelle R. Miousse
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - A.Ivana Scovassi
- Istituto di Genetica Molecolare, CNR, Via Abbiategrasso 207, 27100 Pavia, Italy
| | - James E. Klaunig
- Department of Environmental Health, Indiana University, School of Public Health, Bloomington, IN 47405, USA
| | - Jan Vondráček
- Department of Cytokinetics, Institute of Biophysics Academy of Sciences of the Czech Republic, Brno, CZ-61265, Czech Republic
| | - Jayadev Raju
- Regulatory Toxicology Research Division, Bureau of Chemical Safety, Food Directorate, Health Canada, Ottawa, Ontario K1A 0K9, Canada
| | - Jesse Roman
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA
- Robley Rex VA Medical Center, Louisville, KY 40202, USA
| | - John Pierce Wise
- Department of Applied Medical Sciences, University of Southern Maine, 96 Falmouth St., Portland, ME 04104, USA
| | - Jonathan R. Whitfield
- Mouse Models of Cancer Therapies Group, Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Jordan Woodrick
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC 20057, USA
| | - Joseph A. Christopher
- Cancer Research UK. Cambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
| | - Josiah Ochieng
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA
| | | | - Judith Weisz
- Departments of Obstetrics and Gynecology and Pathology, Pennsylvania State University College of Medicine, Hershey PA 17033, USA
| | - Julia Kravchenko
- Department of Surgery, Pathology, Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | - Jun Sun
- Department of Biochemistry, Rush University, Chicago, IL 60612, USA
| | - Kalan R. Prudhomme
- Environmental and Molecular Toxicology, Environmental Health Science Center, Oregon State University, Corvallis, OR 97331, USA
| | | | - Karine A. Cohen-Solal
- Department of Medicine/Medical Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| | - Kim Moorwood
- Department of Biochemistry and Biology, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Laetitia Gonzalez
- Laboratory for Cell Genetics, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Laura Soucek
- Mouse Models of Cancer Therapies Group, Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona 08010, Spain
| | - Le Jian
- School of Public Health, Curtin University, Bentley, WA 6102, Australia
- Department of Urology, University of California Davis, Sacramento, CA 95817, USA
| | - Leandro S. D’Abronzo
- Department of Urology, University of California Davis, Sacramento, CA 95817, USA
| | - Liang-Tzung Lin
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Lin Li
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, The People’s Republic of China
| | - Linda Gulliver
- Faculty of Medicine, University of Otago, Dunedin 9054, New Zealand
| | - Lisa J. McCawley
- Department of Biomedical Engineering and Cancer Biology, Vanderbilt University, Nashville, TN 37235, USA
| | - Lorenzo Memeo
- Department of Experimental Oncology, Mediterranean Institute of Oncology, Via Penninazzo 7, Viagrande (CT) 95029, Italy
| | - Louis Vermeulen
- Center for Experimental Molecular Medicine, Academic Medical Center, Meibergdreef 9, Amsterdam 1105 AZ, The Netherlands
| | - Luc Leyns
- Laboratory for Cell Genetics, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Luoping Zhang
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA 94720-7360, USA
| | - Mahara Valverde
- Department of Genomic Medicine and Environmental Toxicology, Institute for Biomedical Research, National Autonomous University of Mexico, Mexico City 04510, México
| | - Mahin Khatami
- Inflammation and Cancer Research, National Cancer Institute (NCI) (Retired), National Institutes of Health, Bethesda, MD 20892, USA
| | - Maria Fiammetta Romano
- Department of Molecular Medicine and Medical Biotechnology, Federico II University of Naples, 80131 Naples, Italy
| | - Marion Chapellier
- Centre De Recherche En Cancerologie,De Lyon, Lyon, U1052-UMR5286, France
| | - Marc A. Williams
- United States Army Institute of Public Health, Toxicology Portfolio-Health Effects Research Program, Aberdeen Proving Ground, Edgewood, MD 21010-5403, USA
| | - Mark Wade
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia, Via Adamello 16, 20139 Milano, Italy
| | - Masoud H. Manjili
- Department of Microbiology and Immunology, Virginia Commonwealth University, Massey Cancer Center, Richmond, VA 23298, USA
| | - Matilde E. Lleonart
- Institut De Recerca Hospital Vall D’Hebron, Passeig Vall d’Hebron, 119–129, 08035 Barcelona, Spain
| | - Menghang Xia
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892–3375, USA
| | - Michael J. Gonzalez Guzman
- University of Puerto Rico, Medical Sciences Campus, School of Public Health, Nutrition Program, San Juan 00921, Puerto Rico
| | - Michalis V. Karamouzis
- Department of Biological Chemistry, Medical School, University of Athens, Institute of Molecular Medicine and Biomedical Research, 10676 Athens, Greece
| | | | - Monica Vaccari
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, 40126 Bologna, Italy
| | | | - Neetu Singh
- Advanced Molecular Science Research Centre (Centre for Advanced Research), King George’s Medical University, Lucknow, Uttar Pradesh 226 003, India
| | - Nichola Cruickshanks
- Departments of Neurosurgery and Biochemistry and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Nicole Kleinstreuer
- Integrated Laboratory Systems Inc., in support of the National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods, RTP, NC 27709, USA
| | - Nik van Larebeke
- Analytische, Milieu en Geochemie, Vrije Universiteit Brussel, Brussel B1050, Belgium
| | - Nuzhat Ahmed
- Department of Obstetrics and Gynecology, University of Melbourne, Victoria 3052, Australia
| | - Olugbemiga Ogunkua
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA
| | - P.K. Krishnakumar
- Center for Environment and Water, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 3126, Saudi Arabia
| | - Pankaj Vadgama
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Paola A. Marignani
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Paramita M. Ghosh
- Department of Urology, University of California Davis, Sacramento, CA 95817, USA
| | - Patricia Ostrosky-Wegman
- Department of Genomic Medicine and Environmental Toxicology, Institute for Biomedical Research, National Autonomous University of Mexico, Mexico City 04510, México
| | - Patricia A. Thompson
- Department of Pathology, Stony Brook School of Medicine, Stony Brook University, The State University of New York, Stony Brook, NY 11794-8691, USA
| | - Paul Dent
- Departments of Neurosurgery and Biochemistry and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Petr Heneberg
- Charles University in Prague, Third Faculty of Medicine, CZ-100 00 Prague 10, Czech Republic
| | - Philippa Darbre
- School of Biological Sciences, The University of Reading, Whiteknights, Reading RG6 6UB, England
| | - Po Sing Leung
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, The People’s Republic of China
| | | | - Qiang (Shawn) Cheng
- Computer Science Department, Southern Illinois University, Carbondale, IL 62901, USA
| | - R.Brooks Robey
- White River Junction Veterans Affairs Medical Center, White River Junction, VT 05009, USA
- Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Rabeah Al-Temaimi
- Human Genetics Unit, Department of Pathology, Faculty of Medicine, Kuwait University, Jabriya 13110, Kuwait
| | - Rabindra Roy
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC 20057, USA
| | - Rafaela Andrade-Vieira
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Ranjeet K. Sinha
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Rekha Mehta
- Regulatory Toxicology Research Division, Bureau of Chemical Safety, Food Directorate, Health Canada, Ottawa, Ontario K1A 0K9, Canada
| | - Renza Vento
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies, Polyclinic Plexus, University of Palermo, Palermo 90127, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA 19122, USA
| | - Riccardo Di Fiore
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies, Polyclinic Plexus, University of Palermo, Palermo 90127, Italy
| | | | - Rita Dornetshuber-Fleiss
- Department of Pharmacology and Toxicology, University of Vienna, Vienna A-1090, Austria
- Institute of Cancer Research, Department of Medicine, Medical University of Vienna, Wien 1090, Austria
| | - Rita Nahta
- Departments of Pharmacology and Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA 30322, USA
| | - Robert C. Castellino
- Division of Hematology and Oncology, Department of Pediatrics, Children’s Healthcare of Atlanta, GA 30322, USA
- Department of Pediatrics, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Roberta Palorini
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
- SYSBIO Centre of Systems Biology, Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
| | - Roslida A. Hamid
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, 43400 Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Sabine A.S. Langie
- Environmental Risk and Health Unit, Flemish Institute for Technological Research, 2400 Mol, Belgium
| | - Sakina E. Eltom
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA
| | - Samira A. Brooks
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Sandra Ryeom
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sandra S. Wise
- Department of Applied Medical Sciences, University of Southern Maine, 96 Falmouth St., Portland, ME 04104, USA
| | - Sarah N. Bay
- Program in Genetics and Molecular Biology, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA 30322, USA
| | - Shelley A. Harris
- Population Health and Prevention, Research, Prevention and Cancer Control, Cancer Care Ontario, Toronto, Ontario, M5G 2L7, Canada
- Departments of Epidemiology and Occupational and Environmental Health, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, M5T 3M7, Canada
| | - Silvana Papagerakis
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Simona Romano
- Department of Molecular Medicine and Medical Biotechnology, Federico II University of Naples, 80131 Naples, Italy
| | - Sofia Pavanello
- Department of Cardiac, Thoracic and Vascular Sciences, Unit of Occupational Medicine, University of Padova, Padova 35128, Italy
| | - Staffan Eriksson
- Department of Anatomy, Physiology and Biochemistry, The Swedish University of Agricultural Sciences, PO Box 7011, VHC, Almas Allé 4, SE-756 51, Uppsala, Sweden
| | - Stefano Forte
- Department of Experimental Oncology, Mediterranean Institute of Oncology, Via Penninazzo 7, Viagrande (CT) 95029, Italy
| | - Stephanie C. Casey
- Stanford University Department of Medicine, Division of Oncology, Stanford, CA 94305, USA
| | - Sudjit Luanpitpong
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Tae-Jin Lee
- Department of Anatomy, College of Medicine, Yeungnam University, Daegu 705–717, South Korea,
| | - Takemi Otsuki
- Department of Hygiene, Kawasaki Medical School, Matsushima Kurashiki, Okayama 701-0192, Japan,
| | - Tao Chen
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, United States Food and Drug Administration, Jefferson, AR 72079, USA
| | - Thierry Massfelder
- INSERM U1113, team 3 ‘Cell Signalling and Communication in Kidney and Prostate Cancer’, University of Strasbourg, Faculté de Médecine, 67085 Strasbourg, France
| | - Thomas Sanderson
- INRS-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, QC H7V 1B7, Canada,
| | - Tiziana Guarnieri
- Department of Biology, Geology and Environmental Sciences, Alma Mater Studiorum Università di Bologna, Via Francesco Selmi, 3, 40126 Bologna, Italy
- Center for Applied Biomedical Research, S. Orsola-Malpighi University Hospital, Via Massarenti, 9, 40126 Bologna, Italy
- National Institute of Biostructures and Biosystems, Viale Medaglie d’ Oro, 305, 00136 Roma, Italy
| | - Tove Hultman
- Department of Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Swedish University of Agricultural Sciences, PO Box 7028, 75007 Uppsala, Sweden
| | - Valérian Dormoy
- INSERM U1113, team 3 ‘Cell Signalling and Communication in Kidney and Prostate Cancer’, University of Strasbourg, Faculté de Médecine, 67085 Strasbourg, France
- Department of Cell and Developmental Biology, University of California, Irvine, CA 92697, USA
| | - Valerie Odero-Marah
- Department of Biology/Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, GA 30314, USA
| | - Venkata Sabbisetti
- Harvard Medical School/Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Veronique Maguer-Satta
- United States Army Institute of Public Health, Toxicology Portfolio-Health Effects Research Program, Aberdeen Proving Ground, Edgewood, MD 21010-5403, USA
| | - W.Kimryn Rathmell
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Wilhelm Engström
- Department of Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Swedish University of Agricultural Sciences, PO Box 7028, 75007 Uppsala, Sweden
| | | | - William H. Bisson
- Environmental and Molecular Toxicology, Environmental Health Science Center, Oregon State University, Corvallis, OR 97331, USA
| | - Yon Rojanasakul
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown,WV, 26506,USA
| | - Yunus Luqmani
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kuwait University, PO Box 24923, Safat 13110, Kuwait and
| | - Zhenbang Chen
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA
| | - Zhiwei Hu
- Department of Surgery, The Ohio State University College of Medicine, The James Comprehensive Cancer Center, Columbus, OH 43210, USA
| |
Collapse
|
13
|
Ochieng J, Nangami GN, Ogunkua O, Miousse IR, Koturbash I, Odero-Marah V, McCawley L, Nangia-Makker P, Ahmed N, Luqmani Y, Chen Z, Papagerakis S, Wolf GT, Dong C, Zhou BP, Brown DG, Colacci A, Hamid RA, Mondello C, Raju J, Ryan EP, Woodrick J, Scovassi I, Singh N, Vaccari M, Roy R, Forte S, Memeo L, Salem HK, Amedei A, Al-Temaimi R, Al-Mulla F, Bisson WH, Eltom SE. The impact of low-dose carcinogens and environmental disruptors on tissue invasion and metastasis. Carcinogenesis 2015; 36 Suppl 1:S128-S159. [PMID: 26106135 PMCID: PMC4565611 DOI: 10.1093/carcin/bgv034] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 11/14/2014] [Accepted: 11/19/2014] [Indexed: 12/12/2022] Open
Abstract
The purpose of this review is to stimulate new ideas regarding low-dose environmental mixtures and carcinogens and their potential to promote invasion and metastasis. Whereas a number of chapters in this review are devoted to the role of low-dose environmental mixtures and carcinogens in the promotion of invasion and metastasis in specific tumors such as breast and prostate, the overarching theme is the role of low-dose carcinogens in the progression of cancer stem cells. It is becoming clearer that cancer stem cells in a tumor are the ones that assume invasive properties and colonize distant organs. Therefore, low-dose contaminants that trigger epithelial-mesenchymal transition, for example, in these cells are of particular interest in this review. This we hope will lead to the collaboration between scientists who have dedicated their professional life to the study of carcinogens and those whose interests are exclusively in the arena of tissue invasion and metastasis.
Collapse
Affiliation(s)
- Josiah Ochieng
- *To whom correspondence should be addressed. Tel: +1 615 327 6119; Fax: +1 615 327 6442;
| | - Gladys N. Nangami
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Department of Biology/Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, GA 30314, USA
- Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
- Department of Pathology, Wayne State University, Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, University of Melbourne, Melbourne, Victoria, Australia
- Faculty of Pharmacy, Department of Pathology, Kuwait University, Safat 13110, Kuwait
- Department of Otolaryngology, University of Michigan Medical College, Ann Arbor, MI 48109, USA
- Department of Molecular & Cellular Biochemistry, University of Kentucky, Lexington, KY 40506, USA
- Department of Environmental and Radiological Health Sciences/Food Science and Human Nutrition, College of Veterinary Medicine and Biomedical Sciences, Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523-1680, USA
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna 40126, Italy
- Faculty of Medicine and Health Sciences, University Putra, Serdang, Selangor 43400, Malaysia
- Istituto di Genetica Molecolare, CNR, via Abbiategrasso 207, 27100 Pavia, Italy
- Toxicology Research Division, Bureau of Chemical Safety Food Directorate, Health Products and Food Branch Health Canada, Ottawa, Ontario K1A0K9, Canada
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
- Centre for Advanced Research, King George’s Medical University, Chowk, Lucknow, Uttar Pradesh 226003, India
- Mediterranean Institute of Oncology, Viagrande 95029, Italy
- Urology Department, kasr Al-Ainy School of Medicine, Cairo University, El Manial, Cairo 12515, Egypt
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze 50134, Italy and
- Environmental and Molecular Toxicology, Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331, USA
| | - Olugbemiga Ogunkua
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Department of Biology/Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, GA 30314, USA
- Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
- Department of Pathology, Wayne State University, Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, University of Melbourne, Melbourne, Victoria, Australia
- Faculty of Pharmacy, Department of Pathology, Kuwait University, Safat 13110, Kuwait
- Department of Otolaryngology, University of Michigan Medical College, Ann Arbor, MI 48109, USA
- Department of Molecular & Cellular Biochemistry, University of Kentucky, Lexington, KY 40506, USA
- Department of Environmental and Radiological Health Sciences/Food Science and Human Nutrition, College of Veterinary Medicine and Biomedical Sciences, Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523-1680, USA
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna 40126, Italy
- Faculty of Medicine and Health Sciences, University Putra, Serdang, Selangor 43400, Malaysia
- Istituto di Genetica Molecolare, CNR, via Abbiategrasso 207, 27100 Pavia, Italy
- Toxicology Research Division, Bureau of Chemical Safety Food Directorate, Health Products and Food Branch Health Canada, Ottawa, Ontario K1A0K9, Canada
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
- Centre for Advanced Research, King George’s Medical University, Chowk, Lucknow, Uttar Pradesh 226003, India
- Mediterranean Institute of Oncology, Viagrande 95029, Italy
- Urology Department, kasr Al-Ainy School of Medicine, Cairo University, El Manial, Cairo 12515, Egypt
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze 50134, Italy and
- Environmental and Molecular Toxicology, Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331, USA
| | - Isabelle R. Miousse
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Igor Koturbash
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Valerie Odero-Marah
- Department of Biology/Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, GA 30314, USA
| | - Lisa McCawley
- Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
| | | | - Nuzhat Ahmed
- Department of Obstetrics and Gynecology, University of Melbourne, Melbourne, Victoria, Australia
| | - Yunus Luqmani
- Faculty of Pharmacy, Department of Pathology, Kuwait University, Safat 13110, Kuwait
| | - Zhenbang Chen
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Department of Biology/Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, GA 30314, USA
- Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
- Department of Pathology, Wayne State University, Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, University of Melbourne, Melbourne, Victoria, Australia
- Faculty of Pharmacy, Department of Pathology, Kuwait University, Safat 13110, Kuwait
- Department of Otolaryngology, University of Michigan Medical College, Ann Arbor, MI 48109, USA
- Department of Molecular & Cellular Biochemistry, University of Kentucky, Lexington, KY 40506, USA
- Department of Environmental and Radiological Health Sciences/Food Science and Human Nutrition, College of Veterinary Medicine and Biomedical Sciences, Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523-1680, USA
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna 40126, Italy
- Faculty of Medicine and Health Sciences, University Putra, Serdang, Selangor 43400, Malaysia
- Istituto di Genetica Molecolare, CNR, via Abbiategrasso 207, 27100 Pavia, Italy
- Toxicology Research Division, Bureau of Chemical Safety Food Directorate, Health Products and Food Branch Health Canada, Ottawa, Ontario K1A0K9, Canada
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
- Centre for Advanced Research, King George’s Medical University, Chowk, Lucknow, Uttar Pradesh 226003, India
- Mediterranean Institute of Oncology, Viagrande 95029, Italy
- Urology Department, kasr Al-Ainy School of Medicine, Cairo University, El Manial, Cairo 12515, Egypt
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze 50134, Italy and
- Environmental and Molecular Toxicology, Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331, USA
| | - Silvana Papagerakis
- Department of Otolaryngology, University of Michigan Medical College, Ann Arbor, MI 48109, USA
| | - Gregory T. Wolf
- Department of Otolaryngology, University of Michigan Medical College, Ann Arbor, MI 48109, USA
| | - Chenfang Dong
- Department of Molecular & Cellular Biochemistry, University of Kentucky, Lexington, KY 40506, USA
| | - Binhua P. Zhou
- Department of Molecular & Cellular Biochemistry, University of Kentucky, Lexington, KY 40506, USA
| | - Dustin G. Brown
- Department of Environmental and Radiological Health Sciences/Food Science and Human Nutrition, College of Veterinary Medicine and Biomedical Sciences, Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523-1680, USA
| | - Annamaria Colacci
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna 40126, Italy
| | - Roslida A. Hamid
- Faculty of Medicine and Health Sciences, University Putra, Serdang, Selangor 43400, Malaysia
| | - Chiara Mondello
- Istituto di Genetica Molecolare, CNR, via Abbiategrasso 207, 27100 Pavia, Italy
| | - Jayadev Raju
- Toxicology Research Division, Bureau of Chemical Safety Food Directorate, Health Products and Food Branch Health Canada, Ottawa, Ontario K1A0K9, Canada
| | - Elizabeth P. Ryan
- Department of Environmental and Radiological Health Sciences/Food Science and Human Nutrition, College of Veterinary Medicine and Biomedical Sciences, Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523-1680, USA
| | - Jordan Woodrick
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Ivana Scovassi
- Istituto di Genetica Molecolare, CNR, via Abbiategrasso 207, 27100 Pavia, Italy
| | - Neetu Singh
- Centre for Advanced Research, King George’s Medical University, Chowk, Lucknow, Uttar Pradesh 226003, India
| | - Monica Vaccari
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna 40126, Italy
| | - Rabindra Roy
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Stefano Forte
- Mediterranean Institute of Oncology, Viagrande 95029, Italy
| | - Lorenzo Memeo
- Mediterranean Institute of Oncology, Viagrande 95029, Italy
| | - Hosni K. Salem
- Urology Department, kasr Al-Ainy School of Medicine, Cairo University, El Manial, Cairo 12515, Egypt
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze 50134, Italy and
| | - Rabeah Al-Temaimi
- Faculty of Pharmacy, Department of Pathology, Kuwait University, Safat 13110, Kuwait
| | - Fahd Al-Mulla
- Faculty of Pharmacy, Department of Pathology, Kuwait University, Safat 13110, Kuwait
| | - William H. Bisson
- Environmental and Molecular Toxicology, Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331, USA
| | - Sakina E. Eltom
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Department of Biology/Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, GA 30314, USA
- Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
- Department of Pathology, Wayne State University, Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, University of Melbourne, Melbourne, Victoria, Australia
- Faculty of Pharmacy, Department of Pathology, Kuwait University, Safat 13110, Kuwait
- Department of Otolaryngology, University of Michigan Medical College, Ann Arbor, MI 48109, USA
- Department of Molecular & Cellular Biochemistry, University of Kentucky, Lexington, KY 40506, USA
- Department of Environmental and Radiological Health Sciences/Food Science and Human Nutrition, College of Veterinary Medicine and Biomedical Sciences, Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523-1680, USA
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna 40126, Italy
- Faculty of Medicine and Health Sciences, University Putra, Serdang, Selangor 43400, Malaysia
- Istituto di Genetica Molecolare, CNR, via Abbiategrasso 207, 27100 Pavia, Italy
- Toxicology Research Division, Bureau of Chemical Safety Food Directorate, Health Products and Food Branch Health Canada, Ottawa, Ontario K1A0K9, Canada
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
- Centre for Advanced Research, King George’s Medical University, Chowk, Lucknow, Uttar Pradesh 226003, India
- Mediterranean Institute of Oncology, Viagrande 95029, Italy
- Urology Department, kasr Al-Ainy School of Medicine, Cairo University, El Manial, Cairo 12515, Egypt
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze 50134, Italy and
- Environmental and Molecular Toxicology, Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
14
|
Gong J, Lv L, Huo J. Roles of F-box proteins in human digestive system tumors (Review). Int J Oncol 2014; 45:2199-207. [PMID: 25270675 DOI: 10.3892/ijo.2014.2684] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 09/16/2014] [Indexed: 12/16/2022] Open
Abstract
F-box proteins (FBPs), the substrate-recognition subunit of E3 ubiquitin (Ub) ligase, are the important components of Ub proteasome system (UPS). FBPs are involved in multiple cellular processes through ubiquitylation and subsequent degradation of their target proteins. Many studies have described the roles of FBPs in human cancers. Digestive system tumors account for a large proportion of all the tumors, and their mortality is very high. This review summarizes for the first time the roles of FBPs in digestive system tumorige-nesis and tumor progression, aiming at finding new routes for the rational design of targeted anticancer therapies in digestive system tumors.
Collapse
Affiliation(s)
- Jian Gong
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Liang Lv
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Jirong Huo
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
15
|
Wang YH, Dong YY, Wang WM, Xie XY, Wang ZM, Chen RX, Chen J, Gao DM, Cui JF, Ren ZG. Vascular endothelial cells facilitated HCC invasion and metastasis through the Akt and NF-κB pathways induced by paracrine cytokines. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2013; 32:51. [PMID: 23941552 PMCID: PMC3751285 DOI: 10.1186/1756-9966-32-51] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 08/10/2013] [Indexed: 01/26/2023]
Abstract
Background It is well documented that cancer cells secrete angiogenic factors to recruit and sustain tumor vascular networks. However, little is known about the effects of endothelial cells on the behavior of tumor cells. The study here was to determine the roles of endothelial cells in HCC cell growth, migration and invasion. Methods A mixture of highly metastatic MHCC97H cells and HUVEC cells, as well as MHCC97H cells alone were subcutaneously injected into nude mice to observe the effects of HUVECs on HCC growth. The biological characteristics of MHCC97H cells respectively treated with conditioned medium (CM) derived from HUVECs and endothelial cell basal medium (EBM) in vitro, such as proliferation, migration and invasion, invasion/metastasis associated gene expression, were comparatively analyzed. Differential cytokines between CM and EBM were screened and identified using human cytokine array. Effects of the interested differential cytokine CCL2, IL-8 and CXCL16 and its related signaling pathways were further investigated in HCC cells. Results Subcutaneous tumorigenicity of MHCC97H cells in nude mice was promoted by HUVECs and its invasion/metastasis associated genes were significantly upregulated. The in vitro, proliferation, migration and invasion of HCC cells treated with CM were all significantly enhanced as compared to those with EBM stimulation. Simultaneously, PI3K/Akt and ERK1/2 pathway in HCC cells were activated by CM. Total of 25 differential cytokines were identified between CM and EBM such as angiopoietin-2, CCL2 (MCP-1), uPA, endostatin, CXCL16, IL-8, pentraxin 3 etc. The selected differential cytokines CCL2, IL-8 and CXCL16 all modulated the expressions of HCC invasion/metastasis genes, especially MMP2 and MMP9. In exposure to CCL2 or CXCL16 alone, upregulation in AKT phosphorylation but no change in ERK phosphorylation were found in MHCC97H cells, moreover the contents of nuclear transcription factor NF-κB were increased as compared to the control. However, no effects on the activation of Akt and ERK pathway in MHCC97H were found in exposure to IL-8. Conclusion This study expands the contribution of endothelial cells to the progression of HCC. It unveils a new paradigm in which endothelial cells function as initiators of molecular crosstalks that enhance survival, migration and invasion of HCC cells.
Collapse
Affiliation(s)
- Yao-Hui Wang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Vihinen P, Ala-Aho R, Kähäri VM. Diagnostic and prognostic role of matrix metalloproteases in cancer. ACTA ACUST UNITED AC 2013; 2:1025-39. [PMID: 23495924 DOI: 10.1517/17530059.2.9.1025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Matrix metalloproteases (MMPs) are key players in the progression and metastasis of cancer. MMPs cleave extracellular matrix components and in this way promote tumor growth, invasion and vascularization. MMPs also affect tumor progression by regulating availability and activity of growth factors, inflammatory cytokines and chemokines. Accordingly, several MMPs have been found to serve as prognostic indicators in solid tumors. Usually the increased levels of MMPs in patients' tumor tissue or serum/plasma are associated with poor outcome. Interestingly, recent results show that certain MMPs also serve as tumor suppressors. OBJECTIVE This review discusses the latest view on MMPs as diagnostic and prognostic indicators in cancer patients. METHODS Studies with clinical samples of 70 or more patients are included in particular. In addition, the possible roles of MMPs in future molecular diagnostics and in the evaluation of therapeutic responses are discussed. CONCLUSION MMP-9 in particular has shown prognostic value in various types of tumor, and its measurement in circulation, urine or tumor tissue might help in clinical surveillance of otherwise problematic patient cases. There is upcoming new knowledge on MMPs in therapy response evaluation, in which MMPs might be useful together with CT scans and other clinically more established prognostic factors. Certain MMPs have a dual role in terms of cancer-modulating properties and thus it is essential to evaluate their expression and function in tumor cells and host environment to select validated therapy targets but spare MMP antitargets.
Collapse
Affiliation(s)
- Pia Vihinen
- Turku University Hospital, Department of Oncology and Radiotherapy, POB 52, FIN-20521 Turku, Finland +358 2 313 0804 ; +358 2 313 2809 ;
| | | | | |
Collapse
|
17
|
Purohit V, Rapaka R, Kwon OS, Song BJ. Roles of alcohol and tobacco exposure in the development of hepatocellular carcinoma. Life Sci 2013; 92:3-9. [PMID: 23123447 PMCID: PMC3822918 DOI: 10.1016/j.lfs.2012.10.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 10/01/2012] [Accepted: 10/10/2012] [Indexed: 12/11/2022]
Abstract
The purpose of this report is to summarize the roles of alcohol and tobacco exposure in the development of hepatocellular carcinoma (HCC). Chronic heavy alcohol exposure is a major risk factor for HCC, which is the most frequent type of liver cancer. Alcohol ingestion may initiate and or promote the development of HCC by: 1) acetaldehyde-DNA adduct formation; 2) cytochrome P4502E1-associated reactive oxygen species (ROS) generation , lipid peroxidation, p53 mutation, and conversion of pro-carcinogens to carcinogens; 3) iron accumulation that leads to ROS generation, lipid peroxidation, p53 mutation, and initiation of inflammatory cascade via nuclear factor-KappaB (NF-kB) activation; 4) glutathione depletion leading to oxidative stress; 5) s-adenosylmethionine (SAM) depletion and associated DNA hypomethylation of oncogenes ; 6) retinoic acid depletion and resultant hepatocyte proliferation via up-regulation of activator protein-1 (AP-1); 7) initiating an inflammatory cascade through increased transfer of endotoxin from intestine to liver, Kupffer cell activation via CD14/toll-like receptor-4 (TLR-4), oxidative stress, NF-kB or early growth response-1(Egr-1) activation, and generation of inflammatory cytokines and chemokines; 8) induction of liver fibrosis; and 9) decreasing the number and/or function of natural killer cells. Tobacco exposure is also a risk factor for HCC. It may contribute to the initiation and promotion of HCC due the presence of mutagenic and carcinogenic compounds as well as by causing oxidative stress due to generation of ROS and depletion of endogenous antioxidants. Simultaneous exposure to alcohol and tobacco is expected to promote the development of HCC in an additive and/or synergistic manner.
Collapse
Affiliation(s)
- Vishnudutt Purohit
- Chemistry and Physiological Systems Research Branch, Division of Basic Neuroscience & Behavioral Research, National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
18
|
Abstract
The purpose of this report is to summarize the roles of alcohol and tobacco exposure in the development of hepatocellular carcinoma (HCC). Chronic heavy alcohol exposure is a major risk factor for HCC, which is the most frequent type of liver cancer. Alcohol ingestion may initiate and or promote the development of HCC by: 1) acetaldehyde-DNA adduct formation; 2) cytochrome P4502E1-associated reactive oxygen species (ROS) generation , lipid peroxidation, p53 mutation, and conversion of pro-carcinogens to carcinogens; 3) iron accumulation that leads to ROS generation, lipid peroxidation, p53 mutation, and initiation of inflammatory cascade via nuclear factor-KappaB (NF-kB) activation; 4) glutathione depletion leading to oxidative stress; 5) s-adenosylmethionine (SAM) depletion and associated DNA hypomethylation of oncogenes ; 6) retinoic acid depletion and resultant hepatocyte proliferation via up-regulation of activator protein-1 (AP-1); 7) initiating an inflammatory cascade through increased transfer of endotoxin from intestine to liver, Kupffer cell activation via CD14/toll-like receptor-4 (TLR-4), oxidative stress, NF-kB or early growth response-1(Egr-1) activation, and generation of inflammatory cytokines and chemokines; 8) induction of liver fibrosis; and 9) decreasing the number and/or function of natural killer cells. Tobacco exposure is also a risk factor for HCC. It may contribute to the initiation and promotion of HCC due the presence of mutagenic and carcinogenic compounds as well as by causing oxidative stress due to generation of ROS and depletion of endogenous antioxidants. Simultaneous exposure to alcohol and tobacco is expected to promote the development of HCC in an additive and/or synergistic manner.
Collapse
|
19
|
Jung HJ, Kim SJ, Jeon WK, Kim BC, Ahn K, Kim K, Kim YM, Park EH, Lim CJ. Anti-inflammatory activity of n-propyl gallate through down-regulation of NF-κB and JNK pathways. Inflammation 2012; 34:352-61. [PMID: 20689985 DOI: 10.1007/s10753-010-9241-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The present study aimed to assess anti-inflammatory activity and underlying mechanism of n-propyl gallate, the n-propyl ester of gallic acid. n-Propyl gallate was shown to contain anti-inflammatory activity using two experimental animal models, acetic acid-induced permeability model in mice, and air pouch model in rats. It suppressed production of nitric oxide and induction of inducible nitric oxide synthase and cyclooxygenase-2 in the lipopolysaccharide (LPS)-stimulated RAW264.7 macrophage cells. It was able to diminish reactive oxygen species level elevated in the LPS-stimulated RAW264.7 macrophage cells. It also suppressed gelatinolytic activity of matrix metalloproteinase-9 enhanced in the LPS-stimulated RAW264.7 macrophage cells. It inhibited inhibitory κB-α degradation and enhanced NF-κB promoter activity in the stimulated macrophage cells. It was able to suppress phosphorylation of c-Jun NH(2)-terminal kinase 1/2 (JNK1/2) and activation of c-Jun promoter activity in the stimulated macrophage cells. In brief, n-propyl gallate possesses anti-inflammatory activity via down-regulation of NF-κB and JNK pathways.
Collapse
Affiliation(s)
- Hyun-Joo Jung
- College of Pharmacy, Sookmyung Women's University, Seoul, 140-742, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Down regulation of a matrix degrading cysteine protease cathepsin L, by acetaldehyde: role of C/EBPα. PLoS One 2011; 6:e20768. [PMID: 21687683 PMCID: PMC3110794 DOI: 10.1371/journal.pone.0020768] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 05/08/2011] [Indexed: 12/21/2022] Open
Abstract
Background The imbalance between extra cellular matrix (ECM) synthesis and degradation is critical aspect of various hepatic pathologies including alcohol induced liver fibrosis. This study was carried out to investigate the effect of acetaldehyde on expression of an extra cellular matrix degrading protease cathepsin L (CTSL) in HepG2 cells. Methodology and Results We measured the enzymatic activity, protein and, mRNA levels of CTSL in acetaldehyde treated and untreated cells. The binding of CAAT enhancer binding protein α (C/EBP α) to CTSL promoter and its key role in the transcription from this promoter and conferring responsiveness to acetaldehyde was established by site directed mutagenesis, electrophoretic mobility shift assay (EMSA), chromatin immunoprecipitation (ChIP) assays and siRNA technology. Acetaldehyde treatment significantly decreased CTSL activity and protein levels in HepG2 cells. A similar decrease in the mRNA levels and promoter activity was also observed. This decrease by acetaldehyde was attributed to the fall in the liver enriched transcription factor C/EBP α levels and it's binding to the CTSL promoter. Mutagenesis of C/EBP α binding motifs revealed the key role of this factor in CTSL transcription as well as conferring responsiveness to acetaldehyde. The siRNA mediated silencing of the C/EBP α expression mimicked the effect of acetaldehyde on CTSL levels and its promoter activity. It also abolished the responsiveness of this promoter to acetaldehyde. Conclusion Acetaldehyde down regulates the C/EBP α mediated CTSL expression in hepatic cell lines. The decreased expression of CTSL may at least in part contribute to ECM deposition in liver which is a hallmark of alcoholic liver fibrosis.
Collapse
|
21
|
Zha Y, Cun YL, Huang YC. Matrine promotes cell apoptosis in human hepatocellular carcinoma cell line SMMC-7721. Shijie Huaren Xiaohua Zazhi 2010; 18:3078-3083. [DOI: 10.11569/wcjd.v18.i29.3078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of matrine on cell apoptosis in human hepatocellular carcinoma cell line SMMC-7721 and to explore potential mechanisms involved.
METHODS: SMMC-7721 cells were divided into four groups: 5-fluorouracil group, matrine group, 5-FU plus matrine group, and control group. Matrine and 5-FU were administered at the half maximal inhibitory concentration. After 24 h, apoptosis was analyzed by flow cytometry. To identify genes involved in the antiapoptotic responses to 5-FU and matrine, the expression of NF-κB p65, IκB, Atg5, beclin1 and Bcl-2 was determined.
RESULTS: Increased sensitivity to 5-FU was observed in cells in the matrine plus 5-FU group as compared with those in the 5-FU group and control group (81.3% ± 2.6% vs 34.6% ± 3.5%, 45.6% ± 2.4%, 5.2% ± 2.1%, all P < 0.05). Compared to cells treated with 5-FU alone, cells exposed to a combination of matrine and 5-FU for 24 h had a significant reduction in the levels of NF-κB p65 and Bcl-2 (P < 0.05) and an increase in the levels of IκB, Atg5 and beclin1 (P < 0.05).
CONCLUSION: Matrine can enhance the sensitivity of SMMC-7721 cells to 5-FU by inducing increased expression of autophagy-related gene and decreased expression of anti-apoptotic genes.
Collapse
|
22
|
Liu X, Liang J, Li G. Lipopolysaccharide promotes adhesion and invasion of hepatoma cell lines HepG2 and HepG2.2.15. Mol Biol Rep 2010; 37:2235-2239. [PMID: 19680784 DOI: 10.1007/s11033-009-9710-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Accepted: 08/03/2009] [Indexed: 01/05/2023]
Abstract
Inflammation and infection have been linked to the bionomics of many cancers, including hepatocellular carcinoma (HCC). Some bacteria, such as Helicobacter pylori, have been found in pathological specimens from patients with HCC. However, little is known about the direct effects of bacteria or their components on hepatoma cells. We analyzed the in vitro proliferation, adhesion and invasion responses of the tumor cell lines HepG2 and HepG2.2.15 to lipopolysaccharide (LPS), a cell wall constituent of Gram-negative bacteria. HepG2 and HepG2.2.15 cells show increased proliferation in response to LPS. Their invasion and adhesion abilities were also increased in response to LPS, which may be related to increased gene expression of interleukin-8 and transforming growth factor-beta1. We infer that bacteria may be ignored by immune systems and directly promote adhesion and invasion of hepatoma cells through LPS.
Collapse
Affiliation(s)
- Xudong Liu
- Department of Liver Disease, Ruikang Hospital of Guangxi Traditional Chinese Medical University, 10 Huadong Road, 530011 Nanning, China.
| | | | | |
Collapse
|
23
|
Li Q, Wang G, Shan JL, Yang ZX, Wang HZ, Feng J, Zhen JJ, Chen C, Zhang ZM, Xu W, Luo XZ, Wang D. MicroRNA-224 is upregulated in HepG2 cells and involved in cellular migration and invasion. J Gastroenterol Hepatol 2010; 25:164-71. [PMID: 19793168 DOI: 10.1111/j.1440-1746.2009.05971.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND AND AIM MicroRNAs are a class of small non-coding RNAs that negatively regulate the expression of their target genes. The aim of the present study was to explore the effects of microRNA on biological behaviors of HepG2 cells and further analyze its characteristics. METHODS We detected different expression profiles of miRNAs in HepG2 and L02 cell lines by microRNA microarray. Northern blot, quantitative real-time polymerase chain reaction, methylthiazolyl tetrazolium, fluorescence-activated cell sorting, scratch wound, transwell migration and Matrigel invasion assays and western blot were carried out to determine whether or not microRNA-224 (miR-224) can influence the biological behaviors of HepG2 cells. RESULTS MiR-224 was significantly upregulated in HepG2 cells. Cell proliferation, migration and invasion, but not cell cycles, were altered after changing the expression of miR-224. Taking invasion and migration as a breakthrough, a close relationship between the expression of miR-224 and its proteins such as PAK4 and MMP9, which were involved in the invasion of tumor, was found. CONCLUSIONS Overexpression of miR-224 was involved in the malignant phenotype of HepG2 cells, and it may be an important factor in regulating the migration and invasion of HepG2 cells.
Collapse
Affiliation(s)
- Qiong Li
- Cancer Center, Daping Hospital & Institute of Research Institute of Field Surgery, Third Military Medical University, Chongqing, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Tretiakova MS, Hart J, Shabani-Rad MT, Zhang J, Gao ZH. Distinction of hepatocellular adenoma from hepatocellular carcinoma with and without cirrhosis using E-cadherin and matrix metalloproteinase immunohistochemistry. Mod Pathol 2009; 22:1113-20. [PMID: 19465902 DOI: 10.1038/modpathol.2009.75] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We studied the tumor cell expression patterns of E-cadherin and matrix metalloproteinase-1, -2, -7, and -9 in a tissue microarray composed of 20 normal livers, 10 hepatocellular adenomas, 43 hepatocellular carcinomas with cirrhosis and 33 hepatocellular carcinomas without cirrhosis. Hepatocellular adenoma was characterized by the complete absence of matrix metalloproteinase-7 expression; hepatocellular carcinoma with cirrhosis was characterized by a significantly low expression of E-cadherin; and hepatocellular carcinoma without cirrhosis was characterized by low matrix metalloproteinase-9 expression. The staining intensity score of E-cadherin=3, matrix a metalloproteinase-7<1, and matrix metalloproteinase-9>or=2 can be used as the diagnostic criteria for hepatocellular adenoma and for distinguishing hepatocellular adenoma from normal, hepatocellular carcinoma with cirrhosis, and hepatocellular carcinoma without cirrhosis. E-cadherin<2 and matrix metalloproteinase-9<2 can be used for distinguishing both hepatocellular carcinoma with cirrhosis and hepatocellular carcinoma without cirrhosis from normal. Although statistically not significant, hepatocellular carcinoma without cirrhosis showed a higher E-cadherin expression and a lower matrix metalloproteinase-9 expression than hepatocellular carcinoma with cirrhosis, which could be partially responsible for the less aggressive behavior found in hepatocellular carcinoma without cirrhosis when compared with hepatocellular carcinoma with cirrhosis. These results, if confirmed in a further study of small biopsy specimens and of histologically ambiguous cases, could lead to the application of these markers in the diagnosis and differential diagnosis of hepatocellular neoplasms in our surgical pathology practice.
Collapse
Affiliation(s)
- Maria S Tretiakova
- Department of Pathology, University of Chicago Hospitals, Chicago, IL, USA
| | | | | | | | | |
Collapse
|
25
|
Park SK, Hwang YS, Park KK, Park HJ, Seo JY, Chung WY. Kalopanaxsaponin A inhibits PMA-induced invasion by reducing matrix metalloproteinase-9 via PI3K/Akt- and PKCdelta-mediated signaling in MCF-7 human breast cancer cells. Carcinogenesis 2009; 30:1225-33. [PMID: 19420016 DOI: 10.1093/carcin/bgp111] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Induction of matrix metalloproteinase (MMP)-9 is particularly important for the invasiveness of breast cancers. We investigated the inhibitory effect of kalopanaxsaponin A (KPS-A) on cell invasion and MMP-9 activation in phorbol 12-myristate 13-acetate (PMA)-treated MCF-7 human breast cancer cells. KPS-A inhibited PMA-induced cell proliferation and invasion. PMA-induced cell invasion was blocked in the presence of a primary antibody of MMP-9, and KPS-A suppressed the increased expression and/or secretion of MMP-9 and tissue inhibitor of metalloproteinase (TIMP)-1. Using specific inhibitors, we confirmed that PMA-induced cell invasion and MMP-9 expression is primarily regulated by nuclear factor-kappa B (NF-kappaB) activation via phosphatidylinositol 3-kinase (PI3K)/Akt and activator protein-1 (AP-1) activation via extracellular signal-regulated kinase (ERK)1/2. KPS-A decreased PMA-induced transcriptional activation of NF-kappaB and AP-1 and inhibited PMA-induced phosphorylation of ERK1/2 and Akt. Treatment with the protein kinase C (PKC)delta inhibitor rottlerin caused a marked decrease in PMA-induced MMP-9 secretion and cell invasion, as well as ERK/AP-1 activation, and KPS-A reduced PMA-induced membrane localization of PKCdelta. Furthermore, oral administration of KPS-A led to a substantial decrease in tumor volume and expression of proliferating cell nuclear antigen, MMP-9, TIMP-1 and PKCdelta in mice with MCF-7 breast cancer xenografts in the presence of 17beta-estradiol. These results suggest that KPS-A inhibits PMA-induced invasion by reducing MMP-9 activation, mainly via the PI3K/Akt/NF-kappaB and PKCdelta/ERK/AP-1 pathways in MCF-7 cells and blocks tumor growth and MMP-9-mediated invasiveness in mice with breast carcinoma. Therefore, KPS-A may be a promising anti-invasive agent with the advantage of oral dosing.
Collapse
Affiliation(s)
- Sun Kyu Park
- Department of Applied Life Science, The Graduate School, Yonsei University, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
26
|
Cheng WY, Lien JC, Hsiang CY, Wu SL, Li CC, Lo HY, Chen JC, Chiang SY, Liang JA, Ho TY. Comprehensive evaluation of a novel nuclear factor-kappaB inhibitor, quinoclamine, by transcriptomic analysis. Br J Pharmacol 2009; 157:746-56. [PMID: 19422389 DOI: 10.1111/j.1476-5381.2009.00223.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND AND PURPOSE The transcription factor nuclear factor-kappaB (NF-kappaB) has been linked to the cell growth, apoptosis and cell cycle progression. NF-kappaB blockade induces apoptosis of cancer cells. Therefore, NF-kappaB is suggested as a potential therapeutic target for cancer. Here, we have evaluated the anti-cancer potential of a novel NF-kappaB inhibitor, quinoclamine (2-amino-3-chloro-1,4-naphthoquinone). EXPERIMENTAL APPROACH In a large-scale screening test, we found that quinoclamine was a novel NF-kappaB inhibitor. The global transcriptional profiling of quinoclamine in HepG2 cells was therefore analysed by transcriptomic tools in this study. KEY RESULTS Quinoclamine suppressed endogenous NF-kappaB activity in HepG2 cells through the inhibition of IkappaB-alpha phosphorylation and p65 translocation. Quinoclamine also inhibited induced NF-kappaB activities in lung and breast cancer cell lines. Quinoclamine-regulated genes interacted with NF-kappaB or its downstream genes by network analysis. Quinoclamine affected the expression levels of genes involved in cell cycle or apoptosis, suggesting that quinoclamine exhibited anti-cancer potential. Furthermore, quinoclamine down-regulated the expressions of UDP glucuronosyltransferase genes involved in phase II drug metabolism, suggesting that quinoclamine might interfere with drug metabolism by slowing down the excretion of drugs. CONCLUSION AND IMPLICATIONS This study provides a comprehensive evaluation of quinoclamine by transcriptomic analysis. Our findings suggest that quinoclamine is a novel NF-kappaB inhibitor with anti-cancer potential.
Collapse
Affiliation(s)
- W-Y Cheng
- Molecular Biology Laboratory, Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Acetaldehyde stimulates ethanol-stressed Saccharomyces cerevisiae, grown on various carbon sources. Folia Microbiol (Praha) 2009; 53:505-8. [DOI: 10.1007/s12223-008-0079-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Revised: 06/02/2008] [Indexed: 10/20/2022]
|
28
|
Lee CH, Wu SL, Chen JC, Li CC, Lo HY, Cheng WY, Lin JG, Chang YH, Hsiang CY, Ho TY. Eriobotrya japonica leaf and its triterpenes inhibited lipopolysaccharide-induced cytokines and inducible enzyme production via the nuclear factor-kappaB signaling pathway in lung epithelial cells. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2009; 36:1185-98. [PMID: 19051345 DOI: 10.1142/s0192415x0800651x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Pulmonary inflammation is a characteristic of many lung diseases. Increased levels of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and proinflammatory cytokines, such as interleukin-1beta (IL-1beta), tumor necrosis factor-alpha (TNF-alpha) and IL-8, have been correlated with lung inflammation. In this study, we used lipopolysaccharide (LPS) to induce iNOS, COX-2, and cytokines (TNF-alpha, IL-1beta, and IL-8) productions in human lung epithelial cells (A-549). Leaf of Eriobotrya japonica (Pi-Pa-Ye, PPY), a traditional Chinese medicine for the treatment of pulmonary inflammatory diseases, was capable of suppressing LPS-induced cytokine productions in a dose-dependent manner. Moreover, the suppression of PPY on the cytokine productions resulted from the inhibition of inhibitory kappaB-alpha phosphorylation and nuclear factor-kappaB (NF-kappaB) activation. Analysis of the anti-inflammatory effects of ursolic acid and oleanolic acid, the triterpene compounds present in PPY, showed that ursolic acid significantly inhibited LPS-induced IL-8 production, NF-kappaB activation, and iNOS mRNA expression, whereas oleanolic acid did not have these effects. In conclusion, our findings suggested the potential mechanisms of PPY and its active component, ursolic acid, in the treatment of pulmonary inflammation.
Collapse
Affiliation(s)
- Chang-Hsien Lee
- Graduate Institute of Chinese Medical Science, China Medical University, Taichung 40402, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Yeh MH, Kao ST, Hung CM, Liu CJ, Lee KH, Yeh CC. Hesperidin inhibited acetaldehyde-induced matrix metalloproteinase-9 gene expression in human hepatocellular carcinoma cells. Toxicol Lett 2009; 184:204-10. [DOI: 10.1016/j.toxlet.2008.11.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Revised: 11/16/2008] [Accepted: 11/17/2008] [Indexed: 01/13/2023]
|
30
|
Liang JA, Wu SL, Lo HY, Hsiang CY, Ho TY. Vanillin inhibits matrix metalloproteinase-9 expression through down-regulation of nuclear factor-kappaB signaling pathway in human hepatocellular carcinoma cells. Mol Pharmacol 2009; 75:151-7. [PMID: 18835982 DOI: 10.1124/mol.108.049502] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025] Open
Abstract
Vanillin has been reported to exhibit anti-invasive and antimetastatic activities by suppressing the enzymatic activity of matrix metalloproteinase-9 (MMP-9). However, the underlying mechanism of anti-invasive activity remains unclear so far. Herein we demonstrate that vanillin reduced 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced MMP-9 gelatinolytic activity and suppressed cell invasion through the down-regulation of MMP-9 gene transcription in HepG2 cells. Vanillin significantly reduced the 6.6-fold invasive capacity of HepG2 cells in noncytotoxic concentrations, and this anti-invasive effect was concentration-dependent in the Matrigel invasion assay. Moreover, vanillin significantly suppressed the TPA-induced enzymatic activity of MMP-9 and decreased the induced mRNA level of MMP-9. Analysis of the transcriptional regulation indicated that vanillin suppressed MMP-9 transcription by inhibiting nuclear factor-kappaB (NF-kappaB) activity. Western blot further confirmed that vanillin inhibited NF-kappaB activity through the inhibition of IkappaB-alpha phosphorylation and degradation. In conclusion, vanillin might be a potent antiinvasive agent that suppresses the MMP-9 enzymatic activity via NF-kappaB signaling pathway.
Collapse
Affiliation(s)
- Ji-An Liang
- Department of Radiation Therapy and Oncology, China Medical University Hospital, Taichung, Taiwan
| | | | | | | | | |
Collapse
|
31
|
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers in the world. Studies indicate that the development of HCC is related to signal transduction of Ras-MAPK.P38MAPK, an important member of the family of mitogen-activated protein kinases. P38MAPK participates in cell proliferation, apoptosis and differentiation and plays a key role in cell apoptosis. P38MAPK is closely related with carcinogenesis, rapid generation and infinite growth of liver cancer and plays a role in the occurrence and development of liver cancer induced by organics, HBV and HCV. Drugs exert their anti-tumor effects through p38MAPK which also takes part in the formation of drug resistance to HCC. This paper reviews the advances in studies on p38MAPK-related HCC.
Collapse
|
32
|
Abstract
Molecular Pathogenesis of Hepatocellular CarcinomaThe most important risk factors for the development of human hepatocellular carcinoma (HCC) are chronic infection with hepatitis B virus (HBV) and/or hepatitis C virus (HCV), high dietary exposure to hepatic carcinogen aflatoxin B1 and alcohol abuse. Hepatitis B virus exerts its effects through integration of the viral DNA into the hepatocyte genome, or through acting as transcriptional regulator for several cellular proto-oncogenes and tumor-suppressor genes. Hepatitis C virus may affect hepatocytes via the transcriptional regulation activity of the HCV core protein or via the HCV non structural proteins NS5A, NS5B and NS2, interfering with the regulation of cell cycle and apoptosis. Environmental exposure to aflatoxin B1 can cause a specific missense mutation in codon 249 of the p53 tumor-suppressor gene. Habitual alcohol consumption leads to production of reactive oxygen species and peroxidation damage to DNA. The objective of this review is to make you acquainted with the most common risk factors and the most frequent genetic aberrations associated with the development of HCC.
Collapse
|