1
|
Massie PL, Garcia M, Decker A, Liu R, MazloumiBakhshayesh M, Kulkarni D, Justus MP, Gallardo J, Abrums A, Markle K, Pace C, Campen M, Clark RM. Essential and Non-Essential Metals and Metalloids and Their Role in Atherosclerosis. Cardiovasc Toxicol 2025; 25:841-866. [PMID: 40251456 DOI: 10.1007/s12012-025-09998-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 04/10/2025] [Indexed: 04/20/2025]
Abstract
Peripheral arterial disease (PAD) is becoming more prevalent in the aging developed world and can have significant functional impacts on patients. There is a recent recognition that environmental toxicants such as circulating metals and metalloids may contribute to the pathogenesis of atherosclerotic disease, but the mechanisms are complex. While the broad toxic biologic effects of metals in human systems have been extensively reviewed, the role of non-essential exposure and essential metal aberrancy in PAD specifically is less frequently discussed. This review of the literature describes current scientific knowledge regarding the individual roles several major metals and metalloids play in atherogenesis and highlights areas where a dearth of data exist. The roles of lead (Pb), arsenic (As), cadmium (Cd), iron (Fe), copper (Cu), selenium (Se) are included. Contemporary outcomes of therapeutic trials aimed at chelation therapy of circulating metals to impact cardiovascular outcomes are also discussed. This review highlights the supported notion of differential metal presence within peripheral plaques themselves, although distinguishing their roles within these plaques requires further illumination.
Collapse
Affiliation(s)
- Pierce L Massie
- Department of Surgery, University of New Mexico School of Medicine, MSC10-5610, Albuquerque, NM, 87131, USA
| | - Marcus Garcia
- Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, USA
| | - Aerlin Decker
- Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, USA
| | - Rui Liu
- Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, USA
| | - Milad MazloumiBakhshayesh
- Department of Biomedical Engineering, School of Engineering, University of New Mexico, Albuquerque, USA
| | - Deepali Kulkarni
- Department of Surgery, University of New Mexico School of Medicine, MSC10-5610, Albuquerque, NM, 87131, USA
| | - Matthew P Justus
- Department of Biomedical Engineering, School of Engineering, University of New Mexico, Albuquerque, USA
| | - Jorge Gallardo
- Department of Surgery, University of New Mexico School of Medicine, MSC10-5610, Albuquerque, NM, 87131, USA
| | - Avalon Abrums
- Department of Surgery, University of New Mexico School of Medicine, MSC10-5610, Albuquerque, NM, 87131, USA
| | - Kristin Markle
- Department of Surgery, University of New Mexico School of Medicine, MSC10-5610, Albuquerque, NM, 87131, USA
| | - Carolyn Pace
- Department of Surgery, University of New Mexico School of Medicine, MSC10-5610, Albuquerque, NM, 87131, USA
| | - Matthew Campen
- Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, USA
| | - Ross M Clark
- Department of Surgery, University of New Mexico School of Medicine, MSC10-5610, Albuquerque, NM, 87131, USA.
- Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, USA.
| |
Collapse
|
2
|
Yao S, Xu D. Relationships between blood concentrations of cadmium, lead, mercury, selenium, and manganese and the risk of chronic kidney disease: a cross-sectional study based on NHANES 2011-2018. Arch Med Sci 2024; 20:1822-1830. [PMID: 39967945 PMCID: PMC11831350 DOI: 10.5114/aoms/181508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 01/16/2024] [Indexed: 02/20/2025] Open
Abstract
Introduction Currently, knowledge on relationships between blood concentrations of cadmium, lead, mercury, selenium, and manganese and the risk of chronic kidney disease (CKD) is lacking. The aim of the study was to ex-plore the relationships between blood concentrations of heavy metals and the occurrence of CKD. Material and methods Data from the National Health and Nutrition Examination Survey (NHANES) 2011-2018 were used to investigate the relationships between blood concentrations of mercury, lead, cadmium, selenium, and manganese and the occurrence of CKD using a weighted logistic recession analysis. Restrictive cubic spline analysis was applied to assess the dose-response relationship. The sample population was divided into four groups based on the quartiles of heavy metal concentrations (Q1: < 25th percentile, Q2: 25th-50th percentile, Q3: 50th-75th percentile, Q4: ≥ 75th percentile). Results A total of 15,450 participants were included. With regard to blood lead concentrations, the odds ratio (OR) for CKD in Q4 relative to Q1 was 1.36 (95% confidence interval [CI]: 1.20-1.61), indicating an increased oc-currence of CKD in Q4. With regard to blood cadmium concentrations, the ORs for CKD in Q2, Q3, and Q4 were 1.06 (95% CI: 0.92-1.22), 1.21 (95% CI: 1.05-1.39), and 1.52 (95% CI: 1.31-1.76), respectively. Non-linear dose-response relationships were identified between blood cadmium and lead concentrations and the occurrence of CKD. Further, blood lead and cadmium concentrations showed statistically significant interaction effects with age, hypertension, and obesity on CKD. Conclusions Higher cadmium and lead concentrations in blood are asso-ciated with increased occurrence of CKD, especially in older adults, people with hypertension, and people with obesity.
Collapse
Affiliation(s)
- Shenghua Yao
- Department of Nephrology, Yuyao People’s Hospital, Ningbo, China
| | - Dan Xu
- Department of Geriatrics, Yuyao People’s Hospital, Ningbo, China
| |
Collapse
|
3
|
Tryasuchev AV, Stupin VO, Kuryanova EV. Effect of Lead, Cadmium, and Their Combination on the Heart Rate Regulation in Nonlinear Rats. Bull Exp Biol Med 2024; 177:751-756. [PMID: 39441445 DOI: 10.1007/s10517-024-06271-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Indexed: 10/25/2024]
Abstract
We studied heart rate variability (HRV) and the concentrations of heavy metals in the heart tissue after 14-fold peroral administration of heavy metal salts: lead acetate (50 mg/kg), cadmium chloride (5 mg/kg), and their combination. After administration of lead, its concentration in the myocardium exceeded the control values by 1.2 times or did not change in case of combination with cadmium; after administration of cadmium, its concentration in the myocardium exceeded the control value by 6.1 times or by 2 times after combined administration. After lead administration, a moderate increase in HR, low values of stress and centralization indices, and an increase in the power in all ranges of the HRV spectrum were recorded. After cadmium intoxication, a tendency to a decrease in heart rhythm variability, a moderate increase in HR, stress and centralization indices, and an increase in the contribution of VLF waves in the HRV spectrum were observed. After combined administration, a pronounced increase in HR and stress index and a moderate increase in the centralization of heart rhythm control were recorded, which was similar to changes in HRV observed after administration of cadmium alone. In the experiment, the concentration of cadmium in the myocardium increased to a much greater extent than the concentration of lead. After lead administration, the autonomous type of regulation persisted and parasympathetic influences increased. Cadmium apparently acts as a stress factor and increases the role of sympathoadrenal influences and central ergotropic structures in the heart rhythm regulation.
Collapse
Affiliation(s)
- A V Tryasuchev
- Astrakhan Tatishchev State University, Astrakhan, Russia.
| | - V O Stupin
- Astrakhan Tatishchev State University, Astrakhan, Russia
| | - E V Kuryanova
- Astrakhan Tatishchev State University, Astrakhan, Russia
| |
Collapse
|
4
|
Rossi KA, Almenara CCP, Simões RP, Mulher LCCS, Krause M, Carneiro MTWD, Padilha AS. Short-term Effects of Cadmium Exposure on Blood Pressure and Vascular Function in Wistar Rats. Biol Trace Elem Res 2024; 202:2645-2656. [PMID: 37697136 DOI: 10.1007/s12011-023-03851-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/06/2023] [Indexed: 09/13/2023]
Abstract
Chronic cadmium exposure is known to be associated with vascular changes and increased blood pressure, but its short-term effects on the cardiovascular system remain poorly understood. This study aimed to investigate the pressoric and vascular effects of a 7-day exposure to CdCl2 in Wistar rats. The rats were divided in control group (Ct), which received tap water, and the Cd group, which received a 100 mg/L CdCl2 solution via drinking water for 7 days. We analyzed body weight, plasma Cadmium concentration, systolic blood pressure (SBP), and vascular responses. Despite relatively low plasma Cadmium concentration, the Cd group exhibited elevated SBP and increased contractile response to phenylephrine. Endothelium removal and NOS inhibition increased contractions in both groups. In the Cd group's aorta, we observed enhanced levels of phospho-eNOS (Ser1177) and basal NO release. Cd group showed reduced Catalase expression and increased basal release of H2O2, with catalase reducing the contractile response. In arteries pre-contracted with phenylephrine, Cd group showed impaired endothelium-dependent (Acetylcholine) and independent (sodium nitroprussiate-SNP) relaxation responses. However, responses to SNP were similar after pre-contraction with KCl in both groups. These data suggest early effects of Cadmium on blood pressure and aortic function, indicating impaired H2O2-scavenging by catalase. Increased H2O2 due to Cadmium exposure might explain heightened responses to phenylephrine and weakened relaxation responses mediated by the NO-K+-channels pathway. Our findings shed light on Cadmium's short-term impact on the cardiovascular system, providing insights into potential mechanisms underlying its effects on blood pressure regulation and vascular function.
Collapse
Affiliation(s)
- Karoline Alves Rossi
- Physiological Sciences Post-Graduation Program, Federal University of Espírito Santo, Vitoria, ES, Brazil
| | | | - Rakel Passos Simões
- Physiological Sciences Post-Graduation Program, Federal University of Espírito Santo, Vitoria, ES, Brazil
| | | | - Maiara Krause
- Department of Chemistry, Federal University of Espírito Santo, Vitoria, ES, Brazil
| | | | - Alessandra Simão Padilha
- Physiological Sciences Post-Graduation Program, Federal University of Espírito Santo, Vitoria, ES, Brazil.
- Programa de Pós-Graduação Em Ciências Fisiológicas, CCS/UFES, Av. Marechal Campos, MaruípeVitoria, ES, 146829043-900, Brazil.
| |
Collapse
|
5
|
Sepulchro Mulher LCC, Simões RP, Rossi KA, Schereider IRG, Silva Nascimento CLD, Ávila RA, Padilha AS. In vitro cadmium exposure induces structural damage and endothelial dysfunction in female rat aorta. Biometals 2023; 36:1405-1420. [PMID: 37651061 DOI: 10.1007/s10534-023-00526-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/31/2023] [Indexed: 09/01/2023]
Abstract
Cadmium is a heavy metal that is widespread in the environment and has been described as a metalloestrogen and a cardiovascular risk factor. Experimental studies conducted in male animals have shown that cadmium exposure induces vascular dysfunction, which could lead to vasculopathies caused by this metal. However, it is necessary to investigate the vascular effects of cadmium in female rats to understand its potential sex-dependent impact on the cardiovascular system. While its effects on male rats have been studied, cadmium may act differently in females due to its potential as a metalloestrogen. In vitro studies conducted in a controlled environment allow for a direct assessment of cadmium's impact on vascular function, and the use of female rats ensures that sex-dependent effects are evaluated. Therefore, the aim of this study was to investigate the in vitro effects of Cadmium Chloride (CdCl2, 5 µM) exposure on vascular reactivity in the isolated aorta of female Wistar rats. Exposure to CdCl2 damaged the architecture of the vascular endothelium. CdCl2 incubation increased the production and release of O2•-, reduced the participation of potassium (K+) channels, and increased the participation of the angiotensin II pathway in response to phenylephrine. Moreover, estrogen receptors alpha (Erα) modulated vascular reactivity to phenylephrine in the presence of cadmium, supporting the hypothesis that cadmium could act as a metalloestrogen. Our results demonstrated that in vitro cadmium exposure induces damage to endothelial architecture and an increase in oxidative stress in the isolated aorta of female rats, which could precipitate vasculopathies. Graphical Abstract. Own source from Canva and Servier Medical Art servers.
Collapse
Affiliation(s)
- Lorraine Christiny Costa Sepulchro Mulher
- Physiological Sciences Post-Graduation Program, CCS/UFES, Federal University of Espírito Santo, Av. Marechal Campos, 1468, 26 Maruípe, Vitoria, ES, 29043-900, Brazil
| | - Rakel Passos Simões
- Physiological Sciences Post-Graduation Program, CCS/UFES, Federal University of Espírito Santo, Av. Marechal Campos, 1468, 26 Maruípe, Vitoria, ES, 29043-900, Brazil
| | - Karoline Alves Rossi
- Physiological Sciences Post-Graduation Program, CCS/UFES, Federal University of Espírito Santo, Av. Marechal Campos, 1468, 26 Maruípe, Vitoria, ES, 29043-900, Brazil
| | - Ingridy Reinholz Grafites Schereider
- Physiological Sciences Post-Graduation Program, CCS/UFES, Federal University of Espírito Santo, Av. Marechal Campos, 1468, 26 Maruípe, Vitoria, ES, 29043-900, Brazil
| | - Camilla Lóren da Silva Nascimento
- Physiological Sciences Post-Graduation Program, CCS/UFES, Federal University of Espírito Santo, Av. Marechal Campos, 1468, 26 Maruípe, Vitoria, ES, 29043-900, Brazil
| | - Renata Andrade Ávila
- Physiological Sciences Post-Graduation Program, CCS/UFES, Federal University of Espírito Santo, Av. Marechal Campos, 1468, 26 Maruípe, Vitoria, ES, 29043-900, Brazil
| | - Alessandra Simão Padilha
- Physiological Sciences Post-Graduation Program, CCS/UFES, Federal University of Espírito Santo, Av. Marechal Campos, 1468, 26 Maruípe, Vitoria, ES, 29043-900, Brazil.
| |
Collapse
|
6
|
Zhang T, Yan W, Liu C, Duan W, Duan Y, Li Y, Yu Q, Sun Y, Tian J, Zhou J, Xia Z, Wang G, Xu S. Cadmium exposure promotes ferroptosis by upregulating Heat Shock Protein 70 in vascular endothelial damage of zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115241. [PMID: 37441943 DOI: 10.1016/j.ecoenv.2023.115241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/21/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023]
Abstract
Cadmium (Cd) exposure is a risk factor for endothelial dysfunction and cardiovascular disease. Ferroptosis is a type of cell death that relies on lipid peroxidation. Whether ferroptosis acts in Cd-induced vascular endothelial damage and the underlying mechanisms remain unclear. Herein, we found that Cd resulted in ferroptosis of vascular endothelial cells (ECs) in vivo and in vitro. In the visualized zebrafish embryos, Cd accumulated in vascular ECs, ROS and lipid peroxidation levels were increased, and the oxidoreductase system was disturbed after exposure. Moreover, Cd decreased Gpx4 in ECs and caused smaller mitochondria with increased membrane density. Accompanied by ferroptosis, the number of ECs and the area of the caudal venous plexus in zebrafish embryos were reduced, and the survival rate of HUVECs decreased. These effects were partially reversed by ferrostatin-1 and aggravated by erastin. Mechanistically, an excessive increase in Heat Shock Protein 70 (Hsp70) was identified by transcriptomics after Cd exposure. Inhibition of Hsp70 by VER-155008 or siRNA ameliorated Cd-induced ferroptosis, thereby alleviating endothelial injury. Furthermore, Hsp70 regulated Cd-induced ferroptosis by targeting multiple targets, including Gpx4, Fth1, Nrf2 and Acsl4. Our findings provide a new approach to investigating the endothelial damage of Cd and indicate that regulation of Hsp70 is an important target for alleviating this process.
Collapse
Affiliation(s)
- Tian Zhang
- Key Laboratory of Bio-Rheological Science and Technology, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, No.174 Shazhengjie, Shapingba, Chongqing 400044, People's Republic of China; Chongqing Key Laboratory of Prevention and Treatment Center for Occupational Diseases and Poisoning, Chongqing 400060, People's Republic of China
| | - Wenhua Yan
- The Second Affiliated Hospital of Chongqing Medical University, No.76 Linjiang Road, Yuzhong District, Chongqing 400010, People's Republic of China
| | - Cong Liu
- Chongqing Key Laboratory of Prevention and Treatment Center for Occupational Diseases and Poisoning, Chongqing 400060, People's Republic of China
| | - Weixia Duan
- Chongqing Key Laboratory of Prevention and Treatment Center for Occupational Diseases and Poisoning, Chongqing 400060, People's Republic of China
| | - Yu Duan
- Chongqing Key Laboratory of Prevention and Treatment Center for Occupational Diseases and Poisoning, Chongqing 400060, People's Republic of China
| | - Yuanyuan Li
- Chongqing Key Laboratory of Prevention and Treatment Center for Occupational Diseases and Poisoning, Chongqing 400060, People's Republic of China
| | - Qin Yu
- Chongqing Key Laboratory of Prevention and Treatment Center for Occupational Diseases and Poisoning, Chongqing 400060, People's Republic of China
| | - Yapei Sun
- Chongqing Key Laboratory of Prevention and Treatment Center for Occupational Diseases and Poisoning, Chongqing 400060, People's Republic of China
| | - Jiacheng Tian
- Chongqing Key Laboratory of Prevention and Treatment Center for Occupational Diseases and Poisoning, Chongqing 400060, People's Republic of China
| | - Jie Zhou
- Chongqing Key Laboratory of Prevention and Treatment Center for Occupational Diseases and Poisoning, Chongqing 400060, People's Republic of China
| | - Zhiqin Xia
- Chongqing Key Laboratory of Prevention and Treatment Center for Occupational Diseases and Poisoning, Chongqing 400060, People's Republic of China
| | - Guixue Wang
- Key Laboratory of Bio-Rheological Science and Technology, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, No.174 Shazhengjie, Shapingba, Chongqing 400044, People's Republic of China.
| | - Shangcheng Xu
- Key Laboratory of Bio-Rheological Science and Technology, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, No.174 Shazhengjie, Shapingba, Chongqing 400044, People's Republic of China; Chongqing Key Laboratory of Prevention and Treatment Center for Occupational Diseases and Poisoning, Chongqing 400060, People's Republic of China.
| |
Collapse
|
7
|
Bayo Jimenez MT, Hahad O, Kuntic M, Daiber A, Münzel T. Noise, Air, and Heavy Metal Pollution as Risk Factors for Endothelial Dysfunction. Eur Cardiol 2023; 18:e09. [PMID: 37377448 PMCID: PMC10291605 DOI: 10.15420/ecr.2022.41] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/12/2022] [Indexed: 06/29/2023] Open
Abstract
During the last two decades, large epidemiological studies have shown that the physical environment, including noise, air pollution or heavy metals, have a considerable impact on human health. It is known that the most common cardiovascular risk factors are all associated with endothelial dysfunction. Vascular tone, circulation of blood cells, inflammation, and platelet activity are some of the most essential functions regulated by the endothelium that suffer negative effects as a consequence of environmental pollution, causing endothelial dysfunction. In this review, we delineate the impact of environmental risk factors in connection to endothelial function. On a mechanistic level, a significant number of studies suggest the involvement of endothelial dysfunction to fundamentally drive the adverse endothelium health effects of the different pollutants. We focus on well-established studies that demonstrate the negative effects on the endothelium, with a focus on air, noise, and heavy metal pollution. This in-depth review on endothelial dysfunction as a consequence of the physical environment aims to contribute to the associated research needs by evaluating current findings from human and animal studies. From a public health perspective, these findings may also help to reinforce efforts promoting the research for adequate promising biomarkers for cardiovascular diseases since endothelial function is considered a hallmark of environmental stressor health effects.
Collapse
Affiliation(s)
- Maria Teresa Bayo Jimenez
- Department of Cardiology – Cardiology I, University Medical Center of the Johannes Gutenberg University MainzMainz, Germany
| | - Omar Hahad
- Department of Cardiology – Cardiology I, University Medical Center of the Johannes Gutenberg University MainzMainz, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Rhine-MainMainz, Germany
- Leibniz Institute for Resilience Research (LIR)Mainz, Germany
| | - Marin Kuntic
- Department of Cardiology – Cardiology I, University Medical Center of the Johannes Gutenberg University MainzMainz, Germany
| | - Andreas Daiber
- Department of Cardiology – Cardiology I, University Medical Center of the Johannes Gutenberg University MainzMainz, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Rhine-MainMainz, Germany
| | - Thomas Münzel
- Department of Cardiology – Cardiology I, University Medical Center of the Johannes Gutenberg University MainzMainz, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Rhine-MainMainz, Germany
| |
Collapse
|
8
|
Wu S, Li L, Ji G, Xing X, Li J, Ma A, Wei Y, Zhao D, Huang H, Ma W, Wu B, Dong M, Liu T, Chen Q. Association of multi-metals with the risk of hypertension and the interaction with obesity: A cross-sectional study in China. Front Public Health 2023; 11:1090935. [PMID: 37006554 PMCID: PMC10063192 DOI: 10.3389/fpubh.2023.1090935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
BackgroundEnvironmental exposure to multiple metals have been inconsistently associated with hypertension. Obesity is an important independent risk factor for hypertension, and few studies have assessed the interaction between obesity and metals in this context. We aimed to clarify their association and interaction.MethodsThis cross-sectional study included 3,063 adults from 11 districts or counties, Guangdong. We measured the whole blood levels of 13 metals and used multipollutant-based statistical methods to analyze the association of metals with hypertension. The interaction between metals and obesity on hypertension was assessed on additive and multiplicative scales.ResultsFour metals (manganese, arsenic, cadmium, and lead) were significantly associated with hypertension risk, five metals (manganese, zinc, arsenic, cadmium, and lead) were related to elevated SBP levels, five metals (manganese, zinc, selenium, cadmium, and lead) were associated with elevated DBP levels in single-metal model. Manganese remained significantly related to hypertension risk [odds ratio, 1.35 (1.02–1.78)] after adjusting for these four metals. Significant positive dose-response relationships between manganese, arsenic, cadmium, lead and hypertension risk were observed (P for overall < 0.001, P for non-linearity > 0.05). Compared with those in the lowest quartile, participants in the highest manganese quartile had a 2.83 mmHg (95% Cl: 0.71–4.96) (PFDR = 0.040) higher level of SBP. Individuals in the highest quartiles of zinc and lead had a 1.45 mmHg (0.10–2.81) (PFDR = 0.033) and 2.06 mmHg (0.59–3.53) (PFDR = 0.020) higher level of DBP, respectively. The negative interactions between cadmium, lead and obesity influences hypertension risk. BKMR analysis showed a significant joint effect of manganese, arsenic, cadmium and lead on hypertension when the concentrations of four metals were at or above their 55th percentile compared to their median values.ConclusionsThe combined effect of four metals (manganese, arsenic, cadmium and lead) were associated with the prevalence of hypertension. Potential interaction effects of cadmium, lead and obesity on hypertension risk may exist. Further cohort studies in larger population are needed to clarify these findings.
Collapse
Affiliation(s)
- Shan Wu
- Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Lvrong Li
- Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Guiyuan Ji
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Xiaohui Xing
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
- Innovation Team of Environmental Health Assessment and Public Health Strategy, Guangzhou, China
| | - Jiajie Li
- Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Anping Ma
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, China
| | - Yuan Wei
- Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Dongwei Zhao
- Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Huimin Huang
- Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wenjun Ma
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
- Disease Control and Prevention Institute of Jinan University, Jinan University, Guangzhou, China
| | - Banghua Wu
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, China
| | - Ming Dong
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, China
- Ming Dong
| | - Tao Liu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
- Disease Control and Prevention Institute of Jinan University, Jinan University, Guangzhou, China
- Tao Liu
| | - Qingsong Chen
- Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
- National Medical Products Administration (NMPA) Key Laboratory for Technology Research and Evaluation of Pharmacovigilance, Guangdong Pharmaceutical University, Guangzhou, China
- *Correspondence: Qingsong Chen
| |
Collapse
|
9
|
Zhang L, Li C, Wang S, Avtanski D, Hadzi-Petrushev N, Mitrokhin V, Mladenov M, Wang F. Tetrahydrocurcumin-Related Vascular Protection: An Overview of the Findings from Animal Disease Models. Molecules 2022; 27:5100. [PMID: 36014335 PMCID: PMC9412611 DOI: 10.3390/molecules27165100] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 01/05/2023] Open
Abstract
Tetrahydrocurcumin (THC), one of the major metabolites of CUR, possesses several CUR-like pharmacological effects; however, its mechanisms of action are largely unknown. This manuscript aims to summarize the literature on the preventive role of THC on vascular dysfunction and the development of hypertension by exploring the effects of THC on hemodynamic status, aortic elasticity, and oxidative stress in vasculature in different animal models. We review the protective effects of THC against hypertension induced by heavy metals (cadmium and iron), as well as its impact on arterial stiffness and vascular remodeling. The effects of THC on angiogenesis in CaSki xenografted mice and the expression of vascular endothelial growth factor (VEGF) are well documented. On the other hand, as an anti-inflammatory and antioxidant compound, THC is involved in enhancing homocysteine-induced mitochondrial remodeling in brain endothelial cells. The experimental evidence regarding the mechanism of mitochondrial dysfunction during cerebral ischemic/reperfusion injury and the therapeutic potential of THC to alleviate mitochondrial cerebral dysmorphic dysfunction patterns is also scrutinized and explored. Overall, the studies on different animal models of disease suggest that THC can be used as a dietary supplement to protect against cardiovascular changes caused by various factors (such as heavy metal overload, oxidative stress, and carcinogenesis). Additionally, the reviewed literature data seem to confirm THC's potential to improve mitochondrial dysfunction in cerebral vasculature during ischemic stroke through epigenetic mechanisms. We suggest that further preclinical studies should be implemented to demonstrate THC's vascular-protective, antiangiogenic, and anti-tumorigenic effects in humans. Applying the methods used in the presently reviewed studies would be useful and will help define the doses and methods of THC administration in various disease settings.
Collapse
Affiliation(s)
- Li Zhang
- Cancer Center, Department of Medical Oncology, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Changhu Li
- Cancer Center, Division of Radiation Physics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Sicheng Wang
- Medical Department, 6th City Clinical Hospital, 220037 Minsk, Belarus
| | - Dimiter Avtanski
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, 110 E 59th Street, New York, NY 10022, USA
| | - Nikola Hadzi-Petrushev
- Faculty of Natural Sciences and Mathematics, Institute of Biology, “Ss. Cyril and Methodius” University, P.O. Box 162, 1000 Skopje, North Macedonia
| | - Vadim Mitrokhin
- Department of Physiology, Pirogov Russian National Research Medical University, Ostrovityanova Street, 1, 117997 Moscow, Russia
| | - Mitko Mladenov
- Faculty of Natural Sciences and Mathematics, Institute of Biology, “Ss. Cyril and Methodius” University, P.O. Box 162, 1000 Skopje, North Macedonia
- Department of Physiology, Pirogov Russian National Research Medical University, Ostrovityanova Street, 1, 117997 Moscow, Russia
| | - Feng Wang
- Cancer Center, Department of Medical Oncology, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| |
Collapse
|
10
|
Santamaria-Juarez C, Atonal-Flores F, Diaz A, Sarmiento-Ortega VE, Garcia-Gonzalez M, Aguilar-Alonso P, Lopez-Lopez G, Brambila E, Treviño S. Aortic dysfunction by chronic cadmium exposure is linked to multiple metabolic risk factors that converge in anion superoxide production. Arch Physiol Biochem 2022; 128:748-756. [PMID: 32067514 DOI: 10.1080/13813455.2020.1726403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 12/20/2022]
Abstract
CONTEXT The chronic exposure to Cadmium (Cd) constitute an risk to develop hypertension and cardiovascular diseases associated with the increase of oxidative stress. OBJECTIVE In this study, we investigate the role of metabolic changes produced by exposure to Cd on the endothelial dysfunction via oxidative stress. METHODS Male Wistar rats were exposed to Cd (32.5-ppm) for 2-months. The zoometry and blood pressure were evaluated, also glucose and lipids profiles in serum and vascular reactivity evaluated in isolated aorta rings. RESULTS Rats exposed to Cd showed an increase of blood pressure and biochemical parameters similar to metabolic syndrome. Additionally, rats exposed to Cd showed a reduced relaxation in aortic rings, which was reversed after the addition of SOD and apocynin an inhibitor of NADPH. CONCLUSION The Cd-exposition induced hypertension and endothelial injury by that modifying the vascular relaxation and develop oxidative stress via NADPH oxidase, superoxide and loss nitric oxide bioavailability.
Collapse
Affiliation(s)
- Celeste Santamaria-Juarez
- Department of Pharmacy, Faculty of Chemistry Science, University Autonomous of Puebla, Puebla, Mexico
| | - Fausto Atonal-Flores
- Department of Physiology, Faculty of Medicine, University Autonomous of Puebla, The Volcano, Mexico
| | - Alfonso Diaz
- Department of Pharmacy, Faculty of Chemistry Science, University Autonomous of Puebla, Puebla, Mexico
| | - Victor E Sarmiento-Ortega
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, University Autonomous of Puebla, Puebla, Mexico
| | - Miguel Garcia-Gonzalez
- Department of Pharmacy, Faculty of Chemistry Science, University Autonomous of Puebla, Puebla, Mexico
| | - Patricia Aguilar-Alonso
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, University Autonomous of Puebla, Puebla, Mexico
| | - Gustavo Lopez-Lopez
- Department of Pharmacy, Faculty of Chemistry Science, University Autonomous of Puebla, Puebla, Mexico
| | - Eduardo Brambila
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, University Autonomous of Puebla, Puebla, Mexico
| | - Samuel Treviño
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, University Autonomous of Puebla, Puebla, Mexico
| |
Collapse
|
11
|
Role of curcumin in ameliorating hypertension and associated conditions: a mechanistic insight. Mol Cell Biochem 2022; 477:2359-2385. [DOI: 10.1007/s11010-022-04447-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 04/24/2022] [Indexed: 12/23/2022]
|
12
|
Yalçin SS, Erdal İ, Oğuz B, Duzova A. Associations between toxic elements and blood pressure parameters in adolescents. J Trace Elem Med Biol 2022; 71:126949. [PMID: 35193093 DOI: 10.1016/j.jtemb.2022.126949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 12/20/2021] [Accepted: 02/10/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Both exposure to toxic elements and hypertension (HT) are a global health problem. We planned to examine the associations between some toxic elements in urine, and blood pressure (BP) and its diurnal changes in adolescents. METHODS In this cross-sectional study, 48 adolescents who were newly diagnosed with HT and 38 adolescents with age-appropriate BP and normal physical examination were included. Anthropometric measurements, urinary toxic elements, carotid intima media thickness (cIMT), and office and 24-hour ambulatory BP measurements (ABPM) of participants were taken. Urinary elements levels were studied with ICP-MS. Elements were grouped in tertiles according to urinary levels. Logistic regression analyses were performed to show the interactions. RESULTS Urinary cadmium, mercury, lead, and arsenic were found to be at detectable level in 90.7%, 69.8%, 91.9% and 100% of the participants, respectively. Univariate analyses showed that elevated daytime systolic and/or diastolic BP was associated with urinary cadmium and mercury. No association between urinary toxic elements and nighttime BP was found. When height and body mass index z-scores adjusted for, age, gender, and all four urinary creatinine-corrected toxic elements analyzed, multiple logistic regression revealed that there was an association between mercury (high vs. low; AOR:3.85) and office HT, and mercury (high vs. low; AOR:6.18) and cadmium (middle vs. low; AOR: 13.38) were associated with "elevated 24-hour systolic BP and/or diastolic BP", and "elevated 24-hour mean arterial BP" in ABPM. CONCLUSION There are complex relationships between toxic elements and BP parameters in adolescents, and more studies are needed to define the evolution of these relations.
Collapse
Affiliation(s)
- Siddika Songül Yalçin
- Division of Social Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey.
| | - İzzet Erdal
- Division of Social Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey.
| | - Berna Oğuz
- Department of Radiology, Hacettepe University Faculty of Medicine, Ankara, Turkey.
| | - Ali Duzova
- Division of Pediatric Nephrology, Hacettepe University Faculty of Medicine, Ankara, Turkey.
| |
Collapse
|
13
|
Fagerberg B, Barregard L. Review of cadmium exposure and smoking-independent effects on atherosclerotic cardiovascular disease in the general population. J Intern Med 2021; 290:1153-1179. [PMID: 34157165 DOI: 10.1111/joim.13350] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Exposure to cadmium (Cd) via food and smoking is associated with an increased risk of atherosclerotic cardiovascular disease (ASCVD). Blood and urine levels of Cd are established biomarkers of exposure. OBJECTIVES To review (1) the smoking-independent associations between Cd exposure and ASCVD, including the possible presence of a nonlinear dose-response relationship with Cd exposure and (2) the causal effects of Cd exposure on different stages of atherosclerosis. METHODS Narrative review. RESULTS Cd confers increased risk of ASCVD and asymptomatic atherosclerosis in the carotid and coronary arteries above B-Cd >0.5 μg/L or U-Cd >0.5 μg/g creatinine, but it has not been shown below a threshold of these exposure levels. Adjustment for smoking does not exclude the possibility of residual confounding, but several studies in never-smoking cohorts have shown associations between Cd and ASCVD, and experimental studies have demonstrated pro-atherosclerotic effects of Cd. Cd accumulates in arterial walls and atherosclerotic plaques, reaching levels shown to have proatherosclerotic effects. Suggested early effects are increased subendothelial retention of atherogenic lipoproteins, which become oxidized, and endothelial dysfunction and damage with increased permeability for monocytes, which in the intima turn to macrophages and then to foam cells. Later, Cd may contribute to plaque rupture and erosion by endothelial apoptosis and degradation of the fibrous cap. Finally, by having prothrombotic and antifibrinolytic effects, the CVD risk may be further increased. CONCLUSIONS There is strong evidence that Cd causes ASCVD above a suggested exposure level via mechanisms in early as well as the late stages of atherosclerotic disease.
Collapse
Affiliation(s)
- Björn Fagerberg
- Wallenberg Laboratory for Cardiovascular and Metabolic Research, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lars Barregard
- Occupational and Environmental Medicine, Department of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
14
|
Zhang J, Feng W, Li M, Chen P, Ning X, Ou C, Chen M. Receptor-Interacting Protein Kinase 3 Inhibition Prevents Cadmium-Mediated Macrophage Polarization and Subsequent Atherosclerosis via Maintaining Mitochondrial Homeostasis. Front Cardiovasc Med 2021; 8:737652. [PMID: 34820428 PMCID: PMC8606644 DOI: 10.3389/fcvm.2021.737652] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/28/2021] [Indexed: 12/11/2022] Open
Abstract
Chronic cadmium (Cd) exposure contributes to the progression of cardiovascular disease (CVD), especially atherosclerosis (AS), but the underlying mechanism is unclear. Since mitochondrial homeostasis is emerging as a core player in the development of CVD, it might serve as a potential mechanism linking Cd exposure and AS. In this study, we aimed to investigate Cd-mediated AS through macrophage polarization and know the mechanisms of Cd-caused mitochondrial homeostasis imbalance. In vitro, flow cytometry shows that Cd exposure promotes M1-type polarization of macrophages, manifested as the increasing expressions of nuclear Factor kappa-light-chain-enhancer of activated B (NF-kB) and NLR family pyrin domain containing 3 (NLRP3). Mitochondrial homeostasis tests revealed that decreasing mitochondrial membrane potential and mitophage, increasing the mitochondrial superoxide (mROS), and mitochondrial fission are involved in the Cd-induced macrophage polarization. The upregulated expressions of receptor-interacting protein kinase 3 (RIPK3) and pseudokinase-mixed lineage kinase domain-like protein (p-MLKL) were observed. Knocking out RIPK3, followed by decreasing the expression of p-MLKL, improves the mitochondrial homeostasis imbalance which effectively reverses macrophage polarization. In vivo, the oil red O staining showed that Cd with higher blood significantly aggravates AS. Besides, M1-type polarization of macrophages and mitochondrial homeostasis imbalance were observed in the aortic roots of the mice through immunofluorescence and western blot. Knocking out RIPK3 restored the changes above. Finally, the administered N-acetyl cysteine (NAC) or mitochondrial division inhibitor-1 (Mdivi-1), which decreased the mROS or mitochondrial fission, inhibited the expressions of RIPK3 and p-MLKL, attenuating AS and macrophage M1-type polarization in the Cd-treated group. Consequently, the Cd exposure activated the RIPK3 pathway and impaired the mitochondrial homeostasis, resulting in pro-inflammatory macrophage polarization and subsequent AS. Knocking out RIPK3 provided a potential therapeutic target for Cd-caused macrophage polarization and subsequent AS.
Collapse
Affiliation(s)
- Jiexin Zhang
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, China
| | - Weijing Feng
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, China.,Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Minghui Li
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, China
| | - Peier Chen
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, China
| | - Xiaodong Ning
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, China
| | - Caiwen Ou
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, China
| | - Minsheng Chen
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, China
| |
Collapse
|
15
|
Cadmium-induced hypertension is associated with renal myosin light chain phosphatase inhibition via increased T697 phosphorylation and p44 mitogen-activated protein kinase levels. Hypertens Res 2021; 44:941-954. [PMID: 33972751 DOI: 10.1038/s41440-021-00662-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 12/29/2020] [Accepted: 02/17/2021] [Indexed: 02/03/2023]
Abstract
Dietary intake of the heavy metal cadmium (Cd2+) is implicated in hypertension, but potassium supplementation reportedly mitigates hypertension. This study aims to elucidate the hypertensive mechanism of Cd2+. Vascular reactivity and protein expression were assessed in Cd2+-exposed rats for 8 weeks to determine the calcium-handling effect of Cd2+ and the possible signaling pathways and mechanisms involved. Cd2+ induced hypertension in vivo by significantly (p < 0.001) elevating systolic blood pressure (160 ± 2 and 155 ± 1 vs 120 ± 1 mm Hg), diastolic blood pressure (119 ± 2 and 110 ± 1 vs 81 ± 1 mm Hg), and mean arterial pressure (133 ± 2 and 125 ± 1 vs 94 ± 1 mm Hg) (SBP, DBP, and MAP, respectively), while potassium supplementation protected against elevation of these parameters. The mechanism involved augmentation of the phosphorylation of renal myosin light chain phosphatase targeting subunit 1 (MYPT1) at threonine 697 (T697) (2.58 ± 0.36 vs 1 ± 0) and the expression of p44 mitogen-activated protein kinase (MAPK) (1.78 ± 0.20 vs 1 ± 0). While acetylcholine (ACh)-induced relaxation was unaffected, 5 mg/kg b.w. Cd2+ significantly (p < 0.001) attenuated phenylephrine (Phe)-induced contraction of the aorta, and 2.5 mg/kg b.w. Cd2+ significantly (p < 0.05) augmented sodium nitroprusside (SNP)-induced relaxation of the aorta. These results support the vital role of the kidney in regulating blood pressure changes after Cd2+ exposure, which may be a key drug target for hypertension management. Given the differential response to Cd2+, it is apparent that its hypertensive effects could be mediated by myosin light chain phosphatase (MLCP) inhibition via phosphorylation of renal MYPT1-T697 and p44 MAPK. Further investigation of small arteries and the Rho-kinase/MYPT1 interaction is recommended.
Collapse
|
16
|
Akhigbe RE, Hamed MA. Co-administration of HAART and antikoch triggers cardiometabolic dysfunction through an oxidative stress-mediated pathway. Lipids Health Dis 2021; 20:62. [PMID: 34225751 PMCID: PMC8259328 DOI: 10.1186/s12944-021-01493-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/23/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Antikoch and highly active anti-retroviral therapy are effective drugs in the management of tuberculosis and Human Immunodeficiency Virus, respectively. However, these cocktails have been independently associated with the aetiopathogenesis of metabolic syndrome. This study investigated whether or not the co-administration of antikoch and anti-retroviral, as seen in tuberculosis/Human Immunodeficiency Virus co-infection, will produce a similar effect. Also, it evaluated the role of glutathione and adenine deaminase/xanthine oxidase/uric acid signaling in antikoch/anti-retroviral-induced cardiometabolic dysfunction. METHODS Male rats of Wistar strain were randomized into four groups: the control, which had 0.5 mL of distilled water as a vehicle, anti-Koch-treated rats that were administered a cocktail of anti-Koch, HAART-treated rats that had a combination of anti-retroviral drugs, and anti-Koch + HAART-treated rats that had treatments as anti-Koch-treated and HAART-treated rats. The treatment was once daily and lasted for eight weeks. One way-analysis of variance followed by Tukey's posthoc test was used to test for significance and pairwise comparisons respectively. RESULTS Although no changes in body weight gain and cardiac weight were noted, it was found that antikoch and/or HAART caused insulin resistance and elevated blood glucose level. In addition, antikoch and/or HAART led to dyslipidaemia, increased atherogenic indices, and elevated cardiac injury markers. These were accompanied by increased plasma and cardiac concentrations of malondialdehyde and nitric oxide, C-reactive protein, and myeloperoxidase activity, as well as suppressed activities of glutathione peroxidase and glutathione-S-transferase, and a fall in reduced glutathione level. The observed alterations were more pronounced in animals that received a combination of antikoch and HAART. CONCLUSIONS This study provides the first evidence that antikoch and/or HAART induce cardiometabolic dysfunction via glutathione suppression and up-regulation of adenine deaminase/xanthine oxidase/uric acid-dependent oxidative stress and inflammatory response. These events were associated with dyslipidaemia and increased atherogenic indices. This infers that regular monitoring of glucose level, insulin sensitivity, lipid profile, and oxido-inflammatory markers is important in patients on antikoch and/or HAART for prompt diagnosis and management of cardiometabolic disorder if it ensues.
Collapse
Affiliation(s)
- R E Akhigbe
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria.
- Reproductive Biology and Toxicology Research Laboratories, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria.
- Department of Chemical Sciences, Kings University, Odeomu, Osun, Nigeria.
| | - M A Hamed
- Reproductive Biology and Toxicology Research Laboratories, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
- Buntai Medical and Diagnostic Laboratories, Osogbo, Nigeria
| |
Collapse
|
17
|
Desai G, Niu Z, Luo W, Frndak S, Shaver AL, Kordas K. Low-level exposure to lead, mercury, arsenic, and cadmium, and blood pressure among 8-17-year-old participants of the 2009-2016 National Health and Nutrition Examination Survey. ENVIRONMENTAL RESEARCH 2021; 197:111086. [PMID: 33781774 PMCID: PMC8211235 DOI: 10.1016/j.envres.2021.111086] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/14/2021] [Accepted: 03/23/2021] [Indexed: 06/02/2023]
Abstract
BACKGROUND Dysregulation of systolic, diastolic blood pressure (SBP, DBP), and pulse pressure (PP) in children may predict elevated blood pressure (BP) in adulthood. Toxicant exposure is widely studied as a risk factor for high BP in adults, but not in children. We assessed the joint associations between lead (Pb), mercury (Hg), arsenic (As), and cadmium (Cd) exposure and SBP, DBP, and PP among 8-17 year-old participants (n = 1642) of the 2009-2016 National Health and Nutrition Examination Survey (NHANES). METHODS Participants with at least two BP measures were included. Urinary As and Cd were adjusted for urinary creatinine concentrations. Blood Pb, Hg, and urinary As, Cd were natural log-transformed. Bayesian Kernel Machine Regression (BKMR) analyses were conducted to assess the associations between the toxicant mixture and BP measures. Multivariable regression models assessed the associations between individual toxicants, and the four toxicants simultaneously with each of the outcomes. Interactions with sodium intake were tested. RESULTS Exposure to all toxicants was low, with median (5%, 95%) level: Pb, 0.57 (0.26, 1.60) μg/dL; Hg, 0.37 (0.19, 2.12) μg/L; As, 5.61 (1.37, 33.2) μg/g creatinine, Cd, 0.06 (0.03, 0.23) μg/g creatinine. Toxicant mixture showed a statistically significant, inverse association with DBP, but not other BP measures. Linear regressions revealed no association between toxicants, individually or together, and BP measures. No evidence of interaction of sodium intake with any of the toxicants was observed. CONCLUSIONS In a nationally representative sample of 8-17 year-olds, we found suggestive inverse association of the mixture of low-level Pb, Hg, As, and Cd, with DBP. Longitudinal studies with multiple toxicants are needed to understand the interactive effects of toxicants on children's BP.
Collapse
Affiliation(s)
- Gauri Desai
- Department of Epidemiology and Environmental Health, University at Buffalo, The State University of New York, USA.
| | - Zhongzheng Niu
- Department of Epidemiology and Environmental Health, University at Buffalo, The State University of New York, USA
| | - Wei Luo
- Department of Sociology, University at Buffalo, The State University of New York, USA
| | - Seth Frndak
- Department of Epidemiology and Environmental Health, University at Buffalo, The State University of New York, USA
| | - Amy L Shaver
- Department of Epidemiology and Environmental Health, University at Buffalo, The State University of New York, USA
| | - Katarzyna Kordas
- Department of Epidemiology and Environmental Health, University at Buffalo, The State University of New York, USA
| |
Collapse
|
18
|
Jalili C, Kazemi M, Cheng H, Mohammadi H, Babaei A, Taheri E, Moradi S. Associations between exposure to heavy metals and the risk of chronic kidney disease: a systematic review and meta-analysis. Crit Rev Toxicol 2021; 51:165-182. [PMID: 33960873 DOI: 10.1080/10408444.2021.1891196] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We performed a systematic review and meta-analysis to examine the relationship between heavy metals (HMs) exposure and the risk of chronic kidney disease (CKD). Databases of Web of Science, Embase, MEDLINE, and Scopus were searched through June 2020 to identify studies assessing the relationships between exposure to HMs (i.e. cadmium, lead, arsenic, mercury) and the risk of CKD, evaluated by decreased estimated glomerular filtration rate (eGFR) and/or increased proteinuria risks in adults (≥18 years). Data were pooled by random-effects models and expressed as weighted mean differences and 95% confidence intervals. The risk of bias was assessed by the Newcastle-Ottawa scale (NOS). Twenty-eight eligible articles (n = 107,539 participants) were included. Unlike eGFR risk (p = 0.10), Cadmium exposure was associated with an increased proteinuria risk (OR = 1.35; 95% CI: 1.13, 1.61; p < 0.001; I2 = 79.7%). Lead exposure was associated with decreased eGFR (OR = 1.12; 95%CI: 1.03, 1.22; p = 0.008; I2 = 87.8%) and increased proteinuria (OR = 1.25; 95% CI: 1.04, 1.49; p = 0.02; I2 = 79.6) risks. Further, arsenic exposure was linked to a decreased eGFR risk (OR = 1.55; 95% CI: 1.05, 2.28; p = 0.03; I2 = 89.1%) in contrast to mercury exposure (p = 0.89). Only two studies reported the link between arsenic exposure and proteinuria risk, while no study reported the link between mercury exposure and proteinuria risk. Exposure to cadmium, lead, and arsenic may increase CKD risk in adults, albeit studies were heterogeneous, warranting further investigations. Our observations support the consideration of these associations for preventative, diagnostic, monitoring, and management practices of CKD.
Collapse
Affiliation(s)
- Cyrus Jalili
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Maryam Kazemi
- Division of Nutritional Sciences, Human Metabolic Research Unit, Cornell University, New York, USA
| | - Hefa Cheng
- MOE Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Hamed Mohammadi
- Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Atefeh Babaei
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ensiyeh Taheri
- Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.,Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sajjad Moradi
- Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.,Halal Research Center of IRI, FDA, Tehran, Iran
| |
Collapse
|
19
|
Choi YH, Huh DA, Moon KW. Joint Effect of Alcohol Drinking and Environmental Cadmium Exposure on Hypertension in Korean Adults: Analysis of Data from the Korea National Health and Nutrition Examination Survey, 2008 to 2013. Alcohol Clin Exp Res 2021; 45:548-560. [PMID: 33635568 DOI: 10.1111/acer.14551] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 01/06/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Hypertension is a common disease found in 1.13 billion adults worldwide. Several animal studies have provided evidence of the joint effect of alcohol drinking and cadmium exposure on hypertension. However, no epidemiologic study has examined the association between these 2 risk factors and hypertension. Therefore, we examined the individual effects of alcohol drinking and cadmium and the joint effect of their coexposure on hypertension in the general population. METHODS We analyzed data from 8,403 South Korean adults who had been randomly assigned to the Korea National Health and Nutrition Examination Survey from 2008 to 2013. Multiple linear and logistic regression analyses were conducted to estimate the association of alcohol drinking and blood cadmium concentration with blood pressure and the odds ratio (OR) for hypertension. RESULTS The weighted prevalence of hypertension and high-risk drinking was 25.7 and 13.6%, respectively. The weighted geometric mean of blood cadmium levels was 0.94 μg/L (95% confidence interval [CI]: 0.93 to 0.96). After adjusting for demographic characteristics, anthropometric measurements, health-related behaviors, and dietary and disease variables, the OR for hypertension in the group with the high-risk alcohol drinking was 1.67 (95% CI: 1.34 to 2.06) compared with the group without high-risk alcohol drinking. When the highest and the lowest blood cadmium quartiles were compared, the OR for hypertension was 1.46 (95% CI: 1.15 to 1.86). The positive joint effect of high-risk drinking and blood cadmium levels was statistically significant for systolic blood pressure (SBP; p = 0.037) and diastolic blood pressure (DBP; p < 0.001). CONCLUSIONS Our results show that heavy alcohol drinking had a joint effect with cadmium exposure to increase the risk of hypertension. Future efforts are needed to reduce alcohol drinking and environmental cadmium exposure to prevent hypertension in the general population.
Collapse
Affiliation(s)
- Yun-Hee Choi
- Department of Health and Safety Convergence Science, Korea University, Seoul, Korea.,BK21 FOUR R&E Center for Learning Health System, Korea University, Seoul, Korea
| | - Da-An Huh
- Department of Health Science, Korea University, Seoul, Korea
| | - Kyong Whan Moon
- BK21 FOUR R&E Center for Learning Health System, Korea University, Seoul, Korea.,Department of Health and Environmental Science, Korea University, Seoul, Korea
| |
Collapse
|
20
|
Martins AC, Santos AAD, Lopes ACBA, Skalny AV, Aschner M, Tinkov AA, Paoliello MMB. Endothelial Dysfunction Induced by Cadmium and Mercury and its Relationship to Hypertension. Curr Hypertens Rev 2021; 17:14-26. [PMID: 33475076 DOI: 10.2174/1573402117666210121102405] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/08/2020] [Accepted: 12/18/2020] [Indexed: 11/22/2022]
Abstract
Hypertension is an important public health concern that affects millions globally, leading to a large number of morbidities and fatalities. The etiology of hypertension is complex and multifactorial, and it involves environmental factors, including heavy metals. Cadmium and mercury are toxic elements commonly found in the environment, contributing to hypertension. We aimed to assess the role of cadmium and mercury-induced endothelial dysfunction in the development of hypertension. A narrative review was carried out through database searches. In this review, we discussed the critical roles of cadmium and mercury in the etiology of hypertension and provided new insights into potential mechanisms of their effect, focusing primarily on endothelial dysfunction. Although the mechanisms by which cadmium and mercury induce hypertension have yet to be completely elucidated, evidence for both implicates impaired nitric oxide signaling in their hypertensive etiology.
Collapse
Affiliation(s)
- Airton C Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Alessanda A D Santos
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Ana C B A Lopes
- Graduate Program in Public Health, Center of Health Sciences, State University of Londrina, Londrina, Brazil
| | - Anatoly V Skalny
- Medical Elementology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Alexey A Tinkov
- Medical Elementology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | - Monica M B Paoliello
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| |
Collapse
|
21
|
Martins AC, Almeida Lopes ACB, Urbano MR, Carvalho MDFH, Silva AMR, Tinkov AA, Aschner M, Mesas AE, Silbergeld EK, Paoliello MMB. An updated systematic review on the association between Cd exposure, blood pressure and hypertension. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111636. [PMID: 33396156 PMCID: PMC7785863 DOI: 10.1016/j.ecoenv.2020.111636] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 05/03/2023]
Abstract
BACKGROUND Since the first report by Perry et al. (1955), most studies affirmed the hypertensive effects of cadmium (Cd) in humans. Nonetheless, conclusions between studies remain inconsistent. OBJECTIVE The aim of this study was to reevaluate the evidence for a potential relationship between Cd exposure and altered blood pressure and/or hypertension, focusing on studies published between January 2010 and March 2020. METHODS We reviewed all observational studies from database searches (PubMed and SCOPUS) on Cd exposure and blood pressure or hypertension. We extracted information from studies that provided sufficient data on population characteristics, smoking status, exposure, outcomes, and design. RESULTS Thirty-eight studies met our inclusion criteria; of those, twenty-nine were cross sectional, three case control, five cohort and one interventional study. Blood or urinary Cd levels were the most commonly used biomarkers. CONCLUSIONS A positive association between blood Cd levels and blood pressure and/or hypertension was identified in numerous studies at different settings. Limited number of representative population-based studies of never-smokers was observed, which may have confounded our conclusions. The association between urinary Cd and blood pressure and/or hypertension remains uncertain due to conflicting results, including inverse relationships with lack of strong mechanistic support. We point to the urgent need for additional longitudinal studies to confirm our findings.
Collapse
Affiliation(s)
- Airton C Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, 10461 Bronx, NY, USA
| | - Ana Carolina B Almeida Lopes
- Graduate Program in Public Health, Center of Health Sciences, State University of Londrina, 60 Robert Koch Avenue, 86038-350 Londrina, PR, Brazil
| | - Mariana R Urbano
- Department of Statistics, State University of Londrina, Rodovia Celso Garcia Cid, Km 380, s/no, Campus Universitário, 86057-970 Londrina, PR, Brazil
| | - Maria de Fatima H Carvalho
- Inorganic Contaminants Department, Adolfo Lutz Institute, Sao Paulo, Avenida Doutor Arnaldo, 355, 01246-000 São Paulo, SP, Brazil
| | - Ana Maria R Silva
- Graduate Program in Public Health, Center of Health Sciences, State University of Londrina, 60 Robert Koch Avenue, 86038-350 Londrina, PR, Brazil
| | - Alexey A Tinkov
- I. M. Sechenov First Moscow Medical University (Sechenov University), Bolshaya Pirogovskaya St., 19-1, 119146 Moscow, Russia; Yaroslavl State University, Yaroslavl 150000, Russia
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, 10461 Bronx, NY, USA; I. M. Sechenov First Moscow Medical University (Sechenov University), Bolshaya Pirogovskaya St., 19-1, 119146 Moscow, Russia
| | - Arthur E Mesas
- Universidad de Castilla-La Mancha, Facultad de Enfermería, Edificio Melchor Cano, Campus Universitario de Cuenca, Camino de Pozuelo, s/n 16071 Cuenca, Spain
| | - Ellen K Silbergeld
- Emerita Professor, Johns Hopkins University, Bloomberg School of Public Health, 615N Wolfe St, 21205 Baltimore, MD, USA
| | - Monica M B Paoliello
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, 10461 Bronx, NY, USA; Graduate Program in Public Health, Center of Health Sciences, State University of Londrina, 60 Robert Koch Avenue, 86038-350 Londrina, PR, Brazil.
| |
Collapse
|
22
|
Protective Effects of Curcumin on Pulmonary Arterial Hypertension. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1328:213-221. [DOI: 10.1007/978-3-030-73234-9_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
23
|
Liang H, Yue R, Zhou C, Liu M, Yu X, Lu S, Zeng J, Yu Z, Zhou Z, Hu H. Cadmium exposure induces endothelial dysfunction via disturbing lipid metabolism in human microvascular endothelial cells. J Appl Toxicol 2020; 41:775-788. [PMID: 33205412 DOI: 10.1002/jat.4115] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Hao Liang
- Department of Cardiovasology Affiliated Hospital of North Sichuan Medical College Nanchong China
| | - Rongchuan Yue
- Department of Cardiovasology Affiliated Hospital of North Sichuan Medical College Nanchong China
| | - Chao Zhou
- Department of Occupational Health Third Military Medical University Chongqing China
| | - Mengyu Liu
- Department of Occupational Health Third Military Medical University Chongqing China
| | - Xi Yu
- Department of Occupational and Environmental Medicine, School of Medicine Zhejiang University Hangzhou China
| | - Shengzhong Lu
- Department of Cardiovasology Affiliated Hospital of North Sichuan Medical College Nanchong China
| | - Jing Zeng
- Department of Cardiovasology Affiliated Hospital of North Sichuan Medical College Nanchong China
| | - Zhengping Yu
- Department of Occupational Health Third Military Medical University Chongqing China
| | - Zhou Zhou
- Department of Occupational and Environmental Medicine, School of Medicine Zhejiang University Hangzhou China
| | - Houxiang Hu
- Department of Cardiovasology Affiliated Hospital of North Sichuan Medical College Nanchong China
| |
Collapse
|
24
|
Almenara CCP, Oliveira TF, Padilha AS. The Role of Antioxidants in the Prevention of Cadmium-Induced Endothelial Dysfunction. Curr Pharm Des 2020; 26:3667-3675. [DOI: 10.2174/1381612826666200415172338] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/06/2020] [Indexed: 11/22/2022]
Abstract
Background:
Cadmium is a worldwide spread toxicant that accumulates in tissues and affects many
organs, mainly through oxidative damage. Oxidative stress is often associated with cardiovascular diseases and,
when it affects vessels, it induces endothelial dysfunction, which, in turn, could precipitate atherosclerosis and
hypertension. Therefore, it is reasonable to suggest antioxidant supplementation as a therapy against cadmiuminduced
endothelial dysfunction.
Objective:
This literature review aims to present the mechanisms involving oxidative stress in which cadmium
induces endothelial dysfunction and the benefits of antioxidant supplementation as a therapeutic strategy against
its harmful effects.
Methods:
On PubMed Central, articles that contemplated studies on cadmium intoxication and associated oxidative
stress with endothelial dysfunction as well as articles that reported the use of antioxidant supplementation in
an attempt to prevent or avoid endothelial dysfunction induced by cadmium exposure were selected.
Results:
Most of the studies that associated cadmium intoxication with endothelial dysfunction suggested oxidative
stress as the major mechanism for this damage. Furthermore, experimental studies also revealed that the
administration of substances with antioxidant properties, such as ascorbic acid and curcumin, has beneficial effects
on the prevention of such dysfunction, reducing reactive oxygen species within the vessels, preventing a
reduction in the amount of glutathione and the increase in blood pressure observed in animals exposed to cadmium.
Conclusion:
Antioxidant therapy demonstrated to be a potential treatment to reduce cardiovascular injuries provoked
by cadmium, but more studies are needed to determine the best antioxidant substance and dose to treat or
avoid this complication.
Collapse
Affiliation(s)
- Camila Cruz Pereira Almenara
- Department of Physiological Sciences, Federal University of Espírito Santo, Av. Marechal Campos 1468, Maruipe, 29042-755 - Vitoria, ES, Brazil
| | - Thiago F. Oliveira
- Department of Physiological Sciences, Federal University of Espírito Santo, Av. Marechal Campos 1468, Maruipe, 29042-755 - Vitoria, ES, Brazil
| | - Alessandra S. Padilha
- Department of Physiological Sciences, Federal University of Espírito Santo, Av. Marechal Campos 1468, Maruipe, 29042-755 - Vitoria, ES, Brazil
| |
Collapse
|
25
|
Pinheiro Júnior JEG, Moraes PZ, Rodriguez MD, Simões MR, Cibin F, Pinton S, Barbosa Junior F, Peçanha FM, Vassallo DV, Miguel M, Wiggers GA. Cadmium exposure activates NADPH oxidase, renin-angiotensin system and cyclooxygenase 2 pathways in arteries, inducing hypertension and vascular damage. Toxicol Lett 2020; 333:80-89. [PMID: 32738273 DOI: 10.1016/j.toxlet.2020.07.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/20/2020] [Accepted: 07/26/2020] [Indexed: 10/23/2022]
Abstract
Exposure to high concentrations of cadmium (Cd), widely used in many industries and found in air, food and contaminated water, is not uncommon. Cd damages the cardiovascular system, but the vascular mechanisms involved are not fully understood. This study investigated the mechanisms involved in cardiovascular damage after exposure to high Cd concentrations. Three-month-old male Wistar rats were treated intraperitoneally for 14 days with distilled water (Untreated group) or 1 mg/kg cadmium chloride (Cd group). We investigated the systolic blood pressure (SBP) and vascular reactivity of mesenteric resistance arteries (MRA) and the aorta by analysing contractile and relaxation responses in the absence and presence of the endothelium; we also evaluated pathways involved in vascular tone regulation. Superoxide anion production, COX-2 protein expression and in situ detection of COX-2, AT-1, and NOX-1 were evaluated. Oxidative status, creatinine level and angiotensin-converting enzyme (ACE) activity in plasma were also evaluated. Fourteen-day exposure to a high Cd concentration induced hypertension associated with vascular dysfunction in MRA and the aorta. In both vessels, there was increased participation of cyclooxygenase 2 (COX2), angiotensin II type 1 (AT1) receptor and NOX1. MRA also presented endothelial dysfunction, denoted by impaired acetylcholine-mediated relaxation. All vascular changes were accompanied by increased reactive oxygen species production and COX2, NOX1 and AT1 receptor expression in vascular tissue. Overall, high Cd concentrations induced cardiovascular damage: hypertension, endothelial dysfunction and vascular damage in conductance and resistance arteries, NADPH oxidase, renin-angiotensin system and COX2 pathway activation.
Collapse
Affiliation(s)
- José Eudes Gomes Pinheiro Júnior
- Graduate Program in Biochemistry, Universidade Federal do Pampa, BR 472 - Km 592 - PO box 118, Zip Code: 97500-970, Uruguaiana, Rio Grande do Sul, Brazil
| | - Paola Zambelli Moraes
- Graduate Program in Biochemistry, Universidade Federal do Pampa, BR 472 - Km 592 - PO box 118, Zip Code: 97500-970, Uruguaiana, Rio Grande do Sul, Brazil
| | - Marina Diaz Rodriguez
- Graduate Program in Biochemistry, Universidade Federal do Pampa, BR 472 - Km 592 - PO box 118, Zip Code: 97500-970, Uruguaiana, Rio Grande do Sul, Brazil
| | - Maylla Ronacher Simões
- Departments of Physiological Sciences, Universidade Federal do Espírito Santo and School of Medicine of Santa Casa de Misericórdia (EMESCAM), Av. Marechal Campos 1468, Zip Code: 29040-090, Vitória, Espírito Santo, Brazil
| | - Francielli Cibin
- Graduate Program in Biochemistry, Universidade Federal do Pampa, BR 472 - Km 592 - PO box 118, Zip Code: 97500-970, Uruguaiana, Rio Grande do Sul, Brazil
| | - Simone Pinton
- Graduate Program in Biochemistry, Universidade Federal do Pampa, BR 472 - Km 592 - PO box 118, Zip Code: 97500-970, Uruguaiana, Rio Grande do Sul, Brazil
| | - Fernando Barbosa Junior
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, Universidade de São Paulo, Av. do Café s/n, 14049-903, Ribeirão Preto, São Paulo, Brazil
| | - Franck Maciel Peçanha
- Graduate Program in Biochemistry, Universidade Federal do Pampa, BR 472 - Km 592 - PO box 118, Zip Code: 97500-970, Uruguaiana, Rio Grande do Sul, Brazil
| | - Dalton Valentim Vassallo
- Departments of Physiological Sciences, Universidade Federal do Espírito Santo and School of Medicine of Santa Casa de Misericórdia (EMESCAM), Av. Marechal Campos 1468, Zip Code: 29040-090, Vitória, Espírito Santo, Brazil
| | - Marta Miguel
- Bioactivity and Food Analysis Laboratory, Instituto de Investigación en Ciencias de la Alimentación, Nicolás Cabrera, 9, Campus Universitario de Cantoblanco, Madrid, Spain
| | - Giulia Alessandra Wiggers
- Graduate Program in Biochemistry, Universidade Federal do Pampa, BR 472 - Km 592 - PO box 118, Zip Code: 97500-970, Uruguaiana, Rio Grande do Sul, Brazil.
| |
Collapse
|
26
|
Impact of the mucoadhesive lyophilized wafer loaded with novel carvedilol nano-spanlastics on biochemical markers in the heart of spontaneously hypertensive rat models. Drug Deliv Transl Res 2020; 11:1009-1036. [PMID: 32607938 DOI: 10.1007/s13346-020-00814-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The purpose of this investigation was to encapsulate carvedilol, a model beta-blocker antihypertensive into nano-spanlastics, followed by incorporation into 1% CMC wafer to afford a mucoadhesive buccal drug delivery system, targeting to sidestep the first-pass metabolism, improving the drug absorption and pharmacological effect, achieving non-invasive buccal delivery for treating hypertension. Carvedilol-loaded nano-spanlastics were rendered by ethanol injection technique, using 23 factorial design. The effect of formulation variables was investigated on nano-spanlastic characteristics. The optimal nano-spanlastic formulation (S2; containing 20% Brij 97) exhibited particle size (239.8 ± 5 nm), entrapment efficiency (98. 16 ± 1.44%), deformability index (8.74 ± 0.42 g), and the flux after 24 h (Jmax) (22.5 ± 0.25 (μg/cm2/h) with enhancement ratio 2.87 as well as excellent stability after storage. Permeation study verified the preeminence of the S2 formula. A confocal laser scanning microscope showed deep penetration of S2 through sheep buccal mucosa formula compared to rhodamine B solution. S2-based wafer showed acceptable characters (pH, swelling, drug content, residence time, and release rate). In vivo studies (pharmacodynamic study and biochemical evaluation) showed considerable improvement in blood pressure, the profile of the lipid, oxidant stress biomarkers, and cardiac markers. Histopathological studies revealed the superiority of S2 wafer in the protection of heart tissues over Carvid®. The results achieved indicate that nano-spanlastic-based wafer offers a promising improving trans-buccal carvedilol delivery system. Graphical abstract.
Collapse
|
27
|
Al-Naemi HA, Das SC. Cadmium-induced endothelial dysfunction mediated by asymmetric dimethylarginine. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:16246-16253. [PMID: 32124290 PMCID: PMC7192864 DOI: 10.1007/s11356-020-08116-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 02/14/2020] [Indexed: 04/15/2023]
Abstract
Cadmium (Cd) is a naturally occurring toxic heavy metal with no known essential biological functions. Exposure to Cd increases the risk of cardiovascular disease by disrupting vascular homeostasis at the endothelium. The aim of the study was to evaluate the effect of chronic low-dose Cd on vascular structure and function. Fifty adult male Sprague Dawley rats were grouped and assigned to one of two treatments for 14 weeks. The control group received normal water for 14 weeks while the Cd-treated group received 15 mg Cd/kg B.W. as CdCl2 in water for 10 weeks. A subset of the Cd-treated group received 15 mg Cd/kg B.W. as CdCl2 in water for 10 weeks followed by 4 weeks of normal water. Results show an overall decline in vascular function and structure. Withdrawal of Cd treatment showed a considerable restoration of vascular structure and vasorelaxation function. Additionally, asymmetric dimethylarginine (ADMA) bioavailability was found to be lowered over time. Interestingly, the expression of eNOS in the Cd-treated group was found to be significantly elevated during the exposure by more than 3-fold in comparison with that in the control group. This protein expression was similar to the control group after the withdrawal of Cd treatment. Taken together, the results suggest that ADMA, an eNOS inhibitor, may play a role in altering endothelial function in the presence of cadmium. In conclusion, the findings indicate that even at low doses, Cd leads to endothelial dysfunction mediated by ADMA.
Collapse
Affiliation(s)
- Hamda A Al-Naemi
- Laboratory Animal Research Center, Qatar University, P.O. Box 2713, Doha, Qatar.
- Department of Biological and Environmental Sciences, College of Arts & Sciences, Qatar University, Doha, Qatar.
| | - Sandra Concepcion Das
- Laboratory Animal Research Center, Qatar University, P.O. Box 2713, Doha, Qatar
- Department of Biological and Environmental Sciences, College of Arts & Sciences, Qatar University, Doha, Qatar
| |
Collapse
|
28
|
Castiello F, Olmedo P, Gil F, Molina M, Mundo A, Romero RR, Ruíz C, Gómez-Vida J, Vela-Soria F, Freire C. Association of urinary metal concentrations with blood pressure and serum hormones in Spanish male adolescents. ENVIRONMENTAL RESEARCH 2020; 182:108958. [PMID: 31835118 DOI: 10.1016/j.envres.2019.108958] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 05/18/2023]
Abstract
OBJECTIVE To examine the association of urinary concentrations of arsenic (As), cadmium (Cd), mercury (Hg), nickel (Ni), lead (Pb), manganese (Mn), and chromium (Cr) with blood pressure (BP) and serum hormone levels in male adolescents. METHODS Participants were selected from the INMA (Environment and Childhood)-Granada cohort at their follow-up visit when aged 15-17 years. Metal concentrations were measured in urine samples using inductively coupled plasma mass spectrometry. Outcomes were BP measurements (systolic, diastolic, and pulse pressure) recorded during the visit and concurrent serum levels of thyroid hormones, sex hormones, and adrenal hormones. Associations were assessed by regression analysis in a sub-sample of 133 boys with available data on urinary metals, outcomes, and relevant covariates. RESULTS Models simultaneously adjusted for all metals and other potential confounders showed that urinary As and Cd were both associated with slight elevations in systolic BP (0.70 mmHg, 95%CI = 0.11; 1.29 and 1.47, 95%CI = 0.30; 2.63, respectively, per each 50% increase in metal concentrations), and urinary As was also associated with an increased risk of elevated systolic BP (≥120 mmHg) (OR = 1.28, 95%CI = 1.04; 1.56). The presence of detectable levels of 4 and 5 versus 2-3 non-essential metals (As, Cd, Hg, Ni, Pb) per boy was associated with elevations in systolic BP of 5.84 mmHg (95%CI = 0.40; 11.3) and 7.01 mmHg (95%CI = 1.01; 13.0), respectively (p-trend = 0.05). Significant associations were also found between Hg and increased testosterone and luteinizing hormone (LH) and decreased thyroid-stimulating hormone (TSH); between the combination of As and Hg and increased LH and insulin-like growth factor 1; between Cr and decreased TSH; and between Cd and increased adrenocorticotropic hormone. CONCLUSIONS These findings suggest that combined exposure to toxic metals, especially As and Cd, may contribute to BP elevation in male adolescents and that exposure to Hg, As, Cd, and Cr may affect their hormone levels.
Collapse
Affiliation(s)
- Francesca Castiello
- Unidad de Gestión Clínica (UGC) de Pediatría, Hospital Universitario San Cecilio, 18016 Granada, Spain.
| | - Pablo Olmedo
- Department of Legal Medicine, Toxicology, and Physical Anthropology, School of Medicine, University of Granada, 18071 Granada, Spain.
| | - Fernando Gil
- Department of Legal Medicine, Toxicology, and Physical Anthropology, School of Medicine, University of Granada, 18071 Granada, Spain.
| | - Marina Molina
- Unidad de Gestión Clínica (UGC) de Pediatría, Hospital Universitario San Cecilio, 18016 Granada, Spain.
| | - Antonio Mundo
- Unidad de Gestión Clínica (UGC) de Pediatría, Hospital Universitario San Cecilio, 18016 Granada, Spain.
| | - Raquel R Romero
- Unidad de Gestión Clínica (UGC) de Pediatría, Hospital Universitario San Cecilio, 18016 Granada, Spain.
| | - Carlos Ruíz
- Unidad de Gestión Clínica (UGC) de Pediatría, Hospital Universitario San Cecilio, 18016 Granada, Spain.
| | - José Gómez-Vida
- Unidad de Gestión Clínica (UGC) de Pediatría, Hospital Universitario San Cecilio, 18016 Granada, Spain.
| | - Fernando Vela-Soria
- Instituto de Investigación Biosanitaria de Granada (ibs.Granada), Hospitales Universitarios de Granada, 18012 Granada, Spain.
| | - Carmen Freire
- Instituto de Investigación Biosanitaria de Granada (ibs.Granada), Hospitales Universitarios de Granada, 18012 Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain.
| |
Collapse
|
29
|
Chen SM, Phuagkhaopong S, Fang C, Wu JCC, Huang YH, Vivithanaporn P, Lin HH, Tsai CY. Dose-Dependent Acute Circulatory Fates Elicited by Cadmium Are Mediated by Differential Engagements of Cardiovascular Regulatory Mechanisms in Brain. Front Physiol 2019; 10:772. [PMID: 31275174 PMCID: PMC6591476 DOI: 10.3389/fphys.2019.00772] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/03/2019] [Indexed: 12/31/2022] Open
Abstract
Whereas cadmium is a toxicant that has been shown to cause cardiovascular toxicity and mortality in mammals, few mechanistic studies address its acute circulatory actions. The present study assessed the hypothesis that cadmium effects dose-dependent acute circulatory fates via differential participation of the cardiovascular regulatory mechanisms in brain. In Sprague-Dawley rats maintained under propofol anesthesia, cadmium acetate (8 mg/kg, iv) induced significantly high mortality rate within 10 min, concomitant with progressive decline toward zero level of mean arterial pressure (MAP), heart rate (HR), baroreflex-mediated sympathetic vasomotor tone, and carotid blood flow (CBF). There were concurrent tissue anoxia, cessation of microvascular perfusion, reduction of mitochondrial membrane potential and ATP production, and necrotic cell death in the rostral ventrolateral medulla (RVLM), the brain stem site that maintains blood pressure and sympathetic vasomotor tone. On the other hand, a lower-dose of cadmium (4 mg/kg, iv) resulted in only a transient decrease in MAP that was mirrored by an increase in CBF and baroreflex-mediated sympathetic vasomotor tone, minor changes in HR, along with transient hypoxia, and apoptotic cell death in RVLM. We conclude that cadmium elicits dose-dependent acute cardiovascular effects with differential underlying biochemical and neural mechanisms. At a higher-dose, cadmium induces high mortality by effecting acute cardiovascular collapse via anoxia, diminished tissue perfusion, mitochondrial dysfunction and bioenergetics failure that echo failure of cerebral autoregulation, leading to necrosis, and loss of functionality in RVLM. On the other hand, a lower-dose of cadmium elicits low mortality, transient decrease in arterial pressure, and hypoxia and apoptosis in RVLM that reflect sustained cerebral autoregulation.
Collapse
Affiliation(s)
- Shu-Mi Chen
- Master and Ph.D. Program in Pharmacology and Toxicology, School of Medicine, Tzu Chi University, Hualien City, Taiwan.,Department of Pharmacy, Lotung Poh-Ai Hospital, Yilan City, Taiwan.,Kaohsiung Chang Gung Memorial Hospital, Institute for Translational Research in Biomedicine, Kaohsiung, Taiwan
| | | | - Chi Fang
- Kaohsiung Chang Gung Memorial Hospital, Institute for Translational Research in Biomedicine, Kaohsiung, Taiwan
| | - Jacqueline C C Wu
- Kaohsiung Chang Gung Memorial Hospital, Institute for Translational Research in Biomedicine, Kaohsiung, Taiwan
| | - Ya-Hui Huang
- Kaohsiung Chang Gung Memorial Hospital, Institute for Translational Research in Biomedicine, Kaohsiung, Taiwan
| | - Pornpun Vivithanaporn
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Hsun-Hsun Lin
- Department of Physiology School of Medicine, Tzu Chi University, Hualien City, Taiwan
| | - Ching-Yi Tsai
- Kaohsiung Chang Gung Memorial Hospital, Institute for Translational Research in Biomedicine, Kaohsiung, Taiwan
| |
Collapse
|
30
|
Zhang RK, Wang P, Lu YC, Lang L, Wang L, Lee SC. Cadmium induces cell centrosome amplification via reactive oxygen species as well as endoplasmic reticulum stress pathway. J Cell Physiol 2019; 234:18230-18248. [DOI: 10.1002/jcp.28455] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 02/06/2019] [Accepted: 02/14/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Rui Kai Zhang
- Department of Biology, School of Life Sciences Shanxi University Taiyuan Shanxi People's Republic of China
| | - Pu Wang
- Department of Biology, School of Life Sciences Shanxi University Taiyuan Shanxi People's Republic of China
| | - Yu Cheng Lu
- Department of Biology, School of Life Sciences Shanxi University Taiyuan Shanxi People's Republic of China
| | - Lang Lang
- Department of Biology, School of Life Sciences Shanxi University Taiyuan Shanxi People's Republic of China
| | - Lan Wang
- Department of Biology, School of Life Sciences Shanxi University Taiyuan Shanxi People's Republic of China
| | - Shao Chin Lee
- Department of Biology, School of Life Sciences Shanxi University Taiyuan Shanxi People's Republic of China
- Department of Biology, School of Life Sciences Jiangsu Normal University Xuzhou Jiangsu People's Republic of China
| |
Collapse
|
31
|
Oliveira TF, Batista PR, Leal MA, Campagnaro BP, Nogueira BV, Vassallo DV, Meyrelles SS, Padilha AS. Chronic Cadmium Exposure Accelerates the Development of Atherosclerosis and Induces Vascular Dysfunction in the Aorta of ApoE -/- Mice. Biol Trace Elem Res 2019; 187:163-171. [PMID: 29707746 DOI: 10.1007/s12011-018-1359-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/18/2018] [Indexed: 01/04/2023]
Abstract
Cadmium exposure is related to cardiovascular diseases, including hypertension, atherosclerosis, increased oxidative stress, endothelial dysfunction, and specific biochemical changes induced by this metal. Thus, we aimed to investigate whether cadmium exposure induces endothelial dysfunction, accelerates atherosclerotic plaque formation in the aorta, and enhances oxidative stress in apolipoprotein E knockout (ApoE-/-) mice. Experiments were performed in 14-week-old male wild-type and ApoE-/- mice. ApoE-/- mice received cadmium (CdCl2 100 mg/L in drinking water for 28 days) or vehicle (distilled water). After treatment, vascular reactivity to phenylephrine, acetylcholine, and sodium nitroprusside was analyzed using isolated aorta. Bone marrow cells were isolated to assess the production of nitric oxide and reactive oxygen and nitrogen species. ApoE-/- cadmium-treated mice had higher cholesterol levels than non-exposed mice. Cadmium exposure decreased the vasodilatation response to acetylcholine in aortic ring of ApoE-/- mice, though no changes in phenylephrine or sodium nitroprusside responses were observed. L-NAME reduced vasodilator responses to acetylcholine; this effect was lower in ApoE-/- cadmium-treated mice, suggesting reduction in nitric oxide (NO) bioavailability. Moreover, in bone marrow cells, cadmium decreased cytoplasmic levels of NO and increased superoxide anions, hydrogen peroxide, and peroxynitrite in ApoE-/- mice. Morphological analysis showed that cadmium exposure increased plaque deposition in the aorta by approximately 3-fold. Our results suggest that cadmium exposure induces endothelial dysfunction in ApoE-/- mice. Moreover, cadmium increased total cholesterol levels, which may promote the early development of atherosclerosis in the aorta of ApoE-/- mice. Our findings support the hypothesis that cadmium exposure might increase the risk of atherosclerosis.
Collapse
Affiliation(s)
- T F Oliveira
- Physiological Sciences Graduate Program, Health Sciences Center, Universidade Federal do Espírito Santo CCS/UFES, Av. Marechal Campos, 1468, Maruípe, Vitoria, ES, 29040-091, Brazil
| | - P R Batista
- Physiological Sciences Graduate Program, Health Sciences Center, Universidade Federal do Espírito Santo CCS/UFES, Av. Marechal Campos, 1468, Maruípe, Vitoria, ES, 29040-091, Brazil
- Escola Superior de Ciências da Santa Casa de Misericórdia de Vitoria (EMESCAM), Vitória, ES, Brazil
| | - M A Leal
- Physiological Sciences Graduate Program, Health Sciences Center, Universidade Federal do Espírito Santo CCS/UFES, Av. Marechal Campos, 1468, Maruípe, Vitoria, ES, 29040-091, Brazil
| | - B P Campagnaro
- Pharmaceutical Sciences Graduate Program, Universidade de Vila Velha (UVV), Vila Velha, ES, Brazil
| | - B V Nogueira
- Department of Morphology, Health Sciences Center, Universidade Federal do Espírito Santo, Vitoria, ES, Brazil
| | - D V Vassallo
- Physiological Sciences Graduate Program, Health Sciences Center, Universidade Federal do Espírito Santo CCS/UFES, Av. Marechal Campos, 1468, Maruípe, Vitoria, ES, 29040-091, Brazil
- Escola Superior de Ciências da Santa Casa de Misericórdia de Vitoria (EMESCAM), Vitória, ES, Brazil
| | - S S Meyrelles
- Physiological Sciences Graduate Program, Health Sciences Center, Universidade Federal do Espírito Santo CCS/UFES, Av. Marechal Campos, 1468, Maruípe, Vitoria, ES, 29040-091, Brazil
| | - Alessandra Simão Padilha
- Physiological Sciences Graduate Program, Health Sciences Center, Universidade Federal do Espírito Santo CCS/UFES, Av. Marechal Campos, 1468, Maruípe, Vitoria, ES, 29040-091, Brazil.
| |
Collapse
|
32
|
Wang Q, Wei S. Cadmium affects blood pressure and negatively interacts with obesity: Findings from NHANES 1999-2014. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 643:270-276. [PMID: 29936168 DOI: 10.1016/j.scitotenv.2018.06.105] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/05/2018] [Accepted: 06/09/2018] [Indexed: 06/08/2023]
Abstract
Inconsistencies are noted regarding the association between cadmium exposure and blood pressure/hypertension and the interaction between cadmium and body mass index (BMI). This study aims to clarify these inconsistencies in a large sample (n = 32,791) of adults age ≥20 years from eight cycles of the US National Health Examination and Nutrition Survey (NHANES, 1999-2014). The cadmium levels in blood (BCd) and urine (UCd) were used as exposure biomarker. Multiple-linear/logistic regression models were built and stratified by sex, ethnicity and BMI category. The interaction between BCd and BMI was assessed on additive and multiplicative scales. A twofold increase in BCd was associated with 0.54 mm Hg (95% CI: 0.49, 0.58) and 0.05 mm Hg (95% CI: 0.04, 0.06) increases in the systolic blood pressure (SBP) and diastolic blood pressure (DBP), respectively, in black women. The SBP and DBP increased by 0.92 mm Hg (95% CI: 0.73, 1.11) and 0.85 mm Hg (95% CI: 0.65, 1.05), respectively, in Mexican-Am women. Significant associations were found between BCd and hypertension in them (systolic risk per twofold BCd, OR = 1.31; 95% CI: 1.07, 1.61; and diastolic risk per twofold BCd, OR = 1.55; 95% CI: 1.17, 2.05). UCd was significantly associated with hypertension in all individuals (OR = 1.14 per twofold; 95% CI: 1.07, 1.21). The associations between cadmium exposure and blood pressure/hypertension showed some discrepancies across BMI categories. A negative interaction was observed between BCd and obesity with regard to their effects on systolic hypertension (RERI = -0.30; 95% CI: -0.56, -0.03; ratio of ORs = 0.55; 95% CI: 0.35, 0.89). Our findings provided evidence for the effect of cadmium on blood pressure and the prevalence of hypertension in American adults. The associations showed discrepancies by sex and ethnicity. The negative interaction between cadmium exposure and obesity influenced systolic hypertension risk.
Collapse
Affiliation(s)
- Qi Wang
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Sheng Wei
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.
| |
Collapse
|
33
|
Liu H, Xia W, Xu S, Zhang B, lu B, Huang Z, Zhang H, Jiang Y, Liu W, Peng Y, Sun X, Li Y. Cadmium body burden and pregnancy-induced hypertension. Int J Hyg Environ Health 2018; 221:246-251. [DOI: 10.1016/j.ijheh.2017.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 11/13/2017] [Accepted: 11/13/2017] [Indexed: 12/22/2022]
|
34
|
da Cunha Martins A, Carneiro MFH, Grotto D, Adeyemi JA, Barbosa F. Arsenic, cadmium, and mercury-induced hypertension: mechanisms and epidemiological findings. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2018; 21:61-82. [PMID: 29446707 DOI: 10.1080/10937404.2018.1432025] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Arsenic (As), cadmium (Cd), and mercury (Hg) are toxic elements widely distributed in the environment. Exposure to these elements was attributed to produce several acute and chronic illnesses including hypertension. The aim of this review is to provide a summary of the most frequently proposed mechanisms underlying hypertension associated with As, Cd, and Hg exposure including: oxidative stress, impaired nitric oxide (NO) signaling, modified vascular response to neurotransmitters and disturbed vascular muscle Ca2+ signaling, renal damage, and interference with the renin-angiotensin system. Due to the complexity of the vascular system, a combination rather than a singular mechanism needs to be considered. In addition, epidemiological findings showing the relationship between various biomarkers of metal exposure and hypertension are described. Given the complex etiology of hypertension, further epidemiological studies evaluating the roles of confounding factors such as age, gender, and life style are still necessary.
Collapse
Affiliation(s)
- Airton da Cunha Martins
- a Laboratório de Toxicologia e Essencialidade de Metais, Depto. de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto , Universidade de São Paulo , Ribeirão Preto-SP , Brazil
| | - Maria Fernanda Hornos Carneiro
- a Laboratório de Toxicologia e Essencialidade de Metais, Depto. de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto , Universidade de São Paulo , Ribeirão Preto-SP , Brazil
| | - Denise Grotto
- b Laboratório de Pesquisa em Toxicologia , Universidade de Sorocaba , Sorocaba-SP , Brazil
| | - Joseph A Adeyemi
- a Laboratório de Toxicologia e Essencialidade de Metais, Depto. de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto , Universidade de São Paulo , Ribeirão Preto-SP , Brazil
| | - Fernando Barbosa
- a Laboratório de Toxicologia e Essencialidade de Metais, Depto. de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto , Universidade de São Paulo , Ribeirão Preto-SP , Brazil
| |
Collapse
|
35
|
Zhong Q, Li X, Nong Q, Mao B, Pan X. Metabolic Profiling in Association with Vascular Endothelial Cell Dysfunction Following Non-Toxic Cadmium Exposure. Int J Mol Sci 2017; 18:ijms18091905. [PMID: 28872622 PMCID: PMC5618554 DOI: 10.3390/ijms18091905] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/04/2017] [Accepted: 09/04/2017] [Indexed: 01/04/2023] Open
Abstract
This study aimed to determine the metabolic profile of non-toxic cadmium (Cd)-induced dysfunctional endothelial cells using human umbilical vein endothelial cells (HUVECs). HUVECs (n = 6 per group) were treated with 0, 1, 5, or 10 μM cadmium chloride (CdCl2) for 48 h. Cell phenotypes, including nitric oxide (NO) production, the inflammatory response, and oxidative stress, were evaluated in Cd-exposed and control HUVECs. Cd-exposed and control HUVECs were analysed using gas chromatography time-of-flight/mass spectrometry. Compared to control HUVECs, Cd-exposed HUVECs were dysfunctional, exhibiting decreased NO production, a proinflammatory state, and non-significant oxidative stress. Further metabolic profiling revealed 24 significantly-altered metabolites in the dysfunctional endothelial cells. The significantly-altered metabolites were involved in the impaired tricarboxylic acid (TCA) cycle, activated pyruvate metabolism, up-regulated glucogenic amino acid metabolism, and increased pyrimidine metabolism. The current metabolic findings further suggest that the metabolic changes linked to TCA cycle dysfunction, glycosylation of the hexosamine biosynthesis pathway (HBP), and compensatory responses to genomic instability and energy deficiency may be generally associated with dysfunctional phenotypes, characterized by decreased NO production, a proinflammatory state, and non-significant oxidative stress, in endothelial cells following non-toxic Cd exposure.
Collapse
Affiliation(s)
- Qiuan Zhong
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University School of Public Health, Nanning 530021, China.
- Department of Epidemiology, Guangxi Medical University School of Public Health, Nanning 530021, China.
| | - Xiaofei Li
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University School of Public Health, Nanning 530021, China.
| | - Qingjiao Nong
- Department of Epidemiology, Guangxi Medical University School of Public Health, Nanning 530021, China.
| | - Baoyu Mao
- Department of Epidemiology, Guangxi Medical University School of Public Health, Nanning 530021, China.
| | - Xue Pan
- Department of Epidemiology, Guangxi Medical University School of Public Health, Nanning 530021, China.
| |
Collapse
|
36
|
Lee BK, Ahn J, Kim NS, Lee CB, Park J, Kim Y. Association of Blood Pressure with Exposure to Lead and Cadmium: Analysis of Data from the 2008-2013 Korean National Health and Nutrition Examination Survey. Biol Trace Elem Res 2016; 174:40-51. [PMID: 27087554 DOI: 10.1007/s12011-016-0699-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 04/06/2016] [Indexed: 12/22/2022]
Abstract
We examined the association of blood pressure with blood levels of cadmium, lead, and their combination in a representative sample of adults from South Korea (Korean National Health and Nutrition Examination Survey, 2008-2013). This cross-sectional study enrolled subjects who were at least 19 years-old, completed a health examination survey, and had blood measurements of lead and cadmium. We estimated the adjusted mean differences in diastolic and systolic blood pressure associated with doubling of blood lead and cadmium by regression of blood pressure against log2-transformed blood metals and their tertiles after covariate adjustment. Adjusted odds ratios for hypertension and prehypertension were calculated for log2-transformed blood levels of lead and cadmium and their tertiles. In the general population of Korea, blood lead level was associated with increased BP and risk of hypertension. Blood cadmium levels had a stronger association with elevated blood pressure and risk of hypertension than blood lead levels, and these associations remained significant after statistical adjustment for blood lead. The combination of blood lead and cadmium was more strongly associated with elevated blood pressure than exposure to each individual metal. In females, there was a stronger relationship between blood pressure and blood levels of these metals by analyzing interaction model. After adjustment for confounding factors, there were significant associations of blood pressure with the level of blood lead, cadmium, and their combination in adults from South Korea.
Collapse
Affiliation(s)
- Byung-Kook Lee
- Department of Preventive Medicine, Soonchunhyang University, Asan, South Korea
- Cheonan Medical Center, Cheonan, South Korea
| | - Jaeouk Ahn
- Department of Medical IT Engineering, Soonchunhyang University, Asan, South Korea
| | - Nam-Soo Kim
- Institute of Occupational and Environmental Medicine, Soonchunhyang University, Asan, South Korea
| | - Chan Boo Lee
- Department of Occupational and Environmental Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, 290-3 Cheonha-Dong, Dong-Gu, Ulsan, 682-060, South Korea
| | - Jungsun Park
- Department of Occupational Health, Catholic University of Daegu, Daegu, South Korea
| | - Yangho Kim
- Department of Occupational and Environmental Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, 290-3 Cheonha-Dong, Dong-Gu, Ulsan, 682-060, South Korea.
| |
Collapse
|
37
|
Kukongviriyapan U, Apaijit K, Kukongviriyapan V. Oxidative Stress and Cardiovascular Dysfunction Associated with Cadmium Exposure: Beneficial Effects of Curcumin and Tetrahydrocurcumin. TOHOKU J EXP MED 2016; 239:25-38. [PMID: 27151191 DOI: 10.1620/tjem.239.25] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cadmium (Cd) is a non-essential heavy metal with high toxicity potential. Humans are exposed to Cd present in diet, polluted air, and cigarette smoke. Cd exposure has been associated with increased risk of chronic diseases, including hypertension, atherosclerosis, diabetes, and nephropathy, all of which could be attributable to dysfunctional endothelial and smooth muscle cells. Cd toxicity is correlated with increased reactive oxygen formation and depletion of antioxidants, resulting in an oxidative stress. Chelation of Cd has proved useful in the removal of the Cd burden. However, several chelating agents cause side effects in clinical usage. Recent studies have shown that the antioxidant compounds curcumin and tetrahydrocurcumin can alleviate vascular dysfunction and high blood pressure caused by Cd toxicity. In chronic Cd exposure, these antioxidants protect vascular endothelium by increasing nitric oxide (NO•) bioavailability and improving vascular function. Antioxidant activity against Cd intoxication results directly and/or indirectly through free radical scavenging, metal chelation, enhanced expression of the antioxidant defense system, regulation of inflammatory enzymes, increase in NO• bioavailability, and reduction of gastrointestinal absorption and tissue Cd accumulation. This review summarizes current knowledge of Cd-induced oxidative stress and cardiovascular dysfunction and a possible protective effect conferred by the antioxidants curcumin and tetrahydrocurcumin.
Collapse
|
38
|
Nontarach A, Srihirun S, Chaturapanich G, Unchern S, Swaddiwudhipong W, Pattanapanyasat K, Chamchoi A, Vivithanaporn P, Visoottiviseth P, Sibmooh N. Increased platelet activation in subjects chronically exposed to cadmium: A pilot study. Platelets 2016; 27:136-42. [PMID: 26023812 DOI: 10.3109/09537104.2015.1048215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Cadmium exposure has been reported to be associated with the risk of vascular disorders. Here, we investigated platelet activity in subjects with chronic cadmium exposure. Eighteen and 15 women participated in this study as chronically cadmium-exposed and control non-exposed subjects, respectively. Plasma P-selectin and CD40 ligand (CD40L), soluble markers of platelet activation, were measured. Platelet aggregation in whole blood, P-selectin and activated glycoprotein (aGP) IIb/IIIa expression on platelets and platelet-leukocyte aggregates were determined. The levels of plasma P-selectin and CD40L increased in subjects with chronic cadmium exposure compared with control subjects. Platelet aggregation induced by adenosine diphosphate (ADP) was higher in cadmium-exposed subjects than control subjects. Cadmium-exposed subjects had higher baseline and ADP-induced aGPIIb/IIIa expression on platelets than control subjects. Platelet-neutrophil aggregates also increased in cadmium-exposed subjects. Blood cadmium correlated with ADP-induced aggregation, aGPIIb/IIIa expression and platelet-neutrophil aggregates, while urinary cadmium correlated with soluble P-selectin. However, cadmium only at high concentration (15 µM) could potentiate ADP-induced platelet activation in vitro. In conclusion, our pilot data show that cadmium-exposed subjects have increased baseline platelet activation and reactivity.
Collapse
Affiliation(s)
- Aranya Nontarach
- a Toxicology Program, Faculty of Science , Mahidol University , Bangkok , Thailand
- b Faculty of Liberal Art and Science , Kalasin Rajabhat University , Namon District , Kalasin Province , Thailand
| | - Sirada Srihirun
- c Department of Pharmacology, Faculty of Dentistry , Mahidol University , Bangkok , Thailand
| | | | - Supeenun Unchern
- e Department of Pharmacology, Faculty of Science , Mahidol University , Bangkok , Thailand
| | - Witaya Swaddiwudhipong
- f Department of Community and Social Medicine , Mae Sot General Hospital , Tak Province , Thailand
| | - Kovit Pattanapanyasat
- g Center of Excellence for Flow Cytometry, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University , Bangkok , Thailand
| | - Attaphon Chamchoi
- h Molecular Medicine Graduate Program, Multidisciplinary Unit, Faculty of Science, Mahidol University , Bangkok , Thailand , and
| | - Pornpun Vivithanaporn
- e Department of Pharmacology, Faculty of Science , Mahidol University , Bangkok , Thailand
| | | | - Nathawut Sibmooh
- e Department of Pharmacology, Faculty of Science , Mahidol University , Bangkok , Thailand
| |
Collapse
|
39
|
Kováčová V, Ďúranová H, Babosová R, Omelka R, Krajčovičová V, Stawarz R, Capcarová M, Martiniaková M. The effect of patulin on femoral bone structure in male rabbits. POTRAVINARSTVO 2015. [DOI: 10.5219/448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A lot of kinds of crops are susceptible to fungal attack, leading to considerable financial losses and damage the health of humans and animals. Patulin, a toxic fungal metabolite, can be found mainly in apple and apple products, with much less frequent contamination in other food products. Because of its high incidence and harmful health effects, patulin belongs to a class of mycotoxins, which are strictly monitored. However, its effect on bone structure is still unknown. This study was designed to investigate the impact of patulin on femoral bone structure in adult male rabbits. Four month-old male rabbits were randomly divided into two groups of three animals each. Rabbits from the experimental group (group A, n=3) were intramuscularly administered with patulin at dose 10 μg.kg-1 body weight (b.w.) twice a week for 4 weeks. The second group without patulin administration served as a control (group B, n=3). At the end of the experiment, body weight, femoral weight and length, cortical bone thickness and histological structure of femoral bones from all rabbits were determined. The results did not show any significant differences in body weight, femoral weight and length between experimental and control groups of rabbits. On the other hand, intramuscular application of patulin induced a significant increase in cortical bone thickness (p <0.05) and considerable changes in qualitative histological characteristics of compact bone in adult male rabbits. In patulin-intoxicated males, the primary vascular longitudinal bone tissue was absent near endosteal border. On the other hand, this tissue occurred near periosteum and also in the middle part of the femoral bone in these rabbits. The values for the primary osteons' vascular canals were significantly lower (p <0.05) in males exposed to patulin as compared to the control group. Based on these findings we can conclude that intramuscular patulin administration demonstrably influences cortical bone thickness and histological structure of femoral bone in adult male rabbits.
Collapse
|
40
|
Lukkhananan P, Thawonrachat N, Srihirun S, Swaddiwudhipong W, Chaturapanich G, Vivithanaporn P, Unchern S, Visoottiviseth P, Sibmooh N. Endothelial dysfunction in subjects with chronic cadmium exposure. J Toxicol Sci 2015; 40:605-13. [DOI: 10.2131/jts.40.605] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
| | | | - Sirada Srihirun
- Department of Pharmacology, Faculty of Dentistry, Mahidol University, Thailand
| | | | | | | | - Supeenun Unchern
- Department of Pharmacology, Faculty of Science, Mahidol University, Thailand
| | | | - Nathawut Sibmooh
- Department of Pharmacology, Faculty of Science, Mahidol University, Thailand
| |
Collapse
|
41
|
Sangartit W, Kukongviriyapan U, Donpunha W, Pakdeechote P, Kukongviriyapan V, Surawattanawan P, Greenwald SE. Tetrahydrocurcumin protects against cadmium-induced hypertension, raised arterial stiffness and vascular remodeling in mice. PLoS One 2014; 9:e114908. [PMID: 25502771 PMCID: PMC4263715 DOI: 10.1371/journal.pone.0114908] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 11/14/2014] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Cadmium (Cd) is a nonessential heavy metal, causing oxidative damage to various tissues and associated with hypertension. Tetrahydrocurcumin (THU), a major metabolite of curcumin, has been demonstrated to be an antioxidant, anti-diabetic, anti-hypertensive and anti-inflammatory agent. In this study, we investigated the protective effect of THU against Cd-induced hypertension, raised arterial stiffness and vascular remodeling in mice. METHODS Male ICR mice received CdCl2 (100 mg/l) via drinking water for 8 weeks. THU was administered intragastrically at dose of 50 or 100 mg/kg/day concurrently with Cd treatment. RESULTS Administration of CdCl2 significantly increased arterial blood pressure, blunted vascular responses to vasoactive agents, increased aortic stiffness, and induced hypertrophic aortic wall remodeling by increasing number of smooth muscle cells and collagen deposition, decreasing elastin, and increasing matrix metalloproteinase (MMP)-2 and MMP-9 levels in the aortic medial wall. Supplementation with THU significantly decreased blood pressure, improved vascular responsiveness, and reversed the structural and mechanical alterations of the aortas, including collagen and elastin deposition. The reduction on the adverse response of Cd treatment was associated with upregulated eNOS and downregulated iNOS protein expressions, increased nitrate/nitrite level, alleviated oxidative stress and enhanced antioxidant glutathione. Moreover, THU also reduced the accumulation of Cd in the blood and tissues. CONCLUSIONS Our results suggest that THU ameliorates cadmium-induced hypertension, vascular dysfunction, and arterial stiffness in mice through enhancing NO bioavailability, attenuating oxidative stress, improving vascular remodeling and decreasing Cd accumulation in other tissues. THU has a beneficial effect in moderating the vascular alterations associated with Cd exposure.
Collapse
Affiliation(s)
- Weerapon Sangartit
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Upa Kukongviriyapan
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Wanida Donpunha
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Poungrat Pakdeechote
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Veerapol Kukongviriyapan
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Praphassorn Surawattanawan
- Research and Development Institute, The Government Pharmaceutical Organization, Rama VI Road, Ratchathewi, Bangkok 10400, Thailand
| | - Stephen E. Greenwald
- Pathology Group, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 1BB, United Kingdom
| |
Collapse
|
42
|
Acute and subchronic co-administrations to cadmium, diazinon and selenium induce apparent osteoporotic symptoms in adult male rats. Biologia (Bratisl) 2014. [DOI: 10.2478/s11756-014-0436-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
43
|
Nwokocha CR, Baker A, Douglas D, McCalla G, Nwokocha M, Brown PD. Apocynin ameliorates cadmium-induced hypertension through elevation of endothelium nitric oxide synthase. Cardiovasc Toxicol 2014; 13:357-63. [PMID: 23703608 DOI: 10.1007/s12012-013-9216-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Apocynin is reported to have antioxidant and NADPH oxidase inhibitor activities. Cadmium toxicity is reported to causes oxidative damage, resulting in vascular dysfunction, reduced bioavailability of nitric oxide (NO) and hypertension. The study aimed to investigate the protective effects of apocynin in cadmium-induced hypertension. Thirty-six (36) adult male Sprague-Dawley rats were randomly divided into 6 groups. Group 1 served as control, Groups 2 and 3 received 50 and 100 mg/Kg (b.w) apocynin, respectively, Group 4 received 100 ppm CdCl2 in their drinking water, while Group 5 and 6 received 100 ppm CdCl2 in their drinking and 50 and 100 mg/Kg (b.w) apocynin, respectively, for 8 weeks. Blood pressure readings were taken weekly using the tail-cuff method. cGMP, endothelial nitric oxide synthase (eNOS), NO and hematological parameters were analyzed at the end of 8 weeks. Apocynin, although a poor antioxidant, caused a significant reduction (p < 0.05) in systolic and mean arterial pressures in the cadmium-induced elevations in blood pressure and amelioration of altered hematological parameters. However, while cadmium exposures did not alter the cGMP, eNOS and nitrate concentrations in serum, apocynin reduced the cGMP and nitrite values while significantly elevating (p < 0.05) the eNOS concentrations and also improved the cadmium-induced anemia. Apocynin was effective in reducing cadmium-induced elevated blood pressures through elevation of eNOS. Inhibition of NADPH oxidase activity may be a useful strategy for prevention and treatment of cadmium-induced hypertension.
Collapse
Affiliation(s)
- Chukwuemeka R Nwokocha
- Physiology Section, Department of Basic Medical Sciences, The University of the West Indies, Mona Campus, Kingston 7, Jamaica,
| | | | | | | | | | | |
Collapse
|
44
|
Barve KH, Chodankar R. Does copper enhance the antihypertensive effect of Elaeocarpus ganitrus in experimentally induced hypertensive rats? J Ayurveda Integr Med 2014; 5:76-9. [PMID: 24948856 PMCID: PMC4061593 DOI: 10.4103/0975-9476.133783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 02/04/2014] [Accepted: 02/10/2014] [Indexed: 11/04/2022] Open
Abstract
Ayurveda, one of the traditional systems of medicine of India, reports that the seeds of Elaeocarpus ganitrus Linn. (Tilaceae) can be used for the treatment of hypertension. The main aim is to evaluate the antihypertensive effect of Elaeocarpus ganitrus (Rudraksha) seeds. Powdered seeds were extracted by maceration, overnight, using water, in copper (E1) and glass vessel (E2) and analyzed for antihypertensive activity in cadmium chloride (1 mg/kg intraperitoneally, for a period of 15 days) induced hypertensive male Wistar rats at three dose levels. E1 was administered at the dose of 5, 10, and 15 mg/kg and E2 at dose of 10, 20, and 30 mg/kg. All the data were analyzed using one way analysis of variance (ANOVA) followed by Dunnett's multiple comparison test. E1 and E2 did not show any toxicity at the dose of 5 g/kg in rats. It was found that 15 mg/kg of E1 and 30 mg/kg of E2 decreases the blood pressure by 30.20 mmHg and 28.96 mmHg, respectively, in hypertensive rats. Thus, it can be said that 15 mg/kg of E1 produced similar decrease in blood pressure as was observed with 30 mg/kg of E2. Copper ions in E1 might be additively affecting the reduction in blood pressure with the usage of Elaeocarpus ganitrus extracts.
Collapse
Affiliation(s)
- Kalyani H Barve
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, Department of Pharmacognosy, Shri VileParle Kelavani Manlal's Narsee Monjee Institute of Management Studies, Mumbai, Maharashtra, India
| | - Rahul Chodankar
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, Department of Pharmacognosy, Shri VileParle Kelavani Manlal's Narsee Monjee Institute of Management Studies, Mumbai, Maharashtra, India
| |
Collapse
|
45
|
Kukongviriyapan U, Pannangpetch P, Kukongviriyapan V, Donpunha W, Sompamit K, Surawattanawan P. Curcumin protects against cadmium-induced vascular dysfunction, hypertension and tissue cadmium accumulation in mice. Nutrients 2014; 6:1194-1208. [PMID: 24662163 PMCID: PMC3967187 DOI: 10.3390/nu6031194] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 03/05/2014] [Accepted: 03/12/2014] [Indexed: 12/16/2022] Open
Abstract
Curcumin from turmeric is commonly used worldwide as a spice and has been demonstrated to possess various biological activities. This study investigated the protective effect of curcumin on a mouse model of cadmium (Cd)-induced hypertension, vascular dysfunction and oxidative stress. Male ICR mice were exposed to Cd (100 mg/L) in drinking water for eight weeks. Curcumin (50 or 100 mg/kg) was intragastrically administered in mice every other day concurrently with Cd. Cd induced hypertension and impaired vascular responses to phenylephrine, acetylcholine and sodium nitroprusside. Curcumin reduced the toxic effects of Cd and protected vascular dysfunction by increasing vascular responsiveness and normalizing the blood pressure levels. The vascular protective effect of curcumin in Cd exposed mice is associated with up-regulation of endothelial nitric oxide synthase (eNOS) protein, restoration of glutathione redox ratio and alleviation of oxidative stress as indicated by decreasing superoxide production in the aortic tissues and reducing plasma malondialdehyde, plasma protein carbonyls, and urinary nitrate/nitrite levels. Curcumin also decreased Cd accumulation in the blood and various organs of Cd-intoxicated mice. These findings suggest that curcumin, due to its antioxidant and chelating properties, is a promising protective agent against hypertension and vascular dysfunction induced by Cd.
Collapse
Affiliation(s)
- Upa Kukongviriyapan
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | | | - Veerapol Kukongviriyapan
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Wanida Donpunha
- Department of Physical Therapy, Faculty of Associated Medical Science, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Kwanjit Sompamit
- Faculty of Medicine, Mahasarakham University, Mahasarakham 44000, Thailand.
| | - Praphassorn Surawattanawan
- Research and Development Institute, Government Pharmaceutical Organization, Rama 6 Road, Rajatevee, Bangkok 10400, Thailand.
| |
Collapse
|
46
|
Fouad AA, Al-Mulhim AS, Gomaa W. Protective effect of cannabidiol against cadmium hepatotoxicity in rats. J Trace Elem Med Biol 2013; 27:355-363. [PMID: 23993482 DOI: 10.1016/j.jtemb.2013.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 06/17/2013] [Accepted: 07/01/2013] [Indexed: 11/24/2022]
Abstract
The protective effect of cannabidiol, the non-psychoactive component of Cannabis sativa, against liver toxicity induced by a single dose of cadmium chloride (6.5 mgkg(-1) i.p.) was investigated in rats. Cannabidiol treatment (5 mgkg(-1)/day, i.p.) was applied for five days starting three days before cadmium administration. Cannabidiol significantly reduced serum alanine aminotransferase, and suppressed hepatic lipid peroxidation, prevented the depletion of reduced glutathione and nitric oxide, and catalase activity, and attenuated the elevation of cadmium level in the liver tissue resulted from cadmium administration. Histopathological examination showed that cadmium-induced liver tissue injury was ameliorated by cannabidiol treatment. Immunohistochemical analysis revealed that cannabidiol significantly decreased the cadmium-induced expression of tumor necrosis factor-α, cyclooxygenase-2, nuclear factor-κB, caspase-3, and caspase-9, and increased the expression of endothelial nitric oxide synthase in liver tissue. It was concluded that cannabidiol may represent a potential option to protect the liver tissue from the detrimental effects of cadmium toxicity.
Collapse
Affiliation(s)
- Amr A Fouad
- Department of Biomedical Sciences, Pharmacology Division, College of Medicine, King Faisal University, Al-Ahsa, Saudi Arabia.
| | | | | |
Collapse
|
47
|
Ige S, Akhigbe R. Common onion (Allium cepa) extract reverses cadmium-induced organ toxicity and dyslipidaemia via redox alteration in rats. PATHOPHYSIOLOGY 2013; 20:269-274. [DOI: 10.1016/j.pathophys.2013.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 04/07/2013] [Accepted: 04/14/2013] [Indexed: 02/02/2023] Open
|
48
|
Chronic cadmium treatment promotes oxidative stress and endothelial damage in isolated rat aorta. PLoS One 2013; 8:e68418. [PMID: 23874620 PMCID: PMC3709967 DOI: 10.1371/journal.pone.0068418] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 05/29/2013] [Indexed: 01/21/2023] Open
Abstract
Cadmium is a highly toxic metal that is present in phosphate fertilizers, and the incidence of cadmium poisoning in the general population has increased, mainly due to cigarette smoking. Once absorbed, cadmium accumulates in the tissues, causing harmful effects including high blood pressure, endothelial damage and oxidative stress. Oxidative stress is known to efficiently produce oxidized low-density lipoprotein and consequently atherosclerosis, mainly in the aorta. However, the mechanisms through which endothelial damage is induced by cadmium have not been elucidated. Thus, the aim of this study was to investigate the effects of this metal in the isolated aorta and the possible role of oxidative stress. Rats received 100 mg.L(-1) cadmium chloride (CdCl2) in the drinking water or distilled water alone for four weeks. The pressor effect of cadmium was followed throughout the exposure period by tail plethysmography. At the end of the fourth week, the blood cadmium content was established, and the vascular reactivity of the isolated aorta to phenylephrine, acetylcholine and sodium nitroprusside was analyzed in the context of endothelium denudation and incubation with L-NAME, apocynin, losartan, enalapril, superoxide dismutase (SOD) or catalase. We observed an increased response to phenylephrine in cadmium-treated rats. This increase was abolished by catalase and SOD incubation. Apocynin treatment reduced the phenylephrine response in both treatment groups, but its effect was greater in cadmium-treated rats, and NOX2 expression was greater in the cadmium group. These results suggested that cadmium in blood concentrations similar to those found in occupationally exposed populations is able to stimulate NOX2 expression, contributing to oxidative stress and reducing NO bioavailability, despite enhanced eNOS expression. These findings suggest that cadmium exposure promotes endothelial damage that might contribute to inflammation, vascular injury and the development of atherosclerosis.
Collapse
|
49
|
|
50
|
NTPDase and 5'-nucleotidase activities from synaptosomes and platelets of rats exposed to cadmium and treated with N-acetylcysteine. Int J Dev Neurosci 2012; 31:69-74. [PMID: 23147562 DOI: 10.1016/j.ijdevneu.2012.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 11/02/2012] [Indexed: 11/22/2022] Open
Abstract
The purpose of the present investigation was to evaluate the hydrolysis of adenine nucleotides on synaptosomes and platelets obtained from rats exposed to cadmium (Cd) and treated with N-acetylcysteine (NAC). Rats received Cd (2 mg/kg) and NAC (150 mg/kg) by gavage every other day for 30 days. Animals were divided into four groups (n = 4-6): control/saline, NAC, Cd, and Cd/NAC. The results of this study demonstrated that NTPDase and 5'-nucleotidase activities were increased in the cerebral cortex synaptosomes of Cd-poisoned rats, and NAC co-treatment reversed these activities to the control levels. In relation to hippocampus synaptosomes, no differences on the NTPDase and 5'-nucleotidase activities of Cd-poisoned rats were observed and only the 5'-nucleotidase activity was increased by the administration of NAC per se. In platelets, Cd-intoxicated rats showed a decreased NTPDase activity and no difference in the 5'-nucleotidase activity; NAC co-treatment was inefficient in counteracting this undesirable effect. Our findings reveal that adenine nucleotide hydrolysis in synaptosomes and platelets of rats were altered after Cd exposure leading to a compensatory response in the central nervous system and acting as a modulator of the platelet activity. NAC was able to modulate the purinergic system which is interesting since the regulation of these enzymes could have potential therapeutic importance. Thus, our results reinforce the importance of the study of the ecto-nucleotidases pathway in poisoning conditions and highlight the possibility of using antioxidants such as NAC as adjuvant against toxicological conditions.
Collapse
|