1
|
Shi Z, Wu Z, Wang Z, Liu T, Xie T, Liu N, Li F, Yan J. Protective effects of dietary supplementation of Bacillus Subtilis MZ18 against the reproductive toxicity of zearalenone in pregnant rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 292:117954. [PMID: 40054341 DOI: 10.1016/j.ecoenv.2025.117954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/28/2024] [Accepted: 02/22/2025] [Indexed: 03/17/2025]
Abstract
The microbial detoxification method demonstrates significant potential for detoxifying feed contaminated with mycotoxins, but the application of degrading bacteria in mammals was rarely investigated. In this study, the effects of dietary zearalenone on the growth performance, reproductive performance, reproductive organs, hormone levels of rats and the toxicity alleviation of Bacillus subtilis MZ18 were studied. From gestation day 0-20, pregnant SD rats received either a normal diet or a diet supplemented with zearalenone at a dose of 20 mg/kg⋅BW, and with or without supplementation of Bacillus subtilis MZ18 culture. In addition to the negative effects on the growth performance of dietary zearalenone, we found that the ovarian weight was increased, the number of follicles and granulosa lutein cells in the corpus luteum was reduced, and the placental tissue exhibited an enlarged interstitial space and signs of stasis. Further analysis revealed a reduction in serum levels of LH, FSH, and E2, followed by verification using quantitative RT-PCR analysis and Western blot analysis. Additionally, fetal weight and fetal brain weight were decreased, indicating that exposure to zearalenone during gestation has a negative impact on fetal development. As expected, our research revealed that dietary supplementation with MZ18 effectively mitigates reproductive toxicity caused by zearalenone exposure, including histopathological damage to reproductive organs, and disorders in reproductive hormone levels. The MZ18 treatment had no adverse effects on pregnant rats and fetal rats. The findings of this study provide a foundation for analyzing the mechanism of protective actions.
Collapse
Affiliation(s)
- Zhuo Shi
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Zhibo Wu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Zhongyu Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Tianshu Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Ting Xie
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Nengwen Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Feng Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China.
| | - Junshu Yan
- Key Laboratory for Crop and Animal Integrated Farming of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China.
| |
Collapse
|
2
|
Greco D, D’Ascanio V, Santovito E, Abbasciano M, Quintieri L, Techer C, Avantaggiato G. Unlocking the Potential of Bacillus subtilis: A Comprehensive Study on Mycotoxin Decontamination, Mechanistic Insights, and Efficacy Assessment in a Liquid Food Model. Foods 2025; 14:360. [PMID: 39941953 PMCID: PMC11817501 DOI: 10.3390/foods14030360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/17/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
Mycotoxin detoxification by microorganisms offers a specific, economical, and environmentally sustainable alternative to physical/chemical methods. Three strains of B. subtilis, isolated from poultry farm environments and recognized by EFSA as safe in animal nutrition for all animal species, consumers, and the environment, were screened for their ability to remove mycotoxins. All of them demonstrated mycotoxin-dependent removal efficacy, being very effective against ZEA and its analogues (α- and β-ZOL, α- and β-ZAL, and ZAL) achieving up to 100% removal within 24 h under aerobic, anaerobic, and restrictive growth conditions with toxins as the sole carbon source. ZEA removal remained effective across a wide range of pH values (5-8), temperatures (20-40 °C), and at high toxin concentrations (up to 10 µg/mL). Additionally, up to 87% ZEA removal was achieved after 48 h of incubation (30 °C) of the strains in a contaminated liquid food model containing 1 µg/mL of the toxin. Mechanistic studies suggest that ZEA detoxification involves metabolic processes rather than physical adsorption or entrapment into bacterial cells. Enzymatic activities within the bacterial cells or associated with their cell walls likely play a role in the metabolization of the toxin. Interestingly, it has been observed that growth conditions and culture media can influence the metabolization and/or conjugation of the toxin, which can result in the production of various metabolites. Further investigation is needed to identify these metabolites and assess their safety.
Collapse
Affiliation(s)
- Donato Greco
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Via Amendola 122/O, 70126 Bari, Italy; (D.G.); (V.D.); (E.S.); (M.A.); (L.Q.)
| | - Vito D’Ascanio
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Via Amendola 122/O, 70126 Bari, Italy; (D.G.); (V.D.); (E.S.); (M.A.); (L.Q.)
| | - Elisa Santovito
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Via Amendola 122/O, 70126 Bari, Italy; (D.G.); (V.D.); (E.S.); (M.A.); (L.Q.)
| | - Mariagrazia Abbasciano
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Via Amendola 122/O, 70126 Bari, Italy; (D.G.); (V.D.); (E.S.); (M.A.); (L.Q.)
| | - Laura Quintieri
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Via Amendola 122/O, 70126 Bari, Italy; (D.G.); (V.D.); (E.S.); (M.A.); (L.Q.)
| | - Clarisse Techer
- Mixscience, 2/4 Avenue de Ker Lann, CS17228, CEDEX, 35172 Bruz, France;
| | - Giuseppina Avantaggiato
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Via Amendola 122/O, 70126 Bari, Italy; (D.G.); (V.D.); (E.S.); (M.A.); (L.Q.)
| |
Collapse
|
3
|
Adunphatcharaphon S, Kolawole O, Sooksimuang T, Panchan W, Wasuthep W, Petdum A, Pichayawaytin G, Jintamethasawat R, Doljirapisit N, Somboonkaew A, Noppakuadrittidej P, Kaew-Amdee S, Makornwattana M, Meneely J, Elliott CT, Petchkongkaew A, Karoonuthaisiri N. A multiplex microarray lateral flow immunoassay device for simultaneous determination of five mycotoxins in rice. NPJ Sci Food 2024; 8:116. [PMID: 39741134 DOI: 10.1038/s41538-024-00342-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 11/13/2024] [Indexed: 01/02/2025] Open
Abstract
Co-occurrence of multiple mycotoxins is a growing global food safety concern due to their harmful effects on humans and animals. This study developed an eco-friendly sample preparation method and an innovative multiplex microarray-based lateral flow immunoassay, using a novel portable reader for on-site simultaneous determination of five regulated mycotoxins-aflatoxin B1, T-2 toxin, zearalenone, deoxynivalenol, and fumonisin B1 in rice. The eco-friendly and ultrafast extraction procedure utilizes a bio-based solvent. Principally, the microarray signals generated through a novel luminescent organic dye were captured to quantify mycotoxin levels in samples using a portable reader installed with a user-friendly interface. The assay demonstrates accurate detection and quantification of these mycotoxins, with recoveries ranging from 77% to 127%. Detection limits ranged from 0.56 to 1.89 μg/kg, which were well below their regulatory limits, with a relative standard deviation below 25%. This analytical system provides an on-site method for detecting multiple mycotoxins in rice.
Collapse
Affiliation(s)
- Saowalak Adunphatcharaphon
- International Joint Research Center on Food Security (IJC-FOODSEC), Khlong Luang, Pathum Thani, 12120, Thailand
- School of Food Science and Technology, Faculty of Science and Technology, Thammasat University, Khong Luang, Pathum Thani, 12120, Thailand
| | - Oluwatobi Kolawole
- International Joint Research Center on Food Security (IJC-FOODSEC), Khlong Luang, Pathum Thani, 12120, Thailand
- Institute for Global Food Security, Queen's University Belfast, Belfast, UK
| | - Thanasat Sooksimuang
- International Joint Research Center on Food Security (IJC-FOODSEC), Khlong Luang, Pathum Thani, 12120, Thailand
- National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency (NSTDA), Khong Luang, Pathum Thani, 12120, Thailand
| | - Waraporn Panchan
- International Joint Research Center on Food Security (IJC-FOODSEC), Khlong Luang, Pathum Thani, 12120, Thailand
- National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency (NSTDA), Khong Luang, Pathum Thani, 12120, Thailand
| | - Wannee Wasuthep
- International Joint Research Center on Food Security (IJC-FOODSEC), Khlong Luang, Pathum Thani, 12120, Thailand
- National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency (NSTDA), Khong Luang, Pathum Thani, 12120, Thailand
| | - Anuwut Petdum
- International Joint Research Center on Food Security (IJC-FOODSEC), Khlong Luang, Pathum Thani, 12120, Thailand
- National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency (NSTDA), Khong Luang, Pathum Thani, 12120, Thailand
| | - Grit Pichayawaytin
- International Joint Research Center on Food Security (IJC-FOODSEC), Khlong Luang, Pathum Thani, 12120, Thailand
- National Electronics and Computer Technology Center (NECTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani, 12120, Thailand
| | - Rungroj Jintamethasawat
- International Joint Research Center on Food Security (IJC-FOODSEC), Khlong Luang, Pathum Thani, 12120, Thailand
- National Electronics and Computer Technology Center (NECTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani, 12120, Thailand
| | - Narusorn Doljirapisit
- International Joint Research Center on Food Security (IJC-FOODSEC), Khlong Luang, Pathum Thani, 12120, Thailand
- National Electronics and Computer Technology Center (NECTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani, 12120, Thailand
| | - Armote Somboonkaew
- International Joint Research Center on Food Security (IJC-FOODSEC), Khlong Luang, Pathum Thani, 12120, Thailand
- National Electronics and Computer Technology Center (NECTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani, 12120, Thailand
| | - Prae Noppakuadrittidej
- International Joint Research Center on Food Security (IJC-FOODSEC), Khlong Luang, Pathum Thani, 12120, Thailand
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khong Luang, Pathum Thani, 12120, Thailand
| | - Sudtida Kaew-Amdee
- International Joint Research Center on Food Security (IJC-FOODSEC), Khlong Luang, Pathum Thani, 12120, Thailand
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khong Luang, Pathum Thani, 12120, Thailand
| | - Manlika Makornwattana
- International Joint Research Center on Food Security (IJC-FOODSEC), Khlong Luang, Pathum Thani, 12120, Thailand
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khong Luang, Pathum Thani, 12120, Thailand
| | - Julie Meneely
- Institute for Global Food Security, Queen's University Belfast, Belfast, UK
| | - Christopher T Elliott
- International Joint Research Center on Food Security (IJC-FOODSEC), Khlong Luang, Pathum Thani, 12120, Thailand
- School of Food Science and Technology, Faculty of Science and Technology, Thammasat University, Khong Luang, Pathum Thani, 12120, Thailand
- Institute for Global Food Security, Queen's University Belfast, Belfast, UK
| | - Awanwee Petchkongkaew
- International Joint Research Center on Food Security (IJC-FOODSEC), Khlong Luang, Pathum Thani, 12120, Thailand
- School of Food Science and Technology, Faculty of Science and Technology, Thammasat University, Khong Luang, Pathum Thani, 12120, Thailand
- Institute for Global Food Security, Queen's University Belfast, Belfast, UK
| | - Nitsara Karoonuthaisiri
- International Joint Research Center on Food Security (IJC-FOODSEC), Khlong Luang, Pathum Thani, 12120, Thailand.
- Institute for Global Food Security, Queen's University Belfast, Belfast, UK.
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khong Luang, Pathum Thani, 12120, Thailand.
| |
Collapse
|
4
|
Krausová M, Ayeni KI, Gu Y, Borutzki Y, O'Bryan J, Perley L, Silasi M, Wisgrill L, Johnson CH, Warth B. Longitudinal biomonitoring of mycotoxin exposure during pregnancy in the Yale Pregnancy Outcome Prediction Study. ENVIRONMENT INTERNATIONAL 2024; 194:109081. [PMID: 39615253 DOI: 10.1016/j.envint.2024.109081] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/06/2024] [Accepted: 10/15/2024] [Indexed: 12/22/2024]
Abstract
Mycotoxins are fungal toxins that may trigger adverse health effects in pregnant women and their unborn children. Yet, data is scarce on the dynamic exposure patterns of mycotoxins in pregnant women, especially in the United States. This study assessed mycotoxin exposure profiles in women (n = 50) from the Yale Pregnancy Outcome Prediction Study (YPOPS) cohort at four distinct time points. Multi-analyte human biomonitoring assays based on liquid chromatography tandem mass spectrometry (LC-MS/MS), were developed for human serum and plasma matrices. The serum method was applied, together with an established urine method, to quantify mycotoxin levels in longitudinally collected matched serum (n = 200) and spot urine (n = 200) samples throughout pregnancy. The serum samples were mostly contaminated by the potential carcinogen ochratoxin A (detection rate: 46 %; median: 0.09 ng/mL), the hepato- and nephrotoxic citrinin (detection rate: 32 %; median: 0.02 ng/mL) and two enniatins (EnnB; detection rate: 97 %; median: 0.01 ng/mL and EnnB1; detection rate: 12 %; median: 0.003 ng/mL) which may act as immunotoxins. The most prevalent mycotoxins quantified in urine included deoxynivalenol (detection rate: 99 %; median: 23 ng/mL), alternariol monomethyl ether (detection rate: 69 %; median: 0.04 ng/mL), and zearalenone (detection rate: 63 %; median: 0.16 ng/mL). Seven other biomarkers of exposure including the highly estrogenic α-zearalenol and genotoxic Alternaria toxins, were also determined. Carcinogenic aflatoxins were not detected in any of the samples. Exposure assessment was based on the urinary data and performed by calculating probable daily intakes and comparing the human biomonitoring guidance value (HBM-GV) for deoxynivalenol. The results showed that the individuals exceeded the tolerable daily intake for deoxynivalenol and zearalenone on average at 28 % and 2 % over the different time points. Using the HBM-GV approach, the average exceedances for deoxynivalenol increased to 48 % indicating high exposure. For all the samples in which ochratoxin A was quantified, the estimated margin of exposure for neoplastic effects was below 10,000, indicating possible health concerns. Overall, this study showed that pregnant women were exposed to several regulated and emerging mycotoxins and that exposome-scale assessment should be a future priority in susceptible populations to better characterize xenobiotic exposure.
Collapse
Affiliation(s)
- Magdaléna Krausová
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| | - Kolawole I Ayeni
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| | - Yunyun Gu
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| | - Yasmin Borutzki
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| | - Jane O'Bryan
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Lauren Perley
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Michelle Silasi
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06520, USA; Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Mercy Hospital St. Louis, St. Louis, MO 63141, USA
| | - Lukas Wisgrill
- Division of Neonatology, Pediatric Intensive Care and Neuropediatrics, Comprehensive Center for Pediatrics, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, 1090 Vienna, Austria; Exposome Austria, Research Infrastructure and National EIRENE Node, Austria
| | - Caroline H Johnson
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT 06510, United States of America
| | - Benedikt Warth
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria; Exposome Austria, Research Infrastructure and National EIRENE Node, Austria.
| |
Collapse
|
5
|
Del Favero G, Bergen J, Palm L, Fellinger C, Matlaeva M, Szabadi A, Fernandes AS, Saraiva N, Schröder C, Marko D. Short-Term Exposure to Foodborne Xenoestrogens Affects Breast Cancer Cell Morphology and Motility Relevant for Metastatic Behavior In Vitro. Chem Res Toxicol 2024; 37:1634-1650. [PMID: 39262136 PMCID: PMC11497359 DOI: 10.1021/acs.chemrestox.4c00061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 08/12/2024] [Accepted: 08/21/2024] [Indexed: 09/13/2024]
Abstract
Breast cancer is highly susceptible to metastasis formation. During the time of disease progression, tumor pathophysiology can be impacted by endogenous factors, like hormonal status, as well as by environmental exposures, such as those related to diet and lifestyle. New lines of evidence point toward a potential role for foodborne endocrine disruptive chemicals in this respect; however, mechanistic understanding remains limited. At the molecular level, crucial steps toward metastasis formation include cell structural changes, alteration of adhesion, and reorganization of cytoskeletal proteins involved in motility. Hence, this study investigates the potential of dietary xenoestrogens to impact selected aspects of breast cancer cell mechanotransduction. Taking the onset of the metastatic cascade as a model, experiments focused on cell-matrix adhesion, single-cell migration, and adaptation of cell morphology. Dietary mycoestrogens alternariol (AOH, 1 μM) and α-zearalenol (α-ZEL, 10 nM), soy isoflavone genistein (GEN, 1 μM), and food packaging plasticizer bisphenol A (BPA, 10 nM) were applied as single compounds or in mixtures. Pursuing the hypothesis that endocrine active molecules could affect cell functions beyond the estrogen receptor-dependent cascade, experiments were performed comparing the MCF-7 cell line to the triple negative breast cancer cells MDA MB-231. Indeed, the four compounds functionally affected the motility and the adhesion of both cell types. These responses were coherent with rearrangements of the actin cytoskeleton and with the modulation of the expression of integrin β1 and cathepsin D. Mechanistically, molecular dynamics simulations confirmed a potential interaction with fragments of the α1 and β1 integrin subunits. In sum, dietary xenoestrogens proved effective in modifying the motility and adhesion of breast cancer cells, as predictive end points for metastatic behavior in vitro. These effects were measurable after short incubation times (1 or 8 h) and contribute to shed novel light on the activity of compounds with hormonal mimicry potential in breast cancer progression.
Collapse
Affiliation(s)
- Giorgia Del Favero
- Department
of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
- Core
Facility Multimodal Imaging, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
| | - Janice Bergen
- Department
of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
- Core
Facility Multimodal Imaging, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
- Vienna
Doctoral School in Chemistry (DoSChem), University of Vienna, Währinger Str. 42, Vienna 1090, Austria
| | - Lena Palm
- Computational
Biological Chemistry Department, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
| | - Christian Fellinger
- Computational
Biological Chemistry Department, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
- Department
of Pharmaceutical Sciences, Faculty of Life Sciences, University of Vienna, Vienna 1090, Austria
- Christian
Doppler Laboratory for Molecular Informatics in the Biosciences, Department
for Pharmaceutical Sciences, University
of Vienna, Vienna 1090, Austria
| | - Maria Matlaeva
- Computational
Biological Chemistry Department, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
| | - András Szabadi
- Computational
Biological Chemistry Department, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
| | - Ana Sofia Fernandes
- CBIOS, Universidade Lusófona’s Research Center
for Biosciences & Health Technologies, Lisboa 1749-024, Portugal
| | - Nuno Saraiva
- CBIOS, Universidade Lusófona’s Research Center
for Biosciences & Health Technologies, Lisboa 1749-024, Portugal
| | - Christian Schröder
- Computational
Biological Chemistry Department, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
| | - Doris Marko
- Department
of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
| |
Collapse
|
6
|
Yu M, Oskarsson A, Alexander J, Lundqvist J. Estrogenic, androgenic, and genotoxic activities of zearalenone and deoxynivalenol in in vitro bioassays including exogenous metabolic activation. Mycotoxin Res 2024; 40:331-346. [PMID: 38587710 PMCID: PMC11258189 DOI: 10.1007/s12550-024-00529-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/27/2024] [Accepted: 03/05/2024] [Indexed: 04/09/2024]
Abstract
Zearalenone (ZEN) and deoxynivalenol (DON) and their derivatives are well-known mycotoxins, which can occur not only in crops but also in water bodies, including drinking water sources. In vitro bioassays can be used to detect biological effects of hazardous compounds in water. To this, when studying biological effects and toxicity in vitro, metabolism is important to consider. In this study, ZEN, α-zearalenol (α-ZEL), DON, 3-acetyl DON, and 15-acetyl DON were evaluated in vitro for hormone receptor-mediated effects (estrogen receptor [ER] and androgen receptor [AR]) and genotoxicity (micronucleus assay) in the presence of an exogenous metabolic activation system (MAS). The ER bioassay proved to be a highly sensitive method to detect low concentrations of the ZEN compounds (EC10 values of 31.4 pM for ZEN, 3.59 pM for α-ZEL) in aqueous solutions. In the presence of the MAS, reduced estrogenic effects were observed for both ZEN compounds (EC10 values of 6.47 × 103 pM for ZEN, 1.55 × 102 pM for α-ZEL). Of the DON compounds, only 3-acetyl DON was estrogenic (EC10 of 0.31 µM), and the effect was removed in the presence of the MAS. Anti-androgenic effects of the ZEN compounds and androgenic effects of the DON compounds were detected in the micromolar range. No induction of genotoxicity was detected for ZEN or DON in the presence of the MAS. Our study highlighted that inclusion of exogenous MAS is a useful tool to detect biological effects of metabolites in in vitro bioassays.
Collapse
Affiliation(s)
- Maria Yu
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, SE-750 07, Uppsala, Sweden.
| | - Agneta Oskarsson
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, SE-750 07, Uppsala, Sweden
| | - Jan Alexander
- Norwegian Scientific Committee for Food and Environment, Norwegian Institute of Public Health, P.O. Box 222 Skøyen, NO-0213, Oslo, Norway
| | - Johan Lundqvist
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, SE-750 07, Uppsala, Sweden
| |
Collapse
|
7
|
Yang J, Ye L, Cui R, Zheng K, Qiao X, Wang M, Su M, Li X, Ge RS, Wang Y. Deoxynivalenol Inhibits Progenitor Leydig Cell Development by Stimulating Mitochondrial Fission in Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10616-10626. [PMID: 38656193 DOI: 10.1021/acs.jafc.4c01151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Deoxynivalenol (DON) is a common food contaminant that can impair male reproductive function. This study investigated the effects and mechanisms of DON exposure on progenitor Leydig cell (PLC) development in prepubertal male rats. Rats were orally administrated DON (0-4 mg/kg) from postnatal days 21-28. DON increased PLC proliferation but inhibited PLC maturation and function, including reducing testosterone levels and downregulating biomarkers like HSD11B1 and INSL3 at ≥2 mg/kg. DON also stimulated mitochondrial fission via upregulating DRP1 and FIS1 protein levels and increased oxidative stress by reducing antioxidant capacity (including NRF2, SOD1, SOD2, and CAT) in PLCs in vivo. In vitro, DON (2-4 μM) inhibited PLC androgen biosynthesis, increased reactive oxygen species production and protein levels of DRP1, FIS1, MFF, and pAMPK, decreased mitochondrial membrane potential and MFN1 protein levels, and caused mitochondrial fragmentation. The mitochondrial fission inhibitor mdivi-1 attenuated DON-induced impairments in PLCs. DON inhibited PLC steroidogenesis, increased oxidative stress, perturbed mitochondrial homeostasis, and impaired maturation. In conclusion, DON disrupts PLC development in prepubertal rats by stimulating mitochondrial fission.
Collapse
Affiliation(s)
- Jin Yang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Anesthesiology of Zhejiang Province, Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou, Zhejiang 325027, China
| | - Lei Ye
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Anesthesiology of Zhejiang Province, Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou, Zhejiang 325027, China
| | - Rong Cui
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Anesthesiology of Zhejiang Province, Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou, Zhejiang 325027, China
| | - Ke Zheng
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Anesthesiology of Zhejiang Province, Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou, Zhejiang 325027, China
| | - Xinyi Qiao
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Anesthesiology of Zhejiang Province, Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou, Zhejiang 325027, China
| | - Mengyun Wang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Anesthesiology of Zhejiang Province, Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou, Zhejiang 325027, China
| | - Ming Su
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Anesthesiology of Zhejiang Province, Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou, Zhejiang 325027, China
| | - Xiaoheng Li
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Anesthesiology of Zhejiang Province, Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou, Zhejiang 325027, China
| | - Ren-Shan Ge
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Anesthesiology of Zhejiang Province, Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou, Zhejiang 325027, China
| | - Yiyan Wang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Anesthesiology of Zhejiang Province, Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou, Zhejiang 325027, China
| |
Collapse
|
8
|
Nikolov N, Petkova T, Binev R, Milanova A. Low Doses of Deoxynivalenol and Zearalenone Alone or in Combination with a Mycotoxin Binder Affect ABCB1 mRNA and ABCC2 mRNA Expression in the Intestines of Pigs. TOXICS 2024; 12:297. [PMID: 38668520 PMCID: PMC11054541 DOI: 10.3390/toxics12040297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/11/2024] [Accepted: 04/13/2024] [Indexed: 04/29/2024]
Abstract
Mycotoxin binders, in combination with enzymes degrading some mycotoxins, contribute to feed detoxification. Their use reduces economic losses and the negative impacts of mycotoxins on animal health and productivity in farm animals. The aim of this study was to evaluate the efficacy of a mycotoxin detoxifier on the expression of the ATP-binding cassette efflux transporters ABCB1 mRNA and ABCC2 mRNA, which transport xenobiotics and thus have a barrier function, in the tissues of pigs exposed to low doses of deoxynivalenol (DON, 1 mg/kg feed) and zearalenone (ZEN, 0.4 mg/kg feed) for 37 days. The levels of expression were determined by an RT-PCR, and the effect of the mycotoxin detoxifier (Mycofix Plus3.E) was evaluated by a comparison of results between healthy pigs (n = 6), animals treated with DON and ZEN (n = 6), and a group that received both mycotoxins and the detoxifier (n = 6). A significant downregulation of ABCB1 mRNA and ABCC2 mRNA was observed in the jejunum (p < 0.05). A tendencies toward the downregulation of ABCB1 mRNA and ABCC2 mRNA were found in the ileum and duodenum, respectively. The mycotoxin detoxifier restored the expression of ABCB1 mRNA to the level found in healthy animals but did not restore that of ABCC2 mRNA to the level of healthy animals in the jejunum.
Collapse
Affiliation(s)
- Nikolay Nikolov
- Department of Internal Non-Infectious Diseases, Faculty of Veterinary Medicine, Trakia University, 6015 Stara Zagora, Bulgaria; (N.N.); (R.B.)
| | - Tsvetelina Petkova
- Department of Pharmacology, Animal Physiology, Biochemistry and Chemistry, Faculty of Veterinary Medicine, Trakia University, 6015 Stara Zagora, Bulgaria;
| | - Rumen Binev
- Department of Internal Non-Infectious Diseases, Faculty of Veterinary Medicine, Trakia University, 6015 Stara Zagora, Bulgaria; (N.N.); (R.B.)
| | - Aneliya Milanova
- Department of Pharmacology, Animal Physiology, Biochemistry and Chemistry, Faculty of Veterinary Medicine, Trakia University, 6015 Stara Zagora, Bulgaria;
| |
Collapse
|
9
|
Yuan P, Ma R, Hu L, Li R, Wang P, Lin S, Huang J, Wen H, Huang L, Li H, Feng B, Chen H, Liu Y, Zhang X, Lin Y, Xu S, Li J, Zhuo Y, Hua L, Che L, Wu D, Fang Z. Zearalenone Decreases Food Intake by Disrupting the Gut-Liver-Hypothalamus Axis Signaling via Bile Acids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8200-8213. [PMID: 38560889 DOI: 10.1021/acs.jafc.4c00421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Zearalenone (ZEN) is a mycotoxin that is harmful to humans and animals. In this study, female and male rats were exposed to ZEN, and the results showed that ZEN reduced the farnesoid X receptor (FXR) expression levels in the liver and disrupted the enterohepatic circulation of bile acids (BAs). A decrease in food intake induced by ZEN was negatively correlated with an increase in the level of total BAs. BA-targeted metabolomics revealed that ZEN increased glycochenodeoxycholic acid levels and decreased the ratio of conjugated BAs to unconjugated BAs, which further increased the hypothalamic FXR expression levels. Preventing the increase in total BA levels induced by ZEN via Lactobacillus rhamnosus GG intervention restored the appetite. In conclusion, ZEN disrupted the enterohepatic circulation of BAs to decrease the level of food intake. This study reveals a possible mechanism by which ZEN affects food intake and provides a new approach to decrease the toxic effects of ZEN.
Collapse
Affiliation(s)
- Peiqiang Yuan
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu 611130, People's Republic of China
- Key Laboratory of Agricultural Product processing and Nutrition Health (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Food Science, Sichuan Agricultural University, Ya'an 625014, People's Republic of China
| | - Rongman Ma
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu 611130, People's Republic of China
| | - Liang Hu
- Key Laboratory of Agricultural Product processing and Nutrition Health (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Food Science, Sichuan Agricultural University, Ya'an 625014, People's Republic of China
| | - Ran Li
- Key Laboratory of Agricultural Product processing and Nutrition Health (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Food Science, Sichuan Agricultural University, Ya'an 625014, People's Republic of China
| | - Peng Wang
- College of Biology Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
| | - Sen Lin
- Key Laboratory of Urban Agriculture in South China, Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, People's Republic of China
| | - Jiancai Huang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu 611130, People's Republic of China
| | - Hongmei Wen
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu 611130, People's Republic of China
| | - Lingjie Huang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu 611130, People's Republic of China
- Key Laboratory of Agricultural Product processing and Nutrition Health (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Food Science, Sichuan Agricultural University, Ya'an 625014, People's Republic of China
| | - Hua Li
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu 611130, People's Republic of China
| | - Bin Feng
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu 611130, People's Republic of China
| | - Hong Chen
- Key Laboratory of Agricultural Product processing and Nutrition Health (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Food Science, Sichuan Agricultural University, Ya'an 625014, People's Republic of China
| | - Yuntao Liu
- Key Laboratory of Agricultural Product processing and Nutrition Health (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Food Science, Sichuan Agricultural University, Ya'an 625014, People's Republic of China
| | - Xiaoling Zhang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu 611130, People's Republic of China
| | - Yan Lin
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu 611130, People's Republic of China
| | - Shengyu Xu
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu 611130, People's Republic of China
| | - Jian Li
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu 611130, People's Republic of China
| | - Yong Zhuo
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu 611130, People's Republic of China
| | - Lun Hua
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu 611130, People's Republic of China
| | - Lianqiang Che
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu 611130, People's Republic of China
| | - De Wu
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu 611130, People's Republic of China
| | - Zhengfeng Fang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu 611130, People's Republic of China
- Key Laboratory of Agricultural Product processing and Nutrition Health (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Food Science, Sichuan Agricultural University, Ya'an 625014, People's Republic of China
| |
Collapse
|
10
|
Singh V, Mandal P, Chauhan SS, Saifi IJ, Marhaba, Sandeep PV, Jagdale P, Ayanur A, Ansari KM. Chronic exposure to Zearalenone leads to endometrial hyperplasia in CD-1 mice by altering the inflammatory markers. Toxicol Res (Camb) 2024; 13:tfae055. [PMID: 38645625 PMCID: PMC11031408 DOI: 10.1093/toxres/tfae055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/14/2024] [Accepted: 04/02/2024] [Indexed: 04/23/2024] Open
Abstract
Background Zearalenone (ZEA), a natural food contaminant, is reported to act as a mycoestrogen due to its estrogen-mimicking properties. According to studies, ZEA has a greater potential for estrogenic activity compared to any other naturally occurring non-steroidal estrogen. ZEA has been found in the endometrium of individuals with reproductive problems and the serum of children facing early puberty. These studies suggested a possible link between ZEA exposure and endometrial toxicity; nonetheless, no thorough research has been done. This study assessed the endometrium's response to chronic ZEA exposure. Methods Four groups of CD-1 female mice were exposed to control, estradiol (E2), and two different doses of ZEA for 90 days. At the end of treatment, blood and uterus were collected, and samples were used for inflammatory cytokines level, immunochemical, histopathological, and biophysical analysis. Results Our data indicated that the uterus showed a change in body/organ weight ratio, while other organs did not have any notable changes. Immunochemical and histological studies showed hyperplasia and a higher number of glands in the endometrium after ZEA and E2 exposure. Similarly, proliferation markers such as proliferative cell nuclear antigen (PCNA), Ki-67, and inflammatory cytokines such as interleukin 6 (IL-6), interleukin 8 (IL-8), and interferon-gamma (IFN-?) levels were found to be higher in the E2 and ZEA-exposed groups. Conclusion Our finding conclude that ZEA targets the uterus and cause inflammation due to increased levels of inflammatory cytokines and proliferation mediators, as well as systemic toxicity denoted by a strong binding affinity with serum proteins.
Collapse
Affiliation(s)
- Varsha Singh
- Food Toxicology Laboratory, Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR) Kamla Nehru Nagar, Ghaziabad, 201002, Uttar Pradesh, India
| | - Payal Mandal
- Food Toxicology Laboratory, Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Shweta Singh Chauhan
- Academy of Scientific and Innovative Research (AcSIR) Kamla Nehru Nagar, Ghaziabad, 201002, Uttar Pradesh, India
- Computational Toxicology Facility, Toxicoinformatics and Industrial Research, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Ishrat Jahan Saifi
- Food Toxicology Laboratory, Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR) Kamla Nehru Nagar, Ghaziabad, 201002, Uttar Pradesh, India
| | - Marhaba
- Food Toxicology Laboratory, Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR) Kamla Nehru Nagar, Ghaziabad, 201002, Uttar Pradesh, India
| | - P V Sandeep
- Food Toxicology Laboratory, Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Pankaj Jagdale
- Central Pathology Facility, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Anjaneya Ayanur
- Central Pathology Facility, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Kausar Mahmood Ansari
- Food Toxicology Laboratory, Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR) Kamla Nehru Nagar, Ghaziabad, 201002, Uttar Pradesh, India
| |
Collapse
|
11
|
Fruhauf S, Pühringer D, Thamhesl M, Fajtl P, Kunz-Vekiru E, Höbartner-Gussl A, Schatzmayr G, Adam G, Damborsky J, Djinovic-Carugo K, Prokop Z, Moll WD. Bacterial Lactonases ZenA with Noncanonical Structural Features Hydrolyze the Mycotoxin Zearalenone. ACS Catal 2024; 14:3392-3410. [PMID: 38449531 PMCID: PMC10913051 DOI: 10.1021/acscatal.4c00271] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 01/29/2024] [Indexed: 03/08/2024]
Abstract
Zearalenone (ZEN) is a mycoestrogenic polyketide produced by Fusarium graminearum and other phytopathogenic members of the genus Fusarium. Contamination of cereals with ZEN is frequent, and hydrolytic detoxification with fungal lactonases has been explored. Here, we report the isolation of a bacterial strain, Rhodococcus erythropolis PFA D8-1, with ZEN hydrolyzing activity, cloning of the gene encoding α/β hydrolase ZenA encoded on the linear megaplasmid pSFRL1, and biochemical characterization of nine homologues. Furthermore, we report site-directed mutagenesis as well as structural analysis of the dimeric ZenARe of R. erythropolis and the more thermostable, tetrameric ZenAScfl of Streptomyces coelicoflavus with and without bound ligands. The X-ray crystal structures not only revealed canonical features of α/β hydrolases with a cap domain including a Ser-His-Asp catalytic triad but also unusual features including an uncommon oxyanion hole motif and a peripheral, short antiparallel β-sheet involved in tetramer interactions. Presteady-state kinetic analyses for ZenARe and ZenAScfl identified balanced rate-limiting steps of the reaction cycle, which can change depending on temperature. Some new bacterial ZEN lactonases have lower KM and higher kcat than the known fungal ZEN lactonases and may lend themselves to enzyme technology development for the degradation of ZEN in feed or food.
Collapse
Affiliation(s)
- Sebastian Fruhauf
- dsm-firmenich
Animal Nutrition and Health R&D Center Tulln, Technopark 1, Tulln 3430, Austria
| | - Dominic Pühringer
- Department
for Structural and Computational Biology, Max Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, Vienna 1030, Austria
| | - Michaela Thamhesl
- dsm-firmenich
Animal Nutrition and Health R&D Center Tulln, Technopark 1, Tulln 3430, Austria
| | - Patricia Fajtl
- dsm-firmenich
Animal Nutrition and Health R&D Center Tulln, Technopark 1, Tulln 3430, Austria
| | - Elisavet Kunz-Vekiru
- Institute
of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology
IFA-Tulln, University of Natural Resources
and Life Sciences Vienna (BOKU), Konrad-Lorenz-Straße 20, Tulln 3430, Austria
| | - Andreas Höbartner-Gussl
- dsm-firmenich
Animal Nutrition and Health R&D Center Tulln, Technopark 1, Tulln 3430, Austria
| | - Gerd Schatzmayr
- dsm-firmenich
Animal Nutrition and Health R&D Center Tulln, Technopark 1, Tulln 3430, Austria
| | - Gerhard Adam
- Institute
of Microbial Genetics, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences
Vienna (BOKU), Konrad-Lorenz-Straße
24, Tulln 3430, Austria
| | - Jiri Damborsky
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, Kamenice 5, Bld. A13, Brno 625 00, Czech Republic
- International
Clinical Research Center, St. Anne’s
University Hospital Brno, Pekarska 53, Brno 656
91, Czech Republic
| | - Kristina Djinovic-Carugo
- Department
for Structural and Computational Biology, Max Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, Vienna 1030, Austria
- Department
of Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana 1000, Slovenia
- European
Molecular Biology Laboratory (EMBL) Grenoble, Grenoble 38000, France
| | - Zbynek Prokop
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, Kamenice 5, Bld. A13, Brno 625 00, Czech Republic
- International
Clinical Research Center, St. Anne’s
University Hospital Brno, Pekarska 53, Brno 656
91, Czech Republic
| | - Wulf-Dieter Moll
- dsm-firmenich
Animal Nutrition and Health R&D Center Tulln, Technopark 1, Tulln 3430, Austria
| |
Collapse
|
12
|
Roach CM, Mayorga EJ, Baumgard LH, Ross JW, Keating AF. Zearalenone exposure differentially affects the ovarian proteome in pre-pubertal gilts during thermal neutral and heat stress conditions. J Anim Sci 2024; 102:skae115. [PMID: 38666409 PMCID: PMC11217906 DOI: 10.1093/jas/skae115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/23/2024] [Indexed: 07/04/2024] Open
Abstract
Zearalenone (ZEN), a nonsteroidal estrogenic mycotoxin, causes endocrine disruption and porcine reproductive dysfunction. Heat stress (HS) occurs when exogenous and metabolic heat accumulation exceeds heat dissipation. Independently, HS and ZEN both compromise swine reproduction; thus, the hypothesis investigated was two-pronged: that ZEN exposure would alter the ovarian proteome and that these effects would differ in thermal neutral (TN) and HS pigs. Pre-pubertal gilts (n = 38) were fed ad libitum and assigned to either (TN: 21.0 ± 0.1 °C) or HS (12 h cyclic temperatures of 35.0 ± 0.2 °C and 32.2 ± 0.1 °C). Within the TN group, a subset of pigs were pair-fed (PF) to the amount of feed that the HS gilts consumed to eliminate the confounding effects of dissimilar nutrient intake. All gilts orally received a vehicle control (CT) or ZEN (40 μg/kg/BW) resulting in six treatment groups: thermoneutral (TN) vehicle control (TC; n = 6); TN ZEN (TZ; n = 6); PF vehicle control (PC; n = 6); PF ZEN (PZ; n = 6); HS vehicle control (HC; n = 7); or HS ZEN (HZ; n = 7) for 7 d. When compared to the TC pigs, TZ pigs had 45 increased and 39 decreased proteins (P ≤ 0.05). In the HZ pigs, 47 proteins were increased and 61 were decreased (P ≤ 0.05). Exposure to ZEN during TN conditions altered sec61 translocon complex (40%), rough endoplasmic reticulum membrane (8.2%), and proteasome complex (5.4%), asparagine metabolic process (0.60%), aspartate family amino acid metabolic process (0.14%), and cellular amide metabolic process (0.02%) pathways. During HS, ZEN affected cellular pathways associated with proteasome core complex alpha subunit complex (0.23%), fibrillar collagen trimer (0.14%), proteasome complex (0.05%), and spliceosomal complex (0.03%). Thus, these data identify ovarian pathways altered by ZEN exposure and suggest that the molecular targets of ZEN differ in TN and HS pigs.
Collapse
Affiliation(s)
- Crystal M Roach
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Edith J Mayorga
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Lance H Baumgard
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Jason W Ross
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Aileen F Keating
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
13
|
Roach CM, Mayorga EJ, Baumgard LH, Ross JW, Keating AF. Phenotypic, endocrinological, and metabolic effects of zearalenone exposure and additive effect of heat stress in prepubertal female pigs. J Therm Biol 2024; 119:103742. [PMID: 38056360 DOI: 10.1016/j.jtherbio.2023.103742] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/25/2023] [Accepted: 10/21/2023] [Indexed: 12/08/2023]
Abstract
Independently, both heat stress (HS) and zearalenone (ZEN) compromise female reproduction, thus the hypothesis that ZEN would affect phenotypic, endocrine, and metabolic parameters in pigs with a synergistic and/or additive impact of HS was investigated. Prepubertal gilts (n = 6-7) were assigned to: thermoneutral (TN) vehicle control (TC; n = 6); TN ZEN (40 μg/kg; TZ; n = 6); pair-fed (PF; n = 6) vehicle control (PC; n = 6); PF ZEN (40 μg/kg; PZ; n = 6); HS vehicle control (HC; n = 7); and HS ZEN (40 μg/kg; HZ; n = 7) and experienced either constant 21.0 ± 0.10 °C (TN and PF) or 35.0 ± 0.2 °C (12 h) and 32.2 ± 0.1 °C (12 h) to induce HS for 7 d. Elevated rectal temperature (P < 0.01) and respiration rate (P < 0.01) confirmed induction of HS. Rectal temperature was decreased (P = 0.03) by ZEN. Heat stress decreased (P < 0.01) feed intake, body weight, and average daily gain, with absence of a ZEN effect (P > 0.22). White blood cells, hematocrit, and lymphocytes decreased (P < 0.04) with HS. Prolactin increased (P < 0.01) in PC and PZ and increased in HZ females (P < 0.01). 17β-estradiol reduced (P < 0.01) in HC and increased in TZ females (P = 0.03). Serum metabolites were altered by both HS and ZEN. Neither HS nor ZEN impacted ovary weight, uterus weight, teat size or vulva area in TN and PF treatments, although ZEN increased vulva area (P = 0.02) in HS females. Thus, ZEN and HS, independently and additively, altered blood composition, impacted the serum endocrine and metabolic profile and increased vulva size in prepubertal females, potentially contributing to infertility.
Collapse
Affiliation(s)
- Crystal M Roach
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| | - Edith J Mayorga
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| | - Lance H Baumgard
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| | - Jason W Ross
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| | - Aileen F Keating
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
14
|
Wang J, Tian H, Liu H, Wen J, Huang R, Zou K, Hou L, Li P. Low dose of zearalenone inhibited the proliferation of porcine prospermatogonia and transformed the physiology through cytokine-cytokine receptor interaction. Theriogenology 2023; 211:49-55. [PMID: 37572600 DOI: 10.1016/j.theriogenology.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 07/15/2023] [Accepted: 08/05/2023] [Indexed: 08/14/2023]
Abstract
Zearalenone (ZEA) is a prevalent mycotoxin functions as an endocrine disrupter to the reproductive systems of farm animals, especially in pigs. To evaluate the effect and the underlying molecular changes that occurred when the porcine germline stem cells were exposed to ZEA, prospermatogonia (ProSGs) were enriched and treated with a gradient concentration (0-10 μM) of ZEA for 2-8 days. Our results showed that the ZEA treatment inhibited the proliferation of ProSGs in a dose-dependent manner with a critical concentration at 1 μM. Transcriptome analysis revealed that the differentially expressed genes mainly concentrated on the molecular function of positive regulation of response to stimulus, and the most enriching pathway is cytokine-cytokine receptor interaction. ZEA exposure decreased a buck of cytokine/chemokine expression involved in the inflammatory response and stem cells maintenance/self-renewal, moreover, some energy expenditure and anti-apoptosis genes were also down-regulated, while the up-regulated genes were mainly connected with the innate immunity. These data demonstrate that ZEA induces multiply cellular damage and may eventually do harm to the health and fertility of animals.
Collapse
Affiliation(s)
- Jingjing Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China; Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hairui Tian
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China; Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hongyang Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China; Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jian Wen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China; Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ruihua Huang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China; Key Laboratory of Evaluation and Utilization of Livestock and Poultry Resources (Pig) of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, China
| | - Kang Zou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China; Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Liming Hou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China; Key Laboratory of Evaluation and Utilization of Livestock and Poultry Resources (Pig) of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, China.
| | - Pinghua Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China; Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing, 210095, China; Key Laboratory of Evaluation and Utilization of Livestock and Poultry Resources (Pig) of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
15
|
Kościelecka K, Kuć A, Kubik-Machura D, Męcik-Kronenberg T, Włodarek J, Radko L. Endocrine Effect of Some Mycotoxins on Humans: A Clinical Review of the Ways to Mitigate the Action of Mycotoxins. Toxins (Basel) 2023; 15:515. [PMID: 37755941 PMCID: PMC10535190 DOI: 10.3390/toxins15090515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/10/2023] [Accepted: 08/22/2023] [Indexed: 09/28/2023] Open
Abstract
Fungi such as Aspergillus spp. and Fusarium spp., which are commonly found in the environment, pose a serious global health problem. This study aims to present the results of epidemiological studies, including clinical cases, on the relationship between human exposure to some mycotoxins, especially zearalenone and aflatoxin, and the occurrence of reproductive disorders. In addition, examples of methods to reduce human exposure to mycotoxins are presented. In March 2023, various databases (PubMed, Google Scholar, EMBASE and Web of Science) were systematically searched using Google Chrome to identify studies evaluating the association between exposure to mycotoxins and the occurrence of complications related to impaired fertility or cancer incidence. The analysed data indicate that exposure to the evaluated mycotoxins is widespread and correlates strongly with precocious puberty, reduced fertility and increased cancer incidence in women and men worldwide. There is evidence to suggest that exposure to the Aspergillus mycotoxin aflatoxin (AF) during pregnancy can impair intrauterine foetal growth, promote neonatal jaundice and cause perinatal death and preterm birth. In contrast, exposure to the Fusarium mycotoxin zearalenone (ZEA) leads to precocious sexual development, infertility, the development of malformations and the development of breast cancer. Unfortunately, the development of methods (biological, chemical or physical) to completely eliminate exposure to mycotoxins has limited practical application. The threat to human health from mycotoxins is real and further research is needed to improve our knowledge and specific public health interventions.
Collapse
Affiliation(s)
- Klaudia Kościelecka
- Department of Pathomorphology, Faculty of Medical Sciences in Zabrze, 3 Maja St. 13, 41-800 Zabrze, Poland; (K.K.); (A.K.); (D.K.-M.)
| | - Aleksandra Kuć
- Department of Pathomorphology, Faculty of Medical Sciences in Zabrze, 3 Maja St. 13, 41-800 Zabrze, Poland; (K.K.); (A.K.); (D.K.-M.)
| | - Daria Kubik-Machura
- Department of Pathomorphology, Faculty of Medical Sciences in Zabrze, 3 Maja St. 13, 41-800 Zabrze, Poland; (K.K.); (A.K.); (D.K.-M.)
| | - Tomasz Męcik-Kronenberg
- Department of Pathomorphology, Faculty of Medical Sciences in Zabrze, 3 Maja St. 13, 41-800 Zabrze, Poland; (K.K.); (A.K.); (D.K.-M.)
| | - Jan Włodarek
- Department of Preclinical Sciences and Infectious Diseases, Faculty of Veterinary Medicine and Animal Sciences, Poznan University of Life Sciences, Wolynska St. 35, 60-637 Poznan, Poland;
| | - Lidia Radko
- Department of Preclinical Sciences and Infectious Diseases, Faculty of Veterinary Medicine and Animal Sciences, Poznan University of Life Sciences, Wolynska St. 35, 60-637 Poznan, Poland;
| |
Collapse
|
16
|
Mandal P, Lanaridi O, Warth B, Ansari KM. Metabolomics as an emerging approach for deciphering the biological impact and toxicity of food contaminants: the case of mycotoxins. Crit Rev Food Sci Nutr 2023; 64:9859-9883. [PMID: 37283072 DOI: 10.1080/10408398.2023.2217451] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Exposure to mycotoxins through the dietary route occurs on a daily basis while their deleterious effects are exhibited in the form of ailments, such as inflammation, cancer, and hormonal imbalance. The negative impact of mycotoxins can be attributed to their interaction with various biomolecules and their interference in metabolic pathways. The activity of biomolecules, such as enzymes/receptors, which engage the intricate mechanism of endogenous metabolism, is more susceptible to disruption by metabolites of high toxicity, which gives rise to adverse health effects. Metabolomics is a useful analytical approach that can assist in unraveling such information. It can simultaneously and comprehensively analyze a large number of endogenous and exogenous molecules present in biofluids and can, thus, reveal biologically relevant perturbations following mycotoxin exposure. Information provided by genome, transcriptome and proteome analyses, which have been utilized for the elucidation of biological mechanisms so far, are further complemented by the addition of metabolomics in the available bioanalytics toolbox. Metabolomics can offer insight into complex biological processes and their respective response to several (co-)exposures. This review focuses on the most extensively studied mycotoxins reported in literature and their respective impact on the metabolome upon exposure.
Collapse
Affiliation(s)
- Payal Mandal
- Food Toxicology Laboratory, Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Olga Lanaridi
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Benedikt Warth
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Kausar M Ansari
- Food Toxicology Laboratory, Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| |
Collapse
|
17
|
Stiefel C, Stintzing F. Endocrine-active and endocrine-disrupting compounds in food – occurrence, formation and relevance. NFS JOURNAL 2023; 31:57-92. [DOI: 10.1016/j.nfs.2023.03.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
18
|
Urbanek KA, Kowalska K, Habrowska-Górczyńska DE, Kozieł MJ, Domińska K, Piastowska-Ciesielska AW. Revealing the Role of Alternariol in the Local Steroidogenesis in Human Prostate Normal and Cancer Cells. Int J Mol Sci 2023; 24:ijms24119513. [PMID: 37298472 DOI: 10.3390/ijms24119513] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/24/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023] Open
Abstract
The mycotoxin alternariol (AOH) can be found in food products infected by Alternaria spp. and is considered an endocrine-disruptive mycotoxin. The main mechanism of AOH toxicity is associated with DNA damage and modulation of the inflammation process. Still, AOH is considered as one of the emerging mycotoxins. In this study, we have evaluated how AOH might affect the local steroidogenesis process in the prostate, in both normal and cancer cells. We have found that AOH itself modulates the cell cycle, inflammation, and apoptosis, rather than the steroidogenesis process in prostate cancer cells; however, in the presence of another steroidogenic agent, the influence on steroidogenesis is significant. Therefore, this is the first study to report the effect of AOH on local steroidogenesis in normal and prostate cancer cells. We postulate that AOH might modulate the release of the steroid hormones and expression of the key components by interfering with the steroidogenic pathway and might be considered a steroidogenesis-altering agent.
Collapse
Affiliation(s)
- Kinga Anna Urbanek
- Medical University of Lodz, Department of Cell Cultures and Genomic Analysis, 90-752 Lodz, Poland
| | - Karolina Kowalska
- Medical University of Lodz, Department of Cell Cultures and Genomic Analysis, 90-752 Lodz, Poland
| | | | - Marta Justyna Kozieł
- Medical University of Lodz, Department of Cell Cultures and Genomic Analysis, 90-752 Lodz, Poland
- Medical University of Lodz, BRaIn Laboratories, 92-216 Lodz, Poland
| | - Kamila Domińska
- Medical University of Lodz, Department of Comparative Endocrinology, Zeligowskiego 7/9, 90-752 Lodz, Poland
| | - Agnieszka Wanda Piastowska-Ciesielska
- Medical University of Lodz, Department of Cell Cultures and Genomic Analysis, 90-752 Lodz, Poland
- Medical University of Lodz, BRaIn Laboratories, 92-216 Lodz, Poland
| |
Collapse
|
19
|
Kortei NK, Badzi S, Nanga S, Wiafe-Kwagyan M, Amon DNK, Odamtten GT. Survey of knowledge, and attitudes to storage practices preempting the occurrence of filamentous fungi and mycotoxins in some Ghanaian staple foods and processed products. Sci Rep 2023; 13:8710. [PMID: 37248384 DOI: 10.1038/s41598-023-35275-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 05/16/2023] [Indexed: 05/31/2023] Open
Abstract
Mycotoxigenic fungi can infect and produce potent mycotoxins in foodstuffs prior to harvest, during harvest (field fungi), and in storage after harvest (storage fungi), which when ingested, can result in adverse health effects. This study was aimed at assessing the knowledge, attitudes, and practices adopted by the Ghanaian populace to help mitigate the occurrence of molds and mycotoxins in foods. A cross-sectional survey involving a structured questionnaire was conducted with 642 respondents from twelve regions of Ghana. Descriptive statistics and analyses of variance were calculated. Correct Classification Rate (CCR) was measured to assess the utility of a logistic regression model. The results of the study showed that the majority of 299 (46.6%) of the respondents were between the ages of 18-25. Age and educational level were related to knowledge about the occurrence of fungi and mycotoxins in foods (p < 0.05). More than half the respondents, 50% indicated that they knew of aflatoxins as a major mycotoxin present in food. Higher education directly influenced on the knowledge of mycotoxicosis and the management of stored food to present intoxication by fungal metabolites. 502 (32.9%) knew that consuming foods with toxins could cause stomach aches. The most commonly consumed food commodity despite the presence of visible growth of fungi was bread (35.3%). The average KAP score for knowledge showed that, out of 100%, there was adequate knowledge (63.8%) among the members of the Ghanaian populace. Favorable environmental conditions of high humidity (> 85% ERH) and temperature (> 28-32 °C) enhance the proliferation of fungi in most foods and the attendant production of mycotoxins such as aflatoxins, ochratoxins, and fumonisins are associated with several severe human and animal health conditions; mycotoxicosis was associated with high fever, pain, vomiting, suppression of immunity, cancer, etc. when these foods are consumed on regular basis for a prolonged length of time. Future examination of the food items used for the School Feeding Programme in Ghana will offer opportunities to examine the risks of feeding youth with fungal-contaminated food preparations from providers.
Collapse
Affiliation(s)
- Nii Korley Kortei
- School of Allied Health Sciences, Department of Nutrition and Dietetics, University of Health and Allied Sciences, PMB 31, Ho, Ghana.
| | - Sandra Badzi
- School of Allied Health Sciences, Department of Nutrition and Dietetics, University of Health and Allied Sciences, PMB 31, Ho, Ghana
| | - Salifu Nanga
- School of Basic and Biomedical Sciences, Department of Basic Sciences, University of Health and Allied Sciences, PMB 31, Ho, Ghana
| | - Michael Wiafe-Kwagyan
- College of Basic and Applied Sciences, Department of Plant and Environmental Biology, University of Ghana, P. O. Box LG 55, Legon, Ghana
| | - Denick Nii Kotey Amon
- College of Basic and Applied Sciences, Department of Plant and Environmental Biology, University of Ghana, P. O. Box LG 55, Legon, Ghana
| | - George Tawia Odamtten
- College of Basic and Applied Sciences, Department of Plant and Environmental Biology, University of Ghana, P. O. Box LG 55, Legon, Ghana
| |
Collapse
|
20
|
Liu X, Xi H, Han S, Zhang H, Hu J. Zearalenone induces oxidative stress and autophagy in goat Sertoli cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 252:114571. [PMID: 36708663 DOI: 10.1016/j.ecoenv.2023.114571] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/16/2023] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
Zearalenone (ZEA), one of the non-steroidal estrogen mycotoxin, can cause male reproductive damage and genotoxicity in mammals. Testicular oxidative injury is an important factor causing male sterility. Testicular Sertoli cells are essential for spermatogenesis and male fertility. At present, the mechanism of oxidative injury in dairy goat Sertoli cells after exposure to ZEA remains unclear. This study explored the effects of ZEA on oxidative stress and autophagy in dairy goat Sertoli cells. It was found that treatment of primary Sertoli cells with 25, 50 and 100 μmol/L ZEA for 24 h can promote ROS production, decrease cell viability, antioxidant enzyme activity and mitochondrial membrane potential, induce caspase-dependent cell apoptosis and autophagy activity. ZEA-induced autophagy was confirmed by LC3-I/LC3-II transformation. More importantly, N-acetylcysteine (NAC) pretreatment can remarkably inhibit ZEA-induced oxidative stress, apoptosis and autophagy in Sertoli cells by eliminating ROS. In conclusion, this study indicates that ZEA induces oxidative stress and autophagy in dairy goat Sertoli cells by promoting ROS production.
Collapse
Affiliation(s)
- Xinyu Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, People's Republic of China
| | - Huaming Xi
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou 311300, People's Republic of China
| | - Shuaiqi Han
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, People's Republic of China
| | - Hongyun Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, People's Republic of China
| | - Jianhong Hu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, People's Republic of China.
| |
Collapse
|
21
|
Assessment of selected immunological parameters in dairy cows with naturally occurring mycotoxicosis before and after the application of a mycotoxin deactivator. J Vet Res 2023; 67:105-113. [PMID: 37008772 PMCID: PMC10062043 DOI: 10.2478/jvetres-2023-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 01/26/2023] [Indexed: 02/19/2023] Open
Abstract
Abstract
Introduction
Mycotoxins in dairy cows can cause many non-specific symptoms often resulting from immune system overreaction. The study assessed the concentration of selected cytokines and acute phase proteins (APP) in cows with natural mycotoxicosis before and after using a mycotoxin neutraliser. The cytokines were tumour necrosis factor alpha (TNF-α), interleukin 6 (IL-6) and interleukin 10 (IL-10), and the APP were serum amyloid A (SAA) and haptoglobin (Hp).
Material and Methods
The research was carried out on an experimental group (Exp) of 10 herdmate Holstein-Friesian cows with mycotoxicosis. The control group (Con) was 10 healthy cows of the same breed from a different herd. Cows in the Exp group were administered the mycotoxin deactivator Mycofix for three months. Blood was drawn from Exp cows once before administering Mycofix and a second time after three months of its use. Blood was also drawn from Con cows at the same times. Serum levels of TNF-α, IL-6, IL-10, SAA and Hp were assessed using ELISA.
Results
The concentrations of all cytokines and Hp in Exp cows were higher before treatment (P < 0.001) than those in Con cows. After three months of administering Mycofix, the concentrations of TNF-α and IL-6 were significantly lower than their pre-treatment levels (P < 0.001). The concentrations of IL-6, IL-10, and Hp were still significantly higher than those in the Con group (P < 0.001). In cows with mycotoxicosis, simultaneous stimulation of antagonistic processes was noted: a pro-inflammatory process in the upregulation of TNF-α and IL-6, and an anti-inflammatory one in the upregulation of IL-10.
Conclusion
Despite the absorbent’s use and the resolution of clinical symptoms in Exp cows, high levels of IL-10 and Hp and IL-6 were maintained. Assessment of the level of cytokines and APP appears to be a useful and precise tool for the evaluation and application of the appropriate dose of the mycotoxin absorbent or the evaluation of its effectiveness.
Collapse
|
22
|
Immunohistochemical Expression (IE) of Oestrogen Receptors in the Intestines of Prepubertal Gilts Exposed to Zearalenone. Toxins (Basel) 2023; 15:toxins15020122. [PMID: 36828436 PMCID: PMC9967477 DOI: 10.3390/toxins15020122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
This study was conducted to determine if a low monotonic dose of zearalenone (ZEN) affects the immunohistochemical expression (IE) of oestrogen receptor alpha (ERα) and oestrogen receptor beta (ERβ) in the intestines of sexually immature gilts. Group C (control group; n = 18) gilts were given a placebo. Group E (experimental group; n = 18) gilts were dosed orally with 40 μg ZEN /kg body weight (BW), each day before morning feeding. Samples of intestinal tissue were collected post-mortem six times. The samples were stained to analyse the IE of ERα and Erβ in the scanned slides. The strongest response was observed in ERα in the duodenum (90.387-average % of cells with ERα expression) and in ERβ in the descending colon (84.329-average % of cells with ERβ expression); the opposite response was recorded in the caecum (2.484-average % of cells with ERα expression) and the ascending colon (2.448-average % of cells with ERα expression); on the first two dates of exposure, the digestive tract had to adapt to ZEN in feed. The results of this study, supported by a mechanistic interpretation of previous research findings, suggest that ZEN performs numerous functions in the digestive tract.
Collapse
|
23
|
Cai P, Feng N, Zou H, Gu J, Liu X, Liu Z, Yuan Y, Bian J. Zearalenone damages the male reproductive system of rats by destroying testicular focal adhesion. ENVIRONMENTAL TOXICOLOGY 2023; 38:278-288. [PMID: 36288102 DOI: 10.1002/tox.23694] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 10/04/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Zearalenone (ZEA), a common mycotoxin in animal feed, is harmful to public health and causes huge economic losses. The potential target proteins of ZEA and its derivatives were screened using the PharmMapper database and the related genes (proteins) of the testis were obtained from Genecards. We obtained 144 potential targets of ZEA and its derivatives related to the testis using Venn diagrams. The PPI analysis showed that ZEA had the most targets in testis, followed by ZAN, α-ZAL, β-ZEL, α-ZEL, and β-ZAL. Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses evaluated the metabolic and cancer pathways. We further screened four hub genes: RAC3, CCND1, EP300, and CTNNB1. Eight key biological processes were obtained by GO analysis, and four important pathways were identified by KEGG analysis. Animal and cell experimental results confirmed that ZEA could inhibit the expression of four key KEGG pathway protein components and four hub proteins that interfere with cell adhesion by inhibiting the focal adhesion structure of the testis, Leydig cells, and Sertoli cells. Collectively, our findings reveal that the destruction of the focal adhesion structure in the testis is the mechanism through which ZEA damages the male reproductive system.
Collapse
Affiliation(s)
- Peirong Cai
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Nannan Feng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Xuezhong Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
24
|
Balló A, Busznyákné Székvári K, Czétány P, Márk L, Török A, Szántó Á, Máté G. Estrogenic and Non-Estrogenic Disruptor Effect of Zearalenone on Male Reproduction: A Review. Int J Mol Sci 2023; 24:ijms24021578. [PMID: 36675103 PMCID: PMC9862602 DOI: 10.3390/ijms24021578] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/03/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
According to some estimates, at least 70% of feedstuffs and finished feeds are contaminated with one or more mycotoxins and, due to its significant prevalence, both animals and humans are highly likely to be exposed to these toxins. In addition to health risks, they also cause economic issues. From a healthcare point of view, zearalenone (ZEA) and its derivatives have been shown to exert many negative effects. Specifically, ZEA has hepatotoxicity, immunotoxicity, genotoxicity, carcinogenicity, intestinal toxicity, reproductive toxicity and endocrine disruption effects. Of these effects, male reproductive deterioration and processes that lead to this have been reviewed in this study. Papers are reviewed that demonstrate estrogenic effects of ZEA due to its analogy to estradiol and how these effects may influence male reproductive cells such as spermatozoa, Sertoli cells and Leydig cells. Data that employ epigenetic effects of ZEA are also discussed. We discuss literature data demonstrating that reactive oxygen species formation in ZEA-exposed cells plays a crucial role in diminished spermatogenesis; reduced sperm motility, viability and mitochondrial membrane potential; altered intracellular antioxidant enzyme activities; and increased rates of apoptosis and DNA fragmentation; thereby resulting in reduced pregnancy.
Collapse
Affiliation(s)
- András Balló
- Pannon Reproduction Institute, 8300 Tapolca, Hungary
- Urology Clinic, Clinical Centre, Medical School, University of Pécs, 7621 Pécs, Hungary
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
| | | | - Péter Czétány
- Urology Clinic, Clinical Centre, Medical School, University of Pécs, 7621 Pécs, Hungary
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
| | - László Márk
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
- Department of Analytical Biochemistry, Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary
- MTA-PTE Human Reproduction Scientific Research Group, 7624 Pécs, Hungary
| | - Attila Török
- Pannon Reproduction Institute, 8300 Tapolca, Hungary
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
| | - Árpád Szántó
- Pannon Reproduction Institute, 8300 Tapolca, Hungary
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
| | - Gábor Máté
- Pannon Reproduction Institute, 8300 Tapolca, Hungary
- Urology Clinic, Clinical Centre, Medical School, University of Pécs, 7621 Pécs, Hungary
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
- Correspondence:
| |
Collapse
|
25
|
Zearalenone Exposure Affects the Keap1-Nrf2 Signaling Pathway and Glucose Nutrient Absorption Related Genes of Porcine Jejunal Epithelial Cells. Toxins (Basel) 2022; 14:toxins14110793. [PMID: 36422967 PMCID: PMC9696209 DOI: 10.3390/toxins14110793] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/15/2022] [Accepted: 07/20/2022] [Indexed: 11/15/2022] Open
Abstract
This study aims to examine the impact of zearalenone (ZEA) on glucose nutrient absorption and the role of the Kelch-like erythroid cell-derived protein with CNC homology-associated protein 1 (Keap1)-nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway in zearalenone-induced oxidative stress of porcine jejunal epithelial cells (IPEC-J2). For 24 and 36 h, the IPEC-J2 cells were exposed to ZEA at concentrations of 0, 10, 20, and 40 (Control, ZEA10, ZEA20, ZEA40) mol/L. With the increase of ZEA concentration and prolongation of the action time, the apoptosis rate and malondialdehyde level and relative expression of sodium-dependent glucose co-transporter 1 (Sglt1), glucose transporter 2 (Glut2), Nrf2, quinone oxidoreductase 1 (Nqo1), and hemeoxygenase 1 (Ho1) at mRNA and protein level, fluorescence intensity of Nrf2 and reactive oxygen species increased significantly (p < 0.05), total superoxide dismutase and glutathione peroxidase activities and relative expression of Keap1 at mRNA and protein level, fluorescence intensity of Sglt1 around the cytoplasm and the cell membrane of IPEC-J2 reduced significantly (p < 0.05). In conclusion, ZEA can impact glucose absorption by affecting the expression of Sglt1 and Glut2, and ZEA can activate the Keap1-Nrf2 signaling pathway by enhancing Nrf2, Nqo1, and Ho1 expression of IPEC-J2.
Collapse
|
26
|
Lu Q, Sui M, Luo YW, Luo JY, Yang MH. Further insight into the potential toxicity of zearalenone-14-glucoside based on toxicokinetics, tissue distribution, transformation, and excretion in rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 246:114184. [PMID: 36244169 DOI: 10.1016/j.ecoenv.2022.114184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/30/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Bioaccumulation and biotransformation are critical factors that affect the release of easily metabolizable chemicals to cause human toxicity. The glucoside-type modified mycotoxin Zearalenone-14-Glucoside (Z14G) has attracted global attention for its high occurrence in foodstuffs and the potential threat to humans as its high rate of transformation into parent forms. Given the limited toxicokinetics information, this study assessed the absorption, distribution, biotransformation and excretion of Z14G, aiming to define the potential risk of Z14G. The toxicokinetics of Z14G were assessed after intravenous (IV) or oral administration (PO) in SD rats at doses of 10 mg/kg·b.w. In addition, comparative work with the parent mycotoxin ZEN was performed in parallel. The determination of Z14G and its metabolites (ZEN, α-zearalenol, β-zearalenol, α-zearalanol, β-zearalanol) proceeded with a sensitive UHPLC-MS/MS method. Our research indicated that Z14G readily disappeared from the blood, and distributed throughout the tissues via transformation into its parent form ZEN, and excreted primarily through urine. More importantly, the metabolite α-ZEL was observed in most analyzed tissue, urine and feces samples. Overall, our findings highlight the importance of biotransformation with regard to Z14G, providing critical insight for the health risk assessment of co-exposure of humans to glucoside-type modified mycotoxins.
Collapse
Affiliation(s)
- Qian Lu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Ming Sui
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Ya-Wen Luo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jiao-Yang Luo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Mei-Hua Yang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| |
Collapse
|
27
|
Jing S, Liu C, Zheng J, Dong Z, Guo N. Toxicity of zearalenone and its nutritional intervention by natural products. Food Funct 2022; 13:10374-10400. [PMID: 36165278 DOI: 10.1039/d2fo01545e] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Zearalenone (ZEN) is a toxic secondary metabolite mainly produced by fungi of the genus Fusarium, and is often present in various food and feed ingredients such as corn and wheat. The structure of ZEN is similar to that of natural estrogen, and it can bind to estrogen receptors and has estrogenic activity. Therefore, it can cause endocrine-disrupting effects and promote the proliferation of estrogen receptor-positive cell lines. In addition, ZEN can cause oxidative damage, endoplasmic reticulum stress, apoptosis, and other hazards, resulting in systemic toxic effects, including reproductive toxicity, hepatotoxicity, and immunotoxicity. In the past few decades, researchers have tried many ways to remove ZEN from food and feed, but it is still a challenge to eliminate it. In recent years, natural compounds have become of interest for their excellent protective effects on human health from food contaminants. Researchers have discovered that natural compounds often used as dietary supplements can effectively alleviate ZEN-induced systemic toxic effects. Most of the compounds mitigate ZEN-induced toxicity through antioxidant effects. In this article, the contamination of food and feed by ZEN and the various toxic effects and mechanisms of ZEN are reviewed, as well as the mitigation effects of natural compounds on ZEN-induced toxicity.
Collapse
Affiliation(s)
- Siyuan Jing
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Chunmei Liu
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Jian Zheng
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Zhijian Dong
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Na Guo
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
28
|
Harper E, Cunningham E, Connolly L. Using in vitro bioassays to guide the development of safer bio-based polymers for use in food packaging. FRONTIERS IN TOXICOLOGY 2022; 4:936014. [PMID: 36204697 PMCID: PMC9531239 DOI: 10.3389/ftox.2022.936014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/01/2022] [Indexed: 11/24/2022] Open
Abstract
Petroleum-based polymers traditionally used for plastic packaging production have been shown to leach dangerous chemicals such as bisphenol-A (BPA). Bio-based polymers are potentially safer alternatives, and many can be sustainably sourced from waste streams in the food industry. This study assesses bio-based polymers undergoing food packaging development for migration of endocrine disrupting leachates at the level of estrogen, androgen and progestagen nuclear receptor transcriptional activity. Reporter gene assays were coupled with migration testing, performed using standardised test conditions for storage and temperature. Test samples include nine bio-based polymers and four inorganic waste additives mixed with a traditional petroleum-based polymer, polypropylene. Thermoplastic starch material, polybutylene succinate, polycaprolactone, polybutylene adipate terephthalate (PBAT), two polylactic acid (PLA)/PBAT blends, polyhydroxybutyrate (PHB) and eggshell/polypropylene (10:90) presented no significant reduction in metabolic activity or hormonal activity under any test condition. Polypropylene (PP) presented no hormonal activity. Metabolic activity was reduced in the estrogen responsive cell line after 10 days migration testing of eggshell/polypropylene (0.1:99.9) in MeOH at 40°C, and PP in MeOH and dH20. Estrogenic agonist activity was observed after 10 days in poultry litter ash/polypropylene (10:90) in MeOH at 20°C and 40°C, poultry feather based polymer in MeOH and dH2O at 40°C, and eggshell/polypropylene (40:60) and PLA in dH2O at 40°C. Activity was within a range of 0.26-0.50 ng 17β-estradiol equivalents per ml, equating to an estrogenic potency of 3-∼2800 times less than the estrogenic leachate BPA. Poultry litter ash/polypropylene (10:90) in MeOH for 10 days presented estrogenic activity at 20°C and 40°C within the above range and anti-androgenic activity at 40°C. Progestagenic activity was not observed for any of the compounds under any test condition. Interestingly, lower concentrations of eggshell or PP may eliminate eggshell estrogenicity and PP toxicity. Alternatively eggshell may bind and eliminate the toxic elements of PP. Similarly, PLA estrogenic activity was removed in both PLA/PBAT blends. This study demonstrates the benefits of bioassay guidance in the development of safer and sustainable packaging alternatives to petroleum-based plastics. Manipulating the types of additives and their formulations alongside toxicological testing may further improve safety aspects.
Collapse
Affiliation(s)
- Emma Harper
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Eoin Cunningham
- School of Mechanical and Aerospace Engineering, Queen’s University Belfast, Belfast, United Kingdom
| | - Lisa Connolly
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| |
Collapse
|
29
|
Li Y, Tan H, Zhou H, Guo T, Zhou Y, Zhang Y, Liu X, Ma L. Study of Competitive Displacement of Curcumin on α-zearalenol Binding to Human Serum Albumin Complex Using Fluorescence Spectroscopy. Toxins (Basel) 2022; 14:toxins14090604. [PMID: 36136542 PMCID: PMC9501389 DOI: 10.3390/toxins14090604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/22/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
α-zearalenol (α-ZOL) is a mycotoxin with a strong estrogen effect that affects the synthesis and secretion of sex hormones and is transported to target organs through human serum albumin (HSA). Additionally, it has been reported that curcumin can also bind to HSA with high affinity at the same binding site as α-ZOL. Additionally, several studies reported that reducing the bound fraction of α-ZOL contributes to speeding up the elimination rate of α-ZOL to reduce its hazard to organs. Therefore, to explore the influence of a nutrition intervention with curcumin on α-ZOL effects, the competitive displacement of α-ZOL from HSA by curcumin was investigated using spectroscopic techniques, ultrafiltration techniques and HPLC methods. Results show that curcumin and α-ZOL share the same binding site (subdomain IIA) on HSA, and curcumin binds to HSA with a binding constant of 1.12 × 105 M−1, which is higher than that of α-ZOL (3.98 × 104 M−1). Ultrafiltration studies demonstrated that curcumin could displace α-ZOL from HSA to reduce α-ZOL’s binding fraction. Synchronous fluorescence spectroscopy revealed that curcumin could reduce the hydrophobicity of the microenvironment of an HSA–α-ZOL complex. This study is of great significance for applying curcumin and other highly active foodborne components to interfere with the toxicokinetics of α-ZOL and reduce its risk of its exposure.
Collapse
Affiliation(s)
- Yifang Li
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Hongxia Tan
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Hongyuan Zhou
- College of Food Science, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400712, China
| | - Ting Guo
- College of Food Science, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400712, China
| | - Ying Zhou
- College of Food Science, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400712, China
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Southwest University, Ministry of Education, Chongqing 400715, China
- Key Laboratory of Condiment Supervision Technology for State Market Regulation, Chongqing 400715, China
| | - Xiaozhu Liu
- Foshan Micro Miracles Biotechnology Company, Foshan 528000, China
| | - Liang Ma
- College of Food Science, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400712, China
- Key Laboratory of Condiment Supervision Technology for State Market Regulation, Chongqing 400715, China
- Correspondence: or ; Tel.: +86-1310-1282-977
| |
Collapse
|
30
|
Gheraibia S, Belattar N, Diab KA, Hassan ME, El-Nekeety AA, Abdel-Aziem SH, Hassan NS, Abdel-Wahhab MA. Costus speciosus extract protects against the oxidative damage of zearalenone via modulation of inflammatory cytokines, Nrf2 and iNOS gene expression in rats. Toxicon 2022; 214:62-73. [PMID: 35597521 DOI: 10.1016/j.toxicon.2022.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/06/2022] [Accepted: 05/11/2022] [Indexed: 11/17/2022]
Abstract
Zearalenone (ZEN) is a non-steroidal estrogenic mycotoxin that induces severe health disturbances in humans and animals. This study aimed to determine the bioactive compounds in Costus speciosus extract (CSE) using GC-MS and evaluate its protective capability against ZEN-induced oxidative damage, genotoxicity, and cytotoxicity in rats. Six groups of male Sprague Dawley rats were treated orally for 15 days including the control group, CSE-treated groups at low (200 mg/kg b. w) or high (400 mg/kg b. w) dose, ZEN-treated group (40 μg/kg b. w), and the groups treated with ZEN plus the low or the high dose of CSE. Blood and tissue samples were collected for different assays and pathological analyses. The results of GC-MS indicated the identification of 6 compounds and Azulene was the major. Animals that received ZEN showed severe disturbances in serum biochemical, cytokines, oxidative stress indicators, mRNA expression of iNOS, Nrf2, and inflammatory-related genes. ZEN also increased micronucleated polychromatic erythrocytes (MNPCEs) and comet tail formation in bone marrow cells along with the disturbances in the histological architecture of the liver and kidney. Co-administration of CSE plus ZEN could normalize the majority of the tested parameters and the histological picture at a dose as low as 200 mg/kg b. w. Therefore, CSE protects against ZEN toxicity via its antioxidant activity, modulation of iNOS, inflammatory-related genes, and the Nrf2 pathway and it could be used in the endemic regions.
Collapse
Affiliation(s)
- Sara Gheraibia
- Laboratory of Applied Biochemistry, Faculty of Sciences of Nature and Life, Ferhat Abbes University, Setif, 1, Algeria
| | - Noureddine Belattar
- Laboratory of Applied Biochemistry, Faculty of Sciences of Nature and Life, Ferhat Abbes University, Setif, 1, Algeria
| | - Kawthar A Diab
- Genetics and Cytology Department, National Research Center, Dokki, Cairo, Egypt
| | - Marwa E Hassan
- Toxicology Dept., Research Institute of Medical Entomology, Giza, Egypt
| | - Aziza A El-Nekeety
- Food Toxicology & Contaminants Department, National Research Center, Dokki, Cairo, Egypt
| | | | - Nabila S Hassan
- Pathology Department, National Research Center, Dokki, Cairo, Egypt
| | - Mosaad A Abdel-Wahhab
- Food Toxicology & Contaminants Department, National Research Center, Dokki, Cairo, Egypt.
| |
Collapse
|
31
|
Chao HH, Wang L, Ma HH, Zhao AH, Xiao HW, Zhang XF. Identification of apoptotic pathways in zearalenone-treated mouse sertoli cells. J Toxicol Sci 2022; 47:257-268. [PMID: 35650142 DOI: 10.2131/jts.47.257] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Zearalenone (ZEN), one of the most prevalent non-steroidal oestrogenic mycotoxins, is primarily produced by Fusarium fungi. Due to its toxicity as an oestrogenic compound and wide distribution in feed and foods, the reproductive toxicology of ZEN exposure is of public concern. The aim of the present study was to investigate the effect of ZEN on Sertoli cells to identify apoptotic pathways induced by this compound. We found that ZEN reduced the viability and caused apoptosis in Sertoli cells in vitro. Notably, we observed that such effects were associated with a significant increase in reactive oxygen species (ROS) and the number of cells that showed positive staining for γH2AX and RAD51, enzymes essential for repairing DNA damage. There was a parallel decrease in the expression of occludin and connexin 43, proteins that are present in the testis-blood barrier and gap junctions of Sertoli cells, respectively. Overall, the present study confirms that ZEN exposure can have serious deleterious effects on mammalian Sertoli cells and offers novel insight about its molecular targets in these cells.
Collapse
Affiliation(s)
- Hu-He Chao
- College of Veterinary medicine, Qingdao Agricultural University, China.,Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, China
| | - Lei Wang
- College of Veterinary medicine, Qingdao Agricultural University, China
| | - Hao-Hai Ma
- College of Veterinary medicine, Qingdao Agricultural University, China
| | | | - Hong-Wei Xiao
- Institute of Animal Husbandry and Veterinary Research, Hubei Academy of Agricultural Sciences, China
| | - Xi-Feng Zhang
- College of Veterinary medicine, Qingdao Agricultural University, China
| |
Collapse
|
32
|
The replacement of main cap domain to improve the activity of a ZEN lactone hydrolase with broad substrate spectrum. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Černá T, Ezechiáš M, Semerád J, Grasserová A, Cajthaml T. Evaluation of estrogenic and antiestrogenic activity in sludge and explanation of individual compound contributions. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127108. [PMID: 34523467 DOI: 10.1016/j.jhazmat.2021.127108] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/25/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
Mixture toxicity, including agonistic and antagonistic effects, is an unrevealed environmental problem. Estrogenic endocrine disruptors are known to cause adverse effects for aquatic biota, but causative chemicals and their contributions to the total activity in sewage sludge remain unknown. Therefore, advanced analytical methods, a yeast bioassay and mixture toxicity models were concurrently applied for the characterization of 8 selected sludges with delectable estrogenic activity (and 3 sludges with no activity as blanks) out of 25 samples from wastewater treatment plants (WWTPs). The first applied full logistic model adequately explained total activity by considering the concentrations of the monitored compounds. The results showed that the activity was primarily caused by natural estrogens in municipal WWTP sludge. Nevertheless, activity in a sample originating from a car-wash facility was dominantly caused by partial agonists - nonylphenols - and only a model enabling prediction of all dose-response curve parameters of the final mixture curve explained these results. Antiestrogenic effects were negligible, and effect-directed analysis identified the causative chemicals.
Collapse
Affiliation(s)
- Tereza Černá
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 4, Czech Republic; Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, Prague 2, Czech Republic
| | - Martin Ezechiáš
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 4, Czech Republic
| | - Jaroslav Semerád
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 4, Czech Republic
| | - Alena Grasserová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 4, Czech Republic; Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, Prague 2, Czech Republic
| | - Tomáš Cajthaml
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 4, Czech Republic; Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, Prague 2, Czech Republic.
| |
Collapse
|
34
|
Lu Q, Luo JY, Ruan HN, Wang CJ, Yang MH. Structure-toxicity relationships, toxicity mechanisms and health risk assessment of food-borne modified deoxynivalenol and zearalenone: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151192. [PMID: 34710421 DOI: 10.1016/j.scitotenv.2021.151192] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
Mycotoxin, as one of the most common pollutants in foodstuffs, poses great threat to food security and human health. Specifically, deoxynivalenol (DON) and zearalenone (ZEN)-two mycotoxin contaminants with considerable toxicity widely existing in food products-have aroused broad public concerns. Adding to this picture, modified forms of DON and ZEN, have emerged as another potential environmental and health threat, owing to their higher re-transformation rate into parent mycotoxins inducing accumulation of mycotoxin in humans and animals. Given this, a better understanding of the toxicity of modified mycotoxins is urgently needed. Moreover, the lack of toxicity data means a proper risk assessment of modified mycotoxins remains challenging. To better evaluate the toxicity of modified DON and ZEN, we have reviewed the relationship between their structures and toxicities. The toxicity mechanisms behind modified DON and ZEN have also been discussed; briefly, these involve acute, subacute, chronic, and combined toxicities. In addition, this review also addresses the global occurrence of modified DON and ZEN, and summarizes novel methods-including in silico analysis and implementation of relative potency factors-for risk assessment of modified DON and ZEN. Finally, the health risk assessment of modified DON and ZEN has also been discussed comprehensively.
Collapse
Affiliation(s)
- Qian Lu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jiao-Yang Luo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Hao-Nan Ruan
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Chang-Jian Wang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Mei-Hua Yang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| |
Collapse
|
35
|
The Effect of Low Doses of Zearalenone (ZEN) on the Bone Marrow Microenvironment and Haematological Parameters of Blood Plasma in Pre-Pubertal Gilts. Toxins (Basel) 2022; 14:toxins14020105. [PMID: 35202133 PMCID: PMC8880195 DOI: 10.3390/toxins14020105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 12/15/2022] Open
Abstract
The aim of this study was to determine whether low doses of zearalenone (ZEN) influence the carry-over of ZEN and its metabolites to the bone marrow microenvironment and, consequently, haematological parameters. Pre-pubertal gilts (with a body weight of up to 14.5 kg) were exposed to daily ZEN doses of 5 μg/kg BW (group ZEN5, n = 15), 10 μg/kg BW (group ZEN10, n = 15), 15 μg/kg BW (group ZEN15, n = 15), or were administered a placebo (group C, n = 15) throughout the entire experiment. Bone marrow was sampled on three dates (exposure dates 7, 21, and 42—after slaughter) and blood for haematological analyses was sampled on 10 dates. Significant differences in the analysed haematological parameters (WBC White Blood Cells, MONO—Monocytes, NEUT—Neutrophils, LYMPH—Lymphocytes, LUC—Large Unstained Cells, RBC—Red Blood Cells, HGB—Haemoglobin, HCT—Haematocrit, MCH—Mean Corpuscular Volume, MCHC—Mean Corpuscular Haemoglobin Concentrations, PLT—Platelet Count and MPV—Mean Platelet Volume) were observed between groups. The results of the experiment suggest that exposure to low ZEN doses triggered compensatory and adaptive mechanisms, stimulated the local immune system, promoted eryptosis, intensified mycotoxin biotransformation processes in the liver, and produced negative correlations between mycotoxin concentrations and selected haematological parameters.
Collapse
|
36
|
Wang Y, Zhang C, Wang J, Knopp D. Recent Progress in Rapid Determination of Mycotoxins Based on Emerging Biorecognition Molecules: A Review. Toxins (Basel) 2022; 14:73. [PMID: 35202100 PMCID: PMC8874725 DOI: 10.3390/toxins14020073] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/14/2022] [Accepted: 01/15/2022] [Indexed: 12/12/2022] Open
Abstract
Mycotoxins are secondary metabolites produced by fungal species, which pose significant risk to humans and livestock. The mycotoxins which are produced from Aspergillus, Penicillium, and Fusarium are considered most important and therefore regulated in food- and feedstuffs. Analyses are predominantly performed by official laboratory methods in centralized labs by expert technicians. There is an urgent demand for new low-cost, easy-to-use, and portable analytical devices for rapid on-site determination. Most significant advances were realized in the field bioanalytical techniques based on molecular recognition. This review aims to discuss recent progress in the generation of native biomolecules and new bioinspired materials towards mycotoxins for the development of reliable bioreceptor-based analytical methods. After brief presentation of basic knowledge regarding characteristics of most important mycotoxins, the generation, benefits, and limitations of present and emerging biorecognition molecules, such as polyclonal (pAb), monoclonal (mAb), recombinant antibodies (rAb), aptamers, short peptides, and molecularly imprinted polymers (MIPs), are discussed. Hereinafter, the use of binders in different areas of application, including sample preparation, microplate- and tube-based assays, lateral flow devices, and biosensors, is highlighted. Special focus, on a global scale, is placed on commercial availability of single receptor molecules, test-kits, and biosensor platforms using multiplexed bead-based suspension assays and planar biochip arrays. Future outlook is given with special emphasis on new challenges, such as increasing use of rAb based on synthetic and naïve antibody libraries to renounce animal immunization, multiple-analyte test-kits and high-throughput multiplexing, and determination of masked mycotoxins, including stereoisomeric degradation products.
Collapse
Affiliation(s)
- Yanru Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.W.); (C.Z.)
| | - Cui Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.W.); (C.Z.)
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.W.); (C.Z.)
| | - Dietmar Knopp
- Chair for Analytical Chemistry and Water Chemistry, Institute of Hydrochemistry, Technische Universitat München, Elisabeth-Winterhalter-Weg 6, D-81377 München, Germany
| |
Collapse
|
37
|
Flasch M, Bueschl C, Del Favero G, Adam G, Schuhmacher R, Marko D, Warth B. Elucidation of xenoestrogen metabolism by non-targeted, stable isotope-assisted mass spectrometry in breast cancer cells. ENVIRONMENT INTERNATIONAL 2022; 158:106940. [PMID: 34673318 DOI: 10.1016/j.envint.2021.106940] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/13/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Environmental exposure to xenoestrogens, i.e., chemicals that imitate the hormone 17β-estradiol, has the potential to influence hormone homeostasis and action. Detailed knowledge of xenobiotic biotransformation processes in cell models is key when transferring knowledge learned from in vitro models to in vivo relevance. This study elucidated the metabolism of two naturally-occurring phyto- and mycoestrogens; namely genistein and zearalenone, in an estrogen receptor positive breast cancer cell line (MCF-7) with the aid of stable isotope-assisted metabolomics and the bioinformatic tool MetExtract II. Metabolism was studied in a time course experiment after 2 h, 6 h and 24 h incubation. Twelve and six biotransformation products of zearalenone and genistein were detected, respectively, clearly demonstrating the abundant xenobiotic biotransformation capability of the cells. Zearalenone underwent extensive phase-I metabolism resulting in α-zearalenol (α-ZEL), a molecule known to possess a significantly higher estrogenicity, and several phase-II metabolites (sulfo- and glycoconjugates) of the native compound and the major phase I metabolite α-ZEL. Moreover, potential adducts of zearalenone with a vitamin and several hydroxylated metabolites were annotated. Genistein metabolism resulted in sulfation, combined sulfation and hydroxylation, acetylation, glucuronidation and unexpectedly adduct formation with pentose- and hexose sugars. Kinetics of metabolite formation and subsequent excretion into the extracellular medium revealed a time-dependent increase in most biotransformation products. The untargeted elucidation of biotransformation products formed during cell culture experiments enables an improved and more meaningful interpretation of toxicological assays and has the potential to identify unexpected or unknown metabolites.
Collapse
Affiliation(s)
- Mira Flasch
- University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, Währinger Str. 38, 1090 Vienna, Austria
| | - Christoph Bueschl
- University of Natural Resources and Life Sciences, Vienna (BOKU), Department of Agrobiotechnology, IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, Konrad-Lorenz-Str. 20, 3430 Tulln, Austria; University of Vienna, Faculty of Chemistry, Department of Analytical Chemistry, Währinger Str. 38, 1090 Vienna, Austria
| | - Giorgia Del Favero
- University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, Währinger Str. 38, 1090 Vienna, Austria
| | - Gerhard Adam
- University of Natural Resources and Life Sciences, Vienna (BOKU), Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, Konrad-Lorenz-Str. 24, 3430 Tulln, Austria
| | - Rainer Schuhmacher
- University of Natural Resources and Life Sciences, Vienna (BOKU), Department of Agrobiotechnology, IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, Konrad-Lorenz-Str. 20, 3430 Tulln, Austria
| | - Doris Marko
- University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, Währinger Str. 38, 1090 Vienna, Austria
| | - Benedikt Warth
- University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, Währinger Str. 38, 1090 Vienna, Austria.
| |
Collapse
|
38
|
A synergism of in silico and statistical approaches to discover new potential endocrine disruptor mycotoxins. Toxicol Appl Pharmacol 2021; 435:115832. [PMID: 34933055 DOI: 10.1016/j.taap.2021.115832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 01/14/2023]
Abstract
Mycotoxins are secondary metabolites produced by pathogenic fungi. They are found in a variety of different products, such as spices, cocoa, and cereals, and they can contaminate fields before and/or after harvest and during storage. Mycotoxins negatively impact human and animal health, causing a variety of adverse effects, ranging from acute poisoning to long-term effects. Given a large number of mycotoxins (currently more than 300 are known), it is impossible to use in vitro/in vivo methods to detect the potentially harmful effects to human health of all of these. To overcome this problem, this work aims to present a new robust computational approach, based on a combination of in silico and statistical methods, in order to screen a large number of molecules against the nuclear receptor family in a cost and time-effective manner and to discover the potential endocrine disruptor activity of mycotoxins. The results show that a high number of mycotoxins is predicted as a potential binder of nuclear receptors. In particular, ochratoxin A, zearalenone, α- and β-zearalenol, aflatoxin B1, and alternariol have been shown to be putative endocrine disruptors chemicals for nuclear receptors.
Collapse
|
39
|
Gao D, Cao X, Ren H, Wu L, Yan Y, Hua R, Xing W, Lei M, Liu J. Immunotoxicity and uterine transcriptome analysis of the effect of zearalenone (ZEA) in sows during the embryo attachment period. Toxicol Lett 2021; 357:33-42. [PMID: 34933075 DOI: 10.1016/j.toxlet.2021.12.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 12/12/2021] [Accepted: 12/17/2021] [Indexed: 12/21/2022]
Abstract
Zearalenone is a mycotoxin and a pollutant that is commonly found in crops. Once ingested, ZEA can cause disturbances in the immune system and produce immunotoxicity. However, there is little research on the effect of ZEA exposure on the relationship between immune regulation and embryo implantation in the uteri of sows. Embryo implantation relies upon the fact that the relationship between the maternal and fetal immune systems is balanced. This balance is provided by the joint regulation of immune organs, cytokines, and uterine immunity. In this study, we investigated 20 sows with an initial weight of 100.00 ± 5.00 kg and 200 days in age. The sows were fed with diets containing ZEA at concentrations of 0 mg/kg, 1 mg/kg, 2 mg/kg, and 10 mg/kg, respectively, from 8 to 14 days of gestation. We studied immunotoxicity and the uterine transcriptomics associated with the effect of ZEA in sows during embryo attachment. Following ZEA treatment, serum biochemical analysis and RT-qPCR were used to detect the concentration and mRNA expression levels of immunoglobulin IgA, IgG, and IgM, in the serum and spleen, respectively. The same analysis was carried out for a range of cytokines in the serum and spleen: IL-1, IL-2, IL-6, IL-10, and TNF. Uterine transcriptome analysis revealed 75, 215, and 81 genes that were differentially expressed in the 0 mg/kg vs 1 mg/kg treatment, 0 mg/kg vs 10 mg/kg treatment, and 1 mg/kg vs 10 mg/kg treatment, respectively. GO terms analysis showed that the up-regulated genes related to the immune system were highly expressed. KEGG pathway analysis further revealed the importance of several metabolic pathways, including drug metabolism-cytochrome P450, the cytokine-cytokine receptor interaction pathway, and calcium signaling pathways. The differentially expressed genes were confirmed by quantitative real-time PCR. These findings expand our understanding of the gene expression profiles and signaling pathways associated with the immune response to ZEA exposure in sows during the embryo implantation window. This study provides valuable information for clarifying the molecular mechanism of ZEA's immunotoxicity to early pregnant sows in the future.
Collapse
Affiliation(s)
- Dengying Gao
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, China
| | - Xinxin Cao
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, China
| | - Huihui Ren
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, China
| | - Lihang Wu
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, China
| | - Youxin Yan
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, China
| | - Renwu Hua
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, China
| | - Wenkai Xing
- Jiangxi Zhengbang Breeding Co. LTD, Jiangxi, Nanchang, China
| | - Minggang Lei
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, China; National Engineering Research Center for Livestock, China.
| | - Jian Liu
- Jiangxi Zhengbang Breeding Co. LTD, Jiangxi, Nanchang, China
| |
Collapse
|
40
|
Geng H, Tan X, Zhao M, Ma Y, Li Y. Proteomic analysis of zearalenone toxicity on mouse thymic epithelial cells. J Appl Toxicol 2021; 42:660-670. [PMID: 34716709 DOI: 10.1002/jat.4248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 09/15/2021] [Accepted: 09/21/2021] [Indexed: 11/07/2022]
Abstract
Zearalenone (ZEA) is one of the most major food contaminants in cereal crops worldwide, risking health of both livestock and humans. This study aimed to assess the cytotoxicity and the underlying mechanism of ZEA on thymic epithelial cells. By using proteomics analysis, we identified 596 differentially expressed proteins in MTEC1 cells upon zearalenone exposure, of which 245 were upregulated and 351 were downregulated. Gene ontology (GO) analysis suggested that differentially expressed proteins were participated in protein synthesis, oxidative phosphorylation, and ATP binding. KEGG pathway enrichment analysis showed that differentially expressed proteins were mainly related to mitochndrial metabolism, such as citrate cycle (TCA cycle) and oxidative phosphorylation. We demonstrated that ZEA treatment was able to increase the intracellular reactive oxygen species (ROS) level, to decrease ΔΨm, ATP level, and the copy number of mtDNA, leading to necrotic cell death. Moreover, we showed that ZEA treatment inhibited cell proliferation and induced G2/M phase arrest by downregulation of proliferation-associated proteins ERK, p-ERK, CDK1, and p-CHK1. Taken together, we found that the toxicity of ZEA on thymic epithelial cells is mainly caused by the inhibition of mitochondrial dysfunction and cell proliferation. Our study might open new avenues for treatment strategies.
Collapse
Affiliation(s)
- Hongrui Geng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiaotong Tan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Miao Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yongjiang Ma
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yugu Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
41
|
Wu J, Li J, Liu Y, Liao X, Wu D, Chen Y, Liang Z, Yuan Z, Li R, Yi J, Wen L. Tannic acid repair of zearalenone-induced damage by regulating the death receptor and mitochondrial apoptosis signaling pathway in mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117557. [PMID: 34167001 DOI: 10.1016/j.envpol.2021.117557] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 06/03/2021] [Accepted: 06/06/2021] [Indexed: 06/13/2023]
Abstract
Zearalenone (ZEA) is an estrogenic toxin produced by Fusarium strains, that is widely present in crops, and endangers the reproductive system of animals. Tannic acid (TA) is a natural polyphenolic substance that is widespread in the roots, stems, and leaves of plants, and has special pharmacological activity. This study was designed to investigate the therapeutic effect of TA on ZEA-induced ovarian damage in mice and to explore the molecular mechanism involved. Ninety healthy Kunming female mice were divided into six equal groups. All the groups but the control group were administered daily with ZEA [10 mg/kg body weight (bw)] orally, for 7 days, to induce damage to the reproductive system. Some groups were also administered with TA (50, 100, and 200 mg/bw) for 7 days. Mice were euthanized 24 h later to allow for collection of serum and ovaries. TA can effectively alleviate the appearance of congestion and redness of the ovary, caused by ZEA, and increase the number of healthy growing follicles. Moreover, the estrogen content and the levels of MDA and ROS in the ovaries can be effectively reduced by TA. It can also reduce the apoptosis of ovarian cells, decreases the protein expression of the estrogen receptor, Fas, Fasl, caspase-3, caspase-8, caspase-9, and Bax, and increases the protein expression of Bcl-2. Our study indicates that TA reduces the strong estrogen and oxidative damage induced by ZEA, and these therapeutic effects may be partially mediated by the death receptor and mitochondrial apoptosis signaling pathway.
Collapse
Affiliation(s)
- Jing Wu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Hunan Agricultural University, Changsha, 410128, China; Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Jiayan Li
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Hunan Agricultural University, Changsha, 410128, China; Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Yanwei Liu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Hunan Agricultural University, Changsha, 410128, China; Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Xinxin Liao
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Hunan Agricultural University, Changsha, 410128, China; Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Dongyi Wu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Hunan Agricultural University, Changsha, 410128, China; Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Yunqin Chen
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Hunan Agricultural University, Changsha, 410128, China; Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Zengenni Liang
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Zhihang Yuan
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Hunan Agricultural University, Changsha, 410128, China; Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Rongfang Li
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Hunan Agricultural University, Changsha, 410128, China; Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Jine Yi
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Hunan Agricultural University, Changsha, 410128, China; Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Lixin Wen
- Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China; Hunan Co-innovation Center of Animal Production Safety, Changsha, 410128, China.
| |
Collapse
|
42
|
Goya-Jorge E, Amber M, Gozalbes R, Connolly L, Barigye SJ. Assessing the chemical-induced estrogenicity using in silico and in vitro methods. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 87:103688. [PMID: 34119701 DOI: 10.1016/j.etap.2021.103688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 06/12/2023]
Abstract
Multiple substances are considered endocrine disrupting chemicals (EDCs). However, there is a significant gap in the early prioritization of EDC's effects. In this work, in silico and in vitro methods were used to model estrogenicity. Two Quantitative Structure-Activity Relationship (QSAR) models based on Logistic Regression and REPTree algorithms were built using a large and diverse database of estrogen receptor (ESR) agonism. A 10-fold external validation demonstrated their robustness and predictive capacity. Mechanistic interpretations of the molecular descriptors (C-026, nArOH,PW5, B06[Br-Br]) used for modelling suggested that the heteroatomic fragments, aromatic hydroxyls, and bromines, and the relative bond accessibility areas of molecules, are structural determinants in estrogenicity. As validation of the QSARs, ESR transactivity of thirteen persistent organic pollutants (POPs) and suspected EDCs was tested in vitro using the MMV-Luc cell line. A good correspondence between predictions and experimental bioassays demonstrated the value of the QSARs for prioritization of ESR agonist compounds.
Collapse
Affiliation(s)
- Elizabeth Goya-Jorge
- ProtoQSAR SL., CEEI (Centro Europeo de Empresas Innovadoras), Parque Tecnológico de Valencia, 12 Av. Benjamin Franklin, 46980, Paterna, Valencia, Spain; Department of Food Science, Faculty of Veterinary Medicine-FARAH, University of Liège, 10 Av. Cureghem, 4000, Sart-Tilman, Liège, Belgium.
| | - Mazia Amber
- The Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, BT9 5DL, Belfast, Northern Ireland, United Kingdom.
| | - Rafael Gozalbes
- ProtoQSAR SL., CEEI (Centro Europeo de Empresas Innovadoras), Parque Tecnológico de Valencia, 12 Av. Benjamin Franklin, 46980, Paterna, Valencia, Spain; MolDrug AI Systems SL, 45 Olimpia Arozena Torres, 46018, Valencia, Spain.
| | - Lisa Connolly
- The Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, BT9 5DL, Belfast, Northern Ireland, United Kingdom.
| | - Stephen J Barigye
- ProtoQSAR SL., CEEI (Centro Europeo de Empresas Innovadoras), Parque Tecnológico de Valencia, 12 Av. Benjamin Franklin, 46980, Paterna, Valencia, Spain; MolDrug AI Systems SL, 45 Olimpia Arozena Torres, 46018, Valencia, Spain.
| |
Collapse
|
43
|
Tvrdá E, Greifová H, Ďuračka M, Ondruška Ľ, Halenár M, Kolesárová A. Comparative analysis of the detrimental in vitro effects of three fusariotoxins on the selected structural and functional characteristics of rabbit spermatozoa. Drug Chem Toxicol 2021; 45:2519-2527. [PMID: 34380342 DOI: 10.1080/01480545.2021.1962690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
In this study, we evaluated the in vitro effects of 1-50 μM zearalenone (ZEA), deoxynivalenol (DON) and T-2 toxin (T-2) on rabbit spermatozoa for as much as 8 h of in vitro exposure. Our results indicate that all sperm quality parameters were negatively affected by these fusariotoxins in a time- and dose-dependent manner. The most prominent structure affected by ZEA was the plasma membrane, exhibiting alterations consistent with the onset of apoptosis and reactive oxygen species (ROS) overproduction. This correlated with the most prominent decline of the sperm motility among all selected fusariotoxins. Significant necrotic changes and mitochondrial dysfunction were primarily responsible for the sperm damage in the presence of T-2. Finally, exposure of spermatozoa to DON led to a significant decrease in the DNA integrity. This study may provide new information on the specific mechanisms of action involved in the in vitro toxic behavior of fusariotoxins on male gametes.
Collapse
Affiliation(s)
- Eva Tvrdá
- Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, Nitra, Slovakia
| | - Hana Greifová
- Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, Nitra, Slovakia
| | - Michal Ďuračka
- Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, Nitra, Slovakia
| | - Ľubomír Ondruška
- Institute of Small Farm Animals, Research Institute for Animal Production, Nitra, Slovakia
| | - Marek Halenár
- Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, Nitra, Slovakia
| | - Adriana Kolesárová
- Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, Nitra, Slovakia
| |
Collapse
|
44
|
Barański W, Gajęcka M, Zielonka Ł, Mróz M, Onyszek E, Przybyłowicz KE, Nowicki A, Babuchowski A, Gajęcki MT. Occurrence of Zearalenone and Its Metabolites in the Blood of High-Yielding Dairy Cows at Selected Collection Sites in Various Disease States. Toxins (Basel) 2021; 13:446. [PMID: 34203296 PMCID: PMC8309810 DOI: 10.3390/toxins13070446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 11/16/2022] Open
Abstract
Zearalenone (ZEN) and its metabolites, alpha-zearalenol (α-ZEL) and beta-zearalenol (β-ZEL), are ubiquitous in plant materials used as feed components in dairy cattle diets. The aim of this study was to confirm the occurrence of ZEN and its selected metabolites in blood samples collected from different sites in the hepatic portal system (posthepatic-external jugular vein EJV; prehepatic-abdominal subcutaneous vein ASV and median caudal vein MCV) of dairy cows diagnosed with mastitis, ovarian cysts and pyometra. The presence of mycotoxins in the blood plasma was determined with the use of combined separation methods involving immunoaffinity columns, a liquid chromatography system and a mass spectrometry system. The parent compound was detected in all samples collected from diseased cows, whereas α-ZEL and β-ZEL were not identified in any samples, or their concentrations were below the limit of detection (LOD). Zearalenone levels were highest in cows with pyometra, where the percentage share of average ZEN concentrations reached 44%. Blood sampling sites were arranged in the following ascending order based on ZEN concentrations: EJV (10.53 pg/mL, 44.07% of the samples collected from this site), ASV (14.20 pg/mL, 49.59% of the samples) and MCV (26.67 pg/mL, 67.35% of the samples). The results of the study indicate that blood samples for toxicological analyses should be collected from the MCV (prehepatic vessel) of clinically healthy cows and/or cows with subclinical ZEN mycotoxicosis. This sampling site increases the probability of correct diagnosis of subclinical ZEN mycotoxicosis.
Collapse
Affiliation(s)
- Wojciech Barański
- Department of Animal Reproduction with Clinic, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718 Olsztyn, Poland; (W.B.); (A.N.)
| | - Magdalena Gajęcka
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718 Olsztyn, Poland; (Ł.Z.); (M.M.); (M.T.G.)
| | - Łukasz Zielonka
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718 Olsztyn, Poland; (Ł.Z.); (M.M.); (M.T.G.)
| | - Magdalena Mróz
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718 Olsztyn, Poland; (Ł.Z.); (M.M.); (M.T.G.)
| | - Ewa Onyszek
- Institute of Dairy Industry Innovation Ltd., Kormoranów 1, 11-700 Mrągowo, Poland; (E.O.); (A.B.)
| | - Katarzyna E. Przybyłowicz
- Department of Human Nutrition, Faculty of Food Sciences, University of Warmia and Mazury in Olsztyn, Słoneczna 45F, 10-719 Olsztyn, Poland;
| | - Arkadiusz Nowicki
- Department of Animal Reproduction with Clinic, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718 Olsztyn, Poland; (W.B.); (A.N.)
| | - Andrzej Babuchowski
- Institute of Dairy Industry Innovation Ltd., Kormoranów 1, 11-700 Mrągowo, Poland; (E.O.); (A.B.)
| | - Maciej T. Gajęcki
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718 Olsztyn, Poland; (Ł.Z.); (M.M.); (M.T.G.)
| |
Collapse
|
45
|
Balázs A, Faisal Z, Csepregi R, Kőszegi T, Kriszt B, Szabó I, Poór M. In Vitro Evaluation of the Individual and Combined Cytotoxic and Estrogenic Effects of Zearalenone, Its Reduced Metabolites, Alternariol, and Genistein. Int J Mol Sci 2021; 22:6281. [PMID: 34208060 PMCID: PMC8230625 DOI: 10.3390/ijms22126281] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 12/04/2022] Open
Abstract
Mycotoxins are toxic metabolites of filamentous fungi. Previous studies demonstrated the co-occurrence of Fusarium and Alternaria toxins, including zearalenone (ZEN), ZEN metabolites, and alternariol (AOH). These xenoestrogenic mycotoxins appear in soy-based meals and dietary supplements, resulting in the co-exposure to ZEN and AOH with the phytoestrogen genistein (GEN). In this study, the cytotoxic and estrogenic effects of ZEN, reduced ZEN metabolites, AOH, and GEN are examined to evaluate their individual and combined impacts. Our results demonstrate that reduced ZEN metabolites, AOH, and GEN can aggravate ZEN-induced toxicity; in addition, the compounds tested exerted mostly synergism or additive combined effects regarding cytotoxicity and/or estrogenicity. Therefore, these observations underline the importance and the considerable risk of mycotoxin co-exposure and the combined effects of mycoestrogens with phytoestrogens.
Collapse
Affiliation(s)
- Adrienn Balázs
- Department of Environmental Toxicology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1, H-2100 Gödöllő, Hungary; (A.B.); (I.S.)
| | - Zelma Faisal
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus u. 2, H-7624 Pécs, Hungary;
- Food Biotechnology Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, H-7624 Pécs, Hungary;
| | - Rita Csepregi
- Lab-on-a-Chip Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, H-7624 Pécs, Hungary;
- Department of Laboratory Medicine, Medical School, University of Pécs, Ifjúság útja 13, H-7624 Pécs, Hungary
| | - Tamás Kőszegi
- Food Biotechnology Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, H-7624 Pécs, Hungary;
- Lab-on-a-Chip Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, H-7624 Pécs, Hungary;
- Department of Laboratory Medicine, Medical School, University of Pécs, Ifjúság útja 13, H-7624 Pécs, Hungary
| | - Balázs Kriszt
- Department of Environmental Safety, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1, H-2100 Gödöllő, Hungary;
| | - István Szabó
- Department of Environmental Toxicology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1, H-2100 Gödöllő, Hungary; (A.B.); (I.S.)
| | - Miklós Poór
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus u. 2, H-7624 Pécs, Hungary;
- Food Biotechnology Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, H-7624 Pécs, Hungary;
| |
Collapse
|
46
|
Gajęcka M, Majewski MS, Zielonka Ł, Grzegorzewski W, Onyszek E, Lisieska-Żołnierczyk S, Juśkiewicz J, Babuchowski A, Gajęcki MT. Concentration of Zearalenone, Alpha-Zearalenol and Beta-Zearalenol in the Myocardium and the Results of Isometric Analyses of the Coronary Artery in Prepubertal Gilts. Toxins (Basel) 2021; 13:toxins13060396. [PMID: 34199438 PMCID: PMC8228058 DOI: 10.3390/toxins13060396] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/24/2021] [Accepted: 05/31/2021] [Indexed: 11/16/2022] Open
Abstract
The carry-over of zearalenone (ZEN) to the myocardium and its effects on coronary vascular reactivity in vivo have not been addressed in the literature to date. Therefore, the objective of this study was to verify the hypothesis that low ZEN doses (MABEL, NOAEL and LOAEL) administered per os to prepubertal gilts for 21 days affect the accumulation of ZEN, α-ZEL and β-ZEL in the myocardium and the reactivity of the porcine coronary arteries to vasoconstrictors: acetylcholine, potassium chloride and vasodilator sodium nitroprusside. The contractile response to acetylcholine in the presence of a cyclooxygenase (COX) inhibitor, indomethacin and / or an endothelial nitric oxide synthase (e-NOS) inhibitor, L-NAME was also studied. The results of this study indicate that the carry-over of ZEN and its metabolites to the myocardium is a highly individualized process that occurs even at very low mycotoxin concentrations. The concentrations of the accumulated ZEN metabolites are inversely proportional to each other due to biotransformation processes. The levels of vasoconstrictors, acetylcholine and potassium chloride, were examined in the left anterior descending branch of the porcine coronary artery after oral administration of ZEN. The LOAEL dose clearly decreased vasoconstriction in response to both potassium chloride and acetylcholine (P < 0.05 for all values) and increased vasodilation in the presence of sodium nitroprusside (P = 0.021). The NOAEL dose significantly increased vasoconstriction caused by acetylcholine (P < 0.04), whereas the MABEL dose did not cause significant changes in the vascular response. Unlike higher doses of ZEN, 5 μg/kg had no negative influence on the vascular system.
Collapse
Affiliation(s)
- Magdalena Gajęcka
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13/29, 10-718 Olsztyn, Poland; (Ł.Z.); (M.T.G.)
- Correspondence:
| | - Michał S. Majewski
- Department of Pharmacology and Toxicology, Faculty of Medical Sciences, University of Warmia and Mazury in Olsztyn, Warszawska 30, 10-082 Olsztyn, Poland;
| | - Łukasz Zielonka
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13/29, 10-718 Olsztyn, Poland; (Ł.Z.); (M.T.G.)
| | - Waldemar Grzegorzewski
- Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszów, Pigonia 1, 35-310 Rzeszow, Poland;
- Interdisciplinary Center for Preclinical and Clinical Research, Department of Biotechnology, Institute of Biol-ogy and Biotechnology, College of Natural Sciences, University of Rzeszów, Pigonia 1, 35-310 Rzeszow, Po-land
| | - Ewa Onyszek
- Dairy Industry Innovation Institute Ltd., Kormoranów 1, 11-700 Mrągowo, Poland; (E.O.); (A.B.)
| | - Sylwia Lisieska-Żołnierczyk
- Independent Public Health Care Centre of the Ministry of the Interior and Administration, and the Warmia and Mazury Oncology Centre in Olsztyn, Wojska Polskiego 37, 10-228 Olsztyn, Poland;
| | - Jerzy Juśkiewicz
- Department of Biological Function of Foods, Institute of Animal Reproduction and Food Research, Division of Food Science, Tuwima 10, 10-748 Olsztyn, Poland;
| | - Andrzej Babuchowski
- Dairy Industry Innovation Institute Ltd., Kormoranów 1, 11-700 Mrągowo, Poland; (E.O.); (A.B.)
| | - Maciej T. Gajęcki
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13/29, 10-718 Olsztyn, Poland; (Ł.Z.); (M.T.G.)
| |
Collapse
|
47
|
Olopade BK, Oranusi SU, Nwinyi OC, Gbashi S, Njobeh PB. Occurrences of Deoxynivalenol, Zearalenone and some of their masked forms in selected cereals from Southwest Nigeria. NFS JOURNAL 2021. [DOI: 10.1016/j.nfs.2021.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
48
|
Kinkade CW, Rivera-Núñez Z, Gorcyzca L, Aleksunes LM, Barrett ES. Impact of Fusarium-Derived Mycoestrogens on Female Reproduction: A Systematic Review. Toxins (Basel) 2021; 13:373. [PMID: 34073731 PMCID: PMC8225184 DOI: 10.3390/toxins13060373] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 01/03/2023] Open
Abstract
Contamination of the world's food supply and animal feed with mycotoxins is a growing concern as global temperatures rise and promote the growth of fungus. Zearalenone (ZEN), an estrogenic mycotoxin produced by Fusarium fungi, is a common contaminant of cereal grains and has also been detected at lower levels in meat, milk, and spices. ZEN's synthetic derivative, zeranol, is used as a growth promoter in United States (US) and Canadian beef production. Experimental research suggests that ZEN and zeranol disrupt the endocrine and reproductive systems, leading to infertility, polycystic ovarian syndrome-like phenotypes, pregnancy loss, and low birth weight. With widespread human dietary exposure and growing experimental evidence of endocrine-disrupting properties, a comprehensive review of the impact of ZEN, zeranol, and their metabolites on the female reproductive system is warranted. The objective of this systematic review was to summarize the in vitro, in vivo, and epidemiological literature and evaluate the potential impact of ZEN, zeranol, and their metabolites (commonly referred to as mycoestrogens) on female reproductive outcomes. We conducted a systematic review (PROSPERO registration CRD42020166469) of the literature (2000-2020) following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The data sources were primary literature published in English obtained from searching PubMed, Web of Science, and Scopus. The ToxR tool was applied to assess risk of bias. In vitro and in vivo studies (n = 104) were identified and, overall, evidence consistently supported adverse effects of mycoestrogens on physiological processes, organs, and tissues associated with female reproduction. In non-pregnant animals, mycoestrogens alter follicular profiles in the ovary, disrupt estrus cycling, and increase myometrium thickness. Furthermore, during pregnancy, mycoestrogen exposure contributes to placental hemorrhage, stillbirth, and impaired fetal growth. No epidemiological studies fitting the inclusion criteria were identified.
Collapse
Affiliation(s)
- Carolyn W. Kinkade
- Joint Graduate Program in Exposure Science, Department of Environmental Sciences, Rutgers University, Piscataway, NJ 08854, USA
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA; (Z.R.-N.); (L.M.A.)
| | - Zorimar Rivera-Núñez
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA; (Z.R.-N.); (L.M.A.)
- Department of Biostatistics and Epidemiology, School of Public Health, Rutgers University, Piscataway, NJ 08854, USA
| | - Ludwik Gorcyzca
- Joint Graduate Program in Toxicology, Rutgers University, Piscataway, NJ 08554, USA;
| | - Lauren M. Aleksunes
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA; (Z.R.-N.); (L.M.A.)
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ 08901, USA
| | - Emily S. Barrett
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA; (Z.R.-N.); (L.M.A.)
- Department of Biostatistics and Epidemiology, School of Public Health, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
49
|
Hall JM, Korach KS. Endocrine disrupting chemicals (EDCs) and sex steroid receptors. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2021; 92:191-235. [PMID: 34452687 DOI: 10.1016/bs.apha.2021.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Sex-steroid receptors (SSRs) are essential mediators of estrogen, progestin, and androgen signaling that are critical in vast aspects of human development and multi-organ homeostasis. Dysregulation of SSR function has been implicated in numerous pathologies including cancers, obesity, Type II diabetes mellitus, neuroendocrine disorders, cardiovascular disease, hyperlipidemia, male and female infertility, and other reproductive disorders. Endocrine disrupting chemicals (EDCs) modulate SSR function in a wide variety of cell and tissues. There exists strong experimental, clinical, and epidemiological evidence that engagement of EDCs with SSRs may disrupt endogenous hormone signaling leading to physiological abnormalities that may manifest in disease. In this chapter, we discuss the molecular mechanisms by which EDCs interact with estrogen, progestin, and androgen receptors and alter SSR functions in target cells. In addition, the pathological consequences of disruption of SSR action in reproductive and other organs by EDCs is described with an emphasis on underlying mechanisms of receptors dysfunction.
Collapse
Affiliation(s)
- Julianne M Hall
- Quinnipiac University Frank H. Netter MD School of Medicine, Hamden, CT, United States.
| | - Kenneth S Korach
- National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States
| |
Collapse
|
50
|
Lin J, Deng L, Sun M, Wang Y, Lee S, Choi K, Liu X. An in vitro investigation of endocrine disrupting potentials of ten bisphenol analogues. Steroids 2021; 169:108826. [PMID: 33753083 DOI: 10.1016/j.steroids.2021.108826] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/06/2021] [Accepted: 03/10/2021] [Indexed: 10/21/2022]
Abstract
The endocrine disruption potency of BPA was reported elsewhere, but the mechanisms of its analogues have not been fully resolved. In this study, endocrine disruption potentials of nine alternative bisphenol analogues, namely 2,2-bis(4-hydroxyphenyl)butane (BPB), 2,2-Bis(4-hydroxy-3-methylphenyl)propane (BPC), 4,4'-dihydroxydiphenylmethane (BPF), 4,4'-(1,3-Phenylene diisopropylidene)bisphenol (BPM), 4,4'-(1,4-phenylenediisopropylidene)bisphenol (BPP), 4,4'- sulfonyldiphenol (BPS), 4,4' cyclohexylidenebisphenol (BPZ), 4,4' (hexafluoroisopropylidene)-diphenol (BPAF) and 4,4'-(1-phenylethylidene)bisphenol (BPAP), plus 2,2-bis(4-hydroxyphenyl)propane (BPA) were investigated by H295R cell and MVLN cell bioassays. In the H295R cell assay, the endpoints included hormone production and key genes for steroidogenesis (CYP11A, CYP17, CYP19 and 3βHSD2) or metabolism sulfotransferase (SULT1A1, SULT2A1 and SULT2B1) at the molecular level. The results indicated that except for BPP or BPAF, the eight other bisphenols significantly increased the E2/T ratio. In addition, BPB, BPF and BPS significantly up-regulate CYP19 gene expression, and only BPB significantly reduced sulfotransferase gene expression. In the MVLN luciferase gene reporter assay, seven bisphenols induced luciferase activity alone, and are 104 to 108-fold less potent than E2. Their nuclear ERα binding activity is in the order of BPAF > BPZ > BPP > BPB > BPA > BPF > BPS. In summary, all nine tested bisphenols showed endocrine toxicity through different mechanisms. Some had similar potency as BPA, but some had even higher potency. Further research is necessary to evaluate the toxicity of these potential BPA substitutes.
Collapse
Affiliation(s)
- Juntong Lin
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong 523-808, China
| | - Langjing Deng
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong 523-808, China
| | - Mingwei Sun
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong 523-808, China
| | - Yao Wang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong 523-808, China
| | - Sangwoo Lee
- Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Kyungho Choi
- School of Public Health & Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea
| | - Xiaoshan Liu
- School of Public Health & Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|