1
|
Dal-Cheri BKA, de Souza W, Lima LMTR, Yoshihara NMA, Sant'Anna C, Boldrini LC, Leite PEC. In vitroinflammatory and cytotoxic responses of human alveolar cells to amorphous silica nanoparticles exposure. NANOTECHNOLOGY 2025; 36:175101. [PMID: 40043323 DOI: 10.1088/1361-6528/adbcb3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 03/05/2025] [Indexed: 03/25/2025]
Abstract
Silicon dioxide nanoparticles (SiO2NPs) are widely used to manufacture products for human consumption. However, their large-scale use in many fields poses risks to industrial workers. In this study, we investigated the cytotoxic and inflammatory potential of SiO2NPs in the human cell line A549, representing the human alveolar epithelium. The NPs were characterized using energy-dispersive x-ray spectroscopy coupled with scanning electron microscopy, x-ray diffraction, transmission electron microscopy, dispersion, and dynamic light scattering. The effects on A549 cells were monitored by cell adhesion and proliferation using electrical impedance, as well as cell viability, apoptosis, necrosis, and secretion of multiple inflammatory mediators. SiO2NPs did not alter the adhesion and proliferation of A549 cells but led to cell death by apoptosis at the highest concentrations tested. SiO2NP impacted the secretion of pro-inflammatory (tumor necrosis factor-α, interleukin (IL)-8, monocyte chemoattractant protein-1, eotaxin, regulated upon activation, normal T cell expressed and secreted, vascular growth factor, granulocyte-macrophage colony-stimulating factor, and granulocyte-colony stimulating factor) and anti-inflammatory (IL-1ra and IL-10) mediators. These results indicate that, even with little impact on cell viability, SiO2NPs can represent a silent danger, owing to their influence on inflammatory mediator secretion and unbalanced local homeostasis.
Collapse
Affiliation(s)
- Beatriz K A Dal-Cheri
- Eukaryotic Cell Biology Laboratory, National Institute of Metrology, Quality and Technology, Duque de Caxias, Brazil
- Postgraduate Program in Translational Biomedicine, Grande Rio University, Duque de Caxias, Brazil
- Postgraduate Program in Biotechnology, National Institute of Metrology, Quality and Technology, Duque de Caxias, Brazil
| | - Wanderson de Souza
- Eukaryotic Cell Biology Laboratory, National Institute of Metrology, Quality and Technology, Duque de Caxias, Brazil
| | - Luis Mauricio T R Lima
- Eukaryotic Cell Biology Laboratory, National Institute of Metrology, Quality and Technology, Duque de Caxias, Brazil
- Postgraduate Program in Biotechnology, National Institute of Metrology, Quality and Technology, Duque de Caxias, Brazil
- Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Natalia M A Yoshihara
- Eukaryotic Cell Biology Laboratory, National Institute of Metrology, Quality and Technology, Duque de Caxias, Brazil
- Postgraduate Program in Biotechnology, National Institute of Metrology, Quality and Technology, Duque de Caxias, Brazil
| | - Celso Sant'Anna
- Eukaryotic Cell Biology Laboratory, National Institute of Metrology, Quality and Technology, Duque de Caxias, Brazil
- Postgraduate Program in Translational Biomedicine, Grande Rio University, Duque de Caxias, Brazil
- Postgraduate Program in Biotechnology, National Institute of Metrology, Quality and Technology, Duque de Caxias, Brazil
| | - Leonardo C Boldrini
- Eukaryotic Cell Biology Laboratory, National Institute of Metrology, Quality and Technology, Duque de Caxias, Brazil
- Postgraduate Program in Translational Biomedicine, Grande Rio University, Duque de Caxias, Brazil
- Postgraduate Program in Biotechnology, National Institute of Metrology, Quality and Technology, Duque de Caxias, Brazil
| | - Paulo Emilio C Leite
- Postgraduate Program in Science and Biotechnology, Fluminense Federal University (UFF), Niteroi, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Peivandi Z, Shirazi FH, Teimourian S, Farnam G, Babaei V, Mehrparvar N, Koohsari N, Ashtarinezhad A. Silica nanoparticles-induced cytotoxicity and genotoxicity in A549 cell lines. Sci Rep 2024; 14:14484. [PMID: 38914713 PMCID: PMC11196255 DOI: 10.1038/s41598-024-65333-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/19/2024] [Indexed: 06/26/2024] Open
Abstract
Among the myriad of nanoparticles, silica nanoparticles (SiO2NPs) have gained significant attention since they are extensively produced and used across several kinds of industries. Because of its widespread usage, there has been increasing concern about the potential health effects. This study aims to evaluate the effects of SiO2NPs on Interleukin-6 (IL-6) gene expression in human lung epithelial cell lines (A549). In this study, A549 cells were exposed to SiO2NPs at concentrations of 0, 1, 10, 50, 100, and 200 µg/mL for 24 and 48 h. The IL-6 gene expression was assessed using Real-Time RT-PCR. Additionally, the impact of SiO2NPs on the viability of A549 cells was determined by MTT assay. Statistical analysis was performed using GraphPad Prism software 8.0. MTT assay results indicated a concentration-dependent impact on cell survival. After 24 h, survival decreased from 80 to 68% (1-100 µg/mL), rising to 77% at higher concentrations. After 48 h, survival dropped from 97 to 80%, decreasing to 90% at higher concentrations. RT-PCR showed a dose-response relationship in cellular toxicity up to 10 µg/mL. At higher concentrations, there was increased IL-6 gene expression, mitigating SiO2NP-induced cytotoxic effects. The study shows that the viability and proliferation of A549 cells are impacted by different SiO2NPs concentrations. There may be a potential correlation between IL-6 gene expression reduction and a mechanism linked to cellular toxicity. However, at higher concentrations, an unknown mechanism increases IL-6 gene expression, reducing SiO2NPs' cytotoxic effects. These effects are concentration-dependent and not influenced by exposure times. Further investigation is recommended to determine this mechanism's nature and implications, particularly in cancer research.
Collapse
Affiliation(s)
- Zahra Peivandi
- Department of Occupational Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Farshad H Shirazi
- Pharmaceutical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Pharmacology/Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahram Teimourian
- Department of Medical Genetics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Golrokh Farnam
- Pharmaceutical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Babaei
- Pharmaceutical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Mehrparvar
- Department of Occupational Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Nasim Koohsari
- Department of Pharmacology/Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azadeh Ashtarinezhad
- Department of Occupational Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Ao LH, Wei YG, Tian HR, Zhao H, Li J, Ban JQ. Advances in the study of silica nanoparticles in lung diseases. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169352. [PMID: 38110102 DOI: 10.1016/j.scitotenv.2023.169352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/01/2023] [Accepted: 12/11/2023] [Indexed: 12/20/2023]
Abstract
Silicon dioxide nanoparticles (SiNPs) are one of the major forms of silicon dioxide and are composed of the most-abundant compounds on earth. Based on their excellent properties, SiNPs are widely used in food production, synthetic processes, medical diagnostics, drug delivery, and other fields. The mass production and wide application of SiNPs increases the risk of human exposure to SiNPs. In the workplace and environment, SiNPs mainly enter the human body through the respiratory tract and reach the lungs; therefore, the lungs are the most important and most toxicologically affected target organ of SiNPs. An increasing number of studies have shown that SiNP exposure can cause severe lung toxicity. However, studies on the toxicity of SiNPs in ex vivo and in vivo settings are still in the exploratory phase. The molecular mechanisms underlying the lung toxicity of SiNPs are varied and not yet fully understood. As a result, this review summarizes the possible mechanisms of SiNP-induced lung toxicity, such as oxidative stress, endoplasmic reticulum stress, mitochondrial damage, and cell death. Moreover, this study provides a summary of the progression of diseases caused by SiNPs, thereby establishing a theoretical basis for future studies on the mechanisms of SiNP-induced lung toxicity.
Collapse
Affiliation(s)
- Li-Hong Ao
- School of Public Heath, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Yun-Geng Wei
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hong-Ru Tian
- School of Public Heath, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Hua Zhao
- School of Public Heath, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Jun Li
- School of Public Heath, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Jia-Qi Ban
- School of Public Heath, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China.
| |
Collapse
|
4
|
Elje E, Mariussen E, McFadden E, Dusinska M, Rundén-Pran E. Different Sensitivity of Advanced Bronchial and Alveolar Mono- and Coculture Models for Hazard Assessment of Nanomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:407. [PMID: 36770370 PMCID: PMC9921680 DOI: 10.3390/nano13030407] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/03/2023] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
For the next-generation risk assessment (NGRA) of chemicals and nanomaterials, new approach methodologies (NAMs) are needed for hazard assessment in compliance with the 3R's to reduce, replace and refine animal experiments. This study aimed to establish and characterize an advanced respiratory model consisting of human epithelial bronchial BEAS-2B cells cultivated at the air-liquid interface (ALI), both as monocultures and in cocultures with human endothelial EA.hy926 cells. The performance of the bronchial models was compared to a commonly used alveolar model consisting of A549 in monoculture and in coculture with EA.hy926 cells. The cells were exposed at the ALI to nanosilver (NM-300K) in the VITROCELL® Cloud. After 24 h, cellular viability (alamarBlue assay), inflammatory response (enzyme-linked immunosorbent assay), DNA damage (enzyme-modified comet assay), and chromosomal damage (cytokinesis-block micronucleus assay) were measured. Cytotoxicity and genotoxicity induced by NM-300K were dependent on both the cell types and model, where BEAS-2B in monocultures had the highest sensitivity in terms of cell viability and DNA strand breaks. This study indicates that the four ALI lung models have different sensitivities to NM-300K exposure and brings important knowledge for the further development of advanced 3D respiratory in vitro models for the most reliable human hazard assessment based on NAMs.
Collapse
Affiliation(s)
- Elisabeth Elje
- Health Effects Laboratory, Department for Environmental Chemistry, NILU—Norwegian Institute for Air Research, 2007 Kjeller, Norway
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway
| | - Espen Mariussen
- Health Effects Laboratory, Department for Environmental Chemistry, NILU—Norwegian Institute for Air Research, 2007 Kjeller, Norway
- Department of Air Quality and Noise, Norwegian Institute of Public Health, 0456 Oslo, Norway
| | - Erin McFadden
- Health Effects Laboratory, Department for Environmental Chemistry, NILU—Norwegian Institute for Air Research, 2007 Kjeller, Norway
| | - Maria Dusinska
- Health Effects Laboratory, Department for Environmental Chemistry, NILU—Norwegian Institute for Air Research, 2007 Kjeller, Norway
| | - Elise Rundén-Pran
- Health Effects Laboratory, Department for Environmental Chemistry, NILU—Norwegian Institute for Air Research, 2007 Kjeller, Norway
| |
Collapse
|
5
|
Reichinger D, Reithofer M, Hohagen M, Drinic M, Tobias J, Wiedermann U, Kleitz F, Jahn-Schmid B, Becker CFW. A Biomimetic, Silaffin R5-Based Antigen Delivery Platform. Pharmaceutics 2022; 15:pharmaceutics15010121. [PMID: 36678751 PMCID: PMC9866965 DOI: 10.3390/pharmaceutics15010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 01/01/2023] Open
Abstract
Nature offers a wide range of evolutionary optimized materials that combine unique properties with intrinsic biocompatibility and that can be exploited as biomimetic materials. The R5 and RRIL peptides employed here are derived from silaffin proteins that play a crucial role in the biomineralization of marine diatom silica shells and are also able to form silica materials in vitro. Here, we demonstrate the application of biomimetic silica particles as a vaccine delivery and adjuvant platform by linking the precipitating peptides R5 and the RRIL motif to a variety of peptide antigens. The resulting antigen-loaded silica particles combine the advantages of biomaterial-based vaccines with the proven intracellular uptake of silica particles. These particles induce NETosis in human neutrophils as well as IL-6 and TNF-α secretion in murine bone marrow-derived dendritic cells.
Collapse
Affiliation(s)
- Daniela Reichinger
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 38, 1090 Vienna, Austria
- Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, Währinger Str. 42, 1090 Vienna, Austria
| | - Manuel Reithofer
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
- Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Gregor-Mendel-Straße 33, 1180 Vienna, Austria
| | - Mariam Hohagen
- Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, Währinger Str. 42, 1090 Vienna, Austria
- Department of Inorganic Chemistry–Functional Materials, Faculty of Chemistry, University of Vienna, Währinger Str. 42, 1090 Vienna, Austria
| | - Mirjana Drinic
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Kinderspitalgasse 15, 1090 Vienna, Austria
| | - Joshua Tobias
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Kinderspitalgasse 15, 1090 Vienna, Austria
| | - Ursula Wiedermann
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Kinderspitalgasse 15, 1090 Vienna, Austria
| | - Freddy Kleitz
- Department of Inorganic Chemistry–Functional Materials, Faculty of Chemistry, University of Vienna, Währinger Str. 42, 1090 Vienna, Austria
| | - Beatrice Jahn-Schmid
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Christian F. W. Becker
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 38, 1090 Vienna, Austria
- Correspondence:
| |
Collapse
|
6
|
Pulmonary Toxicity of Silica Linked to Its Micro- or Nanometric Particle Size and Crystal Structure: A Review. NANOMATERIALS 2022; 12:nano12142392. [PMID: 35889616 PMCID: PMC9318389 DOI: 10.3390/nano12142392] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/10/2022] [Accepted: 07/11/2022] [Indexed: 02/06/2023]
Abstract
Silicon dioxide (SiO2) is a mineral compound present in the Earth’s crust in two mineral forms: crystalline and amorphous. Based on epidemiological and/or biological evidence, the pulmonary effects of crystalline silica are considered well understood, with the development of silicosis, emphysema, chronic bronchitis, or chronic obstructive pulmonary disease. The structure and capacity to trigger oxidative stress are recognized as relevant determinants in crystalline silica’s toxicity. In contrast, natural amorphous silica was long considered nontoxic, and was often used as a negative control in experimental studies. However, as manufactured amorphous silica nanoparticles (or nanosilica or SiNP) are becoming widely used in industrial applications, these paradigms must now be reconsidered at the nanoscale (<100 nm). Indeed, recent experimental studies appear to point towards significant toxicity of manufactured amorphous silica nanoparticles similar to that of micrometric crystalline silica. In this article, we present an extensive review of the nontumoral pulmonary effects of silica based on in vitro and in vivo experimental studies. The findings of this review are presented both for micro- and nanoscale particles, but also based on the crystalline structure of the silica particles.
Collapse
|
7
|
Bianchi MG, Chiu M, Taurino G, Bergamaschi E, Cubadda F, Macaluso GM, Bussolati O. The TLR4/NFκB-Dependent Inflammatory Response Activated by LPS Is Inhibited in Human Macrophages Pre-Exposed to Amorphous Silica Nanoparticles. NANOMATERIALS 2022; 12:nano12132307. [PMID: 35808143 PMCID: PMC9268534 DOI: 10.3390/nano12132307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/23/2022] [Accepted: 06/30/2022] [Indexed: 11/16/2022]
Abstract
Amorphous silica nanoparticles (ASNP) are present in a variety of products and their biological effects are actively investigated. Although several studies have documented pro-inflammatory effects of ASNP, the possibility that they also modify the response of innate immunity cells to natural activators has not been thoroughly investigated. Here, we study the effects of pyrogenic ASNP on the LPS-dependent activation of human macrophages differentiated from peripheral blood monocytes. In macrophages, 24 h of pre-exposure to non-cytotoxic doses of ASNP markedly inhibited the LPS-dependent induction of pro-inflammatory (TNFα, IL-6) and anti-inflammatory cytokines (IL-10). The inhibitory effect was associated with the suppression of NFκB activation and the increased intracellular sequestration of the TLR4 receptor. The late induction of glutamine synthetase (GS) by LPS was also prevented by pre-exposure to ASNP, while GS silencing did not interfere with cytokine secretion. It is concluded that (i) macrophages exposed to ASNP are less sensitive to LPS-dependent activation and (ii) GS induction by LPS is likely secondary to the stimulation of cytokine secretion. The observed interference with LPS effects may point to a dampening of the acute inflammatory response after exposure to ASNP in humans.
Collapse
Affiliation(s)
- Massimiliano G. Bianchi
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (M.C.); (G.T.); (G.M.M.); (O.B.)
- Correspondence:
| | - Martina Chiu
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (M.C.); (G.T.); (G.M.M.); (O.B.)
| | - Giuseppe Taurino
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (M.C.); (G.T.); (G.M.M.); (O.B.)
| | - Enrico Bergamaschi
- Department of Public Health Sciences and Pediatrics, University of Turin, 10126 Turin, Italy;
| | - Francesco Cubadda
- Istituto Superiore di Sanità-Italian National Institute of Health, 00161 Rome, Italy;
| | - Guido M. Macaluso
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (M.C.); (G.T.); (G.M.M.); (O.B.)
- Centro di Odontoiatria, University of Parma, 43126 Parma, Italy
| | - Ovidio Bussolati
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (M.C.); (G.T.); (G.M.M.); (O.B.)
- Microbiome Research Hub, University of Parma, 43124 Parma, Italy
| |
Collapse
|
8
|
Wiemann M, Vennemann A, Schuster TB, Nolde J, Krueger N. Surface Treatment With Hydrophobic Coating Reagents (Organosilanes) Strongly Reduces the Bioactivity of Synthetic Amorphous Silica in vitro. Front Public Health 2022; 10:902799. [PMID: 35801234 PMCID: PMC9253389 DOI: 10.3389/fpubh.2022.902799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
Synthetic amorphous silica (SAS) is industrially relevant material whose bioactivity in vitro is strongly diminished, for example, by protein binding to the particle surface. Here, we investigated the in vitro bioactivity of fourteen SAS (pyrogenic, precipitated, or colloidal), nine of which were surface-treated with organosilanes, using alveolar macrophages as a highly sensitive test system. Dispersion of the hydrophobic SAS required pre-wetting with ethanol and extensive ultrasonic treatment in the presence of 0.05% BSA (Protocol 1). Hydrophilic SAS was suspended by moderate ultrasonic treatment (Protocol 2) and also by Protocol 1. The suspensions were administered to NR8383 alveolar macrophages under serum-free conditions for 16 h, and the release of LDH, GLU, H2O2, and TNFα was measured in cell culture supernatants. While seven surface-treated hydrophobic SAS exhibited virtually no bioactivity, two materials (AEROSIL® R 504 and AEROSIL® R 816) had minimal effects on NR8383 cells. In contrast, non-treated SAS elicited considerable increases in LDH, GLU, and TNFα, while the release of H2O2 was low except for CAB-O-SIL® S17D Fumed Silica. Dispersing hydrophilic SAS with Protocol 1 gradually reduced the bioactivity but did not abolish it. The results show that hydrophobic coating reagents, which bind covalently to the SAS surface, abrogate the bioactivity of SAS even under serum-free in vitro conditions. The results may have implications for the hazard assessment of hydrophobic surface-treated SAS in the lung.
Collapse
Affiliation(s)
- Martin Wiemann
- IBE R&D Institute for Lung Health gGmbH, Münster, Germany
- *Correspondence: Martin Wiemann
| | | | | | | | | |
Collapse
|
9
|
Torres A, Collin-Faure V, Diemer H, Moriscot C, Fenel D, Gallet B, Cianférani S, Sergent JA, Rabilloud T. Repeated Exposure of Macrophages to Synthetic Amorphous Silica Induces Adaptive Proteome Changes and a Moderate Cell Activation. NANOMATERIALS 2022; 12:nano12091424. [PMID: 35564134 PMCID: PMC9105884 DOI: 10.3390/nano12091424] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/14/2022] [Accepted: 04/18/2022] [Indexed: 11/21/2022]
Abstract
Synthetic amorphous silica (SAS) is a nanomaterial used in a wide variety of applications, including the use as a food additive. Two types of SAS are commonly employed as a powder additive, precipitated silica and fumed silica. Numerous studies have investigated the effects of synthetic amorphous silica on mammalian cells. However, most of them have used an exposure scheme based on a single dose of SAS. In this study, we have used instead a repeated 10-day exposure scheme in an effort to better simulate the occupational exposure encountered in daily life by consumers and workers. As a biological model, we have used the murine macrophage cell line J774A.1, as macrophages are very important innate immune cells in the response to particulate materials. In order to obtain a better appraisal of the macrophage responses to this repeated exposure to SAS, we have used proteomics as a wide-scale approach. Furthermore, some of the biological pathways detected as modulated by the exposure to SAS by the proteomic experiments have been validated through targeted experiments. Overall, proteomics showed that precipitated SAS induced a more important macrophage response than fumed SAS at equal dose. Nevertheless, validation experiments showed that most of the responses detected by proteomics are indeed adaptive, as the cellular homeostasis appeared to be maintained at the end of the exposure. For example, the intracellular glutathione levels or the mitochondrial transmembrane potential at the end of the 10 days exposure were similar for SAS-exposed cells and for unexposed cells. Similarly, no gross lysosomal damage was observed after repeated exposure to SAS. Nevertheless, important functions of macrophages such as phagocytosis, TNFα, and interleukin-6 secretion were up-modulated after exposure, as was the expression of important membrane proteins such as the scavenger receptors, MHC-II, or the MAC-1 receptor. These results suggest that repeated exposure to low doses of SAS slightly modulates the immune functions of macrophages, which may alter the homeostasis of the immune system.
Collapse
Affiliation(s)
- Anaelle Torres
- Chemistry and Biology of Metals Laboratory, Université Grenoble Alpes, Centre National de la Recherche Scientifique, Commissariat à l’Energie Atomique, Interdisciplinary Research Institute of Grenoble, 38054 Grenoble, France; (A.T.); (V.C.-F.)
| | - Véronique Collin-Faure
- Chemistry and Biology of Metals Laboratory, Université Grenoble Alpes, Centre National de la Recherche Scientifique, Commissariat à l’Energie Atomique, Interdisciplinary Research Institute of Grenoble, 38054 Grenoble, France; (A.T.); (V.C.-F.)
| | - Hélène Diemer
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), Centre National de la Rech erche Scientifique, Hubert Curien Pluridisciplinary Institute UMR 7178, Strasbourg University, 67087 Strasbourg, France; (H.D.); (S.C.)
- Infrastructure Nationale de Protéomique ProFI—FR2048, 67087 Strasbourg, France
| | - Christine Moriscot
- Integrated Structural Biology Grenoble (ISBG), European Molecular Biology Laboratory Université Grenoble Alpes, Centre National de la Recherche Scientifique, Commissariat à l’Energie Atomique, 71 Avenue des Martyrs, 38042 Grenoble, France;
| | - Daphna Fenel
- Institute of Structural Biology (IBS), Université Grenoble Alpes, Centre National de la Recherche Scientifique, Commissariat à l’Energie Atomique, Interdisciplinary Research Institute of Grenoble, 38044 Grenoble, France; (D.F.); (B.G.)
| | - Benoît Gallet
- Institute of Structural Biology (IBS), Université Grenoble Alpes, Centre National de la Recherche Scientifique, Commissariat à l’Energie Atomique, Interdisciplinary Research Institute of Grenoble, 38044 Grenoble, France; (D.F.); (B.G.)
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), Centre National de la Rech erche Scientifique, Hubert Curien Pluridisciplinary Institute UMR 7178, Strasbourg University, 67087 Strasbourg, France; (H.D.); (S.C.)
- Infrastructure Nationale de Protéomique ProFI—FR2048, 67087 Strasbourg, France
| | | | - Thierry Rabilloud
- Chemistry and Biology of Metals Laboratory, Université Grenoble Alpes, Centre National de la Recherche Scientifique, Commissariat à l’Energie Atomique, Interdisciplinary Research Institute of Grenoble, 38054 Grenoble, France; (A.T.); (V.C.-F.)
- Correspondence: ; Tel.: +33-43-878-3212
| |
Collapse
|
10
|
Refsnes M, Skuland T, Øvrevik J, Låg M. Role of scavenger receptors in silica nanoparticle-induced cytokine responses in bronchial epithelial cells. Toxicol Lett 2021; 353:100-106. [PMID: 34653535 DOI: 10.1016/j.toxlet.2021.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/15/2021] [Accepted: 10/08/2021] [Indexed: 10/20/2022]
Abstract
A major challenge in nanoparticle (NP) research is to elucidate how NPs activate initial targets in cells, leading to cytotoxicity and inflammation. We have previously shown that silica (Si)NPs induce pro-inflammatory responses in bronchial epithelial cells (BEAS-2B) via mechanisms involving transforming growth factor (TGF)-α release, and activation of MAP-kinase p38 and JNK besides NF-κB (p65). In the present study, the roles of scavenger receptors (SRs) in SiNP-induced cytokine responses in BEAS-2B cells were examined by siRNA silencing. Cells exposed to Si10 and Si50 (nominal sizes 10 and 50 nm) showed marked interleukin (IL)-6, CXCL8, IL-1α, IL-1β responses. Transient knockdown of SR-B1, LOX-1 and CXCL16 reduced the Si10- and Si50-induced cytokine responses, to a different magnitude dependent on the particle size, SR and cytokine. Si10-induced TGF-α responses were also markedly reduced by knockdown of SR-B1 and CXCL16. Furthermore, the role of SR-B1 in Si10-induced phosphorylations of p65 and MAP-kinases p38 and JNK were examined, and no significant reductions were observed upon knockdown of SR-B1. In conclusion, LOX-1 and CXCL16 and especially SR-B1 seem to have important roles in mediating cytokine responses and TGF-α release due to SiNP exposure in BEAS-2B cells, without a down-stream role of MAP-kinase and NF-κB.
Collapse
Affiliation(s)
- Magne Refsnes
- Section of Air Quality and Noise, Department of Environmental Health, Norwegian Institute of Public Health, PO Box 222 Skøyen, N-0213, Oslo, Norway.
| | - Tonje Skuland
- Section of Air Quality and Noise, Department of Environmental Health, Norwegian Institute of Public Health, PO Box 222 Skøyen, N-0213, Oslo, Norway
| | - Johan Øvrevik
- Section of Air Quality and Noise, Department of Environmental Health, Norwegian Institute of Public Health, PO Box 222 Skøyen, N-0213, Oslo, Norway
| | - Marit Låg
- Section of Air Quality and Noise, Department of Environmental Health, Norwegian Institute of Public Health, PO Box 222 Skøyen, N-0213, Oslo, Norway
| |
Collapse
|
11
|
Braakhuis HM, Murphy F, Ma-Hock L, Dekkers S, Keller J, Oomen AG, Stone V. An Integrated Approach to Testing and Assessment to Support Grouping and Read-Across of Nanomaterials After Inhalation Exposure. ACTA ACUST UNITED AC 2021; 7:112-128. [PMID: 34746334 PMCID: PMC8567336 DOI: 10.1089/aivt.2021.0009] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Introduction: Here, we describe the generation of hypotheses for grouping nanoforms (NFs) after inhalation exposure and the tailored Integrated Approaches to Testing and Assessment (IATA) with which each specific hypothesis can be tested. This is part of a state-of-the-art framework to support the hypothesis-driven grouping and read-across of NFs, as developed by the EU-funded Horizon 2020 project GRACIOUS. Development of Grouping Hypotheses and IATA: Respirable NFs, depending on their physicochemical properties, may dissolve either in lung lining fluid or in acidic lysosomal fluid after uptake by cells. Alternatively, NFs may also persist in particulate form. Dissolution in the lung is, therefore, a decisive factor for the toxicokinetics of NFs. This has led to the development of four hypotheses, broadly grouping NFs as instantaneous, quickly, gradually, and very slowly dissolving NFs. For instantaneously dissolving NFs, hazard information can be derived by read-across from the ions. For quickly dissolving particles, as accumulation of particles is not expected, ion toxicity will drive the toxic profile. However, the particle aspect influences the location of the ion release. For gradually dissolving and very slowly dissolving NFs, particle-driven toxicity is of concern. These NFs may be grouped by their reactivity and inflammation potency. The hypotheses are substantiated by a tailored IATA, which describes the minimum information and laboratory assessments of NFs under investigation required to justify grouping. Conclusion: The GRACIOUS hypotheses and tailored IATA for respiratory toxicity of inhaled NFs can be used to support decision making regarding Safe(r)-by-Design product development or adoption of precautionary measures to mitigate potential risks. It can also be used to support read-across of adverse effects such as pulmonary inflammation and subsequent downstream effects such as lung fibrosis and lung tumor formation after long-term exposure.
Collapse
Affiliation(s)
- Hedwig M Braakhuis
- Centre for Health Protection and Centre for Safety of Substances and Products, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Fiona Murphy
- NanoSafety Research Group, Heriot Watt University, Edinburgh, United Kingdom
| | - Lan Ma-Hock
- Experimental Toxicology and Ecology, BASF, Ludwigshafen am Rhein, Germany
| | - Susan Dekkers
- Centre for Health Protection and Centre for Safety of Substances and Products, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Johannes Keller
- Experimental Toxicology and Ecology, BASF, Ludwigshafen am Rhein, Germany
| | - Agnes G Oomen
- Centre for Health Protection and Centre for Safety of Substances and Products, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Vicki Stone
- NanoSafety Research Group, Heriot Watt University, Edinburgh, United Kingdom
| |
Collapse
|
12
|
Arezki Y, Cornacchia J, Rapp M, Lebeau L, Pons F, Ronzani C. A Co-Culture Model of the Human Respiratory Tract to Discriminate the Toxicological Profile of Cationic Nanoparticles According to Their Surface Charge Density. TOXICS 2021; 9:210. [PMID: 34564361 PMCID: PMC8470030 DOI: 10.3390/toxics9090210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 12/16/2022]
Abstract
This study aimed at discriminating with sensitivity the toxicological effects of carbon dots (CDs) with various zeta potential (ζ) and charge density (Qek) in different cellular models of the human respiratory tract. One anionic and three cationic CDs were synthetized as follows: CD-COOH (ζ = -43.3 mV); CD-PEI600 (Qek = 4.70 µmol/mg; ζ = +31.8 mV); CD-PEHA (Qek = 3.30 µmol/mg; ζ = +29.2 mV) and CD-DMEDA (Qek = 0.01 µmol/mg; ζ = +11.1 mV). Epithelial cells (A549) and macrophages (THP-1) were seeded alone or as co-cultures with different A549:THP-1 ratios. The obtained models were characterized, and multiple biological responses evoked by CDs were assessed in the mono-cultures and the best co-culture model. With 14% macrophages, the 2:1 ratio co-culture best mimicked the in vivo conditions and responded to lipopolysaccharides. The anionic CD did not induce any effect in the mono-cultures nor in the co-culture. Among the cationic CDs, the one with the highest charge density (CD-PEI600) induced the most pronounced responses whatever the culture model. The cationic CDs of low charge density (CD-PEHA and CD-DMEDA) evoked similar responses in the mono-cultures, whereas in the co-culture, the three cationic CDs ranked according to their charge density (CD-PEI600 > CD-PEHA > CD-DMEDA), when taking into account their inflammatory effect. Thus, the co-culture system developed in this study appears to be a sensitive model for finely discriminating the toxicological profile of cationic nanoparticles differing by the density of their surface charges.
Collapse
Affiliation(s)
| | | | | | | | | | - Carole Ronzani
- Laboratoire de Conception et Application de Molécules Bioactives, Faculté de Pharmacie, UMR 7199, CNRS-Université de Strasbourg, 67400 Illkirch, France; (Y.A.); (J.C.); (M.R.); (L.L.); (F.P.)
| |
Collapse
|
13
|
Hufnagel M, Neuberger R, Wall J, Link M, Friesen A, Hartwig A. Impact of Differentiated Macrophage-Like Cells on the Transcriptional Toxicity Profile of CuO Nanoparticles in Co-Cultured Lung Epithelial Cells. Int J Mol Sci 2021; 22:ijms22095044. [PMID: 34068728 PMCID: PMC8126233 DOI: 10.3390/ijms22095044] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/22/2021] [Accepted: 05/05/2021] [Indexed: 02/07/2023] Open
Abstract
To mimic more realistic lung tissue conditions, co-cultures of epithelial and immune cells are one comparatively easy-to-use option. To reveal the impact of immune cells on the mode of action (MoA) of CuO nanoparticles (NP) on epithelial cells, A549 cells as a model for epithelial cells have been cultured with or without differentiated THP-1 cells, as a model for macrophages. After 24 h of submerged incubation, cytotoxicity and transcriptional toxicity profiles were obtained and compared between the cell culture systems. Dose-dependent cytotoxicity was apparent starting from 8.0 µg/cm2 CuO NP. With regard to gene expression profiles, no differences between the cell models were observed concerning metal homeostasis, oxidative stress, and DNA damage, confirming the known MoA of CuO NP, i.e., endocytotic particle uptake, intracellular particle dissolution within lysosomes with subsequent metal ion deliberation, increased oxidative stress, and genotoxicity. However, applying a co-culture of epithelial and macrophage-like cells, CuO NP additionally provoked a pro-inflammatory response involving NLRP3 inflammasome and pro-inflammatory transcription factor activation. This study demonstrates that the application of this easy-to-use advanced in vitro model is able to extend the detection of cellular effects provoked by nanomaterials by an immunological response and emphasizes the use of such models to address a more comprehensive MoA.
Collapse
|
14
|
Guo C, Liu Y, Li Y. Adverse effects of amorphous silica nanoparticles: Focus on human cardiovascular health. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124626. [PMID: 33296760 DOI: 10.1016/j.jhazmat.2020.124626] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 11/04/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
Amorphous silica nanoparticle (SiNPs) has tremendous potential for a host of applications, while its mass production, broad application and environmental release inevitably increase the risk of human exposure. SiNPs could enter into the human body through different routes such as inhalation, ingestion, skin contact and even injection for medical applications. The cardiovascular system is gradually recognized as one of the primary sites for engineered NPs exerting adverse effects. Accumulating epidemiological or experimental evidence support the association between SiNPs exposure and adverse cardiovascular effects. However, this topic is still in its infancy, and the literature shows high inter-study variability and even contradictory results. New challenges still present in the safety evaluation of SiNPs, and its toxicological mechanisms are poorly understood. Here, scientific papers related to cardiovascular studies of SiNPs in vivo and in vitro were selected, and the updated particle-caused cardiovascular toxicity and potential mechanisms were summarized. Moreover, the understanding of how factors primarily including exposure dose, route of administration, particle size and surface properties, influence the interaction between SiNPs and cardiovascular system was discussed. In particular, the adverse outcome pathway (AOP) framework by which SiNPs cause deleterious effects in the cardiovascular system was described, aiming to provide useful information necessary for the regulatory decision and to guide a safer application of nanotechnology.
Collapse
Affiliation(s)
- Caixia Guo
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yufan Liu
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Yanbo Li
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
15
|
Dong X, Wu Z, Li X, Xiao L, Yang M, Li Y, Duan J, Sun Z. The Size-dependent Cytotoxicity of Amorphous Silica Nanoparticles: A Systematic Review of in vitro Studies. Int J Nanomedicine 2020; 15:9089-9113. [PMID: 33244229 PMCID: PMC7683827 DOI: 10.2147/ijn.s276105] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 09/29/2020] [Indexed: 12/11/2022] Open
Abstract
With the increasing production and application of engineered amorphous silica nanoparticles (aSiNPs), people have more opportunities to be exposed to aSiNPs. However, the knowledge of its adverse health effects and related mechanisms is still limited, compared with the well-studied crystalline micron-sized silica. Since small differences in the physical–chemical properties of nanoparticles could cause significant differences in the toxic effect, it is important to distinguish how these variations influence the outcoming toxicity. Notably, particle size, as one of the essential characterizations of aSiNPs, is relevant to its biological activities. Thus, the aim of this systematic review was to summarize the relationship between the particle size of aSiNPs and its adverse biological effects. In order to avoid the influence of complicated in vivo experimental conditions on the toxic outcome, only in vitro toxicity studies which reported on the cytotoxic effect of different sizes aSiNPs were included. After the systematic literature retrieval, selection, and quality assessment process, 76 eligible scientific papers were finally included in this review. There were 76% of the studies that concluded a size-dependent cytotoxicity of aSiNPs, in which smaller-sized aSiNPs possessed greater toxicity. However, this trend could be modified by certain influence factors, such as the synthetic method of aSiNPs, particle aggregation state in cell culture medium, toxicity endpoint detection method, and some other experimental conditions. The effects of these influence factors on the size-dependent cytotoxicity of aSiNPs were also discussed in detail in the present review.
Collapse
Affiliation(s)
- Xuemeng Dong
- School of Public Health, Capital Medical University, Beijing 100069, People's Republic of China
| | - Zehao Wu
- School of Public Health, Capital Medical University, Beijing 100069, People's Republic of China
| | - Xiuping Li
- School of Public Health, Capital Medical University, Beijing 100069, People's Republic of China
| | - Liyan Xiao
- School of Public Health, Capital Medical University, Beijing 100069, People's Republic of China
| | - Man Yang
- School of Public Health, Capital Medical University, Beijing 100069, People's Republic of China.,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, People's Republic of China
| | - Yang Li
- School of Public Health, Capital Medical University, Beijing 100069, People's Republic of China.,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, People's Republic of China
| | - Junchao Duan
- School of Public Health, Capital Medical University, Beijing 100069, People's Republic of China.,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, People's Republic of China
| | - Zhiwei Sun
- School of Public Health, Capital Medical University, Beijing 100069, People's Republic of China.,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, People's Republic of China
| |
Collapse
|
16
|
Skuland T, Låg M, Gutleb AC, Brinchmann BC, Serchi T, Øvrevik J, Holme JA, Refsnes M. Pro-inflammatory effects of crystalline- and nano-sized non-crystalline silica particles in a 3D alveolar model. Part Fibre Toxicol 2020; 17:13. [PMID: 32316988 PMCID: PMC7175518 DOI: 10.1186/s12989-020-00345-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/07/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Silica nanoparticles (SiNPs) are among the most widely manufactured and used nanoparticles. Concerns about potential health effects of SiNPs have therefore risen. Using a 3D tri-culture model of the alveolar lung barrier we examined effects of exposure to SiNPs (Si10) and crystalline silica (quartz; Min-U-Sil) in the apical compartment consisting of human alveolar epithelial A549 cells and THP-1-derived macrophages, as well as in the basolateral compartment with Ea.hy926 endothelial cells. Inflammation-related responses were measured by ELISA and gene expression. RESULTS Exposure to both Si10 and Min-U-Sil induced gene expression and release of CXCL8, interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), interleukin-1α (IL-1α) and interleukin-1β (IL-1β) in a concentration-dependent manner. Cytokine/chemokine expression and protein levels were highest in the apical compartment. Si10 and Min-U-Sil also induced expression of adhesion molecules ICAM-1 and E-selectin in the apical compartment. In the basolateral endothelial compartment we observed marked, but postponed effects on expression of all these genes, but only at the highest particle concentrations. Geneexpressions of heme oxygenase-1 (HO-1) and the metalloproteases (MMP-1 and MMP-9) were less affected. The IL-1 receptor antagonist (IL-1RA), markedly reduced effects of Si10 and Min-U-Sil exposures on gene expression of cytokines and adhesion molecules, as well as cytokine-release in both compartments. CONCLUSIONS Si10 and Min-U-Sil induced gene expression and release of pro-inflammatory cytokines/adhesion molecules at both the epithelial/macrophage and endothelial side of a 3D tri-culture. Responses in the basolateral endothelial cells were only induced at high concentrations, and seemed to be mediated by IL-1α/β released from the apical epithelial cells and macrophages.
Collapse
Affiliation(s)
- Tonje Skuland
- Section of Air Pollution and Noise, Department of Environment and Health, Norwegian Institute of Public Health, PO Box 4404 Nydalen, N-0403, Oslo, Norway.
| | - Marit Låg
- Section of Air Pollution and Noise, Department of Environment and Health, Norwegian Institute of Public Health, PO Box 4404 Nydalen, N-0403, Oslo, Norway
| | - Arno C Gutleb
- Environmental Research and Innovation (ERIN), Luxembourg Institute of Science and Technology (LIST), Belvaux, Grand Duchy of Luxembourg, Luxembourg
| | - Bendik C Brinchmann
- Section of Air Pollution and Noise, Department of Environment and Health, Norwegian Institute of Public Health, PO Box 4404 Nydalen, N-0403, Oslo, Norway
- Department of Occupational Medicine and Epidemiology, National Institute of Occupational Health, Oslo, Norway
| | - Tommaso Serchi
- Environmental Research and Innovation (ERIN), Luxembourg Institute of Science and Technology (LIST), Belvaux, Grand Duchy of Luxembourg, Luxembourg
| | - Johan Øvrevik
- Section of Air Pollution and Noise, Department of Environment and Health, Norwegian Institute of Public Health, PO Box 4404 Nydalen, N-0403, Oslo, Norway
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Jørn A Holme
- Section of Air Pollution and Noise, Department of Environment and Health, Norwegian Institute of Public Health, PO Box 4404 Nydalen, N-0403, Oslo, Norway
| | - Magne Refsnes
- Section of Air Pollution and Noise, Department of Environment and Health, Norwegian Institute of Public Health, PO Box 4404 Nydalen, N-0403, Oslo, Norway
| |
Collapse
|
17
|
Schmitz C, Welck J, Tavernaro I, Grinberg M, Rahnenführer J, Kiemer AK, van Thriel C, Hengstler JG, Kraegeloh A. Mechanical strain mimicking breathing amplifies alterations in gene expression induced by SiO 2 NPs in lung epithelial cells. Nanotoxicology 2019; 13:1227-1243. [PMID: 31418614 DOI: 10.1080/17435390.2019.1650971] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The effects of engineered nanomaterials on human health are still intensively studied in order to facilitate their safe application. However, relatively little is known how mechanical strain as induced in alveolar epithelial cells by breathing movements modifies biological responses to nanoparticles (NPs). In this study, A549 cells as a model for alveolar epithelial cells were exposed to 25 nm amorphous colloidal silica NPs under dynamic and static culture conditions. Gene array data, qPCR, and ELISA revealed an amplified effect of NPs when cells were mechanically stretched in order to model the physiological mechanical deformation during breathing. In contrast, treatment of cells with either strain or NPs alone only led to minor changes in gene expression or interleukin-8 (IL-8) secretion. Confocal microscopy revealed that stretching does not lead to an increased internalization of NPs, indicating that elevated intracellular NP accumulation is not responsible for the observed effect. Gene expression alterations induced by combined exposure to NPs and mechanical strain showed a high similarity to those known to be induced by TNF-α. This study suggests that the inclusion of mechanical strain into in vitro models of the human lung may have a strong influence on the test results.
Collapse
Affiliation(s)
- Carmen Schmitz
- INM-Leibniz Institute for New Materials , Saarbrücken , Germany.,Department of Pharmacy, Pharmaceutical Biology, Saarland University , Saarbrücken , Germany
| | - Jennifer Welck
- INM-Leibniz Institute for New Materials , Saarbrücken , Germany
| | | | - Marianna Grinberg
- Department of Statistics, TU Dortmund University , Dortmund , Germany
| | - Jörg Rahnenführer
- Department of Statistics, TU Dortmund University , Dortmund , Germany
| | - Alexandra K Kiemer
- Department of Pharmacy, Pharmaceutical Biology, Saarland University , Saarbrücken , Germany
| | - Christoph van Thriel
- IfADo-Leibniz Research Centre for Working Environment and Human Factors , Dortmund , Germany
| | - Jan G Hengstler
- IfADo-Leibniz Research Centre for Working Environment and Human Factors , Dortmund , Germany
| | | |
Collapse
|
18
|
Refsnes M, Skuland T, Lilleaas E, Øvrevik J, Låg M. Concentration‐dependent cytokine responses of silica nanoparticles and role of ROS in human lung epithelial cells. Basic Clin Pharmacol Toxicol 2019; 125:304-314. [DOI: 10.1111/bcpt.13221] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 03/04/2019] [Indexed: 01/09/2023]
Affiliation(s)
- Magne Refsnes
- Department of Air Pollution and Noise Norwegian Institute of Public Health Oslo Norway
| | - Tonje Skuland
- Department of Air Pollution and Noise Norwegian Institute of Public Health Oslo Norway
| | - Edel Lilleaas
- Department of Air Pollution and Noise Norwegian Institute of Public Health Oslo Norway
| | - Johan Øvrevik
- Department of Air Pollution and Noise Norwegian Institute of Public Health Oslo Norway
| | - Marit Låg
- Department of Air Pollution and Noise Norwegian Institute of Public Health Oslo Norway
| |
Collapse
|
19
|
Blockage of TGF- α Induced by Spherical Silica Nanoparticles Inhibits Epithelial-Mesenchymal Transition and Proliferation of Human Lung Epithelial Cells. BIOMED RESEARCH INTERNATIONAL 2019; 2019:8231267. [PMID: 30906781 PMCID: PMC6398060 DOI: 10.1155/2019/8231267] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 01/23/2019] [Indexed: 12/20/2022]
Abstract
Background. Xuanwei City in Yunnan province has been one of the towns with highest lung cancer mortality in China. The high content of amorphous silica in the bituminous coal from Xuanwei of Yunnan is mainly present as irregular and spherical silica nanoparticles (SiNPs). It has been reported that silica nanoparticles in bituminous coal correlated with the high incidence of lung cancer in Xuanwei. To explore the role and mechanism of SiNPs in the tumorigenesis of lung cancer in Xuanwei, human mononuclear cells (THP-1) and human bronchial epithelial cells (BEAS-2B) were cocultured in a transwell chamber. Combined with Benzo[a]pyrene-7, 8-dihydrodiol-9, and 10-epoxide (BPDE), SiNPs could significantly promote the proliferation and Epithelial-Mesenchymal Transition (EMT) and inhibit apoptosis of BEAS-2B cells and induce the release of TGF-α from THP-1 cells. After neutralizing TGF-α with antibody, the proliferation and EMT were decreased and enhanced apoptosis of BEAS-2B cells. Furthermore, the results showed that TGF-α in the sera of patients with lung adenocarcinoma in Xuanwei were significantly higher than in patients with benign pulmonary lesions in Xuanwei and those with lung adenocarcinoma in outside of Xuanwei of Yunnan. Taken together, our study found that SiNPs promoted the proliferation and EMT of BEAS-2B cells by inducing the release of TGF-α from THP-1 cells.
Collapse
|
20
|
Guo C, You DY, Li H, Tuo XY, Liu ZJ. Spherical silica nanoparticles promote malignant transformation of BEAS-2B cells by stromal cell-derived factor-1α (SDF-1α). J Int Med Res 2019; 47:1264-1278. [PMID: 30727793 PMCID: PMC6421376 DOI: 10.1177/0300060518814333] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Objective This study aimed to examine the role of spherical silica nanoparticles
(SiNPs) on human bronchial epithelial (BEAS-2B) cells through
inflammation. Methods Human mononuclear (THP-1) cells and BEAS-2B cells were co-cultured in
transwell chambers and treated with 800 mmol/L
benzo[a]pyrene-7, 8-dihydrodiol-9, 10-epoxide (BPDE) and
12.5 µg/mL SiNPs for 24 hours. For controls, cells were treated with BPDE
alone. Subcutaneous tumorigenicity and epithelial-mesenchymal transition
(EMT) of BEAS-2B cells were measured. The cells were blocked with a stromal
cell-derived factor-1α (SDF-1α)-specific antibody. EMT was analyzed in cells
treated with 800 mmol/L BPDE and 12.5 µg/mL SiNPs relative to matched
control cells and xenografts in vivo. Serum SDF-1α levels
were measured in 23 patients with lung adenocarcinoma in Xuanwei, in 25 with
lung adenocarcinoma outside Xuanwei, and in 22 with benign pulmonary lesions
in Xuanwei. Results SiNPs significantly promoted tumorigenesis and EMT, induced the release of
SDF-1α, and activated AKT (ser473) in BEAS-2B cells. EMT and phosphorylated
AKT (ser473) and glycogen synthase kinase-3β levels were decreased when
blocked by SDF-1α antibody in BEAS-2B cells. SDF-1α was mainly secreted by
THP-1 cells. Conclusion SiNPs combined with BPDE promote EMT of BEAS-2B cells via the AKT pathway by
inducing release of SDF-1α from THP-1 cells.
Collapse
Affiliation(s)
- Chong Guo
- 1 Department of Laboratory Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.,2 Yunnan Key Laboratory of Laboratory Medicine, Kunming, Yunnan, China
| | - Ding-Yun You
- 3 School of Public Health, Kunming Medical University, Kunming, Yunnan, China
| | - Huan Li
- 1 Department of Laboratory Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Xiao-Yu Tuo
- 2 Yunnan Key Laboratory of Laboratory Medicine, Kunming, Yunnan, China
| | - Zi-Jie Liu
- 1 Department of Laboratory Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.,2 Yunnan Key Laboratory of Laboratory Medicine, Kunming, Yunnan, China
| |
Collapse
|
21
|
Ambient fine particulate matter induce toxicity in lung epithelial-endothelial co-culture models. Toxicol Lett 2019; 301:133-145. [DOI: 10.1016/j.toxlet.2018.11.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/13/2018] [Accepted: 11/22/2018] [Indexed: 01/09/2023]
|
22
|
Effects of Ultrasonic Dispersion Energy on the Preparation of Amorphous SiO₂ Nanomaterials for In Vitro Toxicity Testing. NANOMATERIALS 2018; 9:nano9010011. [PMID: 30583541 PMCID: PMC6359325 DOI: 10.3390/nano9010011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/10/2018] [Accepted: 12/18/2018] [Indexed: 02/07/2023]
Abstract
Synthetic amorphous silica (SAS) constitute a large group of industrial nanomaterials (NM). Based on their different production processes, SAS can be distinguished as precipitated, fumed, gel and colloidal. The biological activity of SAS, e.g., cytotoxicity or inflammatory potential in the lungs is low but has been shown to depend on the particle size, at least for colloidal silica. Therefore, the preparation of suspensions from highly aggregated or agglomerated SAS powder materials is critical. Here we analyzed the influence of ultrasonic dispersion energy on the biologic activity of SAS using NR8383 alveolar macrophage (AM) assay. Fully characterized SAS (7 precipitated, 3 fumed, 3 gel, and 1 colloidal) were dispersed in H2O by stirring and filtering through a 5 µm filter. Aqueous suspensions were sonicated with low or high ultrasonic dispersion (USD) energy of 18 or 270 kJ/mL, respectively. A dose range of 11.25–90 µg/mL was administered to the AM under protein-free conditions to detect particle-cell interactions without the attenuating effect of proteins that typically occur in vivo. The release of lactate dehydrogenase (LDH), glucuronidase (GLU), and tumor necrosis factor α (TNF) were measured after 16 h. Hydrogen peroxide (H2O2) production was assayed after 90 min. The overall pattern of the in vitro response to SAS (12/14) was clearly dose-dependent, except for two SAS which showed very low bioactivity. High USD energy gradually decreased the particle size of precipitated, fumed, and gel SAS whereas the low adverse effect concentrations (LOECs) remained unchanged. Nevertheless, the comparison of dose-response curves revealed slight, but uniform shifts in EC50 values (LDH, and partially GLU) for precipitated SAS (6/7), gel SAS (2/3), and fumed SAS (3/3). Release of TNF changed inconsistently with higher ultrasonic dispersion (USD) energy whereas the induction of H2O2 was diminished in all cases. Electron microscopy and energy dispersive X-ray analysis showed an uptake of SAS into endosomes, lysosomes, endoplasmic reticulum, and different types of phagosomes. The possible effects of different uptake routes are discussed. The study shows that the effect of increased USD energy on the in vitro bioactivity of SAS is surprisingly small. As the in vitro response of AM to different SAS is highly uniform, the production process per se is of minor relevance for toxicity.
Collapse
|
23
|
Loret T, Rogerieux F, Trouiller B, Braun A, Egles C, Lacroix G. Predicting the in vivo pulmonary toxicity induced by acute exposure to poorly soluble nanomaterials by using advanced in vitro methods. Part Fibre Toxicol 2018; 15:25. [PMID: 29866184 PMCID: PMC5987386 DOI: 10.1186/s12989-018-0260-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 05/09/2018] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Animal models remain at that time a reference tool to predict potential pulmonary adverse effects of nanomaterials in humans. However, in a context of reduction of the number of animals used in experimentation, there is a need for reliable alternatives. In vitro models using lung cells represent relevant alternatives to assess potential nanomaterial acute toxicity by inhalation, particularly since advanced in vitro methods and models have been developed. Nevertheless, the ability of in vitro experiments to replace animal experimentation for predicting potential acute pulmonary toxicity in human still needs to be carefully assessed. The aim of the study was to evaluate the differences existing between the in vivo and the in vitro approaches for the prediction of nanomaterial toxicity and to find advanced methods to enhance in vitro predictivity. For this purpose, rats or pneumocytes in co-culture with macrophages were exposed to the same poorly soluble and poorly toxic TiO2 and CeO2 nanomaterials, by the respiratory route in vivo or using more or less advanced methodologies in vitro. After 24 h of exposure, biological responses were assessed focusing on pro-inflammatory effects and quantitative comparisons were performed between the in vivo and in vitro methods, using compatible dose metrics. RESULTS For each dose metric used (mass/alveolar surface or mass/macrophage), we observed that the most realistic in vitro exposure method, the air-liquid interface method, was the most predictive of in vivo effects regarding biological activation levels. We also noted less differences between in vivo and in vitro results when doses were normalized by the number of macrophages rather than by the alveolar surface. Lastly, although we observed similarities in the nanomaterial ranking using in vivo and in vitro approaches, the quality of the data-set was insufficient to provide clear ranking comparisons. CONCLUSIONS We showed that advanced methods could be used to enhance in vitro experiments ability to predict potential acute pulmonary toxicity in vivo. Moreover, we showed that the timing of the dose delivery could be controlled to enhance the predictivity. Further studies should be necessary to assess if air-liquid interface provide more reliable ranking of nanomaterials than submerged methods.
Collapse
Affiliation(s)
- Thomas Loret
- Institut National de l’Environnement Industriel et des Risques (INERIS), (DRC/VIVA/TOXI), Parc Technologique ALATA - BP 2, F-60550 Verneuil-en-Halatte, France
- Université de Technologie de Compiègne (UTC), Laboratoire BioMécanique et BioIngénierie (BMBI), UMR CNRS 7338, 60205 Compiègne, France
| | - Françoise Rogerieux
- Institut National de l’Environnement Industriel et des Risques (INERIS), (DRC/VIVA/TOXI), Parc Technologique ALATA - BP 2, F-60550 Verneuil-en-Halatte, France
| | - Bénédicte Trouiller
- Institut National de l’Environnement Industriel et des Risques (INERIS), (DRC/VIVA/TOXI), Parc Technologique ALATA - BP 2, F-60550 Verneuil-en-Halatte, France
| | - Anne Braun
- Institut National de l’Environnement Industriel et des Risques (INERIS), (DRC/VIVA/TOXI), Parc Technologique ALATA - BP 2, F-60550 Verneuil-en-Halatte, France
| | - Christophe Egles
- Université de Technologie de Compiègne (UTC), Laboratoire BioMécanique et BioIngénierie (BMBI), UMR CNRS 7338, 60205 Compiègne, France
- Department of Biomedical Engineering, Tufts University, Medford, MA USA
| | - Ghislaine Lacroix
- Institut National de l’Environnement Industriel et des Risques (INERIS), (DRC/VIVA/TOXI), Parc Technologique ALATA - BP 2, F-60550 Verneuil-en-Halatte, France
| |
Collapse
|
24
|
Låg M, Skuland T, Godymchuk A, Nguyen THT, Pham HLT, Refsnes M. Silica Nanoparticle-induced Cytokine Responses in BEAS-2B and HBEC3-KT Cells: Significance of Particle Size and Signalling Pathways in Different Lung Cell Cultures. Basic Clin Pharmacol Toxicol 2018; 122:620-632. [PMID: 29334172 DOI: 10.1111/bcpt.12963] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 01/04/2018] [Indexed: 12/16/2022]
Abstract
We have previously reported that silica nanoparticles (SiNPs) of nominal size 50 nm (Si50) induce the pro-inflammatory cytokines CXCL8 and IL-6 in BEAS-2B cells, via mechanisms involving MAPK p38, TACE-mediated TGF-α release and the NF-κB pathway. In this study, we examined whether these findings are cell specific or might be extended to another epithelial lung cell model, HBEC3-KT, and also to SiNPs of a smaller size (nominal size of 10 nm; Si10). The TEM average size of Si10 and Si50 was 10.9 and 34.7 nm, respectively. The surface area (BET) of Si10 was three times higher than for Si50 per mass unit. With respect to hydrodynamic size (DLS), Si10 in exposure medium showed a higher z-average for the main peak than Si50, indicating more excessive agglomeration. Si10 strongly induced CXCL8 and IL-6, as assessed by ELISA and RT-PCR, and was markedly more potent than Si50, even when adjusted to equal surface area. Furthermore, Si10 was far more cytotoxic, measured as lactate dehydrogenase (LDH) release, than Si50 in both epithelial cell cultures. With respect to signalling pathways, Western analysis and experiments with and without inhibition of MAPK, TACE and NF-κB (synthetic inhibitors) revealed that p38-phosphorylation, TACE-mediated TGF-α release and NF-κB activation seem to be important triggering mechanisms for both Si50 and Si10 in the two different lung epithelial cell cultures. In conclusion, the identified signalling pathways are suggested to be important in inducing cytokine responses in different epithelial cell types and also for various sizes of silica nanoparticles.
Collapse
Affiliation(s)
- Marit Låg
- Department of Air Pollution and Noise, Norwegian Institute of Public Health, Oslo, Norway.,Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Norway
| | - Tonje Skuland
- Department of Air Pollution and Noise, Norwegian Institute of Public Health, Oslo, Norway
| | - Anna Godymchuk
- Department of Nanomaterials and Nanotechnologies, Tomsk Polytechnic University, Tomsk, Russia.,Department of Functional Nanosystems and High-temperature Materials, National University of Science and Technology 'MISIS', Moscow, Russia
| | - Thu H T Nguyen
- Department of Air Pollution and Noise, Norwegian Institute of Public Health, Oslo, Norway.,Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Norway
| | - Hang L T Pham
- Department of Air Pollution and Noise, Norwegian Institute of Public Health, Oslo, Norway.,Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Norway
| | - Magne Refsnes
- Department of Air Pollution and Noise, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
25
|
Cao Y. The Toxicity of Nanoparticles to Human Endothelial Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1048:59-69. [DOI: 10.1007/978-3-319-72041-8_4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
26
|
Murugadoss S, Lison D, Godderis L, Van Den Brule S, Mast J, Brassinne F, Sebaihi N, Hoet PH. Toxicology of silica nanoparticles: an update. Arch Toxicol 2017; 91:2967-3010. [PMID: 28573455 PMCID: PMC5562771 DOI: 10.1007/s00204-017-1993-y] [Citation(s) in RCA: 287] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 05/18/2017] [Indexed: 12/18/2022]
Abstract
Large-scale production and use of amorphous silica nanoparticles (SiNPs) have increased the risk of human exposure to SiNPs, while their health effects remain unclear. In this review, scientific papers from 2010 to 2016 were systematically selected and sorted based on in vitro and in vivo studies: to provide an update on SiNPs toxicity and to address the knowledge gaps indicated in the review of Napierska (Part Fibre Toxicol 7:39, 2010). Toxicity of SiNPs in vitro is size, dose, and cell type dependent. SiNPs synthesized by wet route exhibited noticeably different biological effects compared to thermal route-based SiNPs. Amorphous SiNPs (particularly colloidal and stöber) induced toxicity via mechanisms similar to crystalline silica. In vivo, route of administration and physico-chemical properties of SiNPs influences the toxicokinetics. Adverse effects were mainly observed in acutely exposed animals, while no significant signs of toxicity were noted in chronically dosed animals. The correlation between in vitro and in vivo toxicity remains less well established mainly due to improper-unrealistic-dosing both in vitro and in vivo. In conclusion, notwithstanding the multiple studies published in recent years, unambiguous linking of physico-chemical properties of SiNPs types to toxicity, bioavailability, or human health effects is not yet possible.
Collapse
Affiliation(s)
- Sivakumar Murugadoss
- Unit for Lung Toxicology, Katholieke Universiteit Leuven, Herestraat 49, O&N1, Room: 07.702, box 706, 3000 Louvain, Belgium
| | - Dominique Lison
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Université Catholique de Louvain, Avenue E. Mounier 52/B1.52.12, 1200 Brussels, Belgium
| | - Lode Godderis
- Department of Occupational, Environmental and Insurance Medicine, Katholieke Universiteit Leuven, Kapucijnenvoer 35 block d, box 7001, 3000 Louvain, Belgium
| | - Sybille Van Den Brule
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Université Catholique de Louvain, Avenue E. Mounier 52/B1.52.12, 1200 Brussels, Belgium
| | - Jan Mast
- EM-unit, Center for Veterinary and Agrochemical Studies and Research (CODA-CERVA), Groeselenberg 99, Uccle, 1180 Brussels, Belgium
| | - Frederic Brassinne
- EM-unit, Center for Veterinary and Agrochemical Studies and Research (CODA-CERVA), Groeselenberg 99, Uccle, 1180 Brussels, Belgium
| | - Noham Sebaihi
- General Quality and Safety, Metrology Department, National Standards, North Gate-Office 2A29, Bd du Roi Albert II, 16, 1000 Brussels, Belgium
| | - Peter H. Hoet
- Unit for Lung Toxicology, Katholieke Universiteit Leuven, Herestraat 49, O&N1, Room: 07.702, box 706, 3000 Louvain, Belgium
| |
Collapse
|
27
|
Sekiya T, Yamagishi J, Gray JHV, Whitney PG, Martinelli A, Zeng W, Wong CY, Sugimoto C, Jackson DC, Chua BY. PEGylation of a TLR2-agonist-based vaccine delivery system improves antigen trafficking and the magnitude of ensuing antibody and CD8 + T cell responses. Biomaterials 2017; 137:61-72. [DOI: 10.1016/j.biomaterials.2017.05.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/26/2017] [Accepted: 05/09/2017] [Indexed: 12/28/2022]
|
28
|
Dalzon B, Aude-Garcia C, Collin-Faure V, Diemer H, Béal D, Dussert F, Fenel D, Schoehn G, Cianférani S, Carrière M, Rabilloud T. Differential proteomics highlights macrophage-specific responses to amorphous silica nanoparticles. NANOSCALE 2017; 9:9641-9658. [PMID: 28671223 DOI: 10.1039/c7nr02140b] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The technological and economic benefits of engineered nanomaterials may be offset by their adverse effects on living organisms. One of the highly produced nanomaterials under such scrutiny is amorphous silica nanoparticles, which are known to have an appreciable, although reversible, inflammatory potential. This is due to their selective toxicity toward macrophages, and it is thus important to study the cellular responses of this cell type to silica nanoparticles to better understand the direct or indirect adverse effects of nanosilica. We have here studied the responses of the RAW264.7 murine macrophage cells and of the control MPC11 plasma cells to subtoxic concentrations of nanosilica, using a combination of proteomic and targeted approaches. This allowed us to document alterations in the cellular cytoskeleton, in the phagocytic capacity of the cells as well as their ability to respond to bacterial stimuli. More surprisingly, silica nanoparticles also induce a greater sensitivity of macrophages to DNA alkylating agents, such as styrene oxide, even at doses which do not induce any appreciable cell death.
Collapse
Affiliation(s)
- Bastien Dalzon
- Laboratory of Chemistry and Biology of Metals, UMR 5249, Univ. Grenoble Alpes, CNRS, CEA, Grenoble, France.
| | - Catherine Aude-Garcia
- Laboratory of Chemistry and Biology of Metals, UMR 5249, Univ. Grenoble Alpes, CNRS, CEA, Grenoble, France.
| | - Véronique Collin-Faure
- Laboratory of Chemistry and Biology of Metals, UMR 5249, Univ. Grenoble Alpes, CNRS, CEA, Grenoble, France.
| | - Hélène Diemer
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France
| | - David Béal
- Chimie Interface Biologie pour l'Environnement, la Santé et la Toxicologie (CIBEST), UMR 5819, Univ. Grenoble Alpes, CEA, CNRS, INAC, SyMMES, F-38000 Grenoble, France
| | - Fanny Dussert
- Chimie Interface Biologie pour l'Environnement, la Santé et la Toxicologie (CIBEST), UMR 5819, Univ. Grenoble Alpes, CEA, CNRS, INAC, SyMMES, F-38000 Grenoble, France
| | - Daphna Fenel
- Institut de Biologie Structurale Jean-Pierre Ebel, UMR5075, Univ. Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Guy Schoehn
- Institut de Biologie Structurale Jean-Pierre Ebel, UMR5075, Univ. Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France
| | - Marie Carrière
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France
| | - Thierry Rabilloud
- Laboratory of Chemistry and Biology of Metals, UMR 5249, Univ. Grenoble Alpes, CNRS, CEA, Grenoble, France.
| |
Collapse
|
29
|
Movia D, Di Cristo L, Alnemari R, McCarthy JE, Moustaoui H, Lamy de la Chapelle M, Spadavecchia J, Volkov Y, Prina-Mello A. The curious case of how mimicking physiological complexity in in vitro models of the human respiratory system influences the inflammatory responses. A preliminary study focused on gold nanoparticles. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/jin2.25] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Dania Movia
- Laboratory for Biological Characterization of Advanced Materials (LBCAM), Trinity Translational Medicine Institute; School of Medicine, Trinity College; Dublin Ireland
| | - Luisana Di Cristo
- Laboratory for Biological Characterization of Advanced Materials (LBCAM), Trinity Translational Medicine Institute; School of Medicine, Trinity College; Dublin Ireland
| | - Roaa Alnemari
- Department of Clinical Medicine; School of Medicine, Trinity College; Dublin Ireland
| | | | - Hanane Moustaoui
- CNRS, UMR 7244, CSPBAT; Laboratoire de Chimie, Structures et Propriétés de Biomateriaux et d'Agents Therapeutiques Université Paris 13, Sorbonne Paris Cité, Bobigny, France CNRS; Paris France
| | - Marc Lamy de la Chapelle
- CNRS, UMR 7244, CSPBAT; Laboratoire de Chimie, Structures et Propriétés de Biomateriaux et d'Agents Therapeutiques Université Paris 13, Sorbonne Paris Cité, Bobigny, France CNRS; Paris France
| | - Jolanda Spadavecchia
- CNRS, UMR 7244, CSPBAT; Laboratoire de Chimie, Structures et Propriétés de Biomateriaux et d'Agents Therapeutiques Université Paris 13, Sorbonne Paris Cité, Bobigny, France CNRS; Paris France
| | - Yuri Volkov
- Laboratory for Biological Characterization of Advanced Materials (LBCAM), Trinity Translational Medicine Institute; School of Medicine, Trinity College; Dublin Ireland
- Department of Clinical Medicine; School of Medicine, Trinity College; Dublin Ireland
- CRANN Institute, AMBER Centre; Trinity College; Dublin Ireland
| | - Adriele Prina-Mello
- Laboratory for Biological Characterization of Advanced Materials (LBCAM), Trinity Translational Medicine Institute; School of Medicine, Trinity College; Dublin Ireland
- Department of Clinical Medicine; School of Medicine, Trinity College; Dublin Ireland
- CRANN Institute, AMBER Centre; Trinity College; Dublin Ireland
| |
Collapse
|
30
|
Blood-brain barrier dysfunction induced by silica NPs in vitro and in vivo : Involvement of oxidative stress and Rho-kinase/JNK signaling pathways. Biomaterials 2017; 121:64-82. [DOI: 10.1016/j.biomaterials.2017.01.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 01/03/2017] [Accepted: 01/03/2017] [Indexed: 01/03/2023]
|
31
|
Armstead AL, Li B. In vitro inflammatory effects of hard metal (WC-Co) nanoparticle exposure. Int J Nanomedicine 2016; 11:6195-6206. [PMID: 27920526 PMCID: PMC5123731 DOI: 10.2147/ijn.s121141] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Identifying the toxicity of nanoparticles (NPs) is an important area of research as the number of nanomaterial-based consumer and industrial products continually rises. In addition, the potential inflammatory effects resulting from pulmonary NP exposure are emerging as an important aspect of nanotoxicity. In this study, the toxicity and inflammatory state resulting from tungsten carbide–cobalt (WC–Co) NP exposure in macrophages and a coculture (CC) of lung epithelial cells (BEAS-2B) and macrophages (THP-1) at a 3:1 ratio were examined. It was found that the toxicity of nano-WC–Co was cell dependent; significantly less toxicity was observed in THP-1 cells compared to BEAS-2B cells. It was demonstrated that nano-WC–Co caused reduced toxicity in the CC model compared to lung epithelial cell monoculture, which suggested that macrophages may play a protective role against nano-WC–Co-mediated toxicity in CCs. Nano-WC–Co exposure in macrophages resulted in increased levels of interleukin (IL)-1β and IL-12 secretion and decreased levels of tumor necrosis factor alpha (TNFα). In addition, the polarizing effects of nano-WC–Co exposure toward the M1 (pro-inflammatory) and M2 (anti-inflammatory) macrophage phenotypes were investigated. The results of this study indicated that nano-WC–Co exposure stimulated the M1 phenotype, marked by high expression of CD40 M1 macrophage surface markers.
Collapse
Affiliation(s)
- Andrea L Armstead
- Department of Orthopaedics, School of Medicine; School of Pharmacy, West Virginia University
| | - Bingyun Li
- Department of Orthopaedics, School of Medicine; School of Pharmacy, West Virginia University; Mary Babb Randolph Cancer Center, Morgantown, WV, USA
| |
Collapse
|
32
|
Loret T, Peyret E, Dubreuil M, Aguerre-Chariol O, Bressot C, le Bihan O, Amodeo T, Trouiller B, Braun A, Egles C, Lacroix G. Air-liquid interface exposure to aerosols of poorly soluble nanomaterials induces different biological activation levels compared to exposure to suspensions. Part Fibre Toxicol 2016; 13:58. [PMID: 27919268 PMCID: PMC5137211 DOI: 10.1186/s12989-016-0171-3] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 10/23/2016] [Indexed: 11/28/2022] Open
Abstract
Background Recently, much progress has been made to develop more physiologic in vitro models of the respiratory system and improve in vitro simulation of particle exposure through inhalation. Nevertheless, the field of nanotoxicology still suffers from a lack of relevant in vitro models and exposure methods to predict accurately the effects observed in vivo, especially after respiratory exposure. In this context, the aim of our study was to evaluate if exposing pulmonary cells at the air-liquid interface to aerosols of inhalable and poorly soluble nanomaterials generates different toxicity patterns and/or biological activation levels compared to classic submerged exposures to suspensions. Three nano-TiO2 and one nano-CeO2 were used. An exposure system was set up using VitroCell® devices to expose pulmonary cells at the air-liquid interface to aerosols. A549 alveolar cells in monocultures or in co-cultures with THP-1 macrophages were exposed to aerosols in inserts or to suspensions in inserts and in plates. Submerged exposures in inserts were performed, using similar culture conditions and exposure kinetics to the air-liquid interface, to provide accurate comparisons between the methods. Exposure in plates using classical culture and exposure conditions was performed to provide comparable results with classical submerged exposure studies. The biological activity of the cells (inflammation, cell viability, oxidative stress) was assessed at 24 h and comparisons of the nanomaterial toxicities between exposure methods were performed. Results Deposited doses of nanomaterials achieved using our aerosol exposure system were sufficient to observe adverse effects. Co-cultures were more sensitive than monocultures and biological responses were usually observed at lower doses at the air-liquid interface than in submerged conditions. Nevertheless, the general ranking of the nanomaterials according to their toxicity was similar across the different exposure methods used. Conclusions We showed that exposure of cells at the air-liquid interface represents a valid and sensitive method to assess the toxicity of several poorly soluble nanomaterials. We underlined the importance of the cellular model used and offer the possibility to deal with low deposition doses by using more sensitive and physiologic cellular models. This brings perspectives towards the use of relevant in vitro methods of exposure to assess nanomaterial toxicity. Electronic supplementary material The online version of this article (doi:10.1186/s12989-016-0171-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Thomas Loret
- Institut National de l'Environnement Industriel et des Risques (INERIS), (DRC/VIVA/TOXI), Parc Technologique ALATA-BP 2, Verneuil-en-Halatte, F-60550, France.,Laboratoire BioMécanique et BioIngénierie (BMBI), Université de Technologie de Compiègne (UTC), UMR CNRS 7338, Compiègne, 60205, France
| | - Emmanuel Peyret
- Institut National de l'Environnement Industriel et des Risques (INERIS), (DRC/VIVA/TOXI), Parc Technologique ALATA-BP 2, Verneuil-en-Halatte, F-60550, France
| | - Marielle Dubreuil
- Institut National de l'Environnement Industriel et des Risques (INERIS), (DRC/VIVA/TOXI), Parc Technologique ALATA-BP 2, Verneuil-en-Halatte, F-60550, France
| | - Olivier Aguerre-Chariol
- Institut National de l'Environnement Industriel et des Risques (INERIS), (DRC/CARA/NOVA), Parc Technologique ALATA-BP 2, Verneuil-en-Halatte, F-60550, France
| | - Christophe Bressot
- Institut National de l'Environnement Industriel et des Risques (INERIS), (DRC/CARA/NOVA), Parc Technologique ALATA-BP 2, Verneuil-en-Halatte, F-60550, France
| | - Olivier le Bihan
- Institut National de l'Environnement Industriel et des Risques (INERIS), (DRC/CARA/NOVA), Parc Technologique ALATA-BP 2, Verneuil-en-Halatte, F-60550, France
| | - Tanguy Amodeo
- Institut National de l'Environnement Industriel et des Risques (INERIS), (DRC/CARA/NOVA), Parc Technologique ALATA-BP 2, Verneuil-en-Halatte, F-60550, France
| | - Bénédicte Trouiller
- Institut National de l'Environnement Industriel et des Risques (INERIS), (DRC/VIVA/TOXI), Parc Technologique ALATA-BP 2, Verneuil-en-Halatte, F-60550, France
| | - Anne Braun
- Institut National de l'Environnement Industriel et des Risques (INERIS), (DRC/VIVA/TOXI), Parc Technologique ALATA-BP 2, Verneuil-en-Halatte, F-60550, France
| | - Christophe Egles
- Laboratoire BioMécanique et BioIngénierie (BMBI), Université de Technologie de Compiègne (UTC), UMR CNRS 7338, Compiègne, 60205, France.,Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Ghislaine Lacroix
- Institut National de l'Environnement Industriel et des Risques (INERIS), (DRC/VIVA/TOXI), Parc Technologique ALATA-BP 2, Verneuil-en-Halatte, F-60550, France.
| |
Collapse
|
33
|
Li Q, Hu H, Jiang L, Zou Y, Duan J, Sun Z. Cytotoxicity and autophagy dysfunction induced by different sizes of silica particles in human bronchial epithelial BEAS-2B cells. Toxicol Res (Camb) 2016; 5:1216-1228. [PMID: 30090427 PMCID: PMC6062363 DOI: 10.1039/c6tx00100a] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 05/29/2016] [Indexed: 12/11/2022] Open
Abstract
The adverse effects of silica nanoparticles are gaining attention due to their wide application in biomedicine. However, information about size-dependent toxicity induced by silica nanoparticles is insufficient. In this study, two size of nano-scale (40 nm, 60 nm) and one size of micro-scale (200 nm) silica particles were studied to investigate the possible mechanism of cytotoxicity and autophagy dysfunction in human bronchial epithelial BEAS-2B cells. The cell viability was decreased in a size- and dose-dependent manner, while the LDH activity, oxidative stress and mitochondrial damage significantly increased, induced by both nano- and micro-scale silica particles. Ultrastructural analysis showed that nano-scale silica particles could induce mitochondrial damage and autophagy, but not micro-scale particles. Verified by the autophagy inhibitor 3-MA, the expression of LC3 and SQSTM1/p62 was upregulated in nano-scale silica particles in a size- and dose-dependent manner, while the micro-scale particles had an inhibitory effect. In addition, autophagy activation and autophagy blockage were triggered by nano-scale silica particles via the PI3K/Akt/mTOR pathway. Our findings first demonstrated that exposure to nano-scale silica particles rather than micro-scale particles could lead to autophagy dysfunction and impair cellular homeostasis.
Collapse
Affiliation(s)
- Qiuling Li
- Department of Toxicology and Sanitary Chemistry , School of Public Health , Capital Medical University , Beijing 100069 , P.R. China . ; ; ; Tel: +86 010 83911868, +86 010 83911507
- Beijing Key Laboratory of Environmental Toxicology , Capital Medical University , Beijing 100069 , P.R. China
| | - Hejing Hu
- Department of Toxicology and Sanitary Chemistry , School of Public Health , Capital Medical University , Beijing 100069 , P.R. China . ; ; ; Tel: +86 010 83911868, +86 010 83911507
- Beijing Key Laboratory of Environmental Toxicology , Capital Medical University , Beijing 100069 , P.R. China
| | - Lizhen Jiang
- Department of Toxicology and Sanitary Chemistry , School of Public Health , Capital Medical University , Beijing 100069 , P.R. China . ; ; ; Tel: +86 010 83911868, +86 010 83911507
- Beijing Key Laboratory of Environmental Toxicology , Capital Medical University , Beijing 100069 , P.R. China
| | - Yang Zou
- Department of Toxicology and Sanitary Chemistry , School of Public Health , Capital Medical University , Beijing 100069 , P.R. China . ; ; ; Tel: +86 010 83911868, +86 010 83911507
- Beijing Key Laboratory of Environmental Toxicology , Capital Medical University , Beijing 100069 , P.R. China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry , School of Public Health , Capital Medical University , Beijing 100069 , P.R. China . ; ; ; Tel: +86 010 83911868, +86 010 83911507
- Beijing Key Laboratory of Environmental Toxicology , Capital Medical University , Beijing 100069 , P.R. China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry , School of Public Health , Capital Medical University , Beijing 100069 , P.R. China . ; ; ; Tel: +86 010 83911868, +86 010 83911507
- Beijing Key Laboratory of Environmental Toxicology , Capital Medical University , Beijing 100069 , P.R. China
| |
Collapse
|
34
|
Kermanizadeh A, Gosens I, MacCalman L, Johnston H, Danielsen PH, Jacobsen NR, Lenz AG, Fernandes T, Schins RPF, Cassee FR, Wallin H, Kreyling W, Stoeger T, Loft S, Møller P, Tran L, Stone V. A Multilaboratory Toxicological Assessment of a Panel of 10 Engineered Nanomaterials to Human Health--ENPRA Project--The Highlights, Limitations, and Current and Future Challenges. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2016; 19:1-28. [PMID: 27030582 DOI: 10.1080/10937404.2015.1126210] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
ENPRA was one of the earlier multidisciplinary European Commission FP7-funded projects aiming to evaluate the risks associated with nanomaterial (NM) exposure on human health across pulmonary, cardiovascular, hepatic, renal, and developmental systems. The outputs from this project have formed the basis of this review. A retrospective interpretation of the findings across a wide range of in vitro and in vivo studies was performed to identify the main highlights from the project. In particular, focus was placed on informing what advances were made in the hazard assessment of NM, as well as offering some suggestions on the future of "nanotoxicology research" based on these observations, shortcomings, and lessons learned from the project. A number of issues related to the hazard assessment of NM are discussed in detail and include use of appropriate NM for nanotoxicology investigations; characterization and dispersion of NM; use of appropriate doses for all related investigations; need for the correct choice of experimental models for risk assessment purposes; and full understanding of the test systems and correct interpretation of data generated from in vitro and in vivo systems. It is hoped that this review may assist in providing information in the implementation of guidelines, model systems, validation of assessment methodology, and integrated testing approaches for risk assessment of NM. It is vital to learn from ongoing and/or completed studies to avoid unnecessary duplication and offer suggestions that might improve different aspects of experimental design.
Collapse
Affiliation(s)
- Ali Kermanizadeh
- a Department of Public Health, Section of Environmental Health , University of Copenhagen , Copenhagen , Denmark
- b School of Life Sciences, Nano Safety Research Group , Heriot Watt University , Edinburgh , United Kingdom
| | - Ilse Gosens
- c Centre for Sustainability, Environment and Health , National Institute for Public Health and the Environment , Bilthoven , The Netherlands
| | - Laura MacCalman
- d Institute of Occupational Medicine , Edinburgh , United Kingdom
| | - Helinor Johnston
- b School of Life Sciences, Nano Safety Research Group , Heriot Watt University , Edinburgh , United Kingdom
| | - Pernille H Danielsen
- a Department of Public Health, Section of Environmental Health , University of Copenhagen , Copenhagen , Denmark
| | - Nicklas R Jacobsen
- e National Research Centre for the Working Environment , Copenhagen , Denmark
| | - Anke-Gabriele Lenz
- f Comprehensive Pneumology Center , Institute of Lung Biology and Disease, Helmholtz Zentrum München , Munich , Germany
| | - Teresa Fernandes
- b School of Life Sciences, Nano Safety Research Group , Heriot Watt University , Edinburgh , United Kingdom
| | - Roel P F Schins
- g IUF-Leibniz Research Institute for Environmental Medicine , Düsseldorf , Germany
| | - Flemming R Cassee
- c Centre for Sustainability, Environment and Health , National Institute for Public Health and the Environment , Bilthoven , The Netherlands
| | - Håkan Wallin
- a Department of Public Health, Section of Environmental Health , University of Copenhagen , Copenhagen , Denmark
- e National Research Centre for the Working Environment , Copenhagen , Denmark
| | - Wolfgang Kreyling
- h Helmholtz Zentrum München , Institute of Epidemiology II , Munich , Germany
| | - Tobias Stoeger
- f Comprehensive Pneumology Center , Institute of Lung Biology and Disease, Helmholtz Zentrum München , Munich , Germany
| | - Steffen Loft
- a Department of Public Health, Section of Environmental Health , University of Copenhagen , Copenhagen , Denmark
| | - Peter Møller
- a Department of Public Health, Section of Environmental Health , University of Copenhagen , Copenhagen , Denmark
| | - Lang Tran
- d Institute of Occupational Medicine , Edinburgh , United Kingdom
| | - Vicki Stone
- b School of Life Sciences, Nano Safety Research Group , Heriot Watt University , Edinburgh , United Kingdom
| |
Collapse
|
35
|
Maser E, Schulz M, Sauer UG, Wiemann M, Ma-Hock L, Wohlleben W, Hartwig A, Landsiedel R. In vitro and in vivo genotoxicity investigations of differently sized amorphous SiO2 nanomaterials. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2015; 794:57-74. [DOI: 10.1016/j.mrgentox.2015.10.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 10/17/2015] [Accepted: 10/27/2015] [Indexed: 12/27/2022]
|
36
|
Shi S, Jiang W, Zhao T, Aifantis KE, Wang H, Lin L, Fan Y, Feng Q, Cui FZ, Li X. The application of nanomaterials in controlled drug delivery for bone regeneration. J Biomed Mater Res A 2015; 103:3978-3992. [PMID: 26061384 DOI: 10.1002/jbm.a.35522] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 05/18/2015] [Accepted: 06/04/2015] [Indexed: 12/16/2022]
Abstract
Bone regeneration is a complicated process that involves a series of biological events, such as cellular recruitment, proliferation and differentiation, and so forth, which have been found to be significantly affected by controlled drug delivery. Recently, a lot of research studies have been launched on the application of nanomaterials in controlled drug delivery for bone regeneration. In this article, the latest research progress in this area regarding the use of bioceramics-based, polymer-based, metallic oxide-based and other types of nanomaterials in controlled drug delivery for bone regeneration are reviewed and discussed, which indicates that the controlling drug delivery with nanomaterials should be a very promising treatment in orthopedics. Furthermore, some new challenges about the future research on the application of nanomaterials in controlled drug delivery for bone regeneration are described in the conclusion and perspectives part.
Collapse
Affiliation(s)
- Shuo Shi
- Department of Orthopedics, The First Hospital of Hebei Medical University, Shijiazhuang, 050031, China
| | - Wenbao Jiang
- Department of General Surgery, Zhangbei Hospital, Zhangbei, 076450, China
| | - Tianxiao Zhao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Katerina E Aifantis
- Department of Civil Engineering-Engineering Mechanics, University of Arizona, Tucson, Arizona, 85721
| | - Hui Wang
- Department of Orthopedics, The First Hospital of Hebei Medical University, Shijiazhuang, 050031, China
| | - Lei Lin
- Department of Orthopedics, The First Hospital of Hebei Medical University, Shijiazhuang, 050031, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Qingling Feng
- State Key Laboratory of New Ceramic and Fine Processing, Tsinghua University, Beijing, 100084, China
| | - Fu-zhai Cui
- State Key Laboratory of New Ceramic and Fine Processing, Tsinghua University, Beijing, 100084, China
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| |
Collapse
|
37
|
Cao Y, Roursgaard M, Jacobsen NR, Møller P, Loft S. Monocyte adhesion induced by multi-walled carbon nanotubes and palmitic acid in endothelial cells and alveolar-endothelial co-cultures. Nanotoxicology 2015; 10:235-44. [PMID: 26067756 DOI: 10.3109/17435390.2015.1048325] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Free palmitic acid (PA) is a potential pro-atherogenic stimulus that may aggravate particle-mediated cardiovascular health effects. We hypothesized that the presence of PA can aggravate oxidative stress and endothelial activation induced by multi-walled carbon nanotube (MWCNT) exposure in vitro. We investigated the interaction between direct exposure to MWCNTs and PA on THP-1 monocyte adhesion to human umbilical vein endothelial cells (HUVECs), as well as on indirect exposure in an alveolar-endothelial co-culture model with A549 cells and THP-1-derived macrophages exposed in inserts and the effect measured in the lower chamber on HUVECs and THP-1 cells. The exposure to MWCNTs, including a short (NM400) and long (NM402) type of entangled fibers, was associated with elevated levels of reactive oxygen species as well as a decrease in the intracellular glutathione concentration in HUVEC and A549 monocultures. Both effects were found to be independent of the presence of PA. MWCNT exposure significantly increased THP-1 monocyte adhesion to HUVECs, and co-exposure to PA aggravated the NM400-mediated adhesion but decreased the NM402-mediated adhesion. For the co-cultures, the exposure of A549 cells did not promote THP-1 adhesion to HUVECs in the lower chamber. When THP-1 macrophages were present on the cell culture inserts, there was a modest increase in the adhesion and an increase in interleukin-6 and interleukin-8 levels in the lower chamber whereas no tumor necrosis factor was detected. Overall, this study showed that direct exposure of HUVECs to MWCNTs was associated with oxidative stress and monocyte adhesion and the presence of PA increased the adhesion when exposed to NM400.
Collapse
Affiliation(s)
- Yi Cao
- a Section of Environmental Health, Department of Public Health , University of Copenhagen , Copenhagen , Denmark and
| | - Martin Roursgaard
- a Section of Environmental Health, Department of Public Health , University of Copenhagen , Copenhagen , Denmark and
| | | | - Peter Møller
- a Section of Environmental Health, Department of Public Health , University of Copenhagen , Copenhagen , Denmark and
| | - Steffen Loft
- a Section of Environmental Health, Department of Public Health , University of Copenhagen , Copenhagen , Denmark and
| |
Collapse
|
38
|
High-throughput, quantitative assessment of the effects of low-dose silica nanoparticles on lung cells: grasping complex toxicity with a great depth of field. BMC Genomics 2015; 16:315. [PMID: 25895662 PMCID: PMC4404697 DOI: 10.1186/s12864-015-1521-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 04/10/2015] [Indexed: 01/23/2023] Open
Abstract
Background The toxicity of manufactured fumed silica nanoparticles (NPs) remains poorly investigated compared to that of crystalline silica NPs, which have been associated with lung diseases after inhalation. Amorphous silica NPs are a raw material for manufactured nanocomposites, such as cosmetics, foods, and drugs, raising concerns about their potential toxicity. Results The size of the NPs was determined by dynamic light scattering and their shape was visualized by atomic force microscopy (10 ± 4 nm). The pertinent toxicological concentration and dynamic ranges were determined using viability tests and cellular impedance. We combined transcriptomics and proteomics to assess the cellular and molecular effects of fumed silica in A549 human alveolar epithelial cells. The “no observed transcriptomic adverse effect level” (NOTEL) was set to 1.0 μg/cm2, and the “lowest observed adverse transcriptional effect level” (LOTEL) was set at 1.5 μg/cm2. We carried out genome-wide expression profiles with microarrays and identified, by shotgun proteomics, the exoproteome changes in lung cells after exposure to NP doses (0.1, 1.0, 1.5, 3.0, and 6.0 μg/cm2) at two time points (24 h and 72 h). The data revealed a hierarchical, dose-dependent cellular response to silica NPs. At 1.5 μg/cm2, the Rho signaling cascade, actin cytoskeleton remodeling, and clathrin-mediated endocytosis were induced. At 3.0 μg/cm2, many inflammatory mediators were upregulated and the coagulation system pathway was triggered. Lastly, at 6.0 μg/cm2, oxidative stress was initiated. The proteins identified in the extracellular compartment were consistent with these findings. Conclusions The alliance of two high-throughput technologies allowed the quantitative assessment of the cellular effects and molecular consequences of exposure of lung cells to low doses of NPs. These results were obtained using a pathway-driven analysis instead of isolated genes. As in photography, toxicogenomics allows, at the same time, the visualization of a wide spectrum of biological responses and a “zoom in” to the details with a great depth of field. This study illustrates how such an approach based on human cell culture models is a valuable predictive screening tool to evaluate the toxicity of many potentially harmful emerging substances, alone or in mixtures, in the framework of future regulatory reinforcements. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1521-5) contains supplementary material, which is available to authorized users.
Collapse
|
39
|
Murphy A, Sheehy K, Casey A, Chambers G. The surfactant dipalmitoylphophatidylcholine modifies acute responses in alveolar carcinoma cells in response to low-dose silver nanoparticle exposure. J Appl Toxicol 2015; 35:1141-9. [DOI: 10.1002/jat.3148] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 02/10/2015] [Accepted: 02/11/2015] [Indexed: 01/10/2023]
Affiliation(s)
- A. Murphy
- Nanolab Research Centre; Focas Institute, Dublin Institute of Technology; Kevin Street Dublin 8 Ireland
| | - K. Sheehy
- Nanolab Research Centre; Focas Institute, Dublin Institute of Technology; Kevin Street Dublin 8 Ireland
| | - A. Casey
- Nanolab Research Centre; Focas Institute, Dublin Institute of Technology; Kevin Street Dublin 8 Ireland
| | - G. Chambers
- Nanolab Research Centre; Focas Institute, Dublin Institute of Technology; Kevin Street Dublin 8 Ireland
- School of Physics; Dublin Institute of Technology; Kevin Street Dublin 8 Ireland
| |
Collapse
|
40
|
Skuland T, Øvrevik J, Låg M, Schwarze P, Refsnes M. Silica nanoparticles induce cytokine responses in lung epithelial cells through activation of a p38/TACE/TGF-α/EGFR-pathway and NF-κΒ signalling. Toxicol Appl Pharmacol 2014; 279:76-86. [DOI: 10.1016/j.taap.2014.05.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 05/11/2014] [Accepted: 05/12/2014] [Indexed: 11/25/2022]
|
41
|
Rijsdijk M, van Wijck AJM, Kalkman CJ, Yaksh TL. The effects of glucocorticoids on neuropathic pain: a review with emphasis on intrathecal methylprednisolone acetate delivery. Anesth Analg 2014; 118:1097-112. [PMID: 24781577 DOI: 10.1213/ane.0000000000000161] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Methylprednisolone acetate (MPA) has a long history of use in the treatment of sciatic pain and other neuropathic pain syndromes. In several of these syndromes, MPA is administered in the epidural space. On a limited basis, MPA has also been injected intrathecally in patients suffering from postherpetic neuralgia and complex regional pain syndrome. The reports on efficacy of intrathecal administration of MPA in neuropathic pain patients are contradictory, and safety is debated. In this review, we broadly consider mechanisms whereby glucocorticoids exert their action on spinal cascades relevant to the pain arising after nerve injury and inflammation. We then focus on the characteristics of the actions of MPA in pharmacokinetics, efficacy, and safety when administered in the intrathecal space.
Collapse
Affiliation(s)
- Mienke Rijsdijk
- From the *Department of Anesthesiology, Pain Clinic, University Medical Center Utrecht, Utrecht, The Netherlands; and †Department of Anesthesiology, University of California San Diego, San Diego, California
| | | | | | | |
Collapse
|
42
|
Nemmar A, Albarwani S, Beegam S, Yuvaraju P, Yasin J, Attoub S, Ali BH. Amorphous silica nanoparticles impair vascular homeostasis and induce systemic inflammation. Int J Nanomedicine 2014; 9:2779-89. [PMID: 24936130 PMCID: PMC4047982 DOI: 10.2147/ijn.s52818] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Amorphous silica nanoparticles (SiNPs) are being used in biomedical, pharmaceutical, and many other industrial applications entailing human exposure. However, their potential vascular and systemic pathophysiologic effects are not fully understood. Here, we investigated the acute (24 hours) systemic toxicity of intraperitoneally administered 50 nm and 500 nm SiNPs in mice (0.5 mg/kg). Both sizes of SiNPs induced a platelet proaggregatory effect in pial venules and increased plasma concentration of plasminogen activator inhibitor-1. Elevated plasma levels of von Willebrand factor and fibrinogen and a decrease in the number of circulating platelets were only seen following the administration of 50 nm SiNPs. The direct addition of SiNPs to untreated mouse blood significantly induced in vitro platelet aggregation in a dose-dependent fashion, and these effects were more pronounced with 50 nm SiNPs. Both sizes of SiNPs increased lactate dehydrogenase activity and interleukin 1β concentration. However, tumor necrosis factor α concentration was only increased after the administration of 50 nm SiNPs. Nevertheless, plasma markers of oxidative stress, including 8-isoprostane, thiobarbituric acid reactive substances, catalase, and glutathione S-transferase, were not affected by SiNPs. The in vitro exposure of human umbilical vein endothelial cells to SiNPs showed a reduced cellular viability, and more potency was seen with 50 nm SiNPs. Both sizes of SiNPs caused a decrease in endothelium-dependent relaxation of isolated small mesenteric arteries. We conclude that amorphous SiNPs cause systemic inflammation and coagulation events, and alter vascular reactivity. Overall, the effects observed with 50 nm SiNPs were more pronounced than those with 500 nm SiNPs. These findings provide new insight into the deleterious effect of amorphous SiNPs on vascular homeostasis.
Collapse
Affiliation(s)
- Abderrahim Nemmar
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Sulayma Albarwani
- Department of Physiology, College of Medicine and Health Sciences, Sultan Qaboos University, Al-Khod, Sultanate of Oman
| | - Sumaya Beegam
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Priya Yuvaraju
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Javed Yasin
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Samir Attoub
- Department of Pharmacology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Badreldin H Ali
- Department of Pharmacology, College of Medicine and Health Sciences, Sultan Qaboos University, Al-Khod, Sultanate of Oman
| |
Collapse
|
43
|
Dekali S, Gamez C, Kortulewski T, Blazy K, Rat P, Lacroix G. Assessment of an in vitro model of pulmonary barrier to study the translocation of nanoparticles. Toxicol Rep 2014; 1:157-171. [PMID: 28962236 PMCID: PMC5598380 DOI: 10.1016/j.toxrep.2014.03.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 03/10/2014] [Accepted: 03/10/2014] [Indexed: 12/22/2022] Open
Abstract
As the lung is one of the main routes of exposure to manufactured nanoparticles, we developed an in vitro model resembling the alveolo-capillary barrier for the study of nanoparticle translocation. In order to provide a relevant and ethical in vitro model, cost effective and easy-to-implement human cell lines were used. Pulmonary epithelial cells (Calu-3 cell line) and macrophages (THP-1 differentiated cells) were cultivated on the apical side and pulmonary endothelial cells (HPMEC-ST1.6R cell line) on the basal side of a microporous polyester membrane (Transwell®). Translocation of non-functionalized (51 and 110 nm) and aminated (52 nm) fluorescent polystyrene (PS) nanobeads was studied in this system. The use of Calu-3 cells allowed high transepithelial electrical resistance (TEER) values (>1000 Ω cm2) in co-cultures with or without macrophages. After 24 h of exposure to non-cytotoxic concentrations of non-functionalized PS nanobeads, the relative TEER values (%/t0) were significantly decreased in co-cultures. Epithelial cells and macrophages were able to internalize PS nanobeads. Regarding translocation, Transwell® membranes per se limit the passage of nanoparticles between apical and basal side. However, small non-functionalized PS nanobeads (51 nm) were able to translocate as they were detected in the basal side of co-cultures. Altogether, these results show that this co-culture model present good barrier properties allowing the study of nanoparticle translocation but research effort need to be done to improve the neutrality of the porous membrane delimitating apical and basal sides of the model.
Collapse
Affiliation(s)
- Samir Dekali
- INERIS (Institut National de l’Environnement industriel et des RISques), Unité de Toxicologie expérimentale, 60550 Verneuil-en-Halatte, France
- Laboratoire de chimie et toxicologie analytique et cellulaire (C-TAC), Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes (PRES Sorbonne Paris Cité), 75270 Paris Cedex 06, France
| | - Christelle Gamez
- INERIS (Institut National de l’Environnement industriel et des RISques), Unité de Toxicologie expérimentale, 60550 Verneuil-en-Halatte, France
| | - Thierry Kortulewski
- CEA, DSV, iRCM, Plateforme imagerie photonique, 92260 Fontenay-aux-Roses, France
| | - Kelly Blazy
- INERIS (Institut National de l’Environnement industriel et des RISques), Unité de Toxicologie expérimentale, 60550 Verneuil-en-Halatte, France
| | - Patrice Rat
- Laboratoire de chimie et toxicologie analytique et cellulaire (C-TAC), Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes (PRES Sorbonne Paris Cité), 75270 Paris Cedex 06, France
| | - Ghislaine Lacroix
- INERIS (Institut National de l’Environnement industriel et des RISques), Unité de Toxicologie expérimentale, 60550 Verneuil-en-Halatte, France
- Corresponding author at: INERIS, Parc technologique ALATA, BP2, 60550, Verneuil-en-Halatte, France. Tel.: +33 3 44 55 63 15; fax: +33 3 44 55 66 05
| |
Collapse
|
44
|
Braakhuis HM, Park MVDZ, Gosens I, De Jong WH, Cassee FR. Physicochemical characteristics of nanomaterials that affect pulmonary inflammation. Part Fibre Toxicol 2014; 11:18. [PMID: 24725891 PMCID: PMC3996135 DOI: 10.1186/1743-8977-11-18] [Citation(s) in RCA: 201] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 04/04/2014] [Indexed: 02/02/2023] Open
Abstract
The increasing manufacture and use of products based on nanotechnology raises concerns for both workers and consumers. Various studies report induction of pulmonary inflammation after inhalation exposure to nanoparticles, which can vary in aspects such as size, shape, charge, crystallinity, chemical composition, and dissolution rate. Each of these aspects can affect their toxicity, although it is largely unknown to what extent. The aim of the current review is to analyse published data on inhalation of nanoparticles to identify and evaluate the contribution of their physicochemical characteristics to the onset and development of pulmonary inflammation. Many physicochemical characteristics of nanoparticles affect their lung deposition, clearance, and pulmonary response that, in combination, ultimately determine whether pulmonary inflammation will occur and to what extent. Lung deposition is mainly determined by the physical properties of the aerosol (size, density, shape, hygroscopicity) in relation to airflow and the anatomy of the respiratory system, whereas clearance and translocation of nanoparticles are mainly determined by their geometry and surface characteristics. Besides size and chemical composition, other physicochemical characteristics influence the induction of pulmonary inflammation after inhalation. As some nanoparticles dissolve, they can release toxic ions that can damage the lung tissue, making dissolution rate an important characteristic that affects lung inflammation. Fibre-shaped materials are more toxic to the lungs compared to spherical shaped nanoparticles of the same chemical composition. In general, cationic nanoparticles are more cytotoxic than neutral or anionic nanoparticles. Finally, surface reactivity correlates well with observed pulmonary inflammation. With all these characteristics affecting different stages of the events leading to pulmonary inflammation, no unifying dose metric could be identified to describe pulmonary inflammation for all nanomaterials, although surface reactivity might be a useful measure. To determine the extent to which the various characteristics influence the induction of pulmonary inflammation, the effect of these characteristics on lung deposition, clearance, and pulmonary response should be systematically evaluated. The results can then be used to facilitate risk assessment by categorizing nanoparticles according to their characteristics.
Collapse
Affiliation(s)
- Hedwig M Braakhuis
- National Institute for Public Health and the Environment (RIVM), PO Box 1, Bilthoven 3720BA, The Netherlands
- Department of Toxicogenomics, Maastricht University, PO Box 616, Maastricht 6200MD, The Netherlands
| | - Margriet VDZ Park
- National Institute for Public Health and the Environment (RIVM), PO Box 1, Bilthoven 3720BA, The Netherlands
| | - Ilse Gosens
- National Institute for Public Health and the Environment (RIVM), PO Box 1, Bilthoven 3720BA, The Netherlands
| | - Wim H De Jong
- National Institute for Public Health and the Environment (RIVM), PO Box 1, Bilthoven 3720BA, The Netherlands
| | - Flemming R Cassee
- National Institute for Public Health and the Environment (RIVM), PO Box 1, Bilthoven 3720BA, The Netherlands
- Institute of Risk Assessment Sciences, Utrecht University, PO Box 80.163, Utrecht 3508TD, The Netherlands
| |
Collapse
|
45
|
Liu X, Sun J. Potential proinflammatory effects of hydroxyapatite nanoparticles on endothelial cells in a monocyte-endothelial cell coculture model. Int J Nanomedicine 2014; 9:1261-73. [PMID: 24648726 PMCID: PMC3956627 DOI: 10.2147/ijn.s56298] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Currently, synthetic hydroxyapatite nanoparticles (HANPs) are used in nanomedicine fields. The delivery of nanomedicine to the bloodstream exposes the cardiovascular system to a potential threat. However, the possible adverse cardiovascular effects of HANPs remain unclear. Current observations using coculture models of endothelial cells and monocytes with HANPs to mimic the complex physiological functionality of the vascular system demonstrate that monocytes could play an important role in the mechanisms of endothelium dysfunction induced by the exposure to HANPs. Our transmission electron microscopy analysis revealed that both monocytes and endothelial cells could take up HANPs. Moreover, our findings demonstrated that at a subcytotoxic dose, HANPs alone did not cause direct endothelial cell injury, but they did induce an indirect activation of endothelial cells, resulting in increased interleukin-6 production and elevated adhesion molecule expression after coculture with monocytes. The potential proinflammatory effect of HANPs is largely mediated by the release of soluble factors from the activated monocytes, leading to an inflammatory response of the endothelium, which is possibly dependent on p38/c-Jun N-terminal kinase, and nuclear factor-kappa B signaling activation. The use of in vitro monocyte–endothelial cell coculture models for the biocompatibility assessment of HANPs could reveal their potential proinflammatory effects on endothelial cells, suggesting that exposure to HANPs possibly increases the risk of cardiovascular disease.
Collapse
Affiliation(s)
- Xin Liu
- Shanghai Biomaterials Research and Testing Center, Shanghai Key Laboratory of Stomatology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Jiao Sun
- Shanghai Biomaterials Research and Testing Center, Shanghai Key Laboratory of Stomatology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
46
|
Mohamud R, Xiang SD, Selomulya C, Rolland JM, O’Hehir RE, Hardy CL, Plebanski M. The effects of engineered nanoparticles on pulmonary immune homeostasis. Drug Metab Rev 2013; 46:176-90. [DOI: 10.3109/03602532.2013.859688] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
47
|
Skuland T, Ovrevik J, Låg M, Refsnes M. Role of size and surface area for pro-inflammatory responses to silica nanoparticles in epithelial lung cells: importance of exposure conditions. Toxicol In Vitro 2013; 28:146-55. [PMID: 24211531 DOI: 10.1016/j.tiv.2013.10.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 10/16/2013] [Accepted: 10/28/2013] [Indexed: 10/26/2022]
Abstract
The present study compared non-crystalline silica particles of nano (50nm)- and submicro (500nm)-size (Si50 and Si500) for the potential to induce cytokine responses in bronchial epithelial lung cells (BEAS-2B). The cell cultures were exposed to equal mass and surface area concentrations of the two particles in different exposure media; LHC-9 and DMEM:F12. The state of agglomeration was different in the two media; with marked agglomeration in LHC-9 and nearly no agglomeration in DMEM:F12. On a mass basis, Si50 was more potent than Si500 in inducing cytokine responses in both exposure media. In contrast, upon exposure to similar surface area concentrations, Si500 was more potent than Si50 in DMEM:F12. This might be due to different agglomeration/sedimentation properties of Si50 versus Si500 in the two media. However, influence of differences in particle reactivity or particle uptake cannot be excluded. The data indicated no qualitative changes in the cytokine gene-expression patterns induced by the two particles, suggesting effects through similar mechanisms. These aspects might be of importance for interpretation of in vitro studies of nanomaterials.
Collapse
Affiliation(s)
- T Skuland
- Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404, Nydalen N-0403, Oslo, Norway.
| | - J Ovrevik
- Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404, Nydalen N-0403, Oslo, Norway
| | - M Låg
- Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404, Nydalen N-0403, Oslo, Norway
| | - M Refsnes
- Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404, Nydalen N-0403, Oslo, Norway
| |
Collapse
|
48
|
Bryła M, Roszko M, Szymczyk K, Jędrzejczak R, Obiedziński MW, Sękul J. Fumonisins in plant-origin food and fodder – a review. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2013; 30:1626-40. [DOI: 10.1080/19440049.2013.809624] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
49
|
Napierska D, Quarck R, Thomassen LCJ, Lison D, Martens JA, Delcroix M, Nemery B, Hoet PH. Amorphous silica nanoparticles promote monocyte adhesion to human endothelial cells: size-dependent effect. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:430-438. [PMID: 23042701 DOI: 10.1002/smll.201201033] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 08/14/2012] [Indexed: 06/01/2023]
Abstract
There is evidence that nanoparticles can induce endothelial dysfunction. Here, the effect of monodisperse amorphous silica nanoparticles (SiO(2)-NPs) of different diameters on endothelial cells function is examined. Human endothelial cell line (EA.hy926) or primary human pulmonary artery endothelial cells (hPAEC) are seeded in inserts introduced or not above triple cell co-cultures (pneumocytes, macrophages, and mast cells). Endothelial cells are incubated with SiO(2)-NPs at non-cytotoxic concentrations for 12 h. A significant increase (up to 2-fold) in human monocytes adhesion to endothelial cells is observed for 18 and 54 nm particles. Exposure to SiO(2)-NPs induces protein expression of adhesion molecules (ICAM-1 and VCAM-1) as well as significant up-regulation in mRNA expression of ICAM-1 in both endothelial cell types. Experiments performed with fluorescent-labelled monodisperse amorphous SiO(2)-NPs of similar size evidence nanoparticle uptake into the cytoplasm of endothelial cells. It is concluded that exposure of human endothelial cells to amorphous silica nanoparticles enhances their adhesive properties. This process is modified by the size of the nanoparticle and the presence of other co-cultured cells.
Collapse
Affiliation(s)
- Dorota Napierska
- Department of Public Health, Center for Environment and Health, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Ramos-Godínez MDP, González-Gómez BE, Montiel-Dávalos A, López-Marure R, Alfaro-Moreno E. TiO2 nanoparticles induce endothelial cell activation in a pneumocyte-endothelial co-culture model. Toxicol In Vitro 2012; 27:774-81. [PMID: 23261642 DOI: 10.1016/j.tiv.2012.12.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 10/24/2012] [Accepted: 12/12/2012] [Indexed: 01/08/2023]
Abstract
The effects of particulate matter (PM) on endothelial cells have been evaluated in vitro by exposing isolated endothelial cells to different types of PM. Although some of the findings from these experiments have been corroborated by in vivo studies, an in vitro model that assesses the interaction among different cell types is necessary to achieve more realistic assays. We developed an in vitro model that mimics the alveolar-capillary interface, and we challenged the model using TiO nanoparticles (TiO-NPs). Human umbilical endothelial cells (HUVECs) were cultured on the basolateral side of a membrane and pneumocytes (A549) on the apical side. Confluent co-cultures were exposed on the apical side to 10 μg/cm of TiO-NPs or 10 ng/mL of TNFα for 24 h. Unexposed cultures were used as negative controls. We evaluated monocyte adhesion to HUVECs, adhesion molecule expression, nitric oxide concentration and proinflammatory cytokine release. The TiO-NPs added to the pneumocytes induced a 3- to 4-fold increase in monocyte adhesion to the HUVECs and significant increases in the expression of adhesion molecules (4-fold for P-selectin at 8 h, and about 8- and 10-fold for E-selectin, ICAM-1, VCAM-1 and PECAM-1 at 24 h). Nitric oxide production also increased significantly (2-fold). These results indicate that exposing pneumocytes to TiO-NPs causes endothelial cell activation.
Collapse
Affiliation(s)
- María Del Pilar Ramos-Godínez
- Environmental Toxicology Laboratory, Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Mexico
| | | | | | | | | |
Collapse
|