1
|
Hong S, Song JM. A 3D cell printing-fabricated HepG2 liver spheroid model for high-content in situ quantification of drug-induced liver toxicity. Biomater Sci 2021; 9:5939-5950. [PMID: 34318795 DOI: 10.1039/d1bm00749a] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
3D spheroid cultures are attractive candidates for application in in vitro drug-induced hepatotoxicity testing models to improve the reliability of biological information obtainable from a simple 2D culture model. Various 3D spheroid culture models exist for hepatotoxicity screening, but quantitative assays of spheroid response in situ are still challenging to achieve with the current 3D liver toxicity platforms. In this study, we developed a 3D printing-based HepG2 liver spheroid culture model for in situ quantitative evaluation and high-content monitoring of drug-induced hepatotoxicity. HepG2 liver spheroids grown in mini-fabricated hydrogel constructs using a 3D bioprinter were used to obtain the EC50 values and to measure the multi-parametric hepatotoxic effects, including mitochondrial permeability transition (MPT), cytosolic calcium levels, and apoptosis. Interestingly, the average fluorescence intensities of apoptotic and cell death markers, calculated for out-of-focus and in-focus spheroids, increased proportionally as a function of the drug concentration, allowing for the determination of the EC50 values. In addition, 3D HepG2 spheroids were more resistant to nefazodone-induced MPT than 2D HepG2 cells, indicating that the gelatin/alginate hydrogel culture system provides enhanced resistance to hepatotoxic drugs. The drug response of HepG2 liver spheroids was also found to be unrelated to the spheroid size. These results demonstrate that the present 3D cell-printing-based embedded HepG2 liver spheroid platform is a promising approach for screening and characterizing drug-induced hepatotoxicity.
Collapse
Affiliation(s)
- Sera Hong
- College of Pharmacy, Seoul National University, Seoul 08826, South Korea.
| | | |
Collapse
|
2
|
Wei G, Xue L, Zhu Y, Qian X, Zou L, Jin Q, Wang D, Ge G. Differences in susceptibility of HT-29 and A549 cells to statin-induced toxicity: An investigation using high content screening. J Biochem Mol Toxicol 2021; 35:e22699. [PMID: 33398916 DOI: 10.1002/jbt.22699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 11/30/2020] [Accepted: 12/11/2020] [Indexed: 02/05/2023]
Abstract
Statins are a group of hydroxymethylglutaryl coenzyme A reductase inhibitors that are used in the treatment of cardiovascular diseases. However, statins have been found to be cytotoxic, and many unexpected side effects have been reported in clinical applications. The susceptibilities of different cell lines toward statins are diverse, and the mechanisms of cytotoxicity remain unknown. Therefore, the present study aimed to investigate differences in the susceptibility to and mechanisms of statin-induced cytotoxicity in two cell lines, HT-29 and A549, using a high content screening-based multiparametric toxicity assay panel. We found that the two cell types exhibited differing susceptibilities to the cytotoxic effects of the different statins. Additionally, the cytotoxicity was inconsistent between different statins in the two cell lines. Four statins with strong cytotoxicity decreased the viability of HT-29 cells via the mitochondrial pathway, as evidenced by decreased mitochondrial membrane potential, and elevated mitochondrial mass, calcium release and cell apoptosis, and reactive oxygen species. In contrast, these four statins only induced a decrease in the mitochondrial membrane potential in A549 cells. The above results provide an objective reason for future evaluations of cytotoxic differences in cell types and the underlying mechanisms of cytotoxicity in different statins, and provide a good scientific basis for further research on countermeasures against statin-induced cell injuries.
Collapse
Affiliation(s)
- Guilin Wei
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lijuan Xue
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yadi Zhu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xingkai Qian
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liwei Zou
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qiang Jin
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dandan Wang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guangbo Ge
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
3
|
Guo R, Liu N, Liu H, Zhang J, Zhang H, Wang Y, Baruscotti M, Zhao L, Wang Y. High content screening identifies licoisoflavone A as a bioactive compound of Tongmaiyangxin Pills to restrain cardiomyocyte hypertrophy via activating Sirt3. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 68:153171. [PMID: 32018211 DOI: 10.1016/j.phymed.2020.153171] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/21/2019] [Accepted: 01/09/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Cardiac hypertrophy is a prominent feature of heart remodeling, which may eventually lead to heart failure. Tongmaiyangxin (TMYX) pills are a clinically used botanical drug for treating multiple cardiovascular diseases including chronic heart failure. The aim of the current study was to identify the bioactive compounds in Tongmaiyangxin pills that attenuate cardiomyocytes hypertrophy, and to investigate the underlying mechanism of action. METHODS AND RESULTS The anti-hypertrophy effect of TMYX was validated in isoproterenol-induced cardiac hypertrophy model in C57BL/6 mice. After TMYX treatment for 2 weeks, the heart ejection fraction and fractional shortening of the mice model was increased by approximately 20% and 15%, respectively, (p < 0.05). Besides, TMYX dose-dependently reduced the cross section area of cardiomyocytes in the angiotensin-II induced hypertrophy H9c2 model (p < 0.01). Combining high content screening and liquid chromatography mass spectrometry, four compounds with anti-cardiac hypertrophy effects were identified from TMYX, which includes emodin, licoisoflavone A, licoricone and glyasperin A. Licoisoflavone A is one of the compounds with most significant protective effect and we continued to investigate the mechanism. Primary cultures of neonatal rat cardiomyocytes were treated with a hypertrophic agonist phenylephrine (PE) in the presence or absence of licoisoflavone A. After 48 h of treatment, cells were harvested and mitochondrial acetylation was analyzed by western blotting and Image analysis. Interestingly, the results suggested that the anti-hypertrophic effects of licoisoflavone A depend on the activation of the deacetylase Sirt3 (p < 0.01). Finally, we showed that licoisoflavone A-treatment was able to decrease relative ANF and BNP levels in the hypertrophic cardiac cells (p < 0.01), but not in cells co-treated with Sirt3 inhibitors (3-TYP) (p > 0.05). CONCLUSION TMYX exerts its anti-hypertrophy effect possibly through upregulating Sirt3 expression. Four compounds were identified from TMYX which may be responsible for the anti-hypertrophy effect. Among these compounds, licoisoflavone A was demonstrated to block the hypertrophic response of cardiomyocytes, which required its positive regulation on the expression of Sirt3. These results suggested that licoisoflavone A is a potential Sirt3 activator with therapeutic effect on cardiac hypertrophy.
Collapse
MESH Headings
- Acetylation
- Angiotensin II/adverse effects
- Animals
- Cardiomegaly/chemically induced
- Cardiomegaly/drug therapy
- Cells, Cultured
- Disease Models, Animal
- Drug Evaluation, Preclinical
- Drugs, Chinese Herbal/chemistry
- Drugs, Chinese Herbal/pharmacology
- Isoflavones/pharmacology
- Isoproterenol/adverse effects
- Male
- Mice, Inbred C57BL
- Mitochondria, Heart/drug effects
- Mitochondria, Heart/metabolism
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Phenylephrine/adverse effects
- Rats
- Sirtuin 3/metabolism
Collapse
Affiliation(s)
- Rui Guo
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ningning Liu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; TCM Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Hao Liu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Junhua Zhang
- TCM Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Han Zhang
- TCM Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Yingchao Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Mirko Baruscotti
- Department of Bioscienze, Pacelab, University of Milano, Milan, Italy
| | - Lu Zhao
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yi Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
4
|
Li S, Xia M. Review of high-content screening applications in toxicology. Arch Toxicol 2019; 93:3387-3396. [PMID: 31664499 PMCID: PMC7011178 DOI: 10.1007/s00204-019-02593-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/08/2019] [Indexed: 12/17/2022]
Abstract
High-content screening (HCS) technology combining automated microscopy and quantitative image analysis can address biological questions in academia and the pharmaceutical industry. Various HCS experimental applications have been utilized in the research field of in vitro toxicology. In this review, we describe several HCS application approaches used for studying the mechanism of compound toxicity, highlight some challenges faced in the toxicological community, and discuss the future directions of HCS in regards to new models, new reagents, data management, and informatics. Many specialized areas of toxicology including developmental toxicity, genotoxicity, developmental neurotoxicity/neurotoxicity, hepatotoxicity, cardiotoxicity, and nephrotoxicity will be examined. In addition, several newly developed cellular assay models including induced pluripotent stem cells (iPSCs), three-dimensional (3D) cell models, and tissues-on-a-chip will be discussed. New genome-editing technologies (e.g., CRISPR/Cas9), data analyzing tools for imaging, and coupling with high-content assays will be reviewed. Finally, the applications of machine learning to image processing will be explored. These new HCS approaches offer a huge step forward in dissecting biological processes, developing drugs, and making toxicology studies easier.
Collapse
Affiliation(s)
- Shuaizhang Li
- Division for Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD, USA
| | - Menghang Xia
- Division for Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD, USA.
| |
Collapse
|
5
|
Dynamic imaging of adaptive stress response pathway activation for prediction of drug induced liver injury. Arch Toxicol 2018; 92:1797-1814. [PMID: 29502165 PMCID: PMC5962642 DOI: 10.1007/s00204-018-2178-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 02/26/2018] [Indexed: 02/07/2023]
Abstract
Drug-induced liver injury remains a concern during drug treatment and development. There is an urgent need for improved mechanistic understanding and prediction of DILI liabilities using in vitro approaches. We have established and characterized a panel of liver cell models containing mechanism-based fluorescent protein toxicity pathway reporters to quantitatively assess the dynamics of cellular stress response pathway activation at the single cell level using automated live cell imaging. We have systematically evaluated the application of four key adaptive stress pathway reporters for the prediction of DILI liability: SRXN1-GFP (oxidative stress), CHOP-GFP (ER stress/UPR response), p21 (p53-mediated DNA damage-related response) and ICAM1 (NF-κB-mediated inflammatory signaling). 118 FDA-labeled drugs in five human exposure relevant concentrations were evaluated for reporter activation using live cell confocal imaging. Quantitative data analysis revealed activation of single or multiple reporters by most drugs in a concentration and time dependent manner. Hierarchical clustering of time course dynamics and refined single cell analysis allowed the allusion of key events in DILI liability. Concentration response modeling was performed to calculate benchmark concentrations (BMCs). Extracted temporal dynamic parameters and BMCs were used to assess the predictive power of sub-lethal adaptive stress pathway activation. Although cellular adaptive responses were activated by non-DILI and severe-DILI compounds alike, dynamic behavior and lower BMCs of pathway activation were sufficiently distinct between these compound classes. The high-level detailed temporal- and concentration-dependent evaluation of the dynamics of adaptive stress pathway activation adds to the overall understanding and prediction of drug-induced liver liabilities.
Collapse
|
6
|
Qu D, Gu Y, Feng L, Han J. High Content Analysis technology for evaluating the joint toxicity of sunset yellow and sodium sulfite in vitro. Food Chem 2017; 233:135-143. [DOI: 10.1016/j.foodchem.2017.04.102] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 04/05/2017] [Accepted: 04/17/2017] [Indexed: 11/15/2022]
|
7
|
Donato MT, Gómez-Lechón MJ, Tolosa L. Using high-content screening technology for studying drug-induced hepatotoxicity in preclinical studies. Expert Opin Drug Discov 2016; 12:201-211. [DOI: 10.1080/17460441.2017.1271784] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Maria Teresa Donato
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
- Fondo de Investigaciones Sanitarias, CIBEREHD, Madrid, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - Maria José Gómez-Lechón
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
- Fondo de Investigaciones Sanitarias, CIBEREHD, Madrid, Spain
| | - Laia Tolosa
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| |
Collapse
|
8
|
Ren Z, Chen S, Zhang J, Doshi U, Li AP, Guo L. Endoplasmic Reticulum Stress Induction and ERK1/2 Activation Contribute to Nefazodone-Induced Toxicity in Hepatic Cells. Toxicol Sci 2016; 154:368-380. [PMID: 27613715 DOI: 10.1093/toxsci/kfw173] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Nefazodone, an antagonist for the 5-hydroxytryptanine receptor, has been used for the treatment of depression. Acute liver injury has been documented to be associated with the use of nefazodone; however, the mechanisms of nefazodone-induced liver toxicity are not well defined. In this report, using biochemical and molecular analyses, we characterized the molecular mechanisms underlying the hepatotoxicity of nefazodone. We found that nefazodone induced endoplasmic reticulum (ER) stress in HepG2 cells, as the expression of typical ER stress markers, including CHOP, ATF-4, and p-eIF2α, was significantly increased, and splicing of XBP1 was observed. Nefazodone-suppressed protein secretion was evaluated using a Gaussia luciferase reporter assay that measures ER stress. The ER stress inhibitors (4-phenylbutyrate and salubrinal) and knockdown of ATF-4 gene attenuated nefazodone-induced ER stress and cytotoxicity. Nefazodone activated the MAPK signaling pathway, as indicated by increased phosphorylation of JNK, ERK1/2, and p38. Inhibition of ERK1/2 reduced ER stress caused by nefazodone. Taken together, our findings suggest that ER stress contributes to nefazodone-induced toxicity in HepG2 cells and that the MAPK signaling pathway plays an important role in ER stress.
Collapse
Affiliation(s)
- Zhen Ren
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. FDA, Jefferson, Arkansas
| | - Si Chen
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. FDA, Jefferson, Arkansas
| | - Jie Zhang
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, U.S. FDA, Jefferson, Arkansas
| | | | - Albert P Li
- In Vitro ADMET Laboratories LLC, Columbia, Maryland
| | - Lei Guo
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. FDA, Jefferson, Arkansas;
| |
Collapse
|
9
|
Involvement of mitochondrial dysfunction in nefazodone-induced hepatotoxicity. Food Chem Toxicol 2016; 94:148-58. [PMID: 27288927 DOI: 10.1016/j.fct.2016.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 05/10/2016] [Accepted: 06/03/2016] [Indexed: 12/17/2022]
Abstract
Nefazodone (NEF) is an antidepressive agent that was widely used in the treatment of depression until its withdrawal from the market, due to reports of liver injury and failure. NEF hepatotoxicity has been associated with mitochondrial impairment due to interference with the OXPHOS enzymatic activities, increased ROS generation and decreased antioxidant defenses. However, the mechanisms by which NEF induces mitochondrial dysfunction in hepatocytes are not completely understood. Here, we investigated the mitochondrial mechanisms affected upon NEF exposure and whether these might be linked to drug hepatotoxicity, in order to infer liabilities of future drug candidates. Two moderately hepatotoxic NEF concentrations (20 and 50 μM) were selected from dose-response growth curves performed in HepG2 cells. Cell viability, caspase activity, nuclear morphology, mitochondrial transmembrane potential, mitochondrial superoxide levels, and the expression of genes associated with different cellular pathways were evaluated at different time points. NEF treatment led to an increase in the expression of genes associated with DNA-damage response, antioxidant defense and apoptosis and a decreased expression of genes encoding proteins involved in oxidative phosphorylation, DNA repair, cell proliferation and cell cycle progression, which seem to constitute mechanisms underlying the observed mitochondrial and cell function impairment.
Collapse
|
10
|
Sasagawa S, Nishimura Y, Koiwa J, Nomoto T, Shintou T, Murakami S, Yuge M, Kawaguchi K, Kawase R, Miyazaki T, Tanaka T. In Vivo Detection of Mitochondrial Dysfunction Induced by Clinical Drugs and Disease-Associated Genes Using a Novel Dye ZMJ214 in Zebrafish. ACS Chem Biol 2016; 11:381-8. [PMID: 26630578 DOI: 10.1021/acschembio.5b00751] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mitochondrial dysfunction has been implicated in various drug-induced toxicities and genetic disorders. Recently, the zebrafish has emerged as a versatile animal model for both chemical and genetic screenings. Taking advantage of its transparency, various in vivo fluorescent imaging methods have been developed to identify novel functions of chemicals and genes in zebrafish. However, there have not been fluorescent probes that can detect mitochondrial membrane potential in living zebrafish. In this study, we identified a novel cyanine dye called ZMJ214 that detects mitochondrial membrane potential in living zebrafish from 4 to 8 days post fertilization and is administered by simple immersion. The fluorescence intensity of ZMJ214 in zebrafish was increased and decreased by oligomycin and FCCP, respectively, suggesting a positive correlation between ZMJ214 fluorescence and mitochondrial membrane potential. In vivo imaging of zebrafish stained with ZMJ214 allowed for the detection of altered mitochondrial membrane potential induced by the antidiabetic drug troglitazone and the antiepileptic drug tolcapone, both of which have been withdrawn from the market due to mitochondrial toxicity. In contrast, pioglitazone and entacapone, which are similar to troglitazone and tolcapone, respectively, and have been used commercially, did not cause a change in mitochondrial membrane potential in zebrafish stained with ZMJ214. Live imaging of zebrafish stained with ZMJ214 also revealed that knock-down of slc25a12, a mitochondrial carrier protein associated with autism, dysregulated the mitochondrial membrane potential. These results suggest that ZMJ214 can be a useful tool to identify chemicals and genes that cause mitochondrial dysfunction in vivo.
Collapse
Affiliation(s)
- Shota Sasagawa
- Department of Molecular
and Cellular Pharmacology, Pharmacogenomics and Pharamacoinformatics, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Yuhei Nishimura
- Department of Molecular
and Cellular Pharmacology, Pharmacogenomics and Pharamacoinformatics, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
- Mie University Medical Zebrafish Research Center, Tsu, Mie 514-8507, Japan
- Depertment of Systems Pharmacology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
- Department of Omics
Medicine, Mie University Industrial Technology Innovation Institute, Tsu, Mie 514-8507, Japan
- Department of Bioinformatics, Mie University Life Science Research Center, Tsu, Mie 514-8507, Japan
| | - Junko Koiwa
- Department of Molecular
and Cellular Pharmacology, Pharmacogenomics and Pharamacoinformatics, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Tsuyoshi Nomoto
- Corporate R&D Headquarters, Canon Inc., Ohta-ku, Tokyo 146-8501, Japan
| | - Taichi Shintou
- Corporate R&D Headquarters, Canon Inc., Ohta-ku, Tokyo 146-8501, Japan
| | - Soichiro Murakami
- Department of Molecular
and Cellular Pharmacology, Pharmacogenomics and Pharamacoinformatics, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Mizuki Yuge
- Department of Molecular
and Cellular Pharmacology, Pharmacogenomics and Pharamacoinformatics, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Koki Kawaguchi
- Department of Molecular
and Cellular Pharmacology, Pharmacogenomics and Pharamacoinformatics, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Reiko Kawase
- Department of Molecular
and Cellular Pharmacology, Pharmacogenomics and Pharamacoinformatics, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Takeshi Miyazaki
- Corporate R&D Headquarters, Canon Inc., Ohta-ku, Tokyo 146-8501, Japan
| | - Toshio Tanaka
- Department of Molecular
and Cellular Pharmacology, Pharmacogenomics and Pharamacoinformatics, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
- Mie University Medical Zebrafish Research Center, Tsu, Mie 514-8507, Japan
- Depertment of Systems Pharmacology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
- Department of Omics
Medicine, Mie University Industrial Technology Innovation Institute, Tsu, Mie 514-8507, Japan
- Department of Bioinformatics, Mie University Life Science Research Center, Tsu, Mie 514-8507, Japan
| |
Collapse
|
11
|
High-content screening imaging and real-time cellular impedance monitoring for the assessment of chemical’s bio-activation with regards hepatotoxicity. Toxicol In Vitro 2015; 29:1916-31. [DOI: 10.1016/j.tiv.2015.07.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 06/29/2015] [Accepted: 07/30/2015] [Indexed: 02/07/2023]
|
12
|
Rangasamy S, Ju H, Um S, Oh DC, Song JM. Mitochondria and DNA Targeting of 5,10,15,20-Tetrakis(7-sulfonatobenzo[b]thiophene) Porphyrin-Induced Photodynamic Therapy via Intrinsic and Extrinsic Apoptotic Cell Death. J Med Chem 2015; 58:6864-74. [PMID: 26295496 DOI: 10.1021/acs.jmedchem.5b01095] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Photodynamic therapy (PDT) selectively targets subcellular organelles and promises an excellent therapeutic strategy for cancer treatment. Here, we report the synthesis of a new water-soluble photosensitizer, 5,10,15,20-tetrakis (7-sulfonatobenzo[b]thiophene) porphyrin (SBTP). Rational design of the porphyrinic molecule containing benzo[b]thiophene moiety at the meso-position led to selective accumulation in both mitochondria and nucleus of MCF-7 cells. This multitarget ability of SBTP can cause damage to mitochondria as well as DNA simultaneously. FACS analysis showed rapid cellular uptake of SBTP. High-content cell-based assay was executed to concurrently monitor increase of cytosolic Ca(2+) levels, mitochondrial permeability transition (MPT), and caspase-3/7/8 activation in MCF-7 cells under the pathological condition caused by PDT action of SBTP. The study of cell death dynamics showed that PDT action of SBTP caused an increase in the MPT followed by an increase in cytosolic Ca(2+) level. The localization of SBTP in the mitochondria activated the intrinsic apoptotic pathway. Additionally, localization of SBTP in the nucleus led to DNA damage in MCF-7 cells. The DNA fragmentation that occurred by PDT action of SBTP was thought to be responsible for extrinsic apoptosis of MCF-7 cells. SBTP demonstrated effective PDT activity of 5 μM IC50 value to MCF-7 cells by bitargeting mitochondria and DNA.
Collapse
Affiliation(s)
| | - Hee Ju
- College of Pharmacy, Seoul National University , Seoul 151-742, South Korea
| | - Soohyun Um
- College of Pharmacy, Seoul National University , Seoul 151-742, South Korea
| | - Dong-Chan Oh
- College of Pharmacy, Seoul National University , Seoul 151-742, South Korea
| | - Joon Myong Song
- College of Pharmacy, Seoul National University , Seoul 151-742, South Korea
| |
Collapse
|
13
|
Senutovitch N, Vernetti L, Boltz R, DeBiasio R, Gough A, Taylor DL. Fluorescent protein biosensors applied to microphysiological systems. Exp Biol Med (Maywood) 2015; 240:795-808. [PMID: 25990438 PMCID: PMC4464952 DOI: 10.1177/1535370215584934] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
This mini-review discusses the evolution of fluorescence as a tool to study living cells and tissues in vitro and the present role of fluorescent protein biosensors (FPBs) in microphysiological systems (MPSs). FPBs allow the measurement of temporal and spatial dynamics of targeted cellular events involved in normal and perturbed cellular assay systems and MPSs in real time. FPBs evolved from fluorescent analog cytochemistry (FAC) that permitted the measurement of the dynamics of purified proteins covalently labeled with environmentally insensitive fluorescent dyes and then incorporated into living cells, as well as a large list of diffusible fluorescent probes engineered to measure environmental changes in living cells. In parallel, a wide range of fluorescence microscopy methods were developed to measure the chemical and molecular activities of the labeled cells, including ratio imaging, fluorescence lifetime, total internal reflection, 3D imaging, including super-resolution, as well as high-content screening. FPBs evolved from FAC by combining environmentally sensitive fluorescent dyes with proteins in order to monitor specific physiological events such as post-translational modifications, production of metabolites, changes in various ion concentrations, and the dynamic interaction of proteins with defined macromolecules in time and space within cells. Original FPBs involved the engineering of fluorescent dyes to sense specific activities when covalently attached to particular domains of the targeted protein. The subsequent development of fluorescent proteins (FPs), such as the green fluorescent protein, dramatically accelerated the adoption of studying living cells, since the genetic "labeling" of proteins became a relatively simple method that permitted the analysis of temporal-spatial dynamics of a wide range of proteins. Investigators subsequently engineered the fluorescence properties of the FPs for environmental sensitivity that, when combined with targeted proteins/peptides, created a new generation of FPBs. Examples of FPBs that are useful in MPS are presented, including the design, testing, and application in a liver MPS.
Collapse
Affiliation(s)
- Nina Senutovitch
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA 15260, USA University of Pittsburgh Department of Computational & Systems Biology, Pittsburgh, PA 15260, USA
| | - Lawrence Vernetti
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA 15260, USA University of Pittsburgh Department of Computational & Systems Biology, Pittsburgh, PA 15260, USA
| | - Robert Boltz
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA 15260, USA University of Pittsburgh Department of Computational & Systems Biology, Pittsburgh, PA 15260, USA
| | - Richard DeBiasio
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA 15260, USA
| | - Albert Gough
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA 15260, USA University of Pittsburgh Department of Computational & Systems Biology, Pittsburgh, PA 15260, USA
| | - D Lansing Taylor
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA 15260, USA University of Pittsburgh Department of Computational & Systems Biology, Pittsburgh, PA 15260, USA
| |
Collapse
|
14
|
Safety evaluation of chinese medicine injections with a cell imaging-based multiparametric assay revealed a critical involvement of mitochondrial function in hepatotoxicity. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:379586. [PMID: 25792997 PMCID: PMC4352439 DOI: 10.1155/2015/379586] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 09/25/2014] [Indexed: 11/25/2022]
Abstract
The safety of herbal medicine products has been a widespread concern due to their complex chemical nature and lack of proper evaluation methods. We have adapted a sensitive and reproducible multiparametric cell-based high-content analysis assay to evaluate the hepatic-safety of four Chinese medicine injections and validated it with classical animal-based toxicity assays. Our results suggested that the reported hepatotoxicity by one of the drugs, Fufangkushen injection, could be attributed at least in part to the interference of mitochondrial function in human HepG2 cells by some of its constituents. This method should be useful for both preclinical screen in a drug discovery program and postclinical evaluation of herbal medicine preparations.
Collapse
|
15
|
High-content screening technology for studying drug-induced hepatotoxicity in cell models. Arch Toxicol 2015; 89:1007-22. [PMID: 25787152 DOI: 10.1007/s00204-015-1503-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 03/05/2015] [Indexed: 01/13/2023]
Abstract
High-content screening is the application of automated microscopy and image analysis to both cell biology and drug discovery. Over the last decade, this technique has emerged as a useful technology that allows the simultaneous measurement of different parameters at a single-cell level. Hepatotoxicity is a compelling reason for drug nonapprovals and withdrawals. It is recognized that the safety of a compound cannot be based on a single in vitro assay, and existing methods are not predictive of drug-induced toxicity. However, different HCS assays have been recently demonstrated as being powerful for identifying different mechanisms implicated in drug-induced toxicity with high sensitivity and specificity. These assays integrate the data obtained from different cell function indicators and can be easily incorporated into basic screening processes for the safety evaluation and selection of drug candidates; thus, they contribute greatly to lessen the likelihood of drug failure. Exploring the use of cellular imaging technology in drug-induced liver injury by reviewing the different tests proposed provides evidence that this technology has a strong impact on drug discovery.
Collapse
|
16
|
Iannetti EF, Willems PHGM, Pellegrini M, Beyrath J, Smeitink JAM, Blanchet L, Koopman WJH. Toward high-content screening of mitochondrial morphology and membrane potential in living cells. Int J Biochem Cell Biol 2015; 63:66-70. [PMID: 25668473 DOI: 10.1016/j.biocel.2015.01.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 01/14/2015] [Accepted: 01/29/2015] [Indexed: 11/20/2022]
Abstract
Mitochondria are double membrane organelles involved in various key cellular processes. Governed by dedicated protein machinery, mitochondria move and continuously fuse and divide. These "mitochondrial dynamics" are bi-directionally linked to mitochondrial and cell functional state in space and time. Due to the action of the electron transport chain (ETC), the mitochondrial inner membrane displays a inside-negative membrane potential (Δψ). The latter is considered a functional readout of mitochondrial "health" and required to sustain normal mitochondrial ATP production and mitochondrial fusion. During the last decade, live-cell microscopy strategies were developed for simultaneous quantification of Δψ and mitochondrial morphology. This revealed that ETC dysfunction, changes in Δψ and aberrations in mitochondrial structure often occur in parallel, suggesting they are linked potential targets for therapeutic intervention. Here we discuss how combining high-content and high-throughput strategies can be used for analysis of genetic and/or drug-induced effects at the level of individual organelles, cells and cell populations. This article is part of a Directed Issue entitled: Energy Metabolism Disorders and Therapies.
Collapse
Affiliation(s)
| | - Peter H G M Willems
- Khondrion BV, Nijmegen, The Netherlands; Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | | | - Jan A M Smeitink
- Khondrion BV, Nijmegen, The Netherlands; Department of Pediatrics, Nijmegen Center for Mitochondria disorders, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Werner J H Koopman
- Khondrion BV, Nijmegen, The Netherlands; Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
17
|
Kim MJ, Rangasamy S, Shim Y, Song JM. Cell lysis-free quantum dot multicolor cellular imaging-based mechanism study for TNF-α-induced insulin resistance. J Nanobiotechnology 2015; 13:4. [PMID: 25623542 PMCID: PMC4310030 DOI: 10.1186/s12951-015-0064-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 01/07/2015] [Indexed: 12/25/2022] Open
Abstract
Background TNF-α is an inflammatory cytokine that plays an important role in insulin resistance observed in obesity and chronic inflammation. Many cellular components involved in insulin signaling cascade are known to be inhibited by TNF-α. Insulin receptor substrate (IRS)-1 is one of the major targets in TNF-α-induced insulin resistance. The serine phosphorylation of IRS-1 enables the inhibition of insulin signaling. Until now, many studies have been conducted to investigate the mechanism of TNF-α-induced insulin resistance based on Western blot. Intracellular protein kinase crosstalk is commonly encountered in inflammation-associated insulin resistance. The crosstalk among the signaling molecules obscures the precise role of kinases in insulin resistance. We have developed a cell lysis-free quantum dots (QDots) multicolor cellular imaging to identify the biochemical role of multiple kinases (p38, JNK, IKKβ, IRS1ser, IRS1tyr, GSK3β, and FOXO1) in inflammation-associated insulin resistance pathway with a single assay in one run. QDot-antibody conjugates were used as nanoprobes to simultaneously monitor the activation/deactivation of the above seven intracellular kinases in HepG2 cells. The effect of the test compounds on the suppression of TNF-α-induced insulin resistance was validated through kinase monitoring. Aspirin, indomethacin, cinnamic acid, and amygdalin were tested. Results Through the measurement of the glycogen level in HepG2 cell treated with TNF-α, it was found that aspirin and indomethacin increased glycogen levels by almost two-fold compared to amygdalin and cinnamic acid. The glucose production assay proved that cinnamic acid was much more efficient in suppressing glucose production, compared with MAP kinase inhibitors and non-steroidal anti-inflammatory drugs. QDot multicolor cellular imaging demonstrated that amygdalin and cinnamic acid selectively acted via the JNK1-dependent pathway to suppress the inflammation-induced insulin resistance and improve insulin sensitivity. Conclusion The regulatory function of multiple kinases could be monitored concurrently at the cellular level. The developed cellular imaging assay provides a unique platform for the understanding of inflammation and insulin resistance signaling pathways in type II diabetes mellitus and how they regulate each other. The results showed that amygdalin and cinnamic acid inhibit serine phosphorylation of IRS-1 through targeting JNK serine kinase and enhance insulin sensitivity.
Collapse
Affiliation(s)
| | | | | | - Joon Myong Song
- College of Pharmacy, Seoul National University, Seoul 151-742, South Korea.
| |
Collapse
|
18
|
Noh HB, Revin SB, Shim YB. Voltammetric analysis of anti-arthritis drug, ascorbic acid, tyrosine, and uric acid using a graphene decorated-functionalized conductive polymer electrode. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.07.044] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
19
|
Paul A, Eun CJ, Song JM. Cytotoxicity mechanism of non-viral carriers polyethylenimine and poly-l-lysine using real time high-content cellular assay. POLYMER 2014. [DOI: 10.1016/j.polymer.2014.08.043] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
20
|
Tolosa L, Carmona A, Castell JV, Gómez-Lechón MJ, Donato MT. High-content screening of drug-induced mitochondrial impairment in hepatic cells: effects of statins. Arch Toxicol 2014; 89:1847-60. [DOI: 10.1007/s00204-014-1334-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 08/12/2014] [Indexed: 02/07/2023]
|
21
|
Singh S, Carpenter AE, Genovesio A. Increasing the Content of High-Content Screening: An Overview. ACTA ACUST UNITED AC 2014; 19:640-50. [PMID: 24710339 PMCID: PMC4230961 DOI: 10.1177/1087057114528537] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 12/31/2013] [Indexed: 01/17/2023]
Abstract
Target-based high-throughput screening (HTS) has recently been critiqued for its relatively poor yield compared to phenotypic screening approaches. One type of phenotypic screening, image-based high-content screening (HCS), has been seen as particularly promising. In this article, we assess whether HCS is as high content as it can be. We analyze HCS publications and find that although the number of HCS experiments published each year continues to grow steadily, the information content lags behind. We find that a majority of high-content screens published so far (60−80%) made use of only one or two image-based features measured from each sample and disregarded the distribution of those features among each cell population. We discuss several potential explanations, focusing on the hypothesis that data analysis traditions are to blame. This includes practical problems related to managing large and multidimensional HCS data sets as well as the adoption of assay quality statistics from HTS to HCS. Both may have led to the simplification or systematic rejection of assays carrying complex and valuable phenotypic information. We predict that advanced data analysis methods that enable full multiparametric data to be harvested for entire cell populations will enable HCS to finally reach its potential.
Collapse
Affiliation(s)
- Shantanu Singh
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Anne E Carpenter
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Auguste Genovesio
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA École Normale Supérieure, 45, Rue d'Ulm, 75005 Paris
| |
Collapse
|
22
|
Langley G. A vision becoming reality. Altern Lab Anim 2014; 41:449-52. [PMID: 24512228 DOI: 10.1177/026119291304100607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Non-animal science in toxicology and health research has been progressing for decades, but only now is it being seen widely as advanced science. The emergence of novel human biology-based tools and models, combined with legislative and regulatory change, a 21st century concept for toxicology, continuing failures in the drug pipeline, and systematic critiques of animal models, have created a pivotal moment of change. The leading edge is starting to become the norm. Humans and other animals are likely to benefit as a result.
Collapse
Affiliation(s)
- Gill Langley
- Independent Consultant, Hitchin, Hertfordshire, UK
| |
Collapse
|
23
|
Green tea epigallocatechin gallate binds to and inhibits respiratory complexes in swelling but not normal rat hepatic mitochondria. Biochem Biophys Res Commun 2014; 443:1097-104. [DOI: 10.1016/j.bbrc.2013.12.110] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 12/20/2013] [Indexed: 01/15/2023]
|
24
|
Montague CR, Fitzmaurice A, Hover BM, Salazar NA, Fey JP. Screen for small molecules increasing the mitochondrial membrane potential. ACTA ACUST UNITED AC 2013; 19:387-98. [PMID: 23867716 DOI: 10.1177/1087057113495295] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The identification of small molecules that positively modulate the mitochondrial respiratory function has broad applications in fundamental research, therapeutic target validation, and drug discovery. We present an approach in which primary screens for mitochondrial function in yeast are used to efficiently identify a subset of high-value compounds that can in turn be rapidly tested against a broad range of mammalian cell lines. The ability of the yeast assay to successfully identify in a high-throughput format hit compounds that increase the mitochondrial membrane potential and adenosine triphosphate (ATP) levels by as little as 15% was demonstrated. In this study, 14 hits were identified from a collection of 13,680 compounds. Secondary testing with myotubes, fibroblasts, and PC-12 and HepG2 cells identified two compounds increasing ATP levels in hepatocytes and two other compounds increasing ATP in fibroblasts. The effect on hepatocytes was further studied using genomic and mitochondrial proteomic tools to characterize the changes induced by the two compounds. Changes in the accumulation of a series of factors involved in early gene response or apoptosis or linked to metabolic functions (i.e., β-Klotho, RORα, PGC-1α, G6PC, IGFBP1, FTL) were discovered.
Collapse
|
25
|
Jung J, Weisenburger S, Albert S, Gilbert DF, Friedrich O, Eulenburg V, Kornhuber J, Groemer TW. Performance of scientific cameras with different sensor types in measuring dynamic processes in fluorescence microscopy. Microsc Res Tech 2013; 76:835-43. [DOI: 10.1002/jemt.22236] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 03/19/2013] [Accepted: 04/26/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Jasmin Jung
- Department of Psychiatry and Psychotherapy; Friedrich-Alexander-University of Erlangen-Nuremberg; Erlangen 91054 Germany
| | - Siegfried Weisenburger
- Nano-Optics Division, Max Planck Institute for the Science of Light; Erlangen 91058 Germany
| | - Sahradha Albert
- Department of Psychiatry and Psychotherapy; Friedrich-Alexander-University of Erlangen-Nuremberg; Erlangen 91054 Germany
| | - Daniel F. Gilbert
- Institute of Medical Biotechnology; Friedrich-Alexander-University of Erlangen-Nuremberg; Erlangen 91052 Germany
| | - Oliver Friedrich
- Institute of Medical Biotechnology; Friedrich-Alexander-University of Erlangen-Nuremberg; Erlangen 91052 Germany
| | - Volker Eulenburg
- Department of Biochemistry and Molecular Medicine; Friedrich-Alexander-University of Erlangen-Nuremberg; Erlangen 91054 Germany
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy; Friedrich-Alexander-University of Erlangen-Nuremberg; Erlangen 91054 Germany
| | - Teja W. Groemer
- Department of Psychiatry and Psychotherapy; Friedrich-Alexander-University of Erlangen-Nuremberg; Erlangen 91054 Germany
| |
Collapse
|
26
|
Gunness P, Mueller D, Shevchenko V, Heinzle E, Ingelman-Sundberg M, Noor F. 3D organotypic cultures of human HepaRG cells: a tool for in vitro toxicity studies. Toxicol Sci 2013; 133:67-78. [PMID: 23377618 DOI: 10.1093/toxsci/kft021] [Citation(s) in RCA: 174] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Drug-induced human hepatotoxicity is difficult to predict using the current in vitro systems. In this study, long-term 3D organotypic cultures of the human hepatoma HepaRG cell line were prepared using a high-throughput hanging drop method. The organotypic cultures were maintained for 3 weeks and assessed for (1) liver specific functions, including phase I enzyme and transporter activities, (2) expression of liver-specific proteins, and (3) responses to three drugs (acetaminophen, troglitazone, and rosiglitazone). Our results show that the organotypic cultures maintain high liver-specific functionality during 3 weeks of culture. The immunohistochemistry analyses illustrate that the organotypic cultures express liver-specific markers such as albumin, CYP3A4, CYP2E1, and MRP-2 throughout the cultivation period. Accordingly, the production rates of albumin and glucose, as well as CYP2E1 activity, were significantly higher in the 3D versus the 2D cultures. Toxicity studies show that the organotypic cultures are more sensitive to acetaminophen- and rosiglitazone-induced toxicity but less sensitive to troglitazone-induced toxicity than the 2D cultures. Furthermore, the EC50 value (2.7mM) for acetaminophen on the 3D cultures was similar to in vivo toxicity. In summary, the results from our study suggest that the 3D organotypic HepaRG culture is a promising in vitro tool for more accurate assessment of acute and also possibly for chronic drug-induced hepatotoxicity.
Collapse
Affiliation(s)
- Patrina Gunness
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|