1
|
An Y, Lu W, Li S, Lu X, Zhang Y, Han D, Su D, Jia J, Yuan J, Zhao B, Tu M, Li X, Wang X, Fang N, Ji S. Systematic review and integrated analysis of prognostic gene signatures for prostate cancer patients. Discov Oncol 2023; 14:234. [PMID: 38112859 PMCID: PMC10730790 DOI: 10.1007/s12672-023-00847-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 12/07/2023] [Indexed: 12/21/2023] Open
Abstract
Prostate cancer (PC) is one of the most common cancers in men and becoming the second leading cause of cancer fatalities. At present, the lack of effective strategies for prognosis of PC patients is still a problem to be solved. Therefore, it is significant to identify potential gene signatures for PC patients' prognosis. Here, we summarized 71 different prognostic gene signatures for PC and concluded 3 strategies for signature construction after extensive investigation. In addition, 14 genes frequently appeared in 71 different gene signatures, which enriched in mitotic and cell cycle. This review provides extensive understanding and integrated analysis of current prognostic signatures of PC, which may help researchers to construct gene signatures of PC and guide future clinical treatment.
Collapse
Affiliation(s)
- Yang An
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China.
- Department of Biochemistry and Molecular Biology, Cell Signal Transduction Laboratory, School of Basic Medical Sciences, Henan University, Jinming Street, Kaifeng, 475004, Henan, China.
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Kaifeng, 475004, China.
| | - Wenyuan Lu
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
- Department of Biochemistry and Molecular Biology, Cell Signal Transduction Laboratory, School of Basic Medical Sciences, Henan University, Jinming Street, Kaifeng, 475004, Henan, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Kaifeng, 475004, China
| | - Shijia Li
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
- Department of Biochemistry and Molecular Biology, Cell Signal Transduction Laboratory, School of Basic Medical Sciences, Henan University, Jinming Street, Kaifeng, 475004, Henan, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Kaifeng, 475004, China
| | - Xiaoyan Lu
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
- Department of Biochemistry and Molecular Biology, Cell Signal Transduction Laboratory, School of Basic Medical Sciences, Henan University, Jinming Street, Kaifeng, 475004, Henan, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Kaifeng, 475004, China
| | - Yuanyuan Zhang
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
- Department of Biochemistry and Molecular Biology, Cell Signal Transduction Laboratory, School of Basic Medical Sciences, Henan University, Jinming Street, Kaifeng, 475004, Henan, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Kaifeng, 475004, China
| | - Dongcheng Han
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
- Department of Biochemistry and Molecular Biology, Cell Signal Transduction Laboratory, School of Basic Medical Sciences, Henan University, Jinming Street, Kaifeng, 475004, Henan, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Kaifeng, 475004, China
| | - Dingyuan Su
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
- Department of Biochemistry and Molecular Biology, Cell Signal Transduction Laboratory, School of Basic Medical Sciences, Henan University, Jinming Street, Kaifeng, 475004, Henan, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Kaifeng, 475004, China
| | - Jiaxin Jia
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
- Department of Biochemistry and Molecular Biology, Cell Signal Transduction Laboratory, School of Basic Medical Sciences, Henan University, Jinming Street, Kaifeng, 475004, Henan, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Kaifeng, 475004, China
| | - Jiaxin Yuan
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
- Department of Biochemistry and Molecular Biology, Cell Signal Transduction Laboratory, School of Basic Medical Sciences, Henan University, Jinming Street, Kaifeng, 475004, Henan, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Kaifeng, 475004, China
| | - Binbin Zhao
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
- Department of Biochemistry and Molecular Biology, Cell Signal Transduction Laboratory, School of Basic Medical Sciences, Henan University, Jinming Street, Kaifeng, 475004, Henan, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Kaifeng, 475004, China
| | - Mengjie Tu
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
- Department of Biochemistry and Molecular Biology, Cell Signal Transduction Laboratory, School of Basic Medical Sciences, Henan University, Jinming Street, Kaifeng, 475004, Henan, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Kaifeng, 475004, China
| | - Xinyu Li
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
- Department of Biochemistry and Molecular Biology, Cell Signal Transduction Laboratory, School of Basic Medical Sciences, Henan University, Jinming Street, Kaifeng, 475004, Henan, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Kaifeng, 475004, China
| | - Xiaoqing Wang
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
- Department of Biochemistry and Molecular Biology, Cell Signal Transduction Laboratory, School of Basic Medical Sciences, Henan University, Jinming Street, Kaifeng, 475004, Henan, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Kaifeng, 475004, China
| | - Na Fang
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China.
- Department of Biochemistry and Molecular Biology, Cell Signal Transduction Laboratory, School of Basic Medical Sciences, Henan University, Jinming Street, Kaifeng, 475004, Henan, China.
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Kaifeng, 475004, China.
| | - Shaoping Ji
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China.
- Department of Biochemistry and Molecular Biology, Cell Signal Transduction Laboratory, School of Basic Medical Sciences, Henan University, Jinming Street, Kaifeng, 475004, Henan, China.
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Kaifeng, 475004, China.
| |
Collapse
|
2
|
Neophytou CM, Katsonouri A, Christodoulou MI, Papageorgis P. In Vivo Investigation of the Effect of Dietary Acrylamide and Evaluation of Its Clinical Relevance in Colon Cancer. TOXICS 2023; 11:856. [PMID: 37888706 PMCID: PMC10610724 DOI: 10.3390/toxics11100856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023]
Abstract
Dietary exposure to acrylamide (AA) has been linked with carcinogenicity in the gastrointestinal (GI) tract. However, epidemiologic data on AA intake in relation to cancer risk are limited and contradictory, while the potential cancer-inducing molecular pathways following AA exposure remain elusive. In this study, we collected mechanistic information regarding the induction of carcinogenesis by dietary AA in the colon, using an established animal model. Male Balb/c mice received AA orally (0.1 mg/kg/day) daily for 4 weeks. RNA was extracted from colon tissue samples, followed by RNA sequencing. Comparative transcriptomic analysis between AA and mock-treated groups revealed a set of differentially expressed genes (DEGs) that were further processed using different databases through the STRING-DB portal, to reveal deregulated protein-protein interaction networks. We found that genes implicated in RNA metabolism, processing and formation of the ribosomal subunits and protein translation and metabolism are upregulated in AA-exposed colon tissue; these genes were also overexpressed in human colon adenocarcinoma samples and were negatively correlated with patient overall survival (OS), based on publicly available datasets. Further investigation of the potential role of these genes during the early stages of colon carcinogenesis may shed light into the underlying mechanisms induced by dietary AA exposure.
Collapse
Affiliation(s)
- Christiana M Neophytou
- Tumor Microenvironment, Metastasis and Experimental Therapeutics Group, Basic and Translational Cancer Research Center, Department of Life Sciences, European University Cyprus, 2404 Nicosia, Cyprus
- State General Laboratory, Ministry of Health, 2081 Nicosia, Cyprus
| | | | - Maria-Ioanna Christodoulou
- State General Laboratory, Ministry of Health, 2081 Nicosia, Cyprus
- Tumor Immunology and Biomarkers Group, Basic and Translational Cancer Research Center, Department of Life Sciences, European University Cyprus, 2404 Nicosia, Cyprus
| | - Panagiotis Papageorgis
- Tumor Microenvironment, Metastasis and Experimental Therapeutics Group, Basic and Translational Cancer Research Center, Department of Life Sciences, European University Cyprus, 2404 Nicosia, Cyprus
- State General Laboratory, Ministry of Health, 2081 Nicosia, Cyprus
| |
Collapse
|
3
|
Farag OM, Abd-Elsalam RM, El Badawy SA, Ogaly HA, Alsherbiny MA, Ahmed KA. Portulaca oleracea seeds' extract alleviates acrylamide-induced testicular dysfunction by promoting oxidative status and steroidogenic pathway in rats. BMC Complement Med Ther 2021; 21:122. [PMID: 33853605 PMCID: PMC8045344 DOI: 10.1186/s12906-021-03286-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 03/24/2021] [Indexed: 01/12/2023] Open
Abstract
Background Acrylamide (ACR) is a widespread industrial and food contaminant that garnered considerable attention for its carcinogenic, neurotoxic, and reproductive toxic effects. The antioxidant effects of Portulaca oleracea seeds extract (POS) and its fertility-enhancing effects were inspiring to evaluate the protective potential and pinpoint the mechanisms and molecular targets of the UPLC-MS fingerprinted POS extract on ACR-induced testicular toxicity in rats. Methods Male Wistar rats were divided into 6 equal groups of negative control, ACR model (10 mg/kg b.wt.), POS at doses of (200 and 400 mg/kg b.wt.) and POS-treated ACR groups. All treatments were given by oral dosing every day for 60 days. Results Administration of POS extract reversed the ACR-induced epididymides weight loss with improved semen quality and count, ameliorated the ACR-decreased testicular lesion scoring, testicular oxidative stress, testicular degeneration, Leydig cell apoptosis and the dysregulated PCNA and Caspase-3 expression in a dose-dependent manner. It upregulated the declined level of serum testosterone and the expression of steroidogenic genes such as CYP11A1 and 17β3-HSD with an obvious histologic improvement of the testes with re-establishment of the normal spermatogenic series, Sertoli and Leydig cells. Conclusions The supplementation with POS extract may provide a potential protective effect for ACR-induced testicular dysfunction which is mediated by its antioxidant, antiapoptotic and steroidogenic modulatory effects. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-021-03286-2.
Collapse
Affiliation(s)
- Ola M Farag
- General Organization for Veterinary Services, Giza, Egypt
| | - Reham M Abd-Elsalam
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Shymaa A El Badawy
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| | - Hanan A Ogaly
- Department of Biochemistry, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Muhammad A Alsherbiny
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 12613, Egypt
| | - Kawkab A Ahmed
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| |
Collapse
|
4
|
Snarska A, Palus K, Wysocka D, Rytel L. The Influence of High and Low Doses of Acrylamide on Porcine Erythropoiesis. J Vet Res 2020; 64:609-614. [PMID: 33367151 PMCID: PMC7734685 DOI: 10.2478/jvetres-2020-0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 09/30/2020] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION Due to the widespread occurrence of acrylamide in the environment, its likely carcinogen status, and the suitability of the pig model as a human analogue, the authors decided to evaluate the impact of high and low doses of this compound on the processes of erythropoiesis in swine bone marrow. MATERIAL AND METHODS The experiment was carried out on Danish Landrace pigs at the age of eight weeks and body weight about 20 kg. The animals were divided into three equal groups consisting of five pigs in each. Control animals received empty gelatin capsules (placebos). Animals from the first experimental group received a low dose of acrylamide of 0.5 μg/kg b.w./day (> 99% purity; Sigma-Aldrich, Poland), and animals from the second experimental group received a dose 10 times higher. Placebos and acrylamide capsules were administered with feed every morning for 28 days. After anaesthetisation of the animals, bone marrow from the femur was collected into tubes without an anticoagulant on days 0 and 28. After drying and staining, bone marrow smears were subjected to detailed cytological evaluation using a light microscope. RESULTS This study showed that high and low doses of acrylamide affected the process of porcine erythropoiesis. The cytotoxic effect of acrylamide on this process was demonstrated in a change of the polychromatic erythroblasts/normochromatic erythroblasts ratio. CONCLUSION Both doses of acrylamide caused a decrease in the number of ortho- and polychromatic erythroblasts.
Collapse
Affiliation(s)
- Anna Snarska
- Department and Clinic of Internal Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury, 10-719, Olsztyn, Poland
| | - Katarzyna Palus
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury, 10-719, Olsztyn, Poland
| | - Dominika Wysocka
- Department and Clinic of Internal Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury, 10-719, Olsztyn, Poland
| | - Liliana Rytel
- Department and Clinic of Internal Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury, 10-719, Olsztyn, Poland
| |
Collapse
|
5
|
Harahap Y, Elysia C, Starlin Z, Jayusman AM. Analysis of Acrylamide in Dried Blood Spots of Lung Cancer Patients by Ultrahigh-Performance Liquid Chromatography Tandem Mass Spectrometry. Int J Anal Chem 2020; 2020:2015264. [PMID: 32508924 PMCID: PMC7254088 DOI: 10.1155/2020/2015264] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/04/2020] [Indexed: 11/17/2022] Open
Abstract
Acrylamide (AA) is a carcinogenic substance found in food, cigarette smoke and in an environment exposed to acrylamide. This study aims to analyze AA levels in dried blood spot (DBS) samples of lung cancer patients with smoking record, without smoking record, and also in the negative blank. Analysis of AA levels was determined by liquid chromatography tandem mass spectrometry (LC-MS/MS) and DBS extraction using protein precipitation techniques. Mass detection was done using positive electron spray ionization (ESI) and multiple reaction monitoring (MRM) type with m/z values of 71.99 > 55.23 for acrylamide and m/z 260.16 > 116.04 for propranolol as the internal standard. AA levels in lung cancer patients with smoking record is in the range of 4.670 μg/mL to 11.986 μg/mL. AA levels in lung cancer patients without smoking record is in the range of 2.041 μg/mL to 12.702 μg/mL. Data on AA levels on negative blanks is in the range of 2.72 μg/mL to 3.51 μg/mL. The results of the independent sample t-test (p > 0.05) showed that AA levels in patients with smoking record and those without smoking record did not differ significantly. Then, the Mann-Whitney test was performed between the lung cancer group and the negative blank group and a significant difference was found between the two groups (p < 0.05).
Collapse
Affiliation(s)
| | - Camilla Elysia
- Faculty of Pharmacy, Universitas Indonesia, Depok, Indonesia
| | | | | |
Collapse
|
6
|
Adani G, Filippini T, Wise LA, Halldorsson TI, Blaha L, Vinceti M. Dietary Intake of Acrylamide and Risk of Breast, Endometrial, and Ovarian Cancers: A Systematic Review and Dose-Response Meta-analysis. Cancer Epidemiol Biomarkers Prev 2020; 29:1095-1106. [PMID: 32169997 DOI: 10.1158/1055-9965.epi-19-1628] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/25/2020] [Accepted: 03/10/2020] [Indexed: 11/16/2022] Open
Abstract
Acrylamide is a probable human carcinogen. Aside from occupational exposures and smoking, diet is the main source of exposure in humans. We performed a systematic review of the association between estimated dietary intake of acrylamide and risk of female breast, endometrial, and ovarian cancers in nonexperimental studies published through February 25, 2020, and conducted a dose-response meta-analysis. We identified 18 papers covering 10 different study populations: 16 cohort and two case-control studies. Acrylamide intake was associated with a slightly increased risk of ovarian cancer, particularly among never smokers. For endometrial cancer, risk was highest at intermediate levels of exposure, whereas the association was more linear and positive among never smokers. For breast cancer, we found evidence of a null or inverse relation between exposure and risk, particularly among never smokers and postmenopausal women. In a subgroup analysis limited to premenopausal women, breast cancer risk increased linearly with acrylamide intake starting at 20 μg/day of intake. High acrylamide intake was associated with increased risks of ovarian and endometrial cancers in a relatively linear manner, especially among never smokers. Conversely, little association was observed between acrylamide intake and breast cancer risk, with the exception of premenopausal women.
Collapse
Affiliation(s)
- Giorgia Adani
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Tommaso Filippini
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Lauren A Wise
- Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts
| | - Thorhallur I Halldorsson
- Centre for Fetal Programming, Department of Epidemiology Research, Copenhagen, Denmark.,Unit for Nutrition Research, Faculty of Food Science and Nutrition, University of Iceland, Reykjavík, Iceland
| | - Ludek Blaha
- Masaryk University, Faculty of Science, RECETOX, Brno, Czech Republic
| | - Marco Vinceti
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy. .,Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts
| |
Collapse
|
7
|
Glycidamide Promotes the Growth and Migratory Ability of Prostate Cancer Cells by Changing the Protein Expression of Cell Cycle Regulators and Epithelial-to-Mesenchymal Transition (EMT)-Associated Proteins with Prognostic Relevance. Int J Mol Sci 2019; 20:ijms20092199. [PMID: 31060254 PMCID: PMC6540322 DOI: 10.3390/ijms20092199] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 04/25/2019] [Accepted: 05/01/2019] [Indexed: 12/28/2022] Open
Abstract
Acrylamide (AA) and glycidamide (GA) can be produced in carbohydrate-rich food when heated at a high temperature, which can induce a malignant transformation. It has been demonstrated that GA is more mutagenic than AA. It has been shown that the proliferation rate of some cancer cells are increased by treatment with GA; however, the exact genes that are induced by GA in most cancer cells are not clear. In the present study, we demonstrated that GA promotes the growth of prostate cancer cells through induced protein expression of the cell cycle regulator. In addition, we also found that GA promoted the migratory ability of prostate cancer cells through induced epithelial-to-mesenchymal transition (EMT)-associated protein expression. In order to understand the potential prognostic relevance of GA-mediated regulators of the cell cycle and EMT, we present a three-gene signature to evaluate the prognosis of prostate cancer patients. Further investigations suggested that the three-gene signature (CDK4, TWIST1 and SNAI2) predicted the chances of survival better than any of the three genes alone for the first time. In conclusion, we suggested that the three-gene signature model can act as marker of GA exposure. Hence, this multi-gene panel may serve as a promising outcome predictor and potential therapeutic target in prostate cancer patients.
Collapse
|
8
|
Kumar J, Das S, Teoh SL. Dietary Acrylamide and the Risks of Developing Cancer: Facts to Ponder. Front Nutr 2018; 5:14. [PMID: 29541638 PMCID: PMC5835509 DOI: 10.3389/fnut.2018.00014] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 02/12/2018] [Indexed: 12/18/2022] Open
Abstract
Acrylamide (AA) is a water soluble white crystalline solid commonly used in industries. It was listed as an industrial chemical with potential carcinogenic properties. However to date, AA was used to produce polyacrylamide polymer, which was widely used as a coagulant in water treatment; additives during papermaking; grouting material for dams, tunnels, and other underground building constructions. AA in food could be formed during high-temperature cooking via several mechanisms, i.e., formation via acrylic acid which may be derived from the degradation of lipid, carbohydrates, or free amino acids; formation via the dehydration/decarboxylation of organic acids (malic acid, lactic acid, and citric acid); and direct formation from amino acids. The big debate is whether this compound is toxic to human beings or not. In the present review, we discuss the formation of AA in food products, its consumption, and possible link to the development of any cancers. We discuss the body enzymatic influence on AA and mechanism of action of AA on hormone, calcium signaling pathways, and cytoskeletal filaments. We also highlight the deleterious effects of AA on nervous system, reproductive system, immune system, and the liver. The present and future mitigation strategies are also discussed. The present review on AA may be beneficial for researchers, food industry, and also medical personnel.
Collapse
Affiliation(s)
- Jaya Kumar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Srijit Das
- Department of Anatomy, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Seong Lin Teoh
- Department of Anatomy, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| |
Collapse
|
9
|
Hogervorst JGF, van den Brandt PA, Godschalk RWL, van Schooten FJ, Schouten LJ. The influence of single nucleotide polymorphisms on the association between dietary acrylamide intake and endometrial cancer risk. Sci Rep 2016; 6:34902. [PMID: 27713515 PMCID: PMC5054678 DOI: 10.1038/srep34902] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 09/14/2016] [Indexed: 02/07/2023] Open
Abstract
It is unclear whether the association between dietary acrylamide intake and endometrial cancer risk as observed in some epidemiological studies reflects a causal relationship. We aimed at clarifying the causality by analyzing acrylamide-gene interactions for endometrial cancer risk. The prospective Netherlands Cohort Study on diet and cancer includes 62,573 women, aged 55–69 years. At baseline, a random subcohort of 2589 women was selected for a case cohort analysis approach. Acrylamide intake of subcohort members and endometrial cancer cases (n = 315) was assessed with a food frequency questionnaire. Single nucleotide polymorphisms (SNPs) in genes in acrylamide metabolism, sex steroid systems, oxidative stress and DNA repair were assessed through a MassARRAY iPLEX Platform. Interaction between acrylamide and SNPs was assessed with Cox proportional hazards analysis, based on 11.3 years of follow-up. Among the results for 57 SNPs and 2 gene deletions, there were no statistically significant interactions after adjustment for multiple testing. However, there were nominally statistically significant interactions for SNPs in acrylamide-metabolizing enzymes: CYP2E1 (rs915906 and rs2480258) and the deletions of GSTM1 and GSTT1. Although in need of confirmation, the interactions between acrylamide intake and CYP2E1 SNPs contribute to the evidence for a causal relationship between acrylamide and endometrial cancer risk.
Collapse
Affiliation(s)
- Janneke G F Hogervorst
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium.,Department of Epidemiology, School for Oncology &Developmental Biology (GROW), Maastricht University, Maastricht, the Netherlands
| | - Piet A van den Brandt
- Department of Epidemiology, School for Oncology &Developmental Biology (GROW), Maastricht University, Maastricht, the Netherlands
| | - Roger W L Godschalk
- Department of Pharmacology and Toxicology, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, the Netherlands
| | - Frederik-Jan van Schooten
- Department of Pharmacology and Toxicology, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, the Netherlands
| | - Leo J Schouten
- Department of Epidemiology, School for Oncology &Developmental Biology (GROW), Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
10
|
Collí-Dulá RC, Friedman MA, Hansen B, Denslow ND. Transcriptomics analysis and hormonal changes of male and female neonatal rats treated chronically with a low dose of acrylamide in their drinking water. Toxicol Rep 2016; 3:414-426. [PMID: 28959563 PMCID: PMC5615912 DOI: 10.1016/j.toxrep.2016.03.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/02/2016] [Accepted: 03/16/2016] [Indexed: 12/28/2022] Open
Abstract
Acrylamide is known to produce follicular cell tumors of the thyroid in rats. RccHan Wistar rats were exposed in utero to a carcinogenic dose of acrylamide (3 mg/Kg bw/day) from gestation day 6 to delivery and then through their drinking water to postnatal day 35. In order to identify potential mechanisms of carcinogenesis in the thyroid glands, we used a transcriptomics approach. Thyroid glands were collected from male pups at 10 PM and female pups at 10 AM or 10 PM in order to establish whether active exposure to acrylamide influenced gene expression patterns or pathways that could be related to carcinogenesis. While all animals exposed to acrylamide showed changes in expected target pathways related to carcinogenesis such as DNA repair, DNA replication, chromosome segregation, among others; animals that were sacrificed while actively drinking acrylamide-laced water during their active period at night showed increased changes in pathways related to oxidative stress, detoxification pathways, metabolism, and activation of checkpoint pathways, among others. In addition, thyroid hormones, triiodothyronine (T3) and thyroxine (T4), were increased in acrylamide-treated rats sampled at night, but not in quiescent animals when compared to controls. The data clearly indicate that time of day for sample collection is critical to identifying molecular pathways that are altered by the exposures. These results suggest that carcinogenesis in the thyroids of acrylamide treated rats may ensue from several different mechanisms such as hormonal changes and oxidative stress and not only from direct genotoxicity, as has been assumed to date.
Collapse
Key Words
- ADA, adenosine Deaminase
- ADRB2, adrenergic
- ASF1B, anti-Silencing Function 1B Histone Chaperone
- Acrylamide
- BRIP1, BRCA1 Interacting Protein C-Terminal Helicase 1
- BUB1B, BUB1 Mitotic Checkpoint Serine/Threonine Kinase B
- C1QTNF3, C1q and Tumor Necrosis Factor Related Protein 3
- C5, complement Component 5
- CALCR, calcitonin receptor
- CARD9, caspase recruitment domain family
- CCNA2, cyclin A2
- CCNG1, cyclin G1
- CD45, protein tyrosine phosphatase
- CD46, CD46 molecule
- CDC45, cell division cycle 45
- CDCA2, cell division cycle associated 2
- CDCA5, cell division cycle associated 5
- CENPT, centromere protein T
- CFB, complement factor B
- CGA, glycoprotein hormones
- CTLA4, cytotoxic T-lymphocyte-associated protein 4
- DAD1, defender against cell death 1
- DCTPP1, DCTP pyrophosphatase 1
- DNMT3A, DNA (cytosine-5-)-methyltransferase 3 alpha
- DUOX2, dual oxidase 2
- GCG, glucagon
- GCLC, glutamate-cysteine ligase
- GOLGA3, golgin A3
- GSTM1, glutathione S-transferase Mu 1
- GSTP1, glutathione S-transferase Pi 1
- HPSE, heparanase
- HSPA5, heat shock 70 kDa protein 5
- HSPB1, heat shock 27 KDa protein
- HSPB2, heat shock 27 kDa protein 2
- HSPH1, heat shock 105 kDa/110 kDa protein 1
- HTATIP2, HIV-1 tat interactive protein 2
- ID1, inhibitor of DNA binding 1
- IGF2, Insulin-like growth factor 2 (somatomedin A)
- IL1B, interleukin 1
- INHBA, inhibin
- IYD, iodotyrosine deiodinase
- KIF20B, kinesin family member 20B
- KIF22, kinesin family Member 22
- KLK1, kallikrein 1
- LAMA2, laminin, alpha 2
- MCM8, minichromosome maintenance complex component 8
- MIF, macrophage migration inhibitory factor
- MIS18A, MIS18 kinetochore protein A
- NDC80, NDC80 kinetochore complex component
- NPPC, natriuretic peptide precursor C
- NPY, neuropeptide
- NUBP1, nucleotide binding protein 1
- ORC1, origin recognition complex
- PDE3A, phosphodiesterase 3A
- PINK1, PTEN induced putative kinase 1
- PLCD1, phospholipase C
- PLK1, polo-like kinase 1
- POMC, proopiomelanocortin
- PRKAA2, protein kinase
- PRL, prolactin
- PRODH, proline dehydrogenase
- PTGIS, prostaglandin I2 (prostacyclin) synthase
- PTGS1, prostaglandin-endoperoxide synthase 1
- RAB5A, RAB5A
- RAN, ras-related nuclear protein
- RRM2, ribonucleotide reductase M2
- RccHan Wistar
- SCL5A5, solute carrier family 5 (sodium iodide symporter)
- SELP, selectin P (granule membrane protein 140 kDa
- SPAG8, sperm associated antigen 8
- TACC3, transforming
- TBCB, tubulin folding cofactor B
- TFRC, transferrin receptor
- TOP2A, topoisomerase (DNA) II alpha
- TPO, thyroid peroxidase
- TSHR, thyroid stimulating hormone receptor
- TSN, translin
- Thyroid
- Transcriptomics
- VWF, Von Willebrand Factor
Collapse
Affiliation(s)
- Reyna Cristina Collí-Dulá
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, USA
| | | | - Benjamin Hansen
- Laboratory of Pharmacology and Toxicology, D-211134, Hamburg, Germany
| | - Nancy D Denslow
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
11
|
Acrylamide induces accelerated endothelial aging in a human cell model. Food Chem Toxicol 2015; 83:140-5. [DOI: 10.1016/j.fct.2015.05.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 04/28/2015] [Accepted: 05/26/2015] [Indexed: 12/15/2022]
|
12
|
|
13
|
Langie SA, Koppen G, Desaulniers D, Al-Mulla F, Al-Temaimi R, Amedei A, Azqueta A, Bisson WH, Brown D, Brunborg G, Charles AK, Chen T, Colacci A, Darroudi F, Forte S, Gonzalez L, Hamid RA, Knudsen LE, Leyns L, Lopez de Cerain Salsamendi A, Memeo L, Mondello C, Mothersill C, Olsen AK, Pavanello S, Raju J, Rojas E, Roy R, Ryan E, Ostrosky-Wegman P, Salem HK, Scovassi I, Singh N, Vaccari M, Van Schooten FJ, Valverde M, Woodrick J, Zhang L, van Larebeke N, Kirsch-Volders M, Collins AR. Causes of genome instability: the effect of low dose chemical exposures in modern society. Carcinogenesis 2015; 36 Suppl 1:S61-S88. [PMID: 26106144 PMCID: PMC4565613 DOI: 10.1093/carcin/bgv031] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 12/08/2014] [Accepted: 12/11/2014] [Indexed: 12/17/2022] Open
Abstract
Genome instability is a prerequisite for the development of cancer. It occurs when genome maintenance systems fail to safeguard the genome's integrity, whether as a consequence of inherited defects or induced via exposure to environmental agents (chemicals, biological agents and radiation). Thus, genome instability can be defined as an enhanced tendency for the genome to acquire mutations; ranging from changes to the nucleotide sequence to chromosomal gain, rearrangements or loss. This review raises the hypothesis that in addition to known human carcinogens, exposure to low dose of other chemicals present in our modern society could contribute to carcinogenesis by indirectly affecting genome stability. The selected chemicals with their mechanisms of action proposed to indirectly contribute to genome instability are: heavy metals (DNA repair, epigenetic modification, DNA damage signaling, telomere length), acrylamide (DNA repair, chromosome segregation), bisphenol A (epigenetic modification, DNA damage signaling, mitochondrial function, chromosome segregation), benomyl (chromosome segregation), quinones (epigenetic modification) and nano-sized particles (epigenetic pathways, mitochondrial function, chromosome segregation, telomere length). The purpose of this review is to describe the crucial aspects of genome instability, to outline the ways in which environmental chemicals can affect this cancer hallmark and to identify candidate chemicals for further study. The overall aim is to make scientists aware of the increasing need to unravel the underlying mechanisms via which chemicals at low doses can induce genome instability and thus promote carcinogenesis.
Collapse
Affiliation(s)
- Sabine A.S. Langie
- Environmental Risk and Health Unit, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium
- Health Canada, Environmental Health Sciences and Research Bureau, Environmental Health Centre, Ottawa, Ontario K1A0K9, Canada
- Department of Pathology, Kuwait University, Safat 13110, Kuwait
- Department of Experimental and Clinical Medicine, University of Firenze, Florence 50134, Italy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Navarra, Pamplona 31009, Spain
- Environmental and Molecular Toxicology, Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331, USA
- Department of Environmental and Radiological Health Sciences/Food Science and Human Nutrition, College of Veterinary Medicine and Biomedical Sciences, Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523-1680, USA
- Department of Chemicals and Radiation, Division of Environmental Medicine, Norwegian Institute of Public Health, PO Box 4404, N-0403 Oslo, Norway
- Hopkins Building, School of Biological Sciences, University of Reading, Reading, Berkshire RG6 6UB, UK
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna 40126, Italy
- Human and Environmental Safety Research, Department of Health Sciences, College of North Atlantic, Doha, State of Qatar
- Mediterranean Institute of Oncology, 95029 Viagrande, Italy
- Laboratory for Cell Genetics, Vrije Universiteit Brussel, Brussels 1050, Belgium
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, University Putra, Serdang 43400, Selangor, Malaysia
- University of Copenhagen, Department of Public Health, Copenhagen 1353, Denmark
- Institute of Molecular Genetics, National Research Council, Pavia 27100, Italy
- Medical Physics & Applied Radiation Sciences, McMaster University, Hamilton, Ontario L8S4L8, Canada
- Department of Cardiac, Thoracic and Vascular Sciences, Unit of Occupational Medicine, University of Padova, Padova 35128, Italy
- Toxicology Research Division, Bureau of Chemical Safety Food Directorate, Health Products and Food Branch Health Canada, Ottawa, Ontario K1A0K9, Canada
- Departamento de Medicina Genomica y Toxicologia Ambiental, Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de México, México CP 04510, México
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
- Urology Department, kasr Al-Ainy School of Medicine, Cairo University, El Manial, Cairo 12515, Egypt
- Centre for Advanced Research, King George’s Medical University, Chowk, Lucknow 226003, Uttar Pradesh, India
- Department of Toxicology, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University, 6200MD, PO Box 61, Maastricht, The Netherlands
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA 94720-7360, USA
- Laboratory for Analytical and Environmental Chemistry, Vrije Universiteit Brussel, Brussels 1050, Belgium
- Study Centre for Carcinogenesis and Primary Prevention of Cancer, Ghent University, Ghent 9000, Belgium
- Department of Nutrition, University of Oslo, Oslo 0316, Norway
| | - Gudrun Koppen
- *To whom correspondence should be addressed. Tel: +32 14335165; Fax: +32 14580523
| | - Daniel Desaulniers
- Health Canada, Environmental Health Sciences and Research Bureau, Environmental Health Centre, Ottawa, Ontario K1A0K9, Canada
| | - Fahd Al-Mulla
- Department of Pathology, Kuwait University, Safat 13110, Kuwait
| | | | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Firenze, Florence 50134, Italy
| | - Amaya Azqueta
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Navarra, Pamplona 31009, Spain
| | - William H. Bisson
- Environmental and Molecular Toxicology, Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331, USA
| | - Dustin Brown
- Department of Environmental and Radiological Health Sciences/Food Science and Human Nutrition, College of Veterinary Medicine and Biomedical Sciences, Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523-1680, USA
| | - Gunnar Brunborg
- Department of Chemicals and Radiation, Division of Environmental Medicine, Norwegian Institute of Public Health, PO Box 4404, N-0403 Oslo, Norway
| | - Amelia K. Charles
- Hopkins Building, School of Biological Sciences, University of Reading, Reading, Berkshire RG6 6UB, UK
| | - Tao Chen
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Annamaria Colacci
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna 40126, Italy
| | - Firouz Darroudi
- Human and Environmental Safety Research, Department of Health Sciences, College of North Atlantic, Doha, State of Qatar
| | - Stefano Forte
- Mediterranean Institute of Oncology, 95029 Viagrande, Italy
| | - Laetitia Gonzalez
- Laboratory for Cell Genetics, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Roslida A. Hamid
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, University Putra, Serdang 43400, Selangor, Malaysia
| | - Lisbeth E. Knudsen
- University of Copenhagen, Department of Public Health, Copenhagen 1353, Denmark
| | - Luc Leyns
- Laboratory for Cell Genetics, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | | | - Lorenzo Memeo
- Mediterranean Institute of Oncology, 95029 Viagrande, Italy
| | - Chiara Mondello
- Institute of Molecular Genetics, National Research Council, Pavia 27100, Italy
| | - Carmel Mothersill
- Medical Physics & Applied Radiation Sciences, McMaster University, Hamilton, Ontario L8S4L8, Canada
| | - Ann-Karin Olsen
- Department of Chemicals and Radiation, Division of Environmental Medicine, Norwegian Institute of Public Health, PO Box 4404, N-0403 Oslo, Norway
| | - Sofia Pavanello
- Department of Cardiac, Thoracic and Vascular Sciences, Unit of Occupational Medicine, University of Padova, Padova 35128, Italy
| | - Jayadev Raju
- Toxicology Research Division, Bureau of Chemical Safety Food Directorate, Health Products and Food Branch Health Canada, Ottawa, Ontario K1A0K9, Canada
| | - Emilio Rojas
- Departamento de Medicina Genomica y Toxicologia Ambiental, Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de México, México CP 04510, México
| | - Rabindra Roy
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Elizabeth Ryan
- Department of Environmental and Radiological Health Sciences/Food Science and Human Nutrition, College of Veterinary Medicine and Biomedical Sciences, Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523-1680, USA
| | - Patricia Ostrosky-Wegman
- Departamento de Medicina Genomica y Toxicologia Ambiental, Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de México, México CP 04510, México
| | - Hosni K. Salem
- Urology Department, kasr Al-Ainy School of Medicine, Cairo University, El Manial, Cairo 12515, Egypt
| | - Ivana Scovassi
- Institute of Molecular Genetics, National Research Council, Pavia 27100, Italy
| | - Neetu Singh
- Centre for Advanced Research, King George’s Medical University, Chowk, Lucknow 226003, Uttar Pradesh, India
| | - Monica Vaccari
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna 40126, Italy
| | - Frederik J. Van Schooten
- Department of Toxicology, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University, 6200MD, PO Box 61, Maastricht, The Netherlands
| | - Mahara Valverde
- Departamento de Medicina Genomica y Toxicologia Ambiental, Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de México, México CP 04510, México
| | - Jordan Woodrick
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Luoping Zhang
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA 94720-7360, USA
| | - Nik van Larebeke
- Laboratory for Analytical and Environmental Chemistry, Vrije Universiteit Brussel, Brussels 1050, Belgium
- Study Centre for Carcinogenesis and Primary Prevention of Cancer, Ghent University, Ghent 9000, Belgium
| | | | | |
Collapse
|
14
|
Shan X, Li Y, Meng X, Wang P, Jiang P, Feng Q. Curcumin and (-)-epigallocatechin-3-gallate attenuate acrylamide-induced proliferation in HepG2 cells. Food Chem Toxicol 2014; 66:194-202. [PMID: 24508477 DOI: 10.1016/j.fct.2014.01.046] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 01/06/2014] [Accepted: 01/28/2014] [Indexed: 12/18/2022]
Abstract
Acrylamide, a proven rodent carcinogen, is present in carbohydrate-rich food heated at high temperatures. It can be metabolized into glycidamide mainly by cytochrome P450 2E1 (CYP2E1). The fact that acrylamide is a potential carcinogen to human-beings draws public attention recently. This study aimed to elucidate the effect of acrylamide at low doses on proliferation of HepG2 cells, and to test whether the two well-studied chemopreventive agents, curcumin and (-)-epigallocatechin-3-gallate (EGCG), would have antagonistic effects against acrylamide. The results showed that lower concentration of acrylamide (⩽100μM) significantly increased the proliferation of HepG2 cells, but not of the other cancer cells (MDA-231, HeLa, A549, and PC-3). Only in HepG2 cells, low concentration of acrylamide was able to induce CYP2E1 expression significantly. Knockdown of CYP2E1 restrained acrylamide to increase viability of HepG2 cells. In addition, acrylamide raised expression of epidermal growth factor receptor (EGFR), cyclin D1 and nuclear factor-κB (NF-κB), which contributed to cell proliferation. Both curcumin and EGCG effectively reduced acrylamide-induced proliferation, as well as protein expression of CYP2E1, EGFR, cyclin D1 and NF-κB. All these results suggest that low concentration of acrylamide may contribute to progression of hepatocellular carcinoma (HCC). Curcumin or EGCG could prevent acrylamide triggering this effect.
Collapse
Affiliation(s)
- Xiaoyun Shan
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Yuan Li
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Xulian Meng
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Pengqi Wang
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Pan Jiang
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Qing Feng
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China.
| |
Collapse
|