1
|
Jiao W, Zhu L, Shen T, Wang L, Li QX, Wang C, Wu X, Chen H, Hua R. Simultaneous determination of 15 pyrrolizidine alkaloids and their N-oxides in weeds, soil, fresh tea leaves, and tea: Exploring the pollution source of pyrrolizidine alkaloids in tea. Food Chem 2024; 434:137305. [PMID: 37713752 DOI: 10.1016/j.foodchem.2023.137305] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/17/2023]
Abstract
Pyrrolizidine alkaloids (PAs) and their N-oxides (PANOs) are novel contaminants in tea. However, the source of PA/PANO contamination in tea remains unclear. In this study, 15 PAs/PANOs were extracted from plant samples (tea, fresh tea leaves, and weeds) with 0.1 M sulfuric acid and from soil with 0.1 M sulfuric acid methanol after adjusting soil acidity with 0.1 M trisodium citrate. Satisfactory recoveries of PAs/PANOs from four different matrices at 0.02, 0.1, and 0.5 mg kg-1 was 72%-114% with relative standard deviations (RSD) of 0.03%-16%. Seven out of 15 PAs/PANOs were detected in tea purchased from the local market ranging from undetected to 96.2 μg kg-1. Thirteen, three, and four PAs/PANOs were detected in weeds, fresh tea leaves, and soil, respectively. Based on the types of PAs/PANOs detected in the three matrices, it was preliminarily speculated that PAs/PANOs in tea originated from weeds in the tea garden.
Collapse
Affiliation(s)
- Weiting Jiao
- School of Resource & Environment of Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, China; State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Lei Zhu
- School of Resource & Environment of Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, China; Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Tea Quality and Safety & Risk Assessment, Ministry of Agriculture, Hangzhou 310008, China
| | - Tingting Shen
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Luyao Wang
- School of Resource & Environment of Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, 1955 East-West Road, Honolulu, HI 96822, United States
| | - Chen Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Tea Quality and Safety & Risk Assessment, Ministry of Agriculture, Hangzhou 310008, China
| | - Xiangwei Wu
- School of Resource & Environment of Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, China
| | - Hongping Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Tea Quality and Safety & Risk Assessment, Ministry of Agriculture, Hangzhou 310008, China.
| | - Rimao Hua
- School of Resource & Environment of Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, China.
| |
Collapse
|
2
|
Reginatto MW, Fontes KN, Monteiro VRS, Silva NL, Andrade CBV, Gomes HR, Imperio GE, Bloise FF, Kluck GEG, Atella GC, Matthews SG, Bloise E, Ortiga-Carvalho TM. Effect of Sublethal Prenatal Endotoxaemia on Murine Placental Transport Systems and Lipid Homeostasis. Front Microbiol 2021; 12:706499. [PMID: 34394055 PMCID: PMC8363225 DOI: 10.3389/fmicb.2021.706499] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/25/2021] [Indexed: 12/19/2022] Open
Abstract
Infection alters the expression of transporters that mediate the placental exchange of xenobiotics, lipids and cytokines. We hypothesized that lipopolysaccharide (LPS) modifies the expression of placental transport systems and lipid homeostasis. LPS (150 μg/kg; i.p.) treatments were administered for 4 h or 24 h, animals were euthanized at gestational days (GD) 15.5 or 18.5, and maternal blood, fetuses and placentae were collected. Increased rates of fetal demise were observed at GD15.5 following LPS treatment, whereas at GD18.5, high rates of early labour occurred and were associated with distinct proinflammatory responses. Lipopolysaccharide did not alter ATP-binding cassette (ABC) transporter mRNA expression but decreased fatty acid binding protein associated with plasma membrane (Fabppm) at GD15.5 (LPS-4 h) and increased fatty acid translocase (Fat/Cd36) mRNA at GD18.5 (LPS-4 h). At the protein level, breast cancer-related protein (Bcrp) and ABC sub-family G member 1 (Abcg1) levels were decreased in the placental labyrinth zone (Lz) at GD15.5, whereas P-glycoprotein (P-gp) and Bcrp Lz-immunostaining was decreased at GD18.5. In the placental junctional zone (Jz), P-gp, Bcrp and Abcg1 levels were higher at GD18.5. Specific maternal plasma and placental changes in triacylglycerol, free fatty acid, cholesterol, cholesterol ester and monoacylglycerol levels were detected in a gestational age-dependent manner. In conclusion, LPS-increased risk of fetal death and early labour were associated with altered placental ABC and lipid transporter expression and deranged maternal plasma and placental lipid homeostasis. These changes may potentially modify fetal xenobiotic exposure and placental lipid exchange in cases of bacterial infection.
Collapse
Affiliation(s)
- Mila W Reginatto
- Laboratory of Translational Endocrinology, Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Klaus Novaes Fontes
- Laboratory of Translational Endocrinology, Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Victoria R S Monteiro
- Laboratory of Translational Endocrinology, Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Natalia L Silva
- Laboratory of Translational Endocrinology, Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cherley Borba Vieira Andrade
- Laboratory of Translational Endocrinology, Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Hanailly Ribeiro Gomes
- Laboratory of Translational Endocrinology, Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Guinever E Imperio
- Laboratory of Translational Endocrinology, Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Lunenfeld-Tanenbaum Research Institute of Medical, Sinai Health System, Toronto, ON, Canada
| | - Flavia Fonseca Bloise
- Laboratory of Translational Endocrinology, Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - George Eduardo Gabriel Kluck
- Laboratory of Lipids and Lipoproteins Biochemistry, Institute of Medical Biochemistry Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Georgia Correa Atella
- Laboratory of Lipids and Lipoproteins Biochemistry, Institute of Medical Biochemistry Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Stephen G Matthews
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Lunenfeld-Tanenbaum Research Institute of Medical, Sinai Health System, Toronto, ON, Canada.,Department of Obstetrics and Gynecology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Enrrico Bloise
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Tania M Ortiga-Carvalho
- Laboratory of Translational Endocrinology, Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Confortin TC, Todero I, Luft L, Schmaltz S, Ferreira DF, Barin JS, Mazutti MA, Zabot GL, Tres MV. Extraction of bioactive compounds from Senecio brasiliensis using emergent technologies. 3 Biotech 2021; 11:284. [PMID: 34094803 DOI: 10.1007/s13205-021-02845-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 05/11/2021] [Indexed: 11/25/2022] Open
Abstract
Several plant species synthesize biologically active secondary metabolites. Pyrrolizidine alkaloids are a large group of biotoxins produced by thousands of plant species to protect against the attack of insects and herbivores, but they are highly toxic for humans and animals. In this study, extracts from the aerial part of Senecio brasiliensis were obtained using different technologies: ultrasound-assisted extraction (UAE), pressurized liquid extraction (PLE), and microwave hydrodiffusion and gravity (MHG). The study aimed to evaluate the effectiveness of these technologies for the extraction of chemical compounds found in this plant, focusing on two pyrrolizidine alkaloids: integerrimine and senecionine. Influential parameters on yield and chemical composition were also evaluated: for UAE and MHG, temperature and pressure; for PLE, temperature, and percentage of ethanol. All the extraction techniques were efficient for the extraction of integerrimine and senecionine. The UAE and PLE stood out for the higher yields and number of compounds. The PLE presented a maximum yield of 18.63% for the matrix leaf and the UAE a maximum yield of 11.82% for the same matrix. These two techniques also stood out in terms of the number of compounds, once 36 different compounds were found via PLE and 17 via UAE. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02845-1.
Collapse
Affiliation(s)
- Tássia C Confortin
- Department of Agricultural Engineering, Federal University of Santa Maria, 1000, Roraima av., Santa Maria, 97105-900 Brazil
- Laboratory of Agroindustrial Processes Engineering (LAPE), Federal University of Santa Maria, 1040 Sete de Setembro st., Center DC, Cachoeira do Sul, RS 96508-010 Brazil
| | - Izelmar Todero
- Department of Agricultural Engineering, Federal University of Santa Maria, 1000, Roraima av., Santa Maria, 97105-900 Brazil
| | - Luciana Luft
- Department of Chemical Engineering, Federal University of Santa Maria, 1000, Roraima av., Santa Maria, 97105-900 Brazil
| | - Silvana Schmaltz
- Department of Chemical Engineering, Federal University of Santa Maria, 1000, Roraima av., Santa Maria, 97105-900 Brazil
| | - Daniele F Ferreira
- Department of Food Science and Technology, Federal University of Santa Maria, 1000, Roraima av., Santa Maria, 97105-900 Brazil
| | - Juliano S Barin
- Department of Food Science and Technology, Federal University of Santa Maria, 1000, Roraima av., Santa Maria, 97105-900 Brazil
| | - Marcio A Mazutti
- Department of Agricultural Engineering, Federal University of Santa Maria, 1000, Roraima av., Santa Maria, 97105-900 Brazil
| | - Giovani L Zabot
- Laboratory of Agroindustrial Processes Engineering (LAPE), Federal University of Santa Maria, 1040 Sete de Setembro st., Center DC, Cachoeira do Sul, RS 96508-010 Brazil
| | - Marcus V Tres
- Laboratory of Agroindustrial Processes Engineering (LAPE), Federal University of Santa Maria, 1040 Sete de Setembro st., Center DC, Cachoeira do Sul, RS 96508-010 Brazil
| |
Collapse
|
4
|
Current Knowledge and Perspectives of Pyrrolizidine Alkaloids in Pharmacological Applications: A Mini-Review. Molecules 2021; 26:molecules26071970. [PMID: 33807368 PMCID: PMC8037423 DOI: 10.3390/molecules26071970] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/21/2021] [Accepted: 03/27/2021] [Indexed: 12/20/2022] Open
Abstract
Pyrrolizidine alkaloids (PAs) are a widespread group of secondary metabolites in plants. PAs are notorious for their acute hepatotoxicity, genotoxicity and neurological damage to humans and animals. In recent decades, the application of PAs for beneficial biological activities to cure disease has drawn greater attention. Here, we review the current knowledge regarding the pharmacological properties of PAs and discuss PAs as promising prototypes for the development of new drugs.
Collapse
|
5
|
Dai Y, Luo J, Xiang E, Guo Q, He Z, Gong Z, Sun X, Kou H, Xu K, Fan C, Liu J, Qiu S, Wang Y, Wang H, Guo Y. Prenatal Exposure to Retrorsine Induces Developmental Toxicity and Hepatotoxicity of Fetal Rats in a Sex-Dependent Manner: The Role of Pregnane X Receptor Activation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3219-3231. [PMID: 33685126 DOI: 10.1021/acs.jafc.0c06748] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Pyrrolizidine alkaloids (PAs) are a type of natural phytotoxin that contaminate food and feed and become an environmental health risk to humans and livestock. PAs exert toxicity that requires metabolic activation by cytochrome P450 (CYP) 3A, and case reports showed that fetuses are quite susceptible to PAs toxicity. The aim of this study was to explore the characteristics of developmental toxicity and fetal hepatotoxicity induced by retrorsine (RTS, a typcial toxic PA) and the underlying mechanism. Pregnant Wistar rats were intragastrically administered with 20 mg/(kg·day) RTS from gestation day (GD) 9 to 20. Results showed that prenatal RTS exposure lowered fetal bodyweights, reduced hepatocyte numbers, and potentiated hepatic apoptosis in fetuses, particularly females. Simutaneously, RTS increased CYP3A expression and pregnane X receptor (PXR) activation in female fetal liver. We further confirmed that RTS was a PXR agonist in LO2 and HepG2 cell lines. Furthermore, agonism or antagonism of androgen receptor (AR) either induced or blocked RTS-mediated PXR activation, respectively. As a PXR agonist, RTS toxicity was exacerbated in female fetus due to the increased CYP3A induction and self-metabolism, while the inhibitory effect of AR on PXR activation reduced the susceptibility of male fetus to RTS. Our findings indicated that PXR may be a potential therapeutic target for PA toxicity.
Collapse
Affiliation(s)
- Yongguo Dai
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071 Hubei Province, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071 Hubei Province, China
| | - Jinyuan Luo
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, 430060 Hubei Province, China
| | - E Xiang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071 Hubei Province, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071 Hubei Province, China
| | - Qi Guo
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071 Hubei Province, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071 Hubei Province, China
| | - Zheng He
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Zheng Gong
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071 Hubei Province, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071 Hubei Province, China
| | - Xiaoxiang Sun
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071 Hubei Province, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071 Hubei Province, China
| | - Hao Kou
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071 Hubei Province, China
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, 430071 Hubei Province, China
| | - Kequan Xu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071 Hubei Province, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071 Hubei Province, China
| | - Chengpeng Fan
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071 Hubei Province, China
| | - Jie Liu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071 Hubei Province, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071 Hubei Province, China
| | - Shuaikai Qiu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071 Hubei Province, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071 Hubei Province, China
| | - Yanqing Wang
- Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, 430060 Hubei Province, China
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071 Hubei Province, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071 Hubei Province, China
| | - Yu Guo
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071 Hubei Province, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071 Hubei Province, China
| |
Collapse
|
6
|
Li CY, Niu M, Liu YL, Tang JF, Chen W, Qian G, Zhang MY, Shi YF, Lin JZ, Li XJ, Li RS, Xiao XH, Li GH, Wang JB. Screening for Susceptibility-Related Factors and Biomarkers of Xianling Gubao Capsule-Induced Liver Injury. Front Pharmacol 2020; 11:810. [PMID: 32547402 PMCID: PMC7274038 DOI: 10.3389/fphar.2020.00810] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 05/18/2020] [Indexed: 12/14/2022] Open
Abstract
Although increasing reports from the literature on herbal-related hepatotoxicity, the identification of susceptibility-related factors and biomarkers remains challenging due to idiosyncratic drug-induced liver injury (IDILI). As a well-known Chinese medicine prescription, Xianling Gubao Capsule (XLGB) has attracted great attention due to reports of potential liver toxicity. But the mechanism behind it is difficult to determine. In this paper, we found that XLGB-induced liver injury belongs to IDILI through the analysis of clinical liver injury cases. In toxicological experiment assessment, co-exposure to XLGB and non-toxic dose of lipopolysaccharide (LPS) could cause evident liver injury as manifested by significantly increased plasma alanine aminotransferase activity and obvious liver histological damage. However, it failed to induce observable liver injury in normal rats, suggesting that mild immune stress may be a susceptibility factor for XLGB-induced idiosyncratic liver injury. Furthermore, plasma cytokines were determined and 15 cytokines (such as IL-1β, IFN-γ, and MIP-2α etc) were acquired by receiver operating characteristic (ROC) curves analysis. The expression of these 15 cytokines in LPS group was significantly up-regulated in contrast to the normal group. Meanwhile, the metabolomics profile showed that mild immune stress caused metabolic reprogramming, including sphingolipid metabolism, phenylalanine metabolism, and glycerophospholipid metabolism. 8 potential biomarkers (such as sphinganine, glycerophosphoethanolamine, and phenylalanine etc.) were identified by correlation analysis. Therefore, these results suggested that intracellular metabolism and immune changes induced by mild immune stress may be important susceptibility mechanisms for XLGB IDILI.
Collapse
Affiliation(s)
- Chun-Yu Li
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ming Niu
- China Military Institute of Chinese Medicine, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ya-Lei Liu
- China Military Institute of Chinese Medicine, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jin-Fa Tang
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Wei Chen
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Geng Qian
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ming-Yu Zhang
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ya-Fei Shi
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jun-Zhi Lin
- Central Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xing-Jie Li
- Research Center for Clinical and Translational Medicine, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Rui-Sheng Li
- Research Center for Clinical and Translational Medicine, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiao-He Xiao
- China Military Institute of Chinese Medicine, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Guo-Hui Li
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jia-Bo Wang
- China Military Institute of Chinese Medicine, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
7
|
McCarthy R, Martin-Fairey C, Sojka DK, Herzog ED, Jungheim ES, Stout MJ, Fay JC, Mahendroo M, Reese J, Herington JL, Plosa EJ, Shelton EL, England SK. Mouse models of preterm birth: suggested assessment and reporting guidelines. Biol Reprod 2019; 99:922-937. [PMID: 29733339 PMCID: PMC6297318 DOI: 10.1093/biolre/ioy109] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/30/2018] [Indexed: 02/03/2023] Open
Abstract
Preterm birth affects approximately 1 out of every 10 births in the United States, leading to high rates of mortality and long-term negative health consequences. To investigate the mechanisms leading to preterm birth so as to develop prevention strategies, researchers have developed numerous mouse models of preterm birth. However, the lack of standard definitions for preterm birth in mice limits our field's ability to compare models and make inferences about preterm birth in humans. In this review, we discuss numerous mouse preterm birth models, propose guidelines for experiments and reporting, and suggest markers that can be used to assess whether pups are premature or mature. We argue that adoption of these recommendations will enhance the utility of mice as models for preterm birth.
Collapse
Affiliation(s)
- Ronald McCarthy
- Center for Reproductive Health Sciences, Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Carmel Martin-Fairey
- Center for Reproductive Health Sciences, Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Dorothy K Sojka
- Rheumatology Division, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Erik D Herzog
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Emily S Jungheim
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Molly J Stout
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Justin C Fay
- Department of Biology, University of Rochester, Rochester, New York, USA
| | - Mala Mahendroo
- Department of Obstetrics and Gynecology University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jeff Reese
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jennifer L Herington
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Erin J Plosa
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Elaine L Shelton
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Sarah K England
- Center for Reproductive Health Sciences, Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
8
|
Ramirez SC, Koschnitzky JE, Youngquist TM, Baertsch NA, Smith CV, Ramirez JM. Perinatal Breathing Patterns and Survival in Mice Born Prematurely and at Term. Front Physiol 2019; 10:1113. [PMID: 31543825 PMCID: PMC6728753 DOI: 10.3389/fphys.2019.01113] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 08/12/2019] [Indexed: 11/29/2022] Open
Abstract
Infants born prematurely, often associated with maternal infection, frequently exhibit breathing instabilities that require resuscitation. We hypothesized that breathing patterns during the first hour of life would be predictive of survival in an animal model of prematurity. Using plethysmography, we measured breathing patterns during the first hour after birth in mice born at term (Term 19.5), delivered prematurely on gestational day 18.5 following administration of low-dose lipopolysaccharide (LPS; 0.14 mg/kg) to pregnant dams (LPS 18.5), or delivered on gestational day 18.7 or 17.5 by caesarian section (C-S 18.5 and C-S 17.5, respectively). Our experimental approach allowed us to dissociate effects caused by inflammation, from effects due to premature birth in the absence of an inflammatory response. C-S 17.5 mice did not survive, whereas mortality was not increased in C-S 18.5 mice. However, in premature pups born at the same gestational age (day 18.5) in response to maternal LPS injection, mortality was significantly increased. Overall, mice that survived had higher birth weights and showed eupneic or gasping activity that was able to transition to normal breathing. Some mice also exhibited a “saw tooth” breathing pattern that was able to transition into eupnea during the first hour of life. In contrast, mice that did not survive showed distinct, large amplitude, long-lasting breaths that occurred at low frequency and did not transition into eupnea. This breathing pattern was only observed during the first hour of life and was more prevalent in LPS 18.5 and C-S 18.5 mice. Indeed, breath tidal volumes were higher in inflammation-induced premature pups than in pups delivered via C-section at equivalent gestational ages, whereas breathing frequencies were low in both LPS-induced and C-section-induced premature pups. We conclude that a breathing pattern characterized by low frequency and large tidal volume is a predictor for the failure to survive, and that these characteristics are more often seen when prematurity occurs in the context of maternal inflammation. Further insights into the mechanisms that generate these breathing patterns and how they transition to normal breathing may facilitate development of novel strategies to manage premature birth in humans.
Collapse
Affiliation(s)
- Sanja C Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Jenna E Koschnitzky
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Tiffany M Youngquist
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Nathan A Baertsch
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Charles V Smith
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States.,Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|
9
|
Luo J, Yang X, Qiu S, Li X, Xiang E, Fang Y, Wang Y, Zhang L, Wang H, Zheng J, Guo Y. Sex difference in monocrotaline-induced developmental toxicity and fetal hepatotoxicity in rats. Toxicology 2019; 418:32-40. [PMID: 30825512 DOI: 10.1016/j.tox.2019.02.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 02/20/2019] [Accepted: 02/25/2019] [Indexed: 12/15/2022]
Abstract
Pyrrolizidine alkaloids (PAs) are a class of hepatic toxins widely existing in plants. Cytochromes P450 (CYP) mediates PA bioactivation and toxicities in mammals. It has been reported that PAs can induce developmental toxicity, but systematic research is lacking. In this study, we investigated developmental toxicity of monocrotaline (MCT) in rats. Pregnant rats were administered with MCT (20 mg/kg) intragastrically from gestation day 9 to 20, followed by determination of changes in fetal growth, hepatic morphology, serum biochemical indices, and indicators of hepatocytes apoptosis. MCT was found to induce developmental toxicity and fetal hepatotoxicity, particularly in female fetuses. Metabolic activation was also studied by examination of bioactivation efficiency of MCT in fetal liver microsomes, serum MCT, pyrrole-protein adduction derived from MCT, and hepatic CYP3 A expression of fetuses in vivo. Male fetuses showed greater basal MCT bioactivation than that of female fetuses, but continuous exposure to MCT caused a selective CYP3 A induction in female fetuses, which may contribute to the sex difference in MCT-induced developmental toxicity.
Collapse
Affiliation(s)
- Jinyuan Luo
- Department of Pharmacology, School of Basic Medical Science, Wuhan University, Wuhan 430071, People's Republic of China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, People's Republic of China.
| | - Xiaojing Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, People's Republic of China.
| | - Shuaikai Qiu
- Department of Pharmacology, School of Basic Medical Science, Wuhan University, Wuhan 430071, People's Republic of China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, People's Republic of China.
| | - Xia Li
- Department of Pharmacology, School of Basic Medical Science, Wuhan University, Wuhan 430071, People's Republic of China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, People's Republic of China.
| | - E Xiang
- Department of Pharmacology, School of Basic Medical Science, Wuhan University, Wuhan 430071, People's Republic of China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, People's Republic of China.
| | - Yan Fang
- Department of Pharmacology, School of Basic Medical Science, Wuhan University, Wuhan 430071, People's Republic of China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, People's Republic of China.
| | - Yanqing Wang
- Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan 430060, People's Republic of China.
| | - Li Zhang
- Department of Pathology, School of Basic Medical Science, Wuhan University, Wuhan 430071, People's Republic of China.
| | - Hui Wang
- Department of Pharmacology, School of Basic Medical Science, Wuhan University, Wuhan 430071, People's Republic of China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, People's Republic of China.
| | - Jiang Zheng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, People's Republic of China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou, 550004, People's Republic of China; Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou, 550004, People's Republic of China.
| | - Yu Guo
- Department of Pharmacology, School of Basic Medical Science, Wuhan University, Wuhan 430071, People's Republic of China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, People's Republic of China.
| |
Collapse
|
10
|
Prenatal exposure to pyrrolizidine alkaloids induced hepatotoxicity and pulmonary injury in fetal rats. Reprod Toxicol 2019; 85:34-41. [PMID: 30771476 DOI: 10.1016/j.reprotox.2019.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/31/2018] [Accepted: 02/12/2019] [Indexed: 01/02/2023]
Abstract
Hepatic and pulmonary toxicity in fetal rats induced by pyrrolizidine alkaloids (PAs) was investigated. Retrorsine (RTS) or monocrotaline (MCT) was intragastrically administered during pregnancy. The reduction of body and tail lengths was consistent with body weight loss in PA-exposed fetuses, and pathological lesions in liver and lung were observed only in fetuses. Both PAs reduced fetal serum transaminase activities. The GSH/GSSG ratio, GSH peroxidase and superoxide dismutase activities also decreased but glutathione S-transferase activity increased in fetal lung, especially for MCT. The pyrrole-protein adducts in fetal liver and lung could be detected, and those adducts in RTS fetal lungs were about 65% of those in MCT group. In conclusion, prenatal PAs exposure induced fetal hepatic and pulmonary toxicities through the generation of pyrrole metabolites and oxidative injury. The difference on fetal pulmonary redox homeostasis between two PAs groups might be associated with the content of PAs migrated to fetal lungs.
Collapse
|
11
|
Li X, Yang X, Xiang E, Luo J, Qiu S, Fang Y, Zhang L, Guo Y, Zheng J, Wang H. Maternal-Fetal Disposition and Metabolism of Retrorsine in Pregnant Rats. Drug Metab Dispos 2018; 46:422-428. [PMID: 29352068 DOI: 10.1124/dmd.117.079186] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/17/2018] [Indexed: 11/22/2022] Open
Abstract
Pyrrolizidine alkaloids (PAs) are extensively synthesized by plants, are commonly present in herbs and foodstuffs, and exhibit hepatotoxicity requiring metabolic activation by cytochrome P450 3A to form the electrophilic metabolites-pyrrolic esters. PAs also cause embryo toxicity, but the metabolic profiles of PAs in fetus and placenta have been far from clear. In this study, we determined the basal metabolic activation of retrorsine (RTS) in rat maternal liver, placenta, and fetal liver in vitro and examined the fetal toxicity and bioactivation of RTS in vivo. Detection of microsomal RTS metabolites in vitro showed that the basal metabolic activity of fetal liver and placenta to RTS was much weaker than that of maternal liver. In addition, a higher rate of pyrrolic ester formation was found in normal male fetal liver compared with that of female pups. In vivo exposure to RTS caused fetal growth retardation, as well as placental and fetal liver injury. Little difference in serum RTS was observed in dams and fetuses, but the content of pyrrole-protein adduction in the fetal liver was much lower than that in maternal liver, which was consistent with basal metabolic activity. Unexpectedly, compared with basal metabolism in fetal liver, exposure to RTS during middle and late pregnancy caused an opposite gender difference in RTS metabolism and CYP3A expression in the fetal liver. For the first time, our study showed that RTS can permeate the placenta barrier and entering fetal circulation, whereas the intrauterine pyrrolic metabolite was generated mainly by fetal liver but not transported from the maternal circulation. Induction of CYP3A by RTS was gender-dependent in the fetal liver, which was probably responsible for RTS-induced fetal hepatic injury, especially for female pups.
Collapse
Affiliation(s)
- Xia Li
- Department of Pharmacology, School of Basic Medical Science, Wuhan University, Wuhan (X.L., E.X., J.L., S.Q., Y.F., Y.G., H.W.); and Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University, Wuhan (Y.G., H.W.); Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning (X.Y., J.Z.); and State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou (J.Z.); Department of Pathology, School of Basic Medical Science, Wuhan University, Wuhan (L.Z.), China
| | - Xiaojing Yang
- Department of Pharmacology, School of Basic Medical Science, Wuhan University, Wuhan (X.L., E.X., J.L., S.Q., Y.F., Y.G., H.W.); and Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University, Wuhan (Y.G., H.W.); Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning (X.Y., J.Z.); and State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou (J.Z.); Department of Pathology, School of Basic Medical Science, Wuhan University, Wuhan (L.Z.), China
| | - E Xiang
- Department of Pharmacology, School of Basic Medical Science, Wuhan University, Wuhan (X.L., E.X., J.L., S.Q., Y.F., Y.G., H.W.); and Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University, Wuhan (Y.G., H.W.); Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning (X.Y., J.Z.); and State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou (J.Z.); Department of Pathology, School of Basic Medical Science, Wuhan University, Wuhan (L.Z.), China
| | - Jinyuan Luo
- Department of Pharmacology, School of Basic Medical Science, Wuhan University, Wuhan (X.L., E.X., J.L., S.Q., Y.F., Y.G., H.W.); and Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University, Wuhan (Y.G., H.W.); Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning (X.Y., J.Z.); and State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou (J.Z.); Department of Pathology, School of Basic Medical Science, Wuhan University, Wuhan (L.Z.), China
| | - Shuaikai Qiu
- Department of Pharmacology, School of Basic Medical Science, Wuhan University, Wuhan (X.L., E.X., J.L., S.Q., Y.F., Y.G., H.W.); and Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University, Wuhan (Y.G., H.W.); Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning (X.Y., J.Z.); and State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou (J.Z.); Department of Pathology, School of Basic Medical Science, Wuhan University, Wuhan (L.Z.), China
| | - Yan Fang
- Department of Pharmacology, School of Basic Medical Science, Wuhan University, Wuhan (X.L., E.X., J.L., S.Q., Y.F., Y.G., H.W.); and Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University, Wuhan (Y.G., H.W.); Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning (X.Y., J.Z.); and State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou (J.Z.); Department of Pathology, School of Basic Medical Science, Wuhan University, Wuhan (L.Z.), China
| | - Li Zhang
- Department of Pharmacology, School of Basic Medical Science, Wuhan University, Wuhan (X.L., E.X., J.L., S.Q., Y.F., Y.G., H.W.); and Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University, Wuhan (Y.G., H.W.); Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning (X.Y., J.Z.); and State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou (J.Z.); Department of Pathology, School of Basic Medical Science, Wuhan University, Wuhan (L.Z.), China
| | - Yu Guo
- Department of Pharmacology, School of Basic Medical Science, Wuhan University, Wuhan (X.L., E.X., J.L., S.Q., Y.F., Y.G., H.W.); and Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University, Wuhan (Y.G., H.W.); Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning (X.Y., J.Z.); and State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou (J.Z.); Department of Pathology, School of Basic Medical Science, Wuhan University, Wuhan (L.Z.), China
| | - Jiang Zheng
- Department of Pharmacology, School of Basic Medical Science, Wuhan University, Wuhan (X.L., E.X., J.L., S.Q., Y.F., Y.G., H.W.); and Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University, Wuhan (Y.G., H.W.); Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning (X.Y., J.Z.); and State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou (J.Z.); Department of Pathology, School of Basic Medical Science, Wuhan University, Wuhan (L.Z.), China
| | - Hui Wang
- Department of Pharmacology, School of Basic Medical Science, Wuhan University, Wuhan (X.L., E.X., J.L., S.Q., Y.F., Y.G., H.W.); and Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University, Wuhan (Y.G., H.W.); Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning (X.Y., J.Z.); and State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou (J.Z.); Department of Pathology, School of Basic Medical Science, Wuhan University, Wuhan (L.Z.), China
| |
Collapse
|
12
|
Bo QL, Chen YH, Yu Z, Fu L, Zhou Y, Zhang GB, Wang H, Zhang ZH, Xu DX. Rosiglitazone pretreatment protects against lipopolysaccharide-induced fetal demise through inhibiting placental inflammation. Mol Cell Endocrinol 2016; 423:51-9. [PMID: 26773728 DOI: 10.1016/j.mce.2016.01.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 12/25/2015] [Accepted: 01/06/2016] [Indexed: 01/19/2023]
Abstract
Peroxisome proliferator-activated receptor (PPAR)-γ is highly expressed in human and rodent placentas. Nevertheless, its function remains obscure. The present study investigated the effects of rosiglitazone, a PPAR-γ agonist, on LPS-induced fetal death. All pregnant mice except controls were intraperitoneally injected with LPS (150 μg/kg) daily from gestational day (GD)15 to GD17. As expected, maternal LPS injection caused placental inflammation and resulted in 63.6% fetal death in dams that completed the pregnancy. Interestingly, LPS-induced fetal mortality was reduced to 16.0% when pregnant mice were pretreated with RSG. Additional experiment showed that rosiglitazone pretreatment inhibited LPS-induced expressions of tumor necrosis factor (Tnf)-α, interleukin (Il)-1β, Il-6, macrophage inflammatory protein (Mip)-2 and keratinocyte-derived chemokine (Kc) in mouse placenta. Although rosiglitazone had little effect on LPS-evoked elevation of IL-10 in amniotic fluid, it alleviated LPS-evoked release of TNF-α and MIP-2 in amniotic fluid. Further analysis showed that pretreatment with rosiglitazone, which activated placental PPAR-γ signaling, simultaneously suppressed LPS-evoked nuclear factor kappa B (NF-κB) activation and blocked nuclear translocation of NF-κB p65 and p50 subunits in trophoblast giant cells of the labyrinth layer. These results provide a mechanistic explanation for PPAR-γ-mediated anti-inflammatory activity in the placentas. Overall, the present study provides additional evidence for roles of PPAR-γ as an important regulator of placental inflammation.
Collapse
Affiliation(s)
- Qing-Li Bo
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, 230032, China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, 230032, China
| | - Yuan-Hua Chen
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, 230032, China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, 230032, China; Department of Histology and Embryology, Anhui Medical University, Hefei, 230032, China
| | - Zhen Yu
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, 230032, China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, 230032, China
| | - Lin Fu
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Yan Zhou
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Gui-Bin Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Hua Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, 230032, China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, 230032, China
| | - Zhi-Hui Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - De-Xiang Xu
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, 230032, China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, 230032, China.
| |
Collapse
|
13
|
Sandini TM, Udo MS, Reis‐Silva TM, Sanches D, Bernardi MM, Flório JC, Spinosa HDS. Prenatal exposure to integerrimine N‐oxide enriched butanolic residue from
Senecio brasiliensis
affects behavior and striatal neurotransmitter levels of rats in adulthood. Int J Dev Neurosci 2015; 47:157-64. [DOI: 10.1016/j.ijdevneu.2015.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 09/15/2015] [Accepted: 09/16/2015] [Indexed: 01/07/2023] Open
Affiliation(s)
- Thaísa M. Sandini
- Department of Clinical and Toxicological AnalysesFaculty of Pharmaceutical SciencesUniversity of São PauloAv. Prof. Dr. Lineu Prestes, 58005508‐000São PauloBrazil
| | - Mariana S.B. Udo
- Department of Clinical and Toxicological AnalysesFaculty of Pharmaceutical SciencesUniversity of São PauloAv. Prof. Dr. Lineu Prestes, 58005508‐000São PauloBrazil
| | - Thiago M. Reis‐Silva
- Department of NeuroscienceInstitute of PsychologyUniversity of São PauloAv. Prof. Dr. Melo de Morais, 172105508‐030São PauloBrazil
| | - Daniel Sanches
- Department of PathologySchool of Veterinary MedicineUniversity of Sao PauloAv. Prof. Dr. Orlando Marques de Paiva, 8705508 270São PauloBrazil
| | - Maria Martha Bernardi
- Graduate Program of Environmental and Experimental Pathology and Graduate Program DentistryPaulista University, UNIPRua Dr. Bacelar, 121204026‐002São PauloBrazil
| | - Jorge Camilo Flório
- Department of PathologySchool of Veterinary MedicineUniversity of Sao PauloAv. Prof. Dr. Orlando Marques de Paiva, 8705508 270São PauloBrazil
| | - Helenice de S. Spinosa
- Department of PathologySchool of Veterinary MedicineUniversity of Sao PauloAv. Prof. Dr. Orlando Marques de Paiva, 8705508 270São PauloBrazil
| |
Collapse
|
14
|
Liu XJ, Wang BW, Zhao M, Zhang C, Chen YH, Hu CQ, Zhao H, Wang H, Chen X, Tao FB, Xu DX. Effects of maternal LPS exposure during pregnancy on metabolic phenotypes in female offspring. PLoS One 2014; 9:e114780. [PMID: 25479255 PMCID: PMC4257726 DOI: 10.1371/journal.pone.0114780] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 11/13/2014] [Indexed: 01/14/2023] Open
Abstract
It is increasingly recognized that intra-uterine growth restriction (IUGR) is associated with an increased risk of metabolic disorders in late life. Previous studies showed that mice exposed to LPS in late gestation induced fetal IUGR. The present study investigated the effects of maternal LPS exposure during pregnancy on metabolic phenotypes in female adult offspring. Pregnant mice were intraperitoneally injected with LPS (50 µg/kg) daily from gestational day (GD)15 to GD17. After lactation, female pups were fed with standard-chow diets (SD) or high-fat diets (HFD). Glucose tolerance test (GTT) and insulin tolerance test (ITT) were assessed 8 and 12 weeks after diet intervention. Hepatic triglyceride content was examined 12 weeks after diet intervention. As expected, maternal LPS exposure during pregnancy resulted in fetal IUGR. Although there was an increasing trend on fat mass in female offspring whose dams were exposed to LPS during pregnancy, maternal LPS exposure during pregnancy did not elevate the levels of fasting blood glucose and serum insulin and hepatic triglyceride content in female adult offspring. Moreover, maternal LPS exposure during pregnancy did not alter insulin sensitivity in adipose tissue and liver in female adult offspring. Further analysis showed that maternal LPS exposure during pregnancy did not exacerbate HFD-induced glucose tolerance and insulin resistance in female adult offspring. In addition, maternal LPS exposure during pregnancy did not aggravate HFD-induced elevation of hepatic triglyceride content in female adult offspring. In conclusion, LPS-induced IUGR does not alter metabolic phenotypes in adulthood.
Collapse
Affiliation(s)
- Xiao-Jing Liu
- Department of Toxicology, Anhui Medical University, Hefei, China
- Anhui Provincial Key Laboratory of Population Health & Aristogenics, Anhui Medical University, Hefei, China
- First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Bi-Wei Wang
- Department of Toxicology, Anhui Medical University, Hefei, China
| | - Mei Zhao
- Anhui Provincial Key Laboratory of Population Health & Aristogenics, Anhui Medical University, Hefei, China
| | - Cheng Zhang
- Department of Toxicology, Anhui Medical University, Hefei, China
| | - Yuan-Hua Chen
- Department of Toxicology, Anhui Medical University, Hefei, China
- Anhui Provincial Key Laboratory of Population Health & Aristogenics, Anhui Medical University, Hefei, China
| | - Chun-Qiu Hu
- Department of Toxicology, Anhui Medical University, Hefei, China
| | - Hui Zhao
- Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Hua Wang
- Department of Toxicology, Anhui Medical University, Hefei, China
- Anhui Provincial Key Laboratory of Population Health & Aristogenics, Anhui Medical University, Hefei, China
| | - Xi Chen
- First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Fang-Biao Tao
- Anhui Provincial Key Laboratory of Population Health & Aristogenics, Anhui Medical University, Hefei, China
- * E-mail: (FBT); (DXX)
| | - De-Xiang Xu
- Department of Toxicology, Anhui Medical University, Hefei, China
- Anhui Provincial Key Laboratory of Population Health & Aristogenics, Anhui Medical University, Hefei, China
- * E-mail: (FBT); (DXX)
| |
Collapse
|
15
|
Sandini TM, Udo MS, Reis‐Silva TM, Bernardi MM, Spinosa HDS. Prenatal exposure to integerrimine N‐oxide impaired the maternal care and the physical and behavioral development of offspring rats. Int J Dev Neurosci 2014; 36:53-63. [DOI: 10.1016/j.ijdevneu.2014.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 04/24/2014] [Accepted: 05/05/2014] [Indexed: 12/22/2022] Open
Affiliation(s)
- Thaísa M. Sandini
- Department of Clinical and Toxicological AnalysesFaculty of Pharmaceutical SciencesUniversity of São PauloAv. Prof. Dr. Lineu Prestes, 58005508‐000São PauloBrazil
| | - Mariana S.B. Udo
- Department of Clinical and Toxicological AnalysesFaculty of Pharmaceutical SciencesUniversity of São PauloAv. Prof. Dr. Lineu Prestes, 58005508‐000São PauloBrazil
| | - Thiago M. Reis‐Silva
- Department of NeuroscienceInstitute of PsychologyUniversity of São PauloAv. Prof. Dr. Melo de Morais, 172105508‐030São PauloBrazil
| | - Maria Martha Bernardi
- Graduate Program of Environmental and Experimental Pathology and Graduate Program DentistryPaulista University, UNIPRua Dr. Bacelar, 121204026‐002São PauloBrazil
| | - Helenice de S. Spinosa
- Department of PathologySchool of Veterinary MedicineUniversity of Sao PauloAv. Prof. Dr. Orlando Marques de Paiva, 8705508 270São PauloBrazil
| |
Collapse
|