1
|
Xie G, Cao S, Wang G, Zhang X, Zhang Y, Wu H, Shen S, Le J, Li K, Huang Z. Vitamin A and its influence on tumour extracellular matrix. Discov Oncol 2025; 16:16. [PMID: 39775988 PMCID: PMC11707171 DOI: 10.1007/s12672-025-01751-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025] Open
Abstract
Vitamin A is a crucial nutrient renowned for its role in visual health and cellular regulation. Its derivatives influence cell differentiation, proliferation, and tissue homeostasis, making them significant in cancer research due to their effects on both normal and tumour cells. This review explores the intricate relationship between vitamin A metabolism and the extracellular matrix (ECM) in cancer. The ECM profoundly affects tumour behaviour, including proliferation, invasion, and metastasis. Alterations in the ECM can facilitate tumour progression, and vitamin A derivatives have shown potential in modulating these changes. Through transcriptional regulation, vitamin A impacts ECM components and matrix metalloproteinases, influencing tumour dynamics. The review highlights the potential of vitamin A and its derivatives as adjunctive agents in cancer therapy. Despite promising laboratory findings, their clinical application remains limited due to challenges in translating these effects into therapeutic outcomes. Future research should focus on the modulation of retinol metabolism within tumours and the development of targeted therapies to enhance treatment efficacy and improve patient prognosis.
Collapse
Affiliation(s)
- Guoqing Xie
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Shun Cao
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Guangchun Wang
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xianzhong Zhang
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yu Zhang
- Department of Urology, the First Affiliated Hospital of Peking University, Beijing, China
| | - Haofan Wu
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shuxian Shen
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- School of Medicine, Cancer Institute, Tongji University, Shanghai, China
| | - Jiandong Le
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Keqiang Li
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China.
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
- School of Medicine, Cancer Institute, Tongji University, Shanghai, China.
| | - Zhenlin Huang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China.
| |
Collapse
|
2
|
Pressé MT, Malgrange B, Delacroix L. The cochlear matrisome: Importance in hearing and deafness. Matrix Biol 2024; 125:40-58. [PMID: 38070832 DOI: 10.1016/j.matbio.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/20/2023] [Accepted: 12/06/2023] [Indexed: 02/12/2024]
Abstract
The extracellular matrix (ECM) consists in a complex meshwork of collagens, glycoproteins, and proteoglycans, which serves a scaffolding function and provides viscoelastic properties to the tissues. ECM acts as a biomechanical support, and actively participates in cell signaling to induce tissular changes in response to environmental forces and soluble cues. Given the remarkable complexity of the inner ear architecture, its exquisite structure-function relationship, and the importance of vibration-induced stimulation of its sensory cells, ECM is instrumental to hearing. Many factors of the matrisome are involved in cochlea development, function and maintenance, as evidenced by the variety of ECM proteins associated with hereditary deafness. This review describes the structural and functional ECM components in the auditory organ and how they are modulated over time and following injury.
Collapse
Affiliation(s)
- Mary T Pressé
- Developmental Neurobiology Unit, GIGA-Neurosciences, University of Liège, 15 avenue Hippocrate - CHU - B36 (1st floor), Liège B-4000, Belgium
| | - Brigitte Malgrange
- Developmental Neurobiology Unit, GIGA-Neurosciences, University of Liège, 15 avenue Hippocrate - CHU - B36 (1st floor), Liège B-4000, Belgium
| | - Laurence Delacroix
- Developmental Neurobiology Unit, GIGA-Neurosciences, University of Liège, 15 avenue Hippocrate - CHU - B36 (1st floor), Liège B-4000, Belgium.
| |
Collapse
|
3
|
Lin Y, Shi J, Shi B, Jia Z. MMP16 as NSCL ± P Susceptible Gene in Western Han Chinese. Cleft Palate Craniofac J 2023; 60:1625-1631. [PMID: 36120833 DOI: 10.1177/10556656221125392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE The role of MMP16 in lip development is unclear. This study aimed to identify nonsyndromic cleft lip with or without palate (NSCL ± P) susceptible loci of MMP16 in western Han Chinese. DESIGN We performed targeted sequencing around MMP16 combined with a 2-phase association analysis on common variants. Phase 2 association analysis was performed with NSCL ± P specific subphenotypes (NSCL and NSCLP). Then we used rare variants burden analysis and genotyping, accompanied by motif analysis. SETTING This study was completed in a tertiary medical center. PATIENTS, PARTICIPANTS Phase 1 targeted sequencing included 159 patients with NSCL ± P and 542 normal controls; phase 2 included 1626 patients with NSCL ± P (1047 NSCL and 579 NSCLP) and 2255 normal controls. INTERVENTIONS Venous blood samples were collected from patients and used to extract DNA. MAIN OUTCOME MEASURES After Bonferroni correction, phase 1 significant threshold of p-value was 4.28 × 10-5 (0.05/1167 single nucleotide polymorphisms [SNPs]), and phase 2 was .00025 (0.05/200 SNPs). Burden analysis significant threshold p-value was .05. RESULTS Common variants phase 1 association analysis identified 11 statistically significant SNPs (lowest p = 1.90 × 10-9, odds ratio (OR) = 0.27, 95% CI: 0.17-0.44), phase 2 replication identified 16 SNPs in NSCL ± P (lowest p = 6.26 × 10-6, OR = 0.77, 95% CI: 0.69-0.86) and 9 in NSCL (lowest p = 8.44 × 10-5, OR = 0.76, 95% CI: 0.66-0.87). Rare variants burden analysis showed no significant results, genotyping results showed they were maternally inherited. CONCLUSIONS Our study identified MMP16 susceptible SNPs in NSCL ± P and NSCL, emphasizing its potential role in lip development. Our study also highlighted the importance to perform association analysis with subphenotypes divided.
Collapse
Affiliation(s)
- Yansong Lin
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Cleft Lip and Palate, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiayu Shi
- Division of Growth and Development and Section of Orthodontics, School of Dentistry, University of California, Los Angeles, CA, USA
| | - Bing Shi
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Cleft Lip and Palate, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhonglin Jia
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Cleft Lip and Palate, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Lin XY, Chu Y, Zhang GS, Zhang HL, Kang K, Wu MX, Zhu J, Xu CS, Lin JX, Huang CK, Chai DJ. Retinoid X receptor agonists alleviate fibroblast activation and post-infarction cardiac remodeling via inhibition of TGF-β1/Smad pathway. Life Sci 2023; 329:121936. [PMID: 37453576 DOI: 10.1016/j.lfs.2023.121936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/10/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Retinoid X receptor (RXR), particularly RXRα, has been implicated in cardiovascular diseases. However, the functional role of RXR activation in myocardial infarction (MI) remains unclear. This study aimed to determine the effects of RXR agonists on MI and to dissect the underlying mechanisms. Sprague-Dawley (SD) rats were subjected to MI and then treated (once daily for 4 weeks) with either RXR agonist bexarotene (10 or 30 mg/kg body weight) or vehicle. Heart function was determined using echocardiography and cardiac hemodynamic measurements. Four weeks post MI, myocardial tissues were collected to evaluate cardiac remodeling. Primary cardiac fibroblasts (CFs) were treated with or without RXR ligand 9-cis-RA followed by stimulation with TGF-β1. Immunoblot, immunofluorescence, and co-immunoprecipitation were performed to elucidate the regulatory role of RXR agonists in TGF-β1/Smad signaling. In vivo treatment with Bexarotene moderately affects systemic inflammation and apoptosis and ameliorated left ventricular dysfunction after MI in rat model. In contrast, bexarotene significantly inhibited post-MI myocardial fibrosis. Immunoblot analysis of heart tissue homogenates from MI rats revealed that bexarotene regulated the activation of the TGF-β1/Smad signaling pathway. In vitro, 9-cis-RA inhibited the TGF-β1-induced proliferation and collagen production of CFs. Importantly, upon activation by 9-cis-RA, RXRα interacted with p-Smad2 in cytoplasm, inhibiting the TGF-β1-induced nuclear translocation of p-Smad2, thereby negatively regulating TGF-β1/Smad signaling and attenuating the fibrotic response of CFs. These findings suggest that RXR agonists ameliorate post-infarction myocardial fibrosis, maladaptive remodeling, and heart dysfunction via attenuation of fibrotic response in CFs through inhibition of the TGF-β1/Smad pathway activation.
Collapse
Affiliation(s)
- Xiao-Yan Lin
- Ultrasonography Department, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Yong Chu
- Cardiovascular Department, The First Affiliated Hospital, Fujian Medical University, Fujian Institute of Hypertension, Fuzhou 350005, China
| | - Guo-Shan Zhang
- Zhongshan Hospital (Xiamen), Fudan University, Xiamen 361015, China
| | - Hai-Lin Zhang
- Cardiovascular Department, The First Affiliated Hospital, Fujian Medical University, Fujian Institute of Hypertension, Fuzhou 350005, China
| | - Kai Kang
- Cardiovascular Department, The First Affiliated Hospital, Fujian Medical University, Fujian Institute of Hypertension, Fuzhou 350005, China
| | - Min-Xia Wu
- Electron Microscopy Laboratory of Public Technology Service Center, Fujian Medical University, Fuzhou 350004, China
| | - Jiang Zhu
- Cardiovascular Department, The First Affiliated Hospital, Fujian Medical University, Fujian Institute of Hypertension, Fuzhou 350005, China
| | - Chang-Sheng Xu
- Cardiovascular Department, The First Affiliated Hospital, Fujian Medical University, Fujian Institute of Hypertension, Fuzhou 350005, China
| | - Jin-Xiu Lin
- Cardiovascular Department, The First Affiliated Hospital, Fujian Medical University, Fujian Institute of Hypertension, Fuzhou 350005, China
| | - Chun-Kai Huang
- Cardiovascular Department, The First Affiliated Hospital, Fujian Medical University, Fujian Institute of Hypertension, Fuzhou 350005, China
| | - Da-Jun Chai
- Cardiovascular Department, The First Affiliated Hospital, Fujian Medical University, Fujian Institute of Hypertension, Fuzhou 350005, China; Cardiovascular Department, National Regional Medical Center, Binhai Branch of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China.
| |
Collapse
|
5
|
Korzekwa AJ, Kononiuk A, Kordan W, Orzołek A. Retinoic acid alters metalloproteinase action in red deer antler stem cells. PLoS One 2023; 18:e0287782. [PMID: 37428795 DOI: 10.1371/journal.pone.0287782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 06/13/2023] [Indexed: 07/12/2023] Open
Abstract
Metalloproteinases (MMP)s regulate developmental processes, control angiogenesis and wound healing, participate in the formation of immune receptors, and are expressed in stem cells. Retinoic acid (RA) is a potential modulator of these proteinases. The aim was to determine (1) MMPs' action in antler stem cells (ASCs) before and after differentiation into adipo-, osteo-, and chondrocytes and (2) the effect of RA on modifying MMP action in ASCs. Antler tissue from pedicle was collected approximately 40 days after antler casting, post mortem from healthy breeding five year old males (N = 7). The cells were isolated from the pedicle layer of periosteum after skin separation and cultured. The pluripotency of the ASCs was evaluated by mRNA expression for NANOG, SOX2, and OCT4. ASCs were stimulated with RA (100nM) and differentiated for 14 days. The MMP (1-3) and TIMP(1-3) (tissue inhibitor of MMPs) mRNA expression was determined in the ASCs, their concentrations in the ASCs and the medium after RA stimulation as well as profiles of mRNA expression for MMPs: 1-3 and TIMPs: 1-3 during differentiation of ASC to osteocytes, adipocytes and chondrocytes. RA increased MMP-3 and TIMP-3 mRNA expression and output (P < 0.05) and not influenced on MMP-1 and TIMP-1 mRNA expression and output in ASC (P > 0.05). Depending on differentiation of ASC to osteocytes, adipocytes or chondrocytes, MMPs`and TIMPs`expression profile fluctuates for all studied proteases and its inhibitors. The studies demand continuation considering the role of proteases in stem cells physiology and differentiation. The results may be relevant for the study of cellular processes during the cancerogenesis of tumor stem cells.
Collapse
Affiliation(s)
- Anna J Korzekwa
- Department of Biodiversity Protection (DBP), Institute of Animal Reproduction and Food Research, Polish Academy of Sciences (IAR&FR PAS), Olsztyn, Poland
| | - Anna Kononiuk
- Department of Biodiversity Protection (DBP), Institute of Animal Reproduction and Food Research, Polish Academy of Sciences (IAR&FR PAS), Olsztyn, Poland
| | - Władysław Kordan
- Department of Animal Biochemistry and Biotechnology, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Aleksandra Orzołek
- Department of Animal Biochemistry and Biotechnology, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| |
Collapse
|
6
|
Azimian Zavareh P, Silva P, Gimhani N, Atukorallaya D. Effect of Embryonic Alcohol Exposure on Craniofacial and Skin Melanocyte Development: Insights from Zebrafish ( Danio rerio). TOXICS 2022; 10:544. [PMID: 36136509 PMCID: PMC9501518 DOI: 10.3390/toxics10090544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/09/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Alcohol is a common addictive substance and prenatal alcohol exposure could cause fetal alcohol spectrum disorder (FASD) and can lead to various birth defects. The small teleost zebrafish (Danio rerio) has been identified as a fine animal model in developmental biology and toxicological research. Zebrafish models are widely used to study the harmful effects of alcohol and limited studies are available on the craniofacial and skin malformations associated with FASD. The present study attempts to investigate the effect of alcohol on early zebrafish embryonic development. The effects of prenatal alcohol exposure on neural crest cell-derived organ formation, including pharyngeal dentition, palatal bones and skin melanocytes were analysed. Whole-mount cartilage and bone staining and imaging techniques were applied to determine the effects of alcohol on the above-mentioned structures. The tooth size and shape were affected by alcohol exposure, but the number of teeth in the pharyngeal dentition was not affected. Only first-generation teeth showed size differences. The alcohol-exposed ethmoid bone, which is homologous to the human hard palate, was smaller and less dense in cell arrangement compared with the control medial ethmoid bone. The skin pigmentation defects included reduced melanocyte density, melanin contraction, smaller melanocyte surface area and aberrations in melanosome dispersion, revealing that alcohol significantly influenced and downregulated each and every step of the melanocyte developmental process. This descriptive study summarises the effects of alcohol on the development of neural crest cell-derived structures and highlights the importance of zebrafish in studying the phenotypic characteristics of fetal alcohol spectrum disorder.
Collapse
|
7
|
Deng Q, Chen J. Potential Therapeutic Effect of All-Trans Retinoic Acid on Atherosclerosis. Biomolecules 2022; 12:869. [PMID: 35883425 PMCID: PMC9312697 DOI: 10.3390/biom12070869] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/08/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022] Open
Abstract
Atherosclerosis is a major risk factor for myocardial infarction and ischemic stroke, which are the leading cause of death worldwide. All-trans retinoic acid (ATRA) is a natural derivative of essential vitamin A. Numerous studies have shown that ATRA plays an important role in cell proliferation, cell apoptosis, cell differentiation, and embryonic development. All-trans retinoic acid (ATRA) is a ligand of retinoic acid receptors that regulates various biological processes by activating retinoic acid signals. In this paper, the metabolic processes of ATRA were reviewed, with emphasis on the effects of ATRA on inflammatory cells involved in the process of atherosclerosis.
Collapse
Affiliation(s)
| | - Jixiang Chen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China;
| |
Collapse
|
8
|
Long Non-coding RNA GAS5 Knockdown Attenuates H 2O 2-Induced Human Trabecular Meshwork Cell Apoptosis and Promotes Extracellular Matrix Deposition by Suppressing miR-29b-3p and Upregulating STAT3. J Mol Neurosci 2021; 72:516-526. [PMID: 34657232 DOI: 10.1007/s12031-021-01926-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 09/29/2021] [Indexed: 10/20/2022]
Abstract
The long non-coding RNA GAS5 (GAS5) is reportedly implicated in glaucoma. However, its significance in human trabecular meshwork cells (HTMCs) remains largely unclear. Here, we investigated the effect of GAS5 on the function of HTMCs and its interaction with miR-29b-3p in HTMCs. We established an H2O2-induced oxidative injury model using HTMCs. RT-qPCR or western blotting was performed to examine the expression of the indicated genes. Luciferase reporter assay was used to determine the interaction between GAS5, miR-29b-3p, miR-29b-3p, and STAT3. CCK8 assay was used to assess the proliferative rate of HTMCs. Exposure to H2O2 increased the expression of Bax, cleaved caspase-3, and extracellular matrix (ECM) proteins, accompanied by reduced Bcl-2 expression. These H2O2-induced changes were effectively alleviated by GAS5 knockdown with sh-GAS5. MiR-29b-3p was directly regulated by GAS5. The effect of sh-GAS5 on ECM protein expression was also observed with the miR-29b-3p mimic. STAT3 was directly regulated by miR-29b-3p. MiR-29b-3p silencing alleviated STAT3 inhibition, followed by the restoration of cell vitality, Bax, Bcl-2, and cleaved caspase-3 expression, and ECM deposition. Our study is the first experimental investigation to shed light on a novel molecular mechanism of the GAS5/miR-29b-3p/STAT3 axis in an H2O2-induced oxidative injury model using HTMCs, which may offer a promising therapeutic approach against glaucoma.
Collapse
|
9
|
Effects of Extracellular Osteoanabolic Agents on the Endogenous Response of Osteoblastic Cells. Cells 2021; 10:cells10092383. [PMID: 34572032 PMCID: PMC8471159 DOI: 10.3390/cells10092383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/31/2021] [Accepted: 09/07/2021] [Indexed: 12/27/2022] Open
Abstract
The complex multidimensional skeletal organization can adapt its structure in accordance with external contexts, demonstrating excellent self-renewal capacity. Thus, optimal extracellular environmental properties are critical for bone regeneration and inextricably linked to the mechanical and biological states of bone. It is interesting to note that the microstructure of bone depends not only on genetic determinants (which control the bone remodeling loop through autocrine and paracrine signals) but also, more importantly, on the continuous response of cells to external mechanical cues. In particular, bone cells sense mechanical signals such as shear, tensile, loading and vibration, and once activated, they react by regulating bone anabolism. Although several specific surrounding conditions needed for osteoblast cells to specifically augment bone formation have been empirically discovered, most of the underlying biomechanical cellular processes underneath remain largely unknown. Nevertheless, exogenous stimuli of endogenous osteogenesis can be applied to promote the mineral apposition rate, bone formation, bone mass and bone strength, as well as expediting fracture repair and bone regeneration. The following review summarizes the latest studies related to the proliferation and differentiation of osteoblastic cells, enhanced by mechanical forces or supplemental signaling factors (such as trace metals, nutraceuticals, vitamins and exosomes), providing a thorough overview of the exogenous osteogenic agents which can be exploited to modulate and influence the mechanically induced anabolism of bone. Furthermore, this review aims to discuss the emerging role of extracellular stimuli in skeletal metabolism as well as their potential roles and provide new perspectives for the treatment of bone disorders.
Collapse
|
10
|
Chen Y, Liu X, Liu X, Cui L, He Z, Gao Z, Liu L, Li Z, Wan Z, Yu Z. Correlation between TGF-β2/3 promoter DNA methylation and Smad signaling during palatal fusion induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin. Exp Biol Med (Maywood) 2021; 246:2019-2028. [PMID: 34053232 PMCID: PMC8474981 DOI: 10.1177/15353702211012288] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 03/28/2021] [Indexed: 01/10/2023] Open
Abstract
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a persistent organic pollutant that is strongly associated with a number of human diseases and birth defects, including cleft palate. Transforming growth factor (TGF) plays a significant role during mammalian palatogenesis. However, the epigenetic mechanism of transforming growth factors in the process of TCDD-induced cleft palate is unclear. The purpose of this research was to investigate the relationship and potential mechanism between TGF-β2/3 promoter DNA methylation and Smad signaling during TCDD-induced cleft palate. Pregnant C57BL/6N mice were exposed to 64 µg/kg TCDD on gestational day 10 (GD10) to establish the cleft palate model and palatal tissues of embryos were collected on GD13, GD14, and GD15 for subsequent experiments. TGF-β2/3 mRNA expression, TGF-β2/3 promoter methylation, and Smad signaling molecules expression were assessed in the palate of the two groups. The results showed that the incidence of cleft palate was 94.7% in the TCDD-treated group whereas no cleft palate was found in the control group. TCDD-treated group altered specific CpG sites of TGF-β2/3 promoter methylation. Compared to the control group, the proliferation of mouse embryonic palate mesenchymal stromal cells (MEPM), the expressions of TGF-β2/3, p-Smad2, and Smad4 were all reduced, while the expression of Smad7 was significantly increased in the atAR group. Smad signaling was downregulated by TCDD. Therefore, we suggest that TGF-β2/3 promoter methylation and Smad signaling may be involved in TCDD-induced cleft palate formation in fetal mice.
Collapse
Affiliation(s)
- Yao Chen
- School of Public Health, Xinxiang Medical University, Xinxiang
453003, China
- School of Public Health, Zhengzhou University, Zhengzhou 450001,
China
| | - Xiaozhuan Liu
- Center for Clinical Single-Cell Biomedicine, Henan Provincial
People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou 450003,
China
- Department of Immunology, Medical College of Henan University of
Science and Technology, Luoyang 471003, China
| | - Xinxin Liu
- School of Public Health, Zhengzhou University, Zhengzhou 450001,
China
| | - Lingling Cui
- School of Public Health, Zhengzhou University, Zhengzhou 450001,
China
| | - Zhidong He
- School of Public Health, Zhengzhou University, Zhengzhou 450001,
China
| | - Zhan Gao
- The Fifth Affiliated Hospital, Zhengzhou University, Zhengzhou
450052, China
| | - Limin Liu
- School of Public Health, Zhengzhou University, Zhengzhou 450001,
China
| | - Zhitao Li
- Department of Immunology, Medical College of Henan University of
Science and Technology, Luoyang 471003, China
| | - Zhongxiao Wan
- School of Public Health, Zhengzhou University, Zhengzhou 450001,
China
| | - Zengli Yu
- School of Public Health, Xinxiang Medical University, Xinxiang
453003, China
- School of Public Health, Zhengzhou University, Zhengzhou 450001,
China
| |
Collapse
|
11
|
Zhang Q, Chang X, Wang H, Liu Y, Wang X, Wu M, Zhan H, Li S, Sun Y. TGF-β1 mediated Smad signaling pathway and EMT in hepatic fibrosis induced by Nano NiO in vivo and in vitro. ENVIRONMENTAL TOXICOLOGY 2020; 35:419-429. [PMID: 31737983 DOI: 10.1002/tox.22878] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 10/20/2019] [Accepted: 10/26/2019] [Indexed: 06/10/2023]
Abstract
Nickel oxide nanoparticles (Nano NiO) bears hepatotoxicity, while whether it leads to liver fibrosis remains unclear. The aim of this study was to establish the Nano NiO-induced hepatic fibrosis model in vivo and investigate the roles of transforming growth factor β1 (TGF-β1) in Smad pathway activation, epithelial-mesenchymal transition (EMT) occurrence, and extracellular matrix (ECM) deposition in vitro. Male Wistar rats were exposed to 0.015, 0.06, and 0.24 mg/kg Nano NiO by intratracheal instilling twice a week for 9 weeks. HepG2 cells were treated with 100 μg/mL Nano NiO and TGF-β1 inhibitor (SB431542) to explore the mechanism of collagen formation. Results of Masson staining as well as the elevated levels of type I collagen (Col-I) and Col-III suggested that Nano NiO resulted in hepatic fibrosis in rats. Furthermore, Nano NiO increased the protein expression of TGF-β1, p-Smad2, p-Smad3, alpha-smooth muscle actin (α-SMA), matrix metalloproteinase9 (MMP9), and tissue inhibitors of metalloproteinase1 (TIMP1), while decreased the protein content of E-cadherin and Smad7 in rat liver and HepG2 cells. Most importantly, Nano NiO-triggered the abnormal expression of the abovementioned proteins were all alleviated by co-treatment with SB431542, implying that TGF-β1-mediated Smad pathway, EMT and MMP9/TIMP1 imbalance were involved in overproduction of collagen in HepG2 cells. In conclusion, these findings indicated that Nano NiO induced hepatic fibrosis via TGF-β1-mediated Smad pathway activation, EMT occurrence, and ECM deposition.
Collapse
Affiliation(s)
- Qiong Zhang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Xuhong Chang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Haibing Wang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Yunlan Liu
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Xiaoxia Wang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Minmin Wu
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Haibing Zhan
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Sheng Li
- Department occupational disease control, Lanzhou Municipal Center for Disease Control, Lanzhou, China
| | - Yingbiao Sun
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| |
Collapse
|
12
|
Jin H, Haicheng Y, Caiyun Z, Yong Z, Jinrong W. The Expression of NF-kB Signaling Pathway Was Inhibited by Silencing TGF-b4 in Chicken IECs Infected with E. tenella. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2020. [DOI: 10.1590/1806-9061-2020-1338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- H Jin
- Henan University of Technology, China
| | | | - Z Caiyun
- Henan University of Technology, China
| | - Z Yong
- Henan University of Technology, China
| | - W Jinrong
- Henan University of Technology, China
| |
Collapse
|
13
|
Baker NC, Sipes NS, Franzosa J, Belair DG, Abbott BD, Judson RS, Knudsen TB. Characterizing cleft palate toxicants using ToxCast data, chemical structure, and the biomedical literature. Birth Defects Res 2019; 112:19-39. [PMID: 31471948 DOI: 10.1002/bdr2.1581] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 12/11/2022]
Abstract
Cleft palate has been linked to both genetic and environmental factors that perturb key events during palatal morphogenesis. As a developmental outcome, it presents a challenging, mechanistically complex endpoint for predictive modeling. A data set of 500 chemicals evaluated for their ability to induce cleft palate in animal prenatal developmental studies was compiled from Toxicity Reference Database and the biomedical literature, which included 63 cleft palate active and 437 inactive chemicals. To characterize the potential molecular targets for chemical-induced cleft palate, we mined the ToxCast high-throughput screening database for patterns and linkages in bioactivity profiles and chemical structural descriptors. ToxCast assay results were filtered for cytotoxicity and grouped by target gene activity to produce a "gene score." Following unsuccessful attempts to derive a global prediction model using structural and gene score descriptors, hierarchical clustering was applied to the set of 63 cleft palate positives to extract local structure-bioactivity clusters for follow-up study. Patterns of enrichment were confirmed on the complete data set, that is, including cleft palate inactives, and putative molecular initiating events identified. The clusters corresponded to ToxCast assays for cytochrome P450s, G-protein coupled receptors, retinoic acid receptors, the glucocorticoid receptor, and tyrosine kinases/phosphatases. These patterns and linkages were organized into preliminary decision trees and the resulting inferences were mapped to a putative adverse outcome pathway framework for cleft palate supported by literature evidence of current mechanistic understanding. This general data-driven approach offers a promising avenue for mining chemical-bioassay drivers of complex developmental endpoints where data are often limited.
Collapse
Affiliation(s)
| | - Nisha S Sipes
- NIEHS Division of the National Toxicology Program, Research Triangle Park, North Carolina
| | - Jill Franzosa
- IOAA CSS, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina
| | - David G Belair
- NHEERL, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina
| | - Barbara D Abbott
- NHEERL, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina
| | - Richard S Judson
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina
| | - Thomas B Knudsen
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina
| |
Collapse
|
14
|
Tao J, Han Q, Zhou H, Diao X. Transcriptomic responses of regenerating earthworms (Eisenia foetida) to retinoic acid reveals the role of pluripotency genes. CHEMOSPHERE 2019; 226:47-59. [PMID: 30913427 DOI: 10.1016/j.chemosphere.2019.03.111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/16/2019] [Accepted: 03/16/2019] [Indexed: 06/09/2023]
Abstract
Exogenous retinoic acid (RA) delays and disturbs the regeneration of Eisenia foetida and inhibits the expression of pluripotent gene Sox2. However, studies of E. foetida conducted at the molecular level have been unable to elucidate its regeneration and mechanisms of RA effects on its regeneration. We merged existing transcriptomic data for E. foetida to generate a high-confidence set of transcriptomes. The de novo assembly of transcriptomes was performed by using the Trinity method, and functional annotations were analysed. We performed RNA-seq on four samples of regenerating tail fragments, three across a time-course (0, 3 and 7 days post amputation) and the fourth sample exposed to RA (7 days post amputation). E. foetida regeneration genes underwent significant upregulation and downregulation over the examined time periods, which may have been caused by a shared regulatory programme controlled by multiple gene families. The inhibition of RA against earthworm regeneration is likely related to the expression of these genes. Using annotation data and clustering, we also identified specific transcripts of 6 gene superfamilies enriched among genes exhibiting differential expression during regeneration periods and exhibiting the same expression patterns as those of the Sox2 gene. The regeneration transcriptome of tail fragment regeneration serves as a strong resource for investigating global expression changes that occur during regeneration and the toxicity of RA. This study offers insight for better understanding the regeneration of lower animals and molecular mechanisms of RA toxicity in invertebrates.
Collapse
Affiliation(s)
- Jing Tao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China; College of Life Sciences and Pharmacy, Hainan University, Haikou, 570228, China; State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| | - Qian Han
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China; College of Life Sciences and Pharmacy, Hainan University, Haikou, 570228, China.
| | - Hailong Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China; College of Life Sciences and Pharmacy, Hainan University, Haikou, 570228, China.
| | - Xiaoping Diao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China; College of Life Science, Hainan Normal University, Haikou, 571158, China.
| |
Collapse
|
15
|
Shu X, Shu S, Cheng H. Genome-Wide mRNA-Seq Profiling Reveals that LEF1 and SMAD3 Regulate Epithelial-Mesenchymal Transition Through the Hippo Signaling Pathway During Palatal Fusion. Genet Test Mol Biomarkers 2019; 23:197-203. [PMID: 30767676 DOI: 10.1089/gtmb.2018.0221] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Epithelial-mesenchymal transition (EMT) of the medial edge epithelium (MEE) occurs through fusion of the palatal shelves and is a crucial step in palatogenesis. The key genes, however, and the related signaling pathway of EMT are not yet fully understood. Therefore, the aim of this study was to reveal the key genes and the related signaling pathway of EMT during palatal fusion. MATERIALS AND METHODS C57BL/6J mice at embryonic gestation day 14.5 (E14.5; n = 6) were used to establish the cleft palate model for mRNA-Seq (HiSeq X Ten). The Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed for functional annotations of the differentially expressed genes. Quantitative polymerase chain reaction (qPCR) assays were used to validate the RNAseq data. RESULTS A total of 936 differentially expressed genes, including 558 upregulated and 378 downregulated genes were identified in cases versus controls, respectively. Among these genes, the GO analysis showed that Lymphoid Enhancer-Binding Factor 1 (LEF1) and SMAD Family Member 3 (SMAD3) significantly enriched biological processes, which were EMT related. The KEGG analysis showed that these genes regulated EMT through the Hippo signaling pathway. LEF1 and SMAD3 were downregulated, and the qPCR results corroborated the RNA-seq data. CONCLUSIONS These results demonstrate that LEF1 and SMAD3 inhibits EMT at the MEE through the Hippo signaling pathway; and that this could contribute to cleft palate formation in embryonic palatal fusion at E 14.5.
Collapse
Affiliation(s)
- Xuan Shu
- 1 The Cleft Lip and Palate Treatment Center, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Shenyou Shu
- 1 The Cleft Lip and Palate Treatment Center, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Hongqiu Cheng
- 2 Department of Infectious Diseases, Second Affiliated Hospital of Shantou University Medical College, Shantou, Shantou, Guangdong, China
| |
Collapse
|
16
|
Li M, Wang J, Liu D, Huang H. High‑throughput sequencing reveals differentially expressed lncRNAs and circRNAs, and their associated functional network, in human hypertrophic scars. Mol Med Rep 2018; 18:5669-5682. [PMID: 30320389 PMCID: PMC6236202 DOI: 10.3892/mmr.2018.9557] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 08/16/2018] [Indexed: 12/11/2022] Open
Abstract
Growing evidence suggests that long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) are involved in the occurrence and development of tumors and fibrotic diseases. However, the integrated analysis of lncRNA and circRNA expression, alongside associated co‑expression and competing endogenous RNA (ceRNA) networks, has not yet been performed in human hypertrophic scars (HS). The present study compared the expression levels of lncRNAs, circRNAs and mRNAs in human HS and normal skin tissues by high‑throughput RNA sequencing. Numerous differentially expressed lncRNAs, circRNAs and mRNAs were detected. Subsequently, five aberrantly expressed lncRNAs and mRNAs, and six circRNAs were measured to verify the RNA sequencing results by reverse transcription‑quantitative polymerase chain reaction. Furthermore, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed for the dysregulated genes, in order to elucidate their principal functions. In addition, a coding‑noncoding gene co‑expression (CNC) network and ceRNA network were constructed for specific significantly altered genes. The CNC network analysis suggested that AC048380.1 and LINC00299 were associated with metastasis‑related genes, including inhibin subunit βA (INHBA), SMAD family member 7 (SMAD7), collagen type I α1 chain (COL1A1), transforming growth factor β3 (TGFβ3) and MYC proto‑oncogene, bHLH transcription factor (MYC). Inhibitor of DNA binding 2 was associated with the lncRNAs cancer susceptibility 11, TGFβ3‑antisense RNA 1 (AS1), INHBA‑AS1, AC048380.1, LINC00299 and LINC01969. Circ‑Chr17:50187014_50195976_‑, circ‑Chr17:50189167_50194626_‑, circ‑Chr17:50189167_ 50198002_‑ and circ‑Chr17:50189858_50195330_‑ were also associated with INHBA, SMAD7, COL1A1, TGFβ3 and MYC. COL1A1 and TGFβ3 were associated with circ‑Chr9:125337017_125337591_+ and circ‑Chr12:120782654_120784593_‑. The ceRNA network indicated that INHBA‑AS1 and circ‑Chr9:125337017_125337591_+ were ceRNAs of microRNA‑182‑5p targeting potassium voltage‑gated channel subfamily J member 6, ADAM metallopeptidase with thrombospondin type 1 motif 18, SRY‑box 11, MAGE family member L2, matrix metallopeptidase 16, thrombospondin 2, phosphodiesterase 11A and collagen type V a1 chain. These findings suggested that lncRNAs and circRNAs may act as ceRNAs, which are implicated in the pathophysiology and development of human HS, and lay a foundation for further insight into the novel regulatory mechanism of lncRNAs and circRNAs in hypertrophic scarring.
Collapse
Affiliation(s)
- Min Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jian Wang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Dewu Liu
- Department of Burns, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Heping Huang
- Department of Plastic Surgery, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
17
|
Smetanina MA, Kel AE, Sevost'ianova KS, Maiborodin IV, Shevela AI, Zolotukhin IA, Stegmaier P, Filipenko ML. DNA methylation and gene expression profiling reveal MFAP5 as a regulatory driver of extracellular matrix remodeling in varicose vein disease. Epigenomics 2018; 10:1103-1119. [PMID: 30070582 DOI: 10.2217/epi-2018-0001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
AIM To integrate transcriptomic and DNA-methylomic measurements on varicose versus normal veins using a systems biological analysis to shed light on the interplay between genetic and epigenetic factors. MATERIALS & METHODS Differential expression and methylation were measured using microarrays, supported by real-time quantitative PCR and immunohistochemistry confirmation for relevant gene products. A systems biological 'upstream analysis' was further applied. RESULTS We identified several potential key players contributing to extracellular matrix remodeling in varicose veins. Specifically, our analysis suggests MFAP5 acting as a master regulator, upstream of integrins, of the cellular network affecting the varicose vein condition. Possible mechanism and pathogenic model were outlined. CONCLUSION A coherent model proposed incorporates the relevant signaling networks and will hopefully aid further studies on varicose vein pathogenesis.
Collapse
Affiliation(s)
- Mariya A Smetanina
- Laboratory of Pharmacogenomics, Institute of Chemical Biology & Fundamental Medicine, Novosibirsk 630090, Russia.,Department of Fundamental Medicine, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Alexander E Kel
- Laboratory of Pharmacogenomics, Institute of Chemical Biology & Fundamental Medicine, Novosibirsk 630090, Russia.,Department of Research & Development, geneXplain GmbH, Wolfenbüttel D-38302, Germany
| | - Ksenia S Sevost'ianova
- Department of Fundamental Medicine, Novosibirsk State University, Novosibirsk 630090, Russia.,Center of New Medical Technologies, Institute of Chemical Biology & Fundamental Medicine, Novosibirsk 630090, Russia
| | - Igor V Maiborodin
- Stem Cell Laboratory, Institute of Chemical Biology & Fundamental Medicine, Novosibirsk 630090, Russia
| | - Andrey I Shevela
- Department of Fundamental Medicine, Novosibirsk State University, Novosibirsk 630090, Russia.,Center of New Medical Technologies, Institute of Chemical Biology & Fundamental Medicine, Novosibirsk 630090, Russia
| | - Igor A Zolotukhin
- Laboratory of Pharmacogenomics, Institute of Chemical Biology & Fundamental Medicine, Novosibirsk 630090, Russia.,Chair of Faculty Surgery of the Medical Department, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Philip Stegmaier
- Department of Research & Development, geneXplain GmbH, Wolfenbüttel D-38302, Germany
| | - Maxim L Filipenko
- Laboratory of Pharmacogenomics, Institute of Chemical Biology & Fundamental Medicine, Novosibirsk 630090, Russia.,Department of Fundamental Medicine, Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|
18
|
Wang W, Jian Y, Cai B, Wang M, Chen M, Huang H. All-Trans Retinoic Acid-Induced Craniofacial Malformation Model: A Prenatal and Postnatal Morphological Analysis. Cleft Palate Craniofac J 2017; 54:391-399. [PMID: 27487015 DOI: 10.1597/15-271] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Objective To characterize the prenatal and postnatal craniofacial bone development in mouse model of all-trans retinoic acid (ATRA) exposure at different ages by a quantitative and morphological analysis of skull morphology. Methods Pregnant mice were exposed to ATRA at embryonic day 10 (E10) and 13 (E13) by oral gavage. Skulls of mice embryos at E19.5 and adult mice at postnatal day 35 (P35) were collected for high-resolution microcomputed tomography (microCT) imaging scanning and section HE staining. Reconstruction and measurement of mouse skulls were performed for prenatal and postnatal analysis of the control and ATRA-exposed mice. Results Craniofacial malformations in mouse models caused by ATRA exposure were age dependent. ATRA exposure at E10 induced cleft palate in 81.8% of the fetuses, whereas the palatine bone of E13-exposed mice was intact. Inhibitions of maxilla and mandible development with craniofacial asymmetry induced were observed at E19.5 and P35. Compared with control and E13-exposed mice, the palatine bones of E10-exposed mice were not elevated and were smaller in dimension. Some E10-exposed mice exhibited other craniofacial abnormalities, including premature fusion of mandibular symphysis with a missing mandibular incisor and a smaller mandible. Severe deviated snouts and amorphous craniofacial suture were detected in E13-exposed mice at P35. Conclusion These morphological variations in E10- and E13-exposed mice suggested that ATRA was teratogenic in craniofacial bone development in mice and the effect was age dependent.
Collapse
Affiliation(s)
| | | | | | - Miao Wang
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Mu Chen
- Department of Oral and Maxillofacial Surgery, Kiang Wu Hospital, Macao, China
| | - Hongzhang Huang
- Department of Stomatology, Nanshan Affiliated Hospital of Guangdong Medical College, Shenzhen, China
| |
Collapse
|
19
|
Yang Z, Wu B, Jia S, Zhao Y, Hou R, Liu X, Wang X, Chen L, Yang X, Lei D, Wang L. The mechanically activated p38/MMP-2 signaling pathway promotes bone marrow mesenchymal stem cell migration in rats. Arch Oral Biol 2017; 76:55-60. [PMID: 28126687 DOI: 10.1016/j.archoralbio.2017.01.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 11/01/2016] [Accepted: 01/18/2017] [Indexed: 01/24/2023]
Abstract
OBJECTIVE The aim of the present study was to investigate the effect of static strain on bone marrow mesenchymal stem cell (BMMSC) migration and whether the p38/matrix metalloproteinase-2 (MMP-2) axis plays a role in induction of BMMSC migration under mechanical strain. DESIGN Both in vivo and in vitro investigations were performed. Twelve adult male Sprague-Dawley rats were randomly divided into 2 groups (n=6 per group). Rats in the experimental group underwent right mandibular distraction osteogenesis, whereas rats in the control group were subjected to osteotomy in the mandible without distraction. Immunohistochemistry and immunofluorescence were performed to evaluate phospho-p38 (p-p38) and Nestin expression. BMMSCs were isolated from rat mandibles. BMMSCs in the experimental group were subjected to static mechanical strain for 2h, whereas those in the control group underwent no strain. The biological roles of static strain and the p38/MMP-2 axis in BMMSC migration were evaluated by Transwell assays and western blotting by inhibiting p38 phosphorylation. RESULTS There were significantly more Nestin+ cells in the bone calluses of the experimental group than in those of the control group. In addition, Nestin+/p-p38+ cell numbers were significantly higher in the experimental group than in the control group, indicating that static strain activated p38 signaling in BMMSCs in vivo. In accordance with in vivo results, static strain in vitro stimulated phosphorylation of p38 in BMMSCs. Furthermore, expression of MMP-2 was elevated in BMMSCs under static strain compared with the control, and strain-induced MMP-2 expression was abolished by inhibition of p38 phosphorylation in BMMSCs. Moreover, Transwell assay results showed that static strain promoted BMMSC migration, which was abolished by inhibition of p38 phosphorylation. CONCLUSIONS The present study demonstrated that static strain can promote the migration ability of BMMSCs via p38/MMP-2 signaling. To the best of our knowledge, this study is the first report demonstrating that the p38/MMP-2 axis governs BMMSC migration under static mechanical strain.
Collapse
Affiliation(s)
- Zihui Yang
- State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Baolei Wu
- State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Sen Jia
- State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Yinghua Zhao
- Department of Prosthodontics, Stomatology Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Rui Hou
- State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Xiaochang Liu
- State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Xinge Wang
- State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Litong Chen
- State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Xinjie Yang
- State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Delin Lei
- State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, China.
| | - Lei Wang
- Department of Oral & Maxillofacial-Head and Neck Oncology, School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, China; State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
20
|
Zhang H, Liu X, Gao Z, Li Z, Yu Z, Yin J, Tao Y, Cui L. Excessive retinoic acid inhibit mouse embryonic palate mesenchymal cell growth through involvement of Smad signaling. Anim Cells Syst (Seoul) 2016; 21:31-36. [PMID: 30460049 DOI: 10.1080/19768354.2016.1165287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 02/19/2016] [Accepted: 02/23/2016] [Indexed: 10/20/2022] Open
Abstract
All-trans retinoic acid (atRA), the oxidative metabolite of retinoic acid (RA), is essential for palatogenesis. Overdose RA is capable of inducing cleft palate in mice and humans. Normal embryonic palatal mesenchymal (EPM) cell growth is crucial for shelf growth. Smad signaling is involved in many biological processes. However, it is not much clear if atRA could affect Smad signaling during EPM cells growth. In this study, the timed pregnant mice with maternal administration of 100 mg/kg body weight of RA by gastric intubation were cervical dislocation executed to evaluate growth changes of palatal shelves by hematoxylin and eosin (H&E) staining. At the same time, a primary mouse EPM (MEPM) cell culture model was also established. MEPM cells were treated with atRA (0.1, 0.5, 1, 5 and 10 μM) for 24, 48 and 72 h. The results indicated that the sizes of the shelves were smaller than those in control. AtRA inhibited MEPM cell growth with both increasing concentration and increasing incubation time, especially at 72 h in vitro. Moreover, atRA significantly increased the mRNA and protein expression levels of Smad7 (P < .05), but the mRNA and protein expression levels of PCNA were reduced (P < .05). We also found atRA inhibited phosphorylation of Smad2 compared with untreated group (P < .05). However, the protein and mRNA levels of Smad2 did not change both in atRA-treated and untreated group (P > .05). We demonstrated that RA induced inhibition of MEPM cell growth that could cause cleft palate partly by down-regulation of Smad pathway.
Collapse
Affiliation(s)
- Huanhuan Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Xiaozhuan Liu
- College of Public Health, Zhengzhou University, Zhengzhou, People's Republic of China.,Medical College, Henan University of Science & Technology, Luoyang, People's Republic of China
| | - Zhan Gao
- The Fifth Affiliated Hospital, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Zhitao Li
- Medical College, Henan University of Science & Technology, Luoyang, People's Republic of China
| | - Zengli Yu
- College of Public Health, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Jun Yin
- College of Public Health, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Yuchang Tao
- College of Public Health, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Lingling Cui
- College of Public Health, Zhengzhou University, Zhengzhou, People's Republic of China
| |
Collapse
|
21
|
Comptour A, Rouzaire M, Belville C, Bonnin N, Daniel E, Chiambaretta F, Blanchon L, Sapin V. Lysyl oxidase-like 4 involvement in retinoic acid epithelial wound healing. Sci Rep 2016; 6:32688. [PMID: 27597564 PMCID: PMC5011693 DOI: 10.1038/srep32688] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 08/11/2016] [Indexed: 01/09/2023] Open
Abstract
Vitamin A and its active forms (retinoic acids/RAs) are known to have pro-healing properties, but their mechanisms of action are still poorly understood. This work aimed to identify the cellular and molecular processes by which atRA (all-trans RA) improves wound healing, using an in vivo model of mouse corneal alkali burns and an in vitro cellular human corneal epithelial injury model. Regulation by atRA has been studied on most of the cellular events that occur in wound healing. We investigated the direct influence of atRA on a specific target gene known to be involved in the extracellular matrix (ECM) dynamics, one of the pathways contributing to epithelial repair. Our results demonstrate that atRA promotes corneal epithelial wound healing by acting preferentially on migration. The induction of lysyl oxidase-like 4 (LOXL4) expression by atRA in the corneal epithelium environment was established as essential in the mechanism of atRA-dependent wound healing. Our study describes for the first time a direct link between a retinoic-induced gene and protein, LOXL4, and its general clinical pro-healing properties in ECM dynamics.
Collapse
Affiliation(s)
- Aurélie Comptour
- Clermont Université, Université d’Auvergne, EA7281 – Retinoids, Reproduction Developmental Diseases, School of Medicine, F-63000 Clermont-Ferrand, France
| | - Marion Rouzaire
- Clermont Université, Université d’Auvergne, EA7281 – Retinoids, Reproduction Developmental Diseases, School of Medicine, F-63000 Clermont-Ferrand, France
| | - Corinne Belville
- Clermont Université, Université d’Auvergne, EA7281 – Retinoids, Reproduction Developmental Diseases, School of Medicine, F-63000 Clermont-Ferrand, France
- Clermont Université, Université d’Auvergne, GReD, F-63000 Clermont-Ferrand, France
| | - Nicolas Bonnin
- Clermont Université, Université d’Auvergne, EA7281 – Retinoids, Reproduction Developmental Diseases, School of Medicine, F-63000 Clermont-Ferrand, France
- CHU Clermont-Ferrand, Ophthalmology Department, F-63000 Clermont-Ferrand, France
| | - Estelle Daniel
- Clermont Université, Université d’Auvergne, EA7281 – Retinoids, Reproduction Developmental Diseases, School of Medicine, F-63000 Clermont-Ferrand, France
- CHU Clermont-Ferrand, Ophthalmology Department, F-63000 Clermont-Ferrand, France
| | - Frédéric Chiambaretta
- Clermont Université, Université d’Auvergne, EA7281 – Retinoids, Reproduction Developmental Diseases, School of Medicine, F-63000 Clermont-Ferrand, France
- CHU Clermont-Ferrand, Ophthalmology Department, F-63000 Clermont-Ferrand, France
| | - Loïc Blanchon
- Clermont Université, Université d’Auvergne, EA7281 – Retinoids, Reproduction Developmental Diseases, School of Medicine, F-63000 Clermont-Ferrand, France
| | - Vincent Sapin
- Clermont Université, Université d’Auvergne, EA7281 – Retinoids, Reproduction Developmental Diseases, School of Medicine, F-63000 Clermont-Ferrand, France
| |
Collapse
|
22
|
Sanchez AM, Shortrede JE, Vargas-Roig LM, Flamini MI. Retinoic acid induces nuclear FAK translocation and reduces breast cancer cell adhesion through Moesin, FAK, and Paxillin. Mol Cell Endocrinol 2016; 430:1-11. [PMID: 27130522 DOI: 10.1016/j.mce.2016.04.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 04/25/2016] [Accepted: 04/25/2016] [Indexed: 01/08/2023]
Abstract
Breast cancer is the most common malignancy in women, with metastases being the cause of death in 98%. In previous works we have demonstrated that retinoic acid (RA), the main retinoic acid receptor (RAR) ligand, is involved in the metastatic process by inhibiting migration through a reduced expression of the specific migration-related proteins Moesin, c-Src, and FAK. At present, our hypothesis is that RA also acts for short periods in a non-genomic action to cooperate with motility reduction and morphology of breast cancer cells. Here we identify that the administration of 10(-6) M RA (10-20 min) induces the activation of the migration-related proteins Moesin, FAK, and Paxillin in T-47D breast cancer cells. The phosphorylation exerted by the selective agonists for RARα and RARβ, on Moesin, FAK, and Paxillin was comparable to the activation exerted by RA. The RARγ agonist only led to a weak activation, suggesting the involvement of RARα and RARβ in this pathway. We then treated the cells with different inhibitors that are involved in cell signaling to regulate the mechanisms of cell motility. RA failed to activate Moesin, FAK, and Paxillin in cells treated with Src inhibitor (PP2) and PI3K inhibitor (WM), suggesting the participation of Src-PI3K in this pathway. Treatment with 10(-6) M RA for 20 min significantly decreased cell adhesion. However, when cells were treated with 10(-6) M RA and FAK inhibitor, the RA did not significantly inhibit adhesion, suggesting a role of FAK in the adhesion inhibited by RA. By immunofluorescence and immunoblotting analysis we demonstrated that RA induced nuclear FAK translocation leading to a reduced cellular adhesion. These findings provide new information on the actions of RA for short periods. RA participates in cell adhesion and subsequent migration, modulating the relocation and activation of proteins involved in cell migration.
Collapse
Affiliation(s)
- Angel Matías Sanchez
- Institute of Medicine and Experimental Biology of Cuyo (IMBECU), National Research Council of Argentina, Mendoza, Argentina
| | - Jorge Eduardo Shortrede
- Institute of Medicine and Experimental Biology of Cuyo (IMBECU), National Research Council of Argentina, Mendoza, Argentina
| | - Laura María Vargas-Roig
- Institute of Medicine and Experimental Biology of Cuyo (IMBECU), National Research Council of Argentina, Mendoza, Argentina; School of Medical Sciences, National University of Cuyo, Mendoza, Argentina
| | - Marina Inés Flamini
- Institute of Medicine and Experimental Biology of Cuyo (IMBECU), National Research Council of Argentina, Mendoza, Argentina.
| |
Collapse
|
23
|
Tran-Lundmark K, Tannenberg P, Rauch BH, Ekstrand J, Tran PK, Hedin U, Kinsella MG. Perlecan Heparan Sulfate Is Required for the Inhibition of Smooth Muscle Cell Proliferation by All-trans-Retinoic Acid. J Cell Physiol 2015; 230:482-7. [PMID: 25078760 DOI: 10.1002/jcp.24731] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 07/25/2014] [Indexed: 12/13/2022]
Abstract
Smooth muscle cell (SMC) proliferation is a key process in stabilization of atherosclerotic plaques, and during restenosis after interventions. A clearer understanding of SMC growth regulation is therefore needed to design specific anti-proliferative therapies. Retinoic acid has been shown to inhibit proliferation of SMCs both in vitro and in vivo and to affect the expression of extracellular matrix molecules. To explore the mechanisms behind the growth inhibitory activity of retinoic acid, we hypothesized that retinoids may induce the expression of perlecan, a large heparan sulfate proteoglycan with anti-proliferative properties. Perlecan expression and accumulation was induced in murine SMC cultures by all-trans-retinoic acid (AtRA). Moreover, the growth inhibitory effect of AtRA on wild-type cells was greatly diminished in SMCs from transgenic mice expressing heparan sulfate-deficient perlecan, indicating that the inhibition is perlecan heparan sulfate-dependent. In addition, AtRA influenced activation and phosphorylation of PTEN and Akt differently in wild-type and mutant SMCs, consistent with previous studies of perlecan-dependent SMC growth inhibition. We demonstrate that AtRA regulates perlecan expression in SMCs and that the inhibition of SMC proliferation by AtRA is, at least in part, secondary to an increased expression of perlecan and dependent upon its heparan sulfate-chains.
Collapse
Affiliation(s)
- Karin Tran-Lundmark
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | - Philip Tannenberg
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | - Bernhard H Rauch
- Institute of Pharmacology, Center of Drug Absorption and Transport, Ernst-Moritz-Arndt University, Greifswald, Germany
| | - Johan Ekstrand
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | - Phan-Kiet Tran
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | - Ulf Hedin
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | | |
Collapse
|