1
|
Nair SR, Nihad M, Shenoy P S, Gupta S, Bose B. Unveiling the effects of micro and nano plastics in embryonic development. Toxicol Rep 2025; 14:101954. [PMID: 40104046 PMCID: PMC11914762 DOI: 10.1016/j.toxrep.2025.101954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 02/04/2025] [Accepted: 02/05/2025] [Indexed: 03/20/2025] Open
Abstract
The improper disposal and degradation of plastics causes the formation and spread of micro and nano-sized plastic particles in the ecosystem. The widespread presence of these micro and nanoplastics leads to their accumulation in the biotic and abiotic components of the environment, thereby affecting the cellular and metabolic functions of organisms. Despite being classified as xenobiotic agents, information about their sources and exposure related to reproductive health is limited. Micro and nano plastic exposure during early developmental stages can cause abnormal embryonic development. It can trigger neurotoxicity and inflammatory responses as well in the developing embryo. In embryonic development, a comprehensive study of their role in pluripotency, gastrulation, and multi-differentiation potential is scarce. Due to ethical concerns associated with the direct use of human embryos, pluripotent cells and its 3D in vitro models (with cell lines) are an alternative source for effective research. Thus, the 3D Embryoid body (EB) model provides a platform for conducting embryotoxicity and multi-differentiation potential research. Pluripotent stem cells such as embryonic and induced pluripotent stem cells derived embryoid bodies (EBs) serve as a robust 3D in vitro model that mimics characteristics similar to that of human embryos. Thus, the 3D EB model provides a platform for conducting embryotoxicity and multi-differentiation potential research. Accordingly, this review discusses the significance of 3D in vitro models in conducting effective embryotoxicity research. Further, we also evaluated the possible sources/routes of microplastic generation and analyzed their surface chemistry and cytotoxic effects reported till date.
Collapse
Affiliation(s)
- Sanjay R Nair
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, Karnataka 575018, India
| | - Muhammad Nihad
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, Karnataka 575018, India
| | - Sudheer Shenoy P
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, Karnataka 575018, India
| | - Sebanti Gupta
- Division of Data Analytics, Bioinformatics and Structural Biology, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, Karnataka 575018, India
| | - Bipasha Bose
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, Karnataka 575018, India
| |
Collapse
|
2
|
Estevan C, Báez-Barroso GA, Vilanova E, Sogorb MA. Risk Assessment of Impairment of Fertility Due to Exposure to Tobacco Constituents Classified as Reprotoxicants. TOXICS 2025; 13:234. [PMID: 40278550 PMCID: PMC12031035 DOI: 10.3390/toxics13040234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/18/2025] [Accepted: 03/21/2025] [Indexed: 04/26/2025]
Abstract
BACKGROUND Epidemiological studies demonstrate that exposure to tobacco causes infertility. A reference cigarette contains up to 47 chemicals above the quantification level, of which acrylamide, benzopyrene, cadmium, ethylene oxide and lead are classified as known (category 1A), presumed (category 1B) or suspected (category 2) human reproductive toxicants due to their effects on fertility and sexual function. METHODS We collected toxicological information on these substances to establish their respective systemic-derived no-effect levels (internal doses predicted not to alter fertility). We also estimated the systemic exposure to these four substances by smokers consuming 20 cigarettes per day. RESULTS The risks (ratios between exposure and safe dose) were 0.23, 0.06, 0.18, 0.01 and 0.00002 for acrylamide, benzopyrene, cadmium, ethylene oxide and lead, respectively. The combined risk was 0.48. CONCLUSIONS It was concluded that the changes in fertility resulting from the consumption of the substances in tobacco classified as toxic to fertility could not be explained by mechanisms with a toxicity threshold attributable to these five substances. No safe dose could be derived for tobacco use in persons seeking pregnancy; this applied to both active and passive smokers.
Collapse
Affiliation(s)
- Carmen Estevan
- Departamento de Biología Aplicada, Universidad Miguel Hernández de Elche, Avenida de la Universidad s/n, 03202 Elche, Spain;
| | - Gabriela A. Báez-Barroso
- Instituto de Bioingeniería, Universidad Miguel Hernández de Elche, Avenida de la Universidad s/n, 03202 Elche, Spain; (G.A.B.-B.)
| | - Eugenio Vilanova
- Instituto de Bioingeniería, Universidad Miguel Hernández de Elche, Avenida de la Universidad s/n, 03202 Elche, Spain; (G.A.B.-B.)
| | - Miguel A. Sogorb
- Instituto de Bioingeniería, Universidad Miguel Hernández de Elche, Avenida de la Universidad s/n, 03202 Elche, Spain; (G.A.B.-B.)
| |
Collapse
|
3
|
Campitelli LMM, Lopes KP, de Lima IL, Ferreira FB, Isidoro ND, Ferreira GM, Ponce MCF, Ferreira MCDO, Mendes LS, Marcelino PHR, Neves MM, Klein SG, Fonseca BB, Polveiro RC, da Silva MV. Methodological and Ethical Considerations in the Use of Chordate Embryos in Biomedical Research. Int J Mol Sci 2025; 26:2624. [PMID: 40141265 PMCID: PMC11941781 DOI: 10.3390/ijms26062624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/06/2025] [Accepted: 03/09/2025] [Indexed: 03/28/2025] Open
Abstract
Animal embryos are vital tools in scientific research, providing insights into biological processes and disease mechanisms. This paper explores their historical and contemporary significance, highlighting the shift towards the refinement of in vitro systems as alternatives to animal experimentation. We have conducted a data review of the relevant literature on the use of embryos in research and synthesized the data to highlight the importance of this model for scientific progress and the ethical considerations and regulations surrounding embryo research, emphasizing the importance of minimizing animal suffering while promoting scientific progress through the principles of replacement, reduction, and refinement. Embryos from a wide range of species, including mammals, fish, birds, amphibians, and reptiles, play a crucial experimental role in enabling us to understand factors such as substance toxicity, embryonic development, metabolic pathways, physiological processes, etc., that contribute to the advancement of the biological sciences. To apply this model effectively, it is essential to match the research objectives with the most appropriate methodology, ensuring that the chosen approach is appropriate for the scope of the study.
Collapse
Affiliation(s)
- Laura Maria Mendes Campitelli
- Biotechnology in Experimental Models Laboratory—LABME, Federal University of Uberlândia, Uberlândia 38405-330, MG, Brazil; (L.M.M.C.); (M.M.N.)
| | - Karina Pereira Lopes
- Biotechnology in Experimental Models Laboratory—LABME, Federal University of Uberlândia, Uberlândia 38405-330, MG, Brazil; (L.M.M.C.); (M.M.N.)
| | - Isabela Lemos de Lima
- Biotechnology in Experimental Models Laboratory—LABME, Federal University of Uberlândia, Uberlândia 38405-330, MG, Brazil; (L.M.M.C.); (M.M.N.)
| | - Flávia Batista Ferreira
- Biotechnology in Experimental Models Laboratory—LABME, Federal University of Uberlândia, Uberlândia 38405-330, MG, Brazil; (L.M.M.C.); (M.M.N.)
| | - Nayara Delfim Isidoro
- Faculty of Veterinary Medicine, Federal University of Uberlândia, Uberlândia 38410-337, MG, Brazil
| | - Giovana Magalhães Ferreira
- Biotechnology in Experimental Models Laboratory—LABME, Federal University of Uberlândia, Uberlândia 38405-330, MG, Brazil; (L.M.M.C.); (M.M.N.)
| | - Maria Clara Fioravanti Ponce
- Biotechnology in Experimental Models Laboratory—LABME, Federal University of Uberlândia, Uberlândia 38405-330, MG, Brazil; (L.M.M.C.); (M.M.N.)
| | | | - Ludmilla Silva Mendes
- Biotechnology in Experimental Models Laboratory—LABME, Federal University of Uberlândia, Uberlândia 38405-330, MG, Brazil; (L.M.M.C.); (M.M.N.)
| | - Pedro Henrique Ribeiro Marcelino
- Biotechnology in Experimental Models Laboratory—LABME, Federal University of Uberlândia, Uberlândia 38405-330, MG, Brazil; (L.M.M.C.); (M.M.N.)
| | - Matheus Morais Neves
- Biotechnology in Experimental Models Laboratory—LABME, Federal University of Uberlândia, Uberlândia 38405-330, MG, Brazil; (L.M.M.C.); (M.M.N.)
| | - Sandra Gabriela Klein
- Biotechnology in Experimental Models Laboratory—LABME, Federal University of Uberlândia, Uberlândia 38405-330, MG, Brazil; (L.M.M.C.); (M.M.N.)
| | | | - Richard Costa Polveiro
- Biotechnology in Experimental Models Laboratory—LABME, Federal University of Uberlândia, Uberlândia 38405-330, MG, Brazil; (L.M.M.C.); (M.M.N.)
| | - Murilo Vieira da Silva
- Biotechnology in Experimental Models Laboratory—LABME, Federal University of Uberlândia, Uberlândia 38405-330, MG, Brazil; (L.M.M.C.); (M.M.N.)
- Rodent Animal Facilities Complex, Federal University of Uberlândia, Uberlândia 38400-902, MG, Brazil
| |
Collapse
|
4
|
Jochum K, Miccoli A, Sommersdorf C, Poetz O, Braeuning A, Tralau T, Marx-Stoelting P. Comparative case study on NAMs: towards enhancing specific target organ toxicity analysis. Arch Toxicol 2024; 98:3641-3658. [PMID: 39207506 PMCID: PMC11489238 DOI: 10.1007/s00204-024-03839-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
Traditional risk assessment methodologies in toxicology have relied upon animal testing, despite concerns regarding interspecies consistency, reproducibility, costs, and ethics. New Approach Methodologies (NAMs), including cell culture and multi-level omics analyses, hold promise by providing mechanistic information rather than assessing organ pathology. However, NAMs face limitations, like lacking a whole organism and restricted toxicokinetic interactions. This is an inherent challenge when it comes to the use of omics data from in vitro studies for the prediction of organ toxicity in vivo. One solution in this context are comparative in vitro-in vivo studies as they allow for a more detailed assessment of the transferability of the respective NAM data. Hence, hepatotoxic and nephrotoxic pesticide active substances were tested in human cell lines and the results subsequently related to the biology underlying established effects in vivo. To this end, substances were tested in HepaRG and RPTEC/tERT1 cells at non-cytotoxic concentrations and analyzed for effects on the transcriptome and parts of the proteome using quantitative real-time PCR arrays and multiplexed microsphere-based sandwich immunoassays, respectively. Transcriptomics data were analyzed using three bioinformatics tools. Where possible, in vitro endpoints were connected to in vivo observations. Targeted protein analysis revealed various affected pathways, with generally fewer effects present in RPTEC/tERT1. The strongest transcriptional impact was observed for Chlorotoluron in HepaRG cells (increased CYP1A1 and CYP1A2 expression). A comprehensive comparison of early cellular responses with data from in vivo studies revealed that transcriptomics outperformed targeted protein analysis, correctly predicting up to 50% of in vivo effects.
Collapse
Affiliation(s)
- Kristina Jochum
- Department of Pesticides Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Andrea Miccoli
- Department of Pesticides Safety, German Federal Institute for Risk Assessment, Berlin, Germany
- Institute for Marine Biological Resources and Biotechnology (IRBIM), National Research Council, Ancona, Italy
- Department of Food Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | | | - Oliver Poetz
- Signatope GmbH, Tübingen, Germany
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Albert Braeuning
- Department of Food Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Tewes Tralau
- Department of Pesticides Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Philip Marx-Stoelting
- Department of Pesticides Safety, German Federal Institute for Risk Assessment, Berlin, Germany.
| |
Collapse
|
5
|
Hunt PR, Welch B, Camacho J, Salazar JK, Fay ML, Hamm J, Ceger P, Allen D, Fitzpatrick SC, Yourick J, Sprando RL. Strengths and limitations of the worm development and activity test (wDAT) as a chemical screening tool for developmental hazards. Toxicol Appl Pharmacol 2024; 492:117108. [PMID: 39322068 DOI: 10.1016/j.taap.2024.117108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/03/2024] [Accepted: 09/14/2024] [Indexed: 09/27/2024]
Abstract
The worm Development and Activity Test (wDAT) measures C. elegans developmental milestone acquisition timing and stage-specific spontaneous locomotor activity (SLA). Previously, the wDAT identified developmental delays and SLA level changes in C. elegans with mammalian developmental toxicants arsenic, lead, and mercury. 5-fluorouracil (5FU), cyclophosphamide (CP), hydroxyurea (HU), and ribavirin (RV) are teratogens that also induce growth retardation in developing mammals. In at least some studies on each of these chemicals, fetal weight reductions were seen at mammalian exposures below those that had teratogenic effects, suggesting that screening for developmental delay in a small alternative whole-animal model could act as a general toxicity endpoint to identify chemicals for further testing for more specific adverse developmental outcomes. Consistent with mammalian developmental effects, 5FU, HU, and RV were associated with developmental delays with the wDAT. Exposures associated with developmental delay induced hypoactivity with 5FU and HU, but slight hyperactivity with RV. CP is a prodrug that requires bioactivation by cytochrome P450s for both therapeutic and toxic effects. CP tests as a false negative in several in vitro assays, and it was also a false negative with the wDAT. These results suggest that the wDAT has the potential to identify some developmental toxicants, and that a positive wDAT result with an unknown may warrant further testing in mammals. Further assessment with larger panels of positive and negative controls will help qualify the applicability and utility of this C. elegans wDAT assay within toxicity test batteries or weight of evidence approaches for developmental toxicity assessment.
Collapse
Affiliation(s)
- Piper Reid Hunt
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, USA.
| | - Bonnie Welch
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, USA
| | - Jessica Camacho
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, USA
| | - Joelle K Salazar
- Division of Food Processing Science and Technology, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Bedford Park, IL, USA
| | - Megan L Fay
- Division of Food Processing Science and Technology, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Bedford Park, IL, USA
| | - Jon Hamm
- Inotiv, P.O. Box 13501, Research Triangle Park, NC 27709, USA
| | - Patricia Ceger
- Inotiv, P.O. Box 13501, Research Triangle Park, NC 27709, USA
| | - Dave Allen
- Inotiv, P.O. Box 13501, Research Triangle Park, NC 27709, USA
| | - Suzanne C Fitzpatrick
- Office of the Center Director, Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, College Park MD, USA
| | - Jeffrey Yourick
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, USA
| | - Robert L Sprando
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, USA
| |
Collapse
|
6
|
Catlin NR, Cappon GD, Davenport SD, Stethem CM, Nowland WS, Campion SN, Bowman CJ. New approach methodologies to confirm developmental toxicity of pharmaceuticals based on weight of evidence. Reprod Toxicol 2024; 129:108686. [PMID: 39128486 DOI: 10.1016/j.reprotox.2024.108686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
The aim of embryo-fetal developmental toxicity assessments for pharmaceuticals is to inform potential risk of adverse pregnancy outcome, which has traditionally relied on studies in pregnant animals. Recent updates to international safety guidelines (ICH S5R3) have incorporated information on how to use weight of evidence and alternative assays to reduce animal use while still informing risk of fetal harm. Uptake of these alternative approaches has been slow due to limitations in understanding how alternative assays translate to in vivo effects and then relevance to human exposure. To understand the predictivity of new approach methodologies for developmental toxicity (DevTox NAMs), we used two pharmaceutical examples (glasdegib and lorlatinib) to illustrate the value of DevTox NAMs to complement weight of evidence (WoE) assessments while considering the relationship of concentration-effect levels in NAMs to in vivo studies. The in vitro results generated in a battery of assays (mEST, rWEC, zebrafish, and human based stem cells) confirmed the WoE based on literature and further confirmed by preliminary embryo-fetal development data. The data generated for these two compounds supports integrating DevTox NAMs into the developmental toxicity assessment for advanced cancer indications.
Collapse
Affiliation(s)
- Natasha R Catlin
- Drug Safety Research and Development, Pfizer Research & Development, Groton, CT, USA.
| | - Gregg D Cappon
- Drug Safety Research and Development, Pfizer Research & Development, Groton, CT, USA; Current: ToxStrategies, Katy, TX, USA
| | - Scott D Davenport
- Drug Safety Research and Development, Pfizer Research & Development, Groton, CT, USA
| | - Christine M Stethem
- Drug Safety Research and Development, Pfizer Research & Development, Groton, CT, USA
| | - William S Nowland
- Drug Safety Research and Development, Pfizer Research & Development, Groton, CT, USA
| | - Sarah N Campion
- Drug Safety Research and Development, Pfizer Research & Development, Groton, CT, USA
| | - Christopher J Bowman
- Drug Safety Research and Development, Pfizer Research & Development, Groton, CT, USA
| |
Collapse
|
7
|
Marovic D, Bota M, Tarle F, Par M, Haugen HJ, Zheng K, Pavić D, Miloš M, Čižmek L, Babić S, Čož-Rakovac R, Trebše P, Boccaccini AR. The influence of copper-doped mesoporous bioactive nanospheres on the temperature rise during polymerization, polymer cross-linking density, monomer release and embryotoxicity of dental composites. Dent Mater 2024; 40:1078-1087. [PMID: 38797613 DOI: 10.1016/j.dental.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 03/05/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024]
Abstract
OBJECTIVES Composites with copper-doped mesoporous bioactive nanospheres (Cu-MBGN) were developed to prevent secondary caries by imparting antimicrobial and ion-releasing/remineralizing properties. METHODS Seven experimental composites containing 1, 5 or 10 wt% Cu-MBGN, the corresponding inert controls (silica) and bioactive controls (bioactive glass 45S5) were prepared. The temperature rise during light curing, cross-linking density by ethanol softening test, monomer elution and their potential adverse effects on the early development of zebrafish Danio rerio was investigated. RESULTS Materials combining Cu-MBGN and silica showed the highest resistance to ethanol softening, as did the bioactive controls. Cu-MBGN composites showed significant temperature rise and reached maximum temperature in the shortest time. Bisphenol A was not detected, while bis-GMA was found only in the control materials and TEGDMA in the eluates of all materials. There was no increase in zebrafish mortality and abnormality rates during exposure to the eluates of any of the materials. CONCLUSIONS The composite with 5 wt% Cu-MBGN combined with nanosilica fillers showed the lowest ethanol softening, indicating the polymer's highest durability and cross-linking density. Despite the TEGDMA released from all tested materials, no embryotoxic effect was observed.
Collapse
Affiliation(s)
- Danijela Marovic
- University of Zagreb School of Dental Medicine, Department of Endodontics and Restorative Dental Medicine, Gunduliceva 5, 10000 Zagreb, Croatia.
| | - Maria Bota
- student, University of Zagreb School of Dental Medicine, Gunduliceva 5, 10000 Zagreb, Croatia
| | - Frano Tarle
- student, University of Zagreb School of Dental Medicine, Gunduliceva 5, 10000 Zagreb, Croatia
| | - Matej Par
- University of Zagreb School of Dental Medicine, Department of Endodontics and Restorative Dental Medicine, Gunduliceva 5, 10000 Zagreb, Croatia
| | - Håvard J Haugen
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Geitmyrsveien 71, 0455 Oslo, Norway
| | - Kai Zheng
- Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, 136 Hanzhong Rd., 210029 Nanjing, China; Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstr. 6, 91058 Erlangen, Germany
| | | | | | - Lara Čižmek
- Ruđer Bošković Institute, Laboratory for Biotechnology in Aquaculture, Division of Materials Chemistry, Bijenička 54, Zagreb, Croatia
| | - Sanja Babić
- Ruđer Bošković Institute, Laboratory for Biotechnology in Aquaculture, Division of Materials Chemistry, Bijenička 54, Zagreb, Croatia
| | - Rozelindra Čož-Rakovac
- Ruđer Bošković Institute, Laboratory for Biotechnology in Aquaculture, Division of Materials Chemistry, Bijenička 54, Zagreb, Croatia
| | - Polonca Trebše
- Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, 1000 Ljubljana, Slovenia
| | - Aldo R Boccaccini
- Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstr. 6, 91058 Erlangen, Germany
| |
Collapse
|
8
|
Burbank M, Gautier F, Hewitt N, Detroyer A, Guillet-Revol L, Carron L, Wildemann T, Bringel T, Riu A, Noel-Voisin A, De Croze N, Léonard M, Ouédraogo G. Advancing the use of new approach methodologies for assessing teratogenicity: Building a tiered approach. Reprod Toxicol 2023; 120:108454. [PMID: 37543254 DOI: 10.1016/j.reprotox.2023.108454] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/11/2023] [Accepted: 08/01/2023] [Indexed: 08/07/2023]
Abstract
Many New Approach Methodologies (NAMs) have been developed for the safety assessment of new ingredients. Research into reproductive toxicity and teratogenicity is a particularly high priority, especially given their mechanistic complexity. Forty-six non-teratogenic and 39 teratogenic chemicals were screened for teratogenic potential using the in silico DART model from the OECD QSAR Toolbox; the devTox quickPredict™ (devTox assay) test and the Zebrafish Embryotoxicity Test (ZET). The sensitivity and specificity were 94.7% and 84.1%, respectively, for the DART tree (83 chemicals), 86.1% and 35.6% for the devTox (81 chemicals) and 77.8% and 76.7% for the ZET (57 chemicals). Fifty-three chemicals were tested in all three assays and when results were combined and based on a "2 out of 3 rule", the sensitivity and specificity were 96.0% and 71.4%, respectively. The specificity of the devTox assay for a sub-set of 43 chemicals was increased from 26.1% to 82.6% by incorporating human plasma concentrations into the assay interpretation. When all 85 chemicals were assessed in a decision tree approach, there was an excellent predictivity and assay robustness of 90%. In conclusion, all three models exhibited a good sensitivity and specificity, especially when outcomes from all three were combined or used in "2 out of 3" or a tiered decision tree approach. The latter is an interesting predictive approach for evaluating the teratogenic potential of new chemicals. Future investigations will extend the number of chemicals tested, as well as explore ways to refine the results and obtain a robust Integrated Testing Strategy to evaluate teratogenic potential.
Collapse
Affiliation(s)
- M Burbank
- L'Oréal Research & Innovation, France.
| | - F Gautier
- L'Oréal Research & Innovation, France
| | | | | | | | - L Carron
- L'Oréal Research & Innovation, France
| | | | - T Bringel
- L'Oréal Research & Innovation, France
| | - A Riu
- L'Oréal Research & Innovation, France
| | | | | | - M Léonard
- L'Oréal Research & Innovation, France
| | | |
Collapse
|
9
|
Molecular neural crest cell markers enable discrimination of organophosphates in the murine cardiac embryonic stem cell test. Toxicol Rep 2021; 8:1513-1520. [PMID: 34401361 PMCID: PMC8355823 DOI: 10.1016/j.toxrep.2021.07.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 07/20/2021] [Accepted: 07/30/2021] [Indexed: 12/02/2022] Open
Abstract
Organophosphates induced distinctive effects on neural crest cells within the ESTc. Neural crest gene transcripts were of added value to the original ESTc read-out. Mechanistic information adds value to the applicability of the ESTc.
The cardiac embryonic stem cell test (ESTc) originally used the differentiation of beating cardiomyocytes for embryotoxicity screenings of compounds. However, the ESTc consists of a heterogeneous cell population, including neural crest (NC) cells, which are important contributors to heart development in vivo. Molecular markers for NC cells were investigated to explore if this approach improved discrimination between structurally related chemicals, using the three organophosphates (OP): chlorpyrifos (CPF), malathion (MLT), and triphenyl phosphate (TPP). To decrease the test duration and to improve the objective quantification of the assay read-out, gene transcript biomarkers were measured on study day 4 instead of the traditional cardiomyocyte beating assessment at day 10. Gene expression profiling and immunocytochemistry were performed using markers for pluripotency, proliferation and cardiomyocyte and NC differentiation. Cell proliferation was also assessed by measurements of embryoid body (EB) size and total protein quantification (day 7). Exposure to the OPs resulted in similar patterns of inhibition of beating cardiomyocyte differentiation and of myosin protein expression on day 10. However, these three chemically related compounds induced distinctive effects on NC cell differentiation, indicated by changes in expression levels of the NC precursor (Msx2), NC marker (Ap2α), and epithelial to mesenchymal transition (EMT; Snai2) gene transcripts. This study shows that investigating NC markers can provide added value for ESTc outcome profiling and may enhance the applicability of this assay for the screening of structurally related test chemicals.
Collapse
|
10
|
Zang R, Xin X, Zhang F, Li D, Yang ST. An engineered mouse embryonic stem cell model with survivin as a molecular marker and EGFP as the reporter for high throughput screening of embryotoxic chemicals in vitro. Biotechnol Bioeng 2019; 116:1656-1668. [PMID: 30934112 DOI: 10.1002/bit.26977] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 03/21/2019] [Accepted: 03/28/2019] [Indexed: 02/06/2023]
Abstract
Embryonic stem cell test (EST) is the only generally accepted in vitro method for assessing embryotoxicity without animal sacrifice. However, the implementation and application of EST for regulatory embryotoxicity screening are impeded by its technical complexity, long testing period, and limited endpoint data. In this study, a high throughput embryotoxicity screening based on mouse embryonic stem cells (mESCs) expressing enhanced green fluorescent protein (EGFP) driven by a human survivin promoter and a human cytomegalovirus promoter, respectively, was developed. These EGFP expressing mESCs were cultured in three-dimensional (3D) fibrous scaffolds in microbioreactors on a multiwell plate with EGFP fluorescence signals as cell responses to chemicals monitored noninvasively in a high throughput manner. Nine chemicals with known developmental toxicity were used to validate the survivin-based embryotoxicity assay, which showed that strongly embryotoxic compounds such as 5-fluorouracil, retinoic acid, and methotrexate downregulated survivin expression by more than 50% in 3 days, while weakly embryotoxic compounds such as boric acid, methoxyacetic acid, and tetracyclin showed modest downregulation effect and nonembryotoxic saccharin, penicillin G, and acrylamide had negligible downregulation effect on survivin expression, confirming that survivin can be used as a molecular endpoint for high throughput screening of embryotoxicants. The potential developmental toxicity of three Chinese herbal medicines were also evaluated using this assay, demonstrating its application in in vitro developmental toxicity test for drug safety assessment.
Collapse
Affiliation(s)
- Ru Zang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, Ohio
| | - Xin Xin
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, Ohio
| | - Fengli Zhang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, Ohio
| | - Ding Li
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, Ohio
| | - Shang-Tian Yang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, Ohio
| |
Collapse
|
11
|
Lu SY, Lin P, Tsai WR, Weng CY. The Pragmatic Strategy to Detect Endocrine-Disrupting Activity of Xenobiotics in Food. Med Chem 2019. [DOI: 10.5772/intechopen.81030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
12
|
Dimopoulou M, Verhoef A, Gomes CA, van Dongen CW, Rietjens IM, Piersma AH, van Ravenzwaay B. A comparison of the embryonic stem cell test and whole embryo culture assay combined with the BeWo placental passage model for predicting the embryotoxicity of azoles. Toxicol Lett 2018; 286:10-21. [DOI: 10.1016/j.toxlet.2018.01.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/08/2017] [Accepted: 01/09/2018] [Indexed: 01/03/2023]
|
13
|
Faria M, Fuertes I, Prats E, Abad JL, Padrós F, Gomez-Canela C, Casas J, Estevez J, Vilanova E, Piña B, Raldúa D. Analysis of the neurotoxic effects of neuropathic organophosphorus compounds in adult zebrafish. Sci Rep 2018; 8:4844. [PMID: 29555973 PMCID: PMC5859099 DOI: 10.1038/s41598-018-22977-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 03/05/2018] [Indexed: 12/13/2022] Open
Abstract
Inhibition and aging of neuropathy target esterase (NTE) by exposure to neuropathic organophosphorus compounds (OPs) can result in OP-induced delayed neuropathy (OPIDN). In the present study we aimed to build a model of OPIDN in adult zebrafish. First, inhibition and aging of zebrafish NTE activity were characterized in the brain by using the prototypic neuropathic compounds cresyl saligenin phosphate (CBDP) and diisopropylphosphorofluoridate (DFP). Our results show that, as in other animal models, zebrafish NTE is inhibited and aged by both neuropathic OPs. Then, a neuropathic concentration inhibiting NTE activity by at least 70% for at least 24 h was selected for each compound to analyze changes in phosphatidylcholines (PCs), lysophosphatidylcholines (LPCs) and glycerolphosphocholine (GPC) profiles. In spite to the strong inhibition of the NTE activity found for both compounds, only a mild increase in the LPCs level was found after 48 h of the exposure to DFP, and no effect were observed by CBDP. Moreover, histopathological evaluation and motor function outcome analyses failed to find any neurological abnormalities in the exposed fish. Thus, our results strongly suggest that zebrafish is not a suitable species for the development of an experimental model of human OPIDN.
Collapse
Affiliation(s)
- Melissa Faria
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18, E-08034, Barcelona, Spain
| | - Inmaculada Fuertes
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18, E-08034, Barcelona, Spain
| | - Eva Prats
- CID-CSIC, Jordi Girona 18, E-08034, Barcelona, Spain
| | - Jose Luis Abad
- Department of Biomedicinal Chemistry, Institute for Advanced Chemistry of Catalonia, (IQAC-CSIC), Jordi Girona 18, E-08034, Barcelona, Spain
| | - Francesc Padrós
- Fish Diseases Diagnostic Service, Facultat de Veterinaria Universitat Autònoma de Barcelona, 08190, Bellaterra (Cerdanyola del Vallès), Spain
| | - Cristian Gomez-Canela
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18, E-08034, Barcelona, Spain
| | - Josefina Casas
- Department of Biomedicinal Chemistry, Institute for Advanced Chemistry of Catalonia, (IQAC-CSIC), Jordi Girona 18, E-08034, Barcelona, Spain
| | - Jorge Estevez
- Institute of Bioengineering, University "Miguel Hernandez" of Elche, Alicante, Spain
| | - Eugenio Vilanova
- Institute of Bioengineering, University "Miguel Hernandez" of Elche, Alicante, Spain
| | - Benjamin Piña
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18, E-08034, Barcelona, Spain
| | - Demetrio Raldúa
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18, E-08034, Barcelona, Spain.
| |
Collapse
|
14
|
Abstract
The genome revolution represents a complete change on our view of biological systems. The quantitative determination of changes in all major molecular components of the living cells, the "omics" approach, opened whole new fields for all health sciences. Genomics, transcriptomics, proteomics, metabolomics, and others, together with appropriate prediction and modeling tools, will mark the future of developmental toxicity assessment both for wildlife and humans. This is especially true for disciplines, like teratology, which rely on studies in model organisms, as studies at lower levels of organization are difficult to implement. Rodents and frogs have been the favorite models for studying human reproductive and developmental disorders for decades. Recently, the study of the development of zebrafish embryos (ZE) is becoming a major alternative tool to adult animal testing. ZE intrinsic characteristics makes this model a unique system to analyze in vivo developmental alterations that only can be studied applying in toto approaches. Moreover, under actual legislations, ZE is considered as a replacement model (and therefore, excluded from animal welfare regulations) during the first 5 days after fertilization. Here we review the most important components of the zebrafish toolbox available for analyzing early stages of embryotoxic events that could eventually lead to teratogenesis.
Collapse
|
15
|
Kugler J, Huhse B, Tralau T, Luch A. Embryonic stem cells and the next generation of developmental toxicity testing. Expert Opin Drug Metab Toxicol 2017; 13:833-841. [PMID: 28675072 DOI: 10.1080/17425255.2017.1351548] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION The advent of stem cell technology has seen the establishment of embryonic stem cells (ESCs) as molecular model systems and screening tools. Although ESCs are nowadays widely used in research, regulatory implementation for developmental toxicity testing is pending. Areas Covered: This review evaluates the performance of current ESC, including human (h)ESC testing systems, trying to elucidate their potential for developmental toxicity testing. It shall discuss defining parameters and mechanisms, their relevance and contemplate what can realistically be expected. Crucially this includes the question of how to ascertain the quality of currently employed cell lines and tests based thereon. Finally, the use of hESCs will raise ethical concerns which should be addressed early on. Expert Opinion: While the suitability of (h)ESCs as tools for research and development goes undisputed, any routine use for developmental toxicity testing currently still seems premature. The reasons for this comprise inherent biological deficiencies as well as cell line quality and system validation. Overcoming these issues will require collaboration of scientists, test developers and regulators. Also, validation needs to be made worthwhile for academia. Finally we have to continuously rethink existing strategies, making room for improved testing and innovative approaches.
Collapse
Affiliation(s)
- Josephine Kugler
- a Department of Chemical & Product Safety , German Federal Institute for Risk Assessment (BfR) , Berlin , Germany
| | - Bettina Huhse
- a Department of Chemical & Product Safety , German Federal Institute for Risk Assessment (BfR) , Berlin , Germany
| | - Tewes Tralau
- a Department of Chemical & Product Safety , German Federal Institute for Risk Assessment (BfR) , Berlin , Germany
| | - Andreas Luch
- a Department of Chemical & Product Safety , German Federal Institute for Risk Assessment (BfR) , Berlin , Germany
| |
Collapse
|
16
|
Pan L, Xu R, Wen J, Guo R. Assessing PAHs pollution in Shandong coastal area (China) by combination of chemical analysis and responses of reproductive toxicity in crab Portunus trituberculatus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:14291-14303. [PMID: 28424957 DOI: 10.1007/s11356-017-8993-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 04/04/2017] [Indexed: 06/07/2023]
Abstract
The concentrations of PAHs in seawater and sediments were measured at three selected sites (S1, S2, and S3) along the coastal area of Shandong (China) in April, May, and June, 2015, which ranged from 29.72 to 123.88 ng/L and 82.62 to 232.63 ng/g, respectively. Meanwhile, the reproductive toxicity responses in crab Portunus trituberculatus were also evaluated to assess the pollution of PAHs during the sampling period. Chemical analysis showed that S3 was the most PAH-contaminated area while S1 was the least, and the biochemical parameters concerned with reproduction were efficiently responded to the three sites, especially in S3 (p < 0.05). Moreover, the principal component analyses (PCA) showed that parameters for DNA alkaline unwinding, protein carbonyl content, and lipid peroxidation levels in two genders, 17β-estradiol in female, testosterone and TESK2 gene expression in male crabs, were closely correlated with the concentrations of PAHs (2 + 3 rings, 4 rings, and 5 + 6 rings), which were considered to be good candidate indicators to assess the environmental pollutions resulting from PAHs in the coastal area of Shandong, China.
Collapse
Affiliation(s)
- Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, People's Republic of China.
- Fisheries College, Ocean University of China, Yushan Road 5, Qingdao, 266003, People's Republic of China.
| | - Ruiyi Xu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, People's Republic of China
- Fisheries College, Ocean University of China, Yushan Road 5, Qingdao, 266003, People's Republic of China
| | - Jianmin Wen
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, People's Republic of China
- Fisheries College, Ocean University of China, Yushan Road 5, Qingdao, 266003, People's Republic of China
| | - Ruiming Guo
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, People's Republic of China
- Fisheries College, Ocean University of China, Yushan Road 5, Qingdao, 266003, People's Republic of China
| |
Collapse
|
17
|
S R, A B, M P, T L. Occurrence and toxicity of musks and UV filters in the marine environment. Food Chem Toxicol 2017; 104:57-68. [DOI: 10.1016/j.fct.2016.11.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 11/10/2016] [Accepted: 11/12/2016] [Indexed: 12/11/2022]
|
18
|
Beekhuijzen M. The era of 3Rs implementation in developmental and reproductive toxicity (DART) testing: Current overview and future perspectives. Reprod Toxicol 2017; 72:86-96. [PMID: 28552675 DOI: 10.1016/j.reprotox.2017.05.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 05/07/2017] [Accepted: 05/19/2017] [Indexed: 11/29/2022]
Abstract
Since adoption of the first globally implemented guidelines for developmental and reproductive toxicity (DART) testing for pharmaceuticals, industrial chemicals and agrochemicals, many years passed without major updates. However in recent years, significant changes in these guidelines have been made or are being implemented. These changes have been guided by the ethical drive to reduce, refine and replace (3R) animal testing, as well as the addition of endocrine disruptor relevant endpoints. Recent applied improvements have focused on reduction and refinement. Ongoing scientific and technical innovations will provide the means for replacement of animal testing in the future and will improve predictivity in humans. The aim of this review is to provide an overview of ongoing global DART endeavors in respect to the 3Rs, with an outlook towards future advances in DART testing aspiring to reduce animal testing to a minimum and the supreme ambition towards animal-free hazard and risk assessment.
Collapse
|
19
|
Dimopoulou M, Verhoef A, Pennings JL, van Ravenzwaay B, Rietjens IM, Piersma AH. Embryotoxic and pharmacologic potency ranking of six azoles in the rat whole embryo culture by morphological and transcriptomic analysis. Toxicol Appl Pharmacol 2017; 322:15-26. [DOI: 10.1016/j.taap.2017.03.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/09/2017] [Accepted: 03/01/2017] [Indexed: 12/25/2022]
|
20
|
Bashir Surfraz M, Fowkes A, Plante JP. A Semi-automated Approach to Create Purposeful Mechanistic Datasets from Heterogeneous Data: Data Mining Towards the in silico Predictions for Oestrogen Receptor Modulation and Teratogenicity. Mol Inform 2017; 36. [PMID: 28436609 DOI: 10.1002/minf.201600154] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/16/2017] [Indexed: 12/14/2022]
Abstract
The need to find an alternative to costly animal studies for developmental and reproductive toxicity testing has shifted the focus considerably to the assessment of in vitro developmental toxicology models and the exploitation of pharmacological data for relevant molecular initiating events. We hereby demonstrate how automation can be applied successfully to handle heterogeneous oestrogen receptor data from ChEMBL. Applying expert-derived thresholds to specific bioactivities allowed an activity call to be attributed to each data entry. Human intervention further improved this mechanistic dataset which was mined to develop structure-activity relationship alerts and an expert model covering 45 chemical classes for the prediction of oestrogen receptor modulation. The evaluation of the model using FDA EDKB and Tox21 data was quite encouraging. This model can also provide a teratogenicity prediction along with the additional information it provides relevant to the query compound, all of which will require careful assessment of potential risk by experts.
Collapse
Affiliation(s)
- M Bashir Surfraz
- Granary Wharf House, 2 Canal Wharf, Holbeck, Leeds, LS11 5PS, United Kingdom
| | - Adrian Fowkes
- Granary Wharf House, 2 Canal Wharf, Holbeck, Leeds, LS11 5PS, United Kingdom
| | - Jeffrey P Plante
- Granary Wharf House, 2 Canal Wharf, Holbeck, Leeds, LS11 5PS, United Kingdom
| |
Collapse
|
21
|
Development of novel in silico model for developmental toxicity assessment by using naïve Bayes classifier method. Reprod Toxicol 2017; 71:8-15. [PMID: 28428071 DOI: 10.1016/j.reprotox.2017.04.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 04/10/2017] [Accepted: 04/13/2017] [Indexed: 02/05/2023]
Abstract
Toxicological testing associated with developmental toxicity endpoints are very expensive, time consuming and labor intensive. Thus, developing alternative approaches for developmental toxicity testing is an important and urgent task in the drug development filed. In this investigation, the naïve Bayes classifier was applied to develop a novel prediction model for developmental toxicity. The established prediction model was evaluated by the internal 5-fold cross validation and external test set. The overall prediction results for the internal 5-fold cross validation of the training set and external test set were 96.6% and 82.8%, respectively. In addition, four simple descriptors and some representative substructures of developmental toxicants were identified. Thus, we hope the established in silico prediction model could be used as alternative method for toxicological assessment. And these obtained molecular information could afford a deeper understanding on the developmental toxicants, and provide guidance for medicinal chemists working in drug discovery and lead optimization.
Collapse
|
22
|
Peroxisome Proliferator-Activated Receptor α Activation Is Not the Main Contributor to Teratogenesis Elicited by Polar Compounds from Oxidized Frying Oil. Int J Mol Sci 2017; 18:ijms18030510. [PMID: 28264465 PMCID: PMC5372526 DOI: 10.3390/ijms18030510] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/16/2017] [Accepted: 02/23/2017] [Indexed: 01/28/2023] Open
Abstract
We previously reported that polar compounds (PO) in cooking oil are teratogenic and perturbed retinoic acid (RA) metabolism. Considering PO as a potent peroxisome proliferator-activated receptor α (PPARα) activator, this study aimed to investigate the role of PPARα in PO-induced teratogenesis and disturbance of RA metabolism. Female PPARα knockout or wild type mice were mated with males of the same genotype. Pregnant mice were fed a diet containing 10% fat from either fresh oil (FO) or PO from gestational day1 to day18, and killed at day18. The PO diet significantly increased the incidence of teratogenesis and fetal RA concentrations, regardless of genotype. Though PPARα deficiency disturbed maternal RA homeostasis, itself did not contribute to teratogenesis as long as FO diet was given. The mRNA profile of genes involved in RA metabolism was differentially affected by diet or genotype in mothers and fetuses. Based on hepatic mRNA levels of genes involved in xenobiotic metabolism, we inferred that PO not only activated PPARα, but also altered transactivity of other xenobiotic receptors. We concluded that PO-induced fetal anomalies and RA accumulation were independent of PPARα activation.
Collapse
|
23
|
Brannen KC, Chapin RE, Jacobs AC, Green ML. Alternative Models of Developmental and Reproductive Toxicity in Pharmaceutical Risk Assessment and the 3Rs. ILAR J 2017; 57:144-156. [DOI: 10.1093/ilar/ilw026] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 01/01/2016] [Accepted: 01/01/2016] [Indexed: 01/21/2023] Open
|
24
|
Bowman CJ, Chapin RE. Goldilocks’ Determination of What New In Vivo Data are “Just Right” for Different Common Drug Development Scenarios, Part 1. ACTA ACUST UNITED AC 2016; 107:185-194. [DOI: 10.1002/bdrb.21184] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 07/29/2016] [Indexed: 12/28/2022]
Affiliation(s)
| | - Robert E Chapin
- Developmental and Reproductive Toxicology CoE; Pfizer, Inc; Groton CT USA
| |
Collapse
|
25
|
Dimopoulou M, Verhoef A, van Ravenzwaay B, Rietjens IM, Piersma AH. Flusilazole induces spatio-temporal expression patterns of retinoic acid-, differentiation- and sterol biosynthesis-related genes in the rat Whole Embryo Culture. Reprod Toxicol 2016; 64:77-85. [DOI: 10.1016/j.reprotox.2016.04.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/23/2016] [Accepted: 04/07/2016] [Indexed: 12/27/2022]
|
26
|
Rezvanfar MA, Hodjat M, Abdollahi M. Growing knowledge of using embryonic stem cells as a novel tool in developmental risk assessment of environmental toxicants. Life Sci 2016; 158:137-160. [DOI: 10.1016/j.lfs.2016.05.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 04/27/2016] [Accepted: 05/17/2016] [Indexed: 12/19/2022]
|
27
|
Sasagawa S, Nishimura Y, Hayakawa Y, Murakami S, Ashikawa Y, Yuge M, Okabe S, Kawaguchi K, Kawase R, Tanaka T. E2F4 Promotes Neuronal Regeneration and Functional Recovery after Spinal Cord Injury in Zebrafish. Front Pharmacol 2016; 7:119. [PMID: 27242526 PMCID: PMC4860404 DOI: 10.3389/fphar.2016.00119] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 04/22/2016] [Indexed: 12/15/2022] Open
Abstract
Mammals exhibit poor recovery after spinal cord injury (SCI), whereas non-mammalian vertebrates exhibit significant spontaneous recovery after SCI. The mechanisms underlying this difference have not been fully elucidated; therefore, the purpose of this study was to investigate these mechanisms. Using comparative transcriptome analysis, we demonstrated that genes related to cell cycle were significantly enriched in the genes specifically dysregulated in zebrafish SCI. Most of the cell cycle-related genes dysregulated in zebrafish SCI were down-regulated, possibly through activation of e2f4. Using a larval zebrafish model of SCI, we demonstrated that the recovery of locomotive function and neuronal regeneration after SCI were significantly inhibited in zebrafish treated with an E2F4 inhibitor. These results suggest that activation of e2f4 after SCI may be responsible, at least in part, for the significant recovery in zebrafish. This provides novel insight into the lack of recovery after SCI in mammals and informs potential therapeutic strategies.
Collapse
Affiliation(s)
- Shota Sasagawa
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine Tsu, Japan
| | - Yuhei Nishimura
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of MedicineTsu, Japan; Mie University Medical Zebrafish Research CenterTsu, Japan; Department of Systems Pharmacology, Mie University Graduate School of MedicineTsu, Japan; Department of Omics Medicine, Mie University Industrial Technology Innovation InstituteTsu, Japan; Department of Bioinformatics, Mie University Life Science Research CenterTsu, Japan
| | - Yuka Hayakawa
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine Tsu, Japan
| | - Soichiro Murakami
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine Tsu, Japan
| | - Yoshifumi Ashikawa
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine Tsu, Japan
| | - Mizuki Yuge
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine Tsu, Japan
| | - Shiko Okabe
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine Tsu, Japan
| | - Koki Kawaguchi
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine Tsu, Japan
| | - Reiko Kawase
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine Tsu, Japan
| | - Toshio Tanaka
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of MedicineTsu, Japan; Mie University Medical Zebrafish Research CenterTsu, Japan; Department of Systems Pharmacology, Mie University Graduate School of MedicineTsu, Japan; Department of Omics Medicine, Mie University Industrial Technology Innovation InstituteTsu, Japan; Department of Bioinformatics, Mie University Life Science Research CenterTsu, Japan
| |
Collapse
|
28
|
Sogorb MA, Fuster E, Del Río E, Estévez J, Vilanova E. Effects of mipafox, paraoxon, chlorpyrifos and its metabolite chlorpyrifos-oxon on the expression of biomarker genes of differentiation in D3 mouse embryonic stem cells. Chem Biol Interact 2016; 259:368-373. [PMID: 27117976 DOI: 10.1016/j.cbi.2016.04.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 04/03/2016] [Accepted: 04/11/2016] [Indexed: 12/31/2022]
Abstract
Chlorpyrifos (CPS) is an organophosphorus compound (OP) capable of causing well-known cholinergic and delayed syndromes through the inhibition of acetylcholinesterase and Neuropathy Target Esterase (NTE), respectively. CPS is also able to induce neurodevelopmental toxicity in animals. NTE is codified by the Pnpla6 gene and plays a central role in differentiation and neurodifferentiation. We tested, in D3 mouse embryonic stem cells under differentiation, the effects of the NTE inhibition by the OPs mipafox, CPS and its main active metabolite chlorpyrifos-oxon (CPO) on the expression of genes Vegfa, Bcl2, Amot, Nes and Jun, previously reported to be under- or overexpressed after Pnpla6 silencing in this same cellular model. Mipafox did not significantly alter the expression of such genes at concentrations that significantly inhibited NTE. However, CPS and CPO at concentrations that caused NTE inhibition at similar levels to mipafox statistically and significantly altered the expression of most of these genes. Paraoxon (another OP with capability to inhibit esterases but not NTE) caused similar effects to CPS and CPO. These findings suggest that the molecular mechanism for the neurodevelopmental toxicity induced by CPS is not based on NTE inhibition, and that other unknown esterases might be potential targets of neurodevelopmental toxicity.
Collapse
Affiliation(s)
- Miguel A Sogorb
- Toxicology and Chemical Safety Unit, Bioengineering Institute, Miguel Hernández University, Avenida de la Universidad s/n, 03202, Elche, Spain.
| | - Encarnación Fuster
- Toxicology and Chemical Safety Unit, Bioengineering Institute, Miguel Hernández University, Avenida de la Universidad s/n, 03202, Elche, Spain
| | - Eva Del Río
- Toxicology and Chemical Safety Unit, Bioengineering Institute, Miguel Hernández University, Avenida de la Universidad s/n, 03202, Elche, Spain
| | - Jorge Estévez
- Toxicology and Chemical Safety Unit, Bioengineering Institute, Miguel Hernández University, Avenida de la Universidad s/n, 03202, Elche, Spain
| | - Eugenio Vilanova
- Toxicology and Chemical Safety Unit, Bioengineering Institute, Miguel Hernández University, Avenida de la Universidad s/n, 03202, Elche, Spain
| |
Collapse
|
29
|
Zhang C, Ball J, Panzica-Kelly J, Augustine-Rauch K. In Vitro Developmental Toxicology Screens: A Report on the Progress of the Methodology and Future Applications. Chem Res Toxicol 2016; 29:534-44. [DOI: 10.1021/acs.chemrestox.5b00458] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Cindy Zhang
- Discovery
Toxicology, Bristol Myers Squibb, Pennington, New Jersey 08534, United States
| | - Jonathan Ball
- College
of Life and Environmental Sciences, University of Exeter, Exeter EX4 4PS, United Kingdom
| | - Julie Panzica-Kelly
- Discovery
Toxicology, Bristol Myers Squibb, Pennington, New Jersey 08534, United States
| | - Karen Augustine-Rauch
- Discovery
Toxicology, Bristol Myers Squibb, Pennington, New Jersey 08534, United States
| |
Collapse
|
30
|
Augustine-Rauch K, Zhang CX, Panzica-Kelly JM. A Developmental Toxicology Assay Platform for Screening Teratogenic Liability of Pharmaceutical Compounds. ACTA ACUST UNITED AC 2016; 107:4-20. [PMID: 26729651 DOI: 10.1002/bdrb.21168] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 11/18/2015] [Indexed: 01/14/2023]
Abstract
Increasing need for proactive safety optimization of pharmaceutical compounds has led to generation and/or refinement of in vitro developmental toxicology assays. Our laboratory has developed three in vitro developmental toxicology assays to assess teratogenic liability of pharmaceutical compounds. These assays included a mouse molecular embryonic stem cell assay (MESCA), a dechorionated zebrafish embryo culture (ZEC) assay, and a streamlined rat whole embryo culture (rWEC) assay. Individually, the assays presented good (73-82%) predictivity. However, it remains to be determined whether combining or tiering the assays could enhance performance. Seventy-three compounds representing a broad spectrum of pharmaceutical targets and chemistry were evaluated across the assays to generate testing strategies that optimized performance. The MESCA and ZEC assays were found to have two limitations: compound solubility and frequent misclassification of compounds with H1 receptor or GABAnergic activity. The streamlined rWEC assay was found to be a cost-effective stand-alone assay for supporting poorly soluble compounds and/or ones with H1 or GABAnergic activity. For all other compounds, a tiering strategy using the MESCA and ZEC assays additionally optimized throughput, cost, and minimized animal use. The tiered strategy resulted in improved performance achieving 88% overall predictivity and was comparable with 89% overall predictivity achieved with frequency analysis (final teratogenic classification made from most frequent teratogenic classification from each individual assay). Furthermore there were 21 compounds in the test set characterized as definitive or suspect human teratogens and the multiassay approach achieved 95 and 91% correct classification using the tiered or frequency screening approach, respectively.
Collapse
Affiliation(s)
| | - Cindy X Zhang
- Discovery Toxicology Group, Bristol Myers-Squibb, Hopewell, New Jersey
| | | |
Collapse
|
31
|
Nishimura Y, Inoue A, Sasagawa S, Koiwa J, Kawaguchi K, Kawase R, Maruyama T, Kim S, Tanaka T. Using zebrafish in systems toxicology for developmental toxicity testing. Congenit Anom (Kyoto) 2016; 56:18-27. [PMID: 26537640 DOI: 10.1111/cga.12142] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 10/27/2015] [Indexed: 12/20/2022]
Abstract
With the high cost and the long-term assessment of developmental toxicity testing in mammals, the vertebrate zebrafish has become a useful alternative model organism for high-throughput developmental toxicity testing. Zebrafish is also very favorable for the 3R perspective in toxicology; however, the methodologies used by research groups vary greatly, posing considerable challenges to integrative analysis. In this review, we discuss zebrafish developmental toxicity testing, focusing on the methods of chemical exposure, the assessment of morphological abnormalities, housing conditions and their effects on the production of healthy embryos, and future directions. Zebrafish as a systems toxicology model has the potential to elucidate developmental toxicity pathways, and to provide a sound basis for human health risk assessments.
Collapse
Affiliation(s)
- Yuhei Nishimura
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, Tsu, Mie.,Mie University Medical Zebrafish Research Center, Tsu, Mie.,Department of Systems Pharmacology, Mie University Graduate School of Medicine, Tsu, Mie.,Department of Omics Medicine, Mie University Industrial Technology Innovation Institute, Tsu, Mie.,Department of Bioinformatics, Mie University Life Science Research Center, Tsu, Mie
| | | | - Shota Sasagawa
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, Tsu, Mie
| | - Junko Koiwa
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, Tsu, Mie
| | - Koki Kawaguchi
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, Tsu, Mie
| | - Reiko Kawase
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, Tsu, Mie
| | | | - Soonih Kim
- Ono Pharmaceutical Co, Ltd, Osaka, Japan
| | - Toshio Tanaka
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, Tsu, Mie.,Mie University Medical Zebrafish Research Center, Tsu, Mie.,Department of Systems Pharmacology, Mie University Graduate School of Medicine, Tsu, Mie.,Department of Omics Medicine, Mie University Industrial Technology Innovation Institute, Tsu, Mie.,Department of Bioinformatics, Mie University Life Science Research Center, Tsu, Mie
| |
Collapse
|
32
|
A Modified Murine Embryonic Stem Cell Test for Evaluating the Teratogenic Effects of Drugs on Early Embryogenesis. PLoS One 2015; 10:e0145286. [PMID: 26682887 PMCID: PMC4686177 DOI: 10.1371/journal.pone.0145286] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 12/02/2015] [Indexed: 12/27/2022] Open
Abstract
Mammalian fetal development is easily disrupted by exogenous agents, making it essential to test new drug candidates for embryotoxicity and teratogenicity. To standardize the testing of drugs that might be used to treat pregnant women, the U.S. Food and Drug Administration (FDA) formulated special grade categories, labeled A, B, C, D and X, that define the level of risk associated with the use of a specific drug during pregnancy. Drugs in categories (Cat.) D and X are those with embryotoxic and/or teratogenic effects on humans and animals. However, which stages of pregnancy are affected by these agents and their molecular mechanisms are unknown. We describe here an embryonic stem cell test (EST) that classifies FDA pregnancy Cat.D and Cat.X drugs into 4 classes based on their differing effects on primitive streak formation. We show that ~84% of Cat.D and Cat.X drugs target this period of embryogenesis. Our results demonstrate that our modified EST can identify how a drug affects early embryogenesis, when it acts, and its molecular mechanism. Our test may thus be a useful addition to the drug safety testing armamentarium.
Collapse
|
33
|
Rychert M, Wilkins C. The challenge of a ban on animal testing for the development of a regulated legal market for new psychoactive substances (NPS) (‘legal highs’) in New Zealand: Issues and options for resolution. THE INTERNATIONAL JOURNAL OF DRUG POLICY 2015; 26:1273-8. [DOI: 10.1016/j.drugpo.2015.08.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 08/05/2015] [Indexed: 11/28/2022]
|
34
|
Nishimura Y, Okabe S, Sasagawa S, Murakami S, Ashikawa Y, Yuge M, Kawaguchi K, Kawase R, Tanaka T. Pharmacological profiling of zebrafish behavior using chemical and genetic classification of sleep-wake modifiers. Front Pharmacol 2015; 6:257. [PMID: 26578964 PMCID: PMC4630575 DOI: 10.3389/fphar.2015.00257] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 10/19/2015] [Indexed: 01/05/2023] Open
Abstract
Sleep-wake states are impaired in various neurological disorders. Impairment of sleep-wake states can be an early condition that exacerbates these disorders. Therefore, treating sleep-wake dysfunction may prevent or slow the development of these diseases. Although many gene products are likely to be involved in the sleep-wake disturbance, hypnotics and psychostimulants clinically used are limited in terms of their mode of action and are not without side effects. Therefore, there is a growing demand for developing new hypnotics and psychostimulants with high efficacy and few side effects. Toward this end, animal models are indispensable for use in genetic and chemical screens to identify sleep-wake modifiers. As a proof-of-concept study, we performed behavioral profiling of zebrafish treated with chemical and genetic sleep-wake modifiers. We were able to demonstrate that behavioral profiling of zebrafish treated with hypnotics or psychostimulants from 9 to 10 days post-fertilization was sufficient to identify drugs with specific modes of action. We were also able to identify behavioral endpoints distinguishing GABA-A modulators and hypocretin (hcrt) receptor antagonists and between sympathomimetic and non-sympathomimetic psychostimulants. This behavioral profiling can serve to identify genes related to sleep-wake disturbance associated with various neuropsychiatric diseases and novel therapeutic compounds for insomnia and excessive daytime sleep with fewer adverse side effects.
Collapse
Affiliation(s)
- Yuhei Nishimura
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine Tsu, Japan ; Mie University Medical Zebrafish Research Center Tsu, Japan ; Department of Systems Pharmacology, Mie University Graduate School of Medicine Tsu, Japan ; Department of Omics Medicine, Mie University Industrial Technology Innovation Institute Tsu, Japan ; Department of Bioinformatics, Mie University Life Science Research Center Tsu, Japan
| | - Shiko Okabe
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine Tsu, Japan
| | - Shota Sasagawa
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine Tsu, Japan
| | - Soichiro Murakami
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine Tsu, Japan
| | - Yoshifumi Ashikawa
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine Tsu, Japan
| | - Mizuki Yuge
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine Tsu, Japan
| | - Koki Kawaguchi
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine Tsu, Japan
| | - Reiko Kawase
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine Tsu, Japan
| | - Toshio Tanaka
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine Tsu, Japan ; Mie University Medical Zebrafish Research Center Tsu, Japan ; Department of Systems Pharmacology, Mie University Graduate School of Medicine Tsu, Japan ; Department of Omics Medicine, Mie University Industrial Technology Innovation Institute Tsu, Japan ; Department of Bioinformatics, Mie University Life Science Research Center Tsu, Japan
| |
Collapse
|
35
|
Romero AC, Del Río E, Vilanova E, Sogorb MA. RNA transcripts for the quantification of differentiation allow marked improvements in the performance of embryonic stem cell test (EST). Toxicol Lett 2015; 238:60-9. [PMID: 26272751 DOI: 10.1016/j.toxlet.2015.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/04/2015] [Accepted: 08/06/2015] [Indexed: 11/20/2022]
Abstract
Embryonic stem cell test (EST) is an in vitro validated assay for testing embryotoxicity. The EST needs improvements before being used for regulatory purposes, but also needs technical simplification for use in high throughput screenings. We propose the quantification in alterations of the differentiation of D3 monolayer cells cultures through the expression of biomarker genes in a shorter (5-day) and technically simpler (we use only monolayer cultures) test. We have defined a set of sixteen different genes biomarkers of ectoderm (Nrcam, Nes, Shh and Pnpla6), endoderm formation (Flk1 and Afp), mesoderm formation (Mesp1, Vegfa, Myo1e and Hdac7) and general cellular processes (Cdk1, Myc, Jun, Mixl, Cer and Wnt3). These, together with alterations in the viability of D3 and 3T3 cells and the prediction model of a classic EST, enhance the features of EST determinations to 100% concordance between in vivo-in vitro predictions with a set of seven different chemicals used in the validation of a classic EST. In conclusion, the proposed changes implemented in the classic EST confer it more reliability, speed and technical simplicity, which brings the EST closer to high throughput processes and regulatory purposes.
Collapse
Affiliation(s)
- Andrea C Romero
- Unidad de Toxicología y Seguridad Química, Instituto de Bioingeniería, Universidad Miguel Hernández de Elche, Avenida de la Universidad s/n, 03202 Elche, Spain
| | - Eva Del Río
- Unidad de Toxicología y Seguridad Química, Instituto de Bioingeniería, Universidad Miguel Hernández de Elche, Avenida de la Universidad s/n, 03202 Elche, Spain
| | - Eugenio Vilanova
- Unidad de Toxicología y Seguridad Química, Instituto de Bioingeniería, Universidad Miguel Hernández de Elche, Avenida de la Universidad s/n, 03202 Elche, Spain
| | - Miguel A Sogorb
- Unidad de Toxicología y Seguridad Química, Instituto de Bioingeniería, Universidad Miguel Hernández de Elche, Avenida de la Universidad s/n, 03202 Elche, Spain.
| |
Collapse
|
36
|
Oberai S, Teo A, Lim M, Ramamoorthi K, Hara J, Asuri P. Three-dimensional hydrogel encapsulated embryonic stem and carcinoma cells as culture platforms for cytotoxicity studies. AIChE J 2015. [DOI: 10.1002/aic.14957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Sneha Oberai
- Div. of Bioengineering, School of Chemical and Biomedical Engineering; Nanyang Technological University; Singapore
| | - Ailing Teo
- Div. of Bioengineering, School of Chemical and Biomedical Engineering; Nanyang Technological University; Singapore
| | - Mayasari Lim
- Div. of Bioengineering, School of Chemical and Biomedical Engineering; Nanyang Technological University; Singapore
| | - Kalpith Ramamoorthi
- Dept. of Bioengineering; Santa Clara University, Santa Clara, California, United States of America
| | - Jared Hara
- Dept. of Bioengineering; Santa Clara University, Santa Clara, California, United States of America
| | - Prashanth Asuri
- Dept. of Bioengineering; Santa Clara University, Santa Clara, California, United States of America
| |
Collapse
|
37
|
Liedtke S, Biebernick S, Radke TF, Stapelkamp D, Coenen C, Zaehres H, Fritz G, Kogler G. DNA damage response in neonatal and adult stromal cells compared with induced pluripotent stem cells. Stem Cells Transl Med 2015; 4:576-89. [PMID: 25900727 DOI: 10.5966/sctm.2014-0209] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 02/23/2015] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED Comprehensive analyses comparing individual DNA damage response (DDR) of induced pluripotent stem cells (iPSCs) with neonatal stromal cells with respect to their developmental age are limited. The imperative necessity of providing developmental age-matched cell sources for meaningful toxicological drug safety assessments in replacement of animal-based testing strategies is evident. Here, DDR after radiation or treatment with N-methyl-N-nitrosurea (MNU) was determined in iPSCs compared with neonatal and bone marrow stromal cells. Neonatal and adult stromal cells showed no significant morphologically detectable cytotoxicity following treatment with 1 Gy or 1 mM MNU, whereas iPSCs revealed a much higher sensitivity. Foci analyses revealed an effective DNA repair in stromal cell types and iPSCs, as reflected by a rapid formation and disappearance of phosphorylated ATM and γH2AX foci. Furthermore, quantitative polymerase chain reaction analyses revealed the highest basic expression level of DDR and repair-associated genes in iPSCs, followed by neonatal stromal cells and adult stromal cells with the lowest expression levels. In addition, the influence of genotoxic stress prior to and during osteogenic differentiation of neonatal and adult stromal cells was analyzed applying common differentiation procedures. Experiments presented here suggest a developmental age-dependent basic expression level of genes involved in the processing of DNA damage. In addition a differentiation-dependent downregulation of repair genes was observed during osteogenesis. These results strongly support the requirement to provide adequate cell sources for toxicological in vitro drug testing strategies that match to the developmental age and differentiation status of the presumptive target cell of interest. SIGNIFICANCE The results obtained in this study advance the understanding of DNA damage processing in human neonatal stromal cells as compared with adult stromal cells and induced pluripotent stem cells (iPSCs). The data suggest developmental age-dependent differences in DNA damage repair capacity. In iPSCs (closest to embryonic stem cells), the highest expression level of DNA damage response and repair genes was found, followed by neonatal stromal cells and adult stromal cells with the lowest overall expression. In addition, a differentiation-dependent downregulation of repair capacity was observed during osteogenic differentiation in neonatal stromal cells. Notably, the impact of genotoxic stress on osteogenic differentiation depended on the time the genotoxic insult took place and, moreover, was agent-specific. These results strongly support the necessity of offering and establishing adequate cell sources for informative toxicological testing matching to the developmental age and differentiation status of the respective cell of interest.
Collapse
Affiliation(s)
- Stefanie Liedtke
- Institute for Transplantation Diagnostics and Cell Therapeutics and Institute of Toxicology, Heinrich-Heine-University Medical Center, Düsseldorf, Germany; Department Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Sophie Biebernick
- Institute for Transplantation Diagnostics and Cell Therapeutics and Institute of Toxicology, Heinrich-Heine-University Medical Center, Düsseldorf, Germany; Department Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Teja Falk Radke
- Institute for Transplantation Diagnostics and Cell Therapeutics and Institute of Toxicology, Heinrich-Heine-University Medical Center, Düsseldorf, Germany; Department Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Daniela Stapelkamp
- Institute for Transplantation Diagnostics and Cell Therapeutics and Institute of Toxicology, Heinrich-Heine-University Medical Center, Düsseldorf, Germany; Department Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Carolin Coenen
- Institute for Transplantation Diagnostics and Cell Therapeutics and Institute of Toxicology, Heinrich-Heine-University Medical Center, Düsseldorf, Germany; Department Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Holm Zaehres
- Institute for Transplantation Diagnostics and Cell Therapeutics and Institute of Toxicology, Heinrich-Heine-University Medical Center, Düsseldorf, Germany; Department Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Gerhard Fritz
- Institute for Transplantation Diagnostics and Cell Therapeutics and Institute of Toxicology, Heinrich-Heine-University Medical Center, Düsseldorf, Germany; Department Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Gesine Kogler
- Institute for Transplantation Diagnostics and Cell Therapeutics and Institute of Toxicology, Heinrich-Heine-University Medical Center, Düsseldorf, Germany; Department Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| |
Collapse
|
38
|
Wilks MF, Tsatsakis AM. Environmental contaminants and target organ toxicities – new insights into old problems. Toxicol Lett 2014; 230:81-4. [DOI: 10.1016/j.toxlet.2014.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
39
|
Estevan C, Fuster E, Del Río E, Pamies D, Vilanova E, Sogorb MA. Organophosphorus pesticide chlorpyrifos and its metabolites alter the expression of biomarker genes of differentiation in D3 mouse embryonic stem cells in a comparable way to other model neurodevelopmental toxicants. Chem Res Toxicol 2014; 27:1487-95. [PMID: 25137620 DOI: 10.1021/tx500051k] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
There are discrepancies about whether chlorpyrifos is able to induce neurodevelopmental toxicity or not. We previously reported alterations in the pattern of expression of biomarker genes of differentiation in D3 mouse embryonic stem cells caused by chlorpyrifos and its metabolites chlorpyrifos-oxon and 3,5,6-trichloro-2-pyridinol. Now, we reanalyze these data comparing the effects on these genes with those caused in the same genes by retinoic acid, valproic acid, and penicillin-G (model compounds considered as strong, weak, and non-neurodevelopmental toxicants, respectively). We also compare the effects of chlorpyrifos and its metabolites on the cell viability of D3 cells and 3T3 mouse fibroblasts with the effects caused in the same cells by the three model compounds. We conclude that chlorpyrifos and its metabolites act, regarding these end-points, as the weak neurodevelopmental toxicant valproic acid, and consequently, a principle of caution should be applied avoiding occupational exposures in pregnant women. A second independent experiment run with different cellular batches coming from the same clone obtained the same result as the first one.
Collapse
Affiliation(s)
- Carmen Estevan
- Unidad de Toxicología y Seguridad Química, Instituto de Bioingeniería, Universidad Miguel Hernández de Elche , Avenida de la Universidad s/n, 03202-Elche, Spain
| | | | | | | | | | | |
Collapse
|