1
|
Mohammed SM, Al-Saedi HFS, Mohammed AQ, Amir AA, Radi UK, Sattar R, Ahmad I, Ramadan MF, Alshahrani MY, Balasim HM, Alawadi A. Mechanisms of Bleomycin-induced Lung Fibrosis: A Review of Therapeutic Targets and Approaches. Cell Biochem Biophys 2024; 82:1845-1870. [PMID: 38955925 DOI: 10.1007/s12013-024-01384-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2024] [Indexed: 07/04/2024]
Abstract
Pulmonary toxicity is a serious side effect of some specific anticancer drugs. Bleomycin is a well-known anticancer drug that triggers severe reactions in the lungs. It is an approved drug that may be prescribed for the treatment of testicular cancers, Hodgkin's and non-Hodgkin's lymphomas, ovarian cancer, head and neck cancers, and cervical cancer. A large number of experimental studies and clinical findings show that bleomycin can concentrate in lung tissue, leading to massive oxidative stress, alveolar epithelial cell death, the proliferation of fibroblasts, and finally the infiltration of immune cells. Chronic release of pro-inflammatory and pro-fibrotic molecules by immune cells and fibroblasts leads to pneumonitis and fibrosis. Both fibrosis and pneumonitis are serious concerns for patients who receive bleomycin and may lead to death. Therefore, the management of lung toxicity following cancer therapy with bleomycin is a critical issue. This review explains the cellular and molecular mechanisms of pulmonary injury following treatment with bleomycin. Furthermore, we review therapeutic targets and possible promising strategies for ameliorating bleomycin-induced lung injury.
Collapse
Affiliation(s)
- Shaimaa M Mohammed
- Department of Pharmacy, Al- Mustaqbal University College, 51001, Hilla, Babylon, Iraq
| | | | | | - Ahmed Ali Amir
- Department of Medical Laboratories Technology, Al-Nisour University College, Baghdad, Iraq
| | - Usama Kadem Radi
- College of Pharmacy, National University of Science and Technology, Nasiriyah, Dhi Qar, Iraq
| | - Ruaa Sattar
- Al-Hadi University College, Baghdad, 10011, Iraq
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | | | - Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.
| | - Halah Majeed Balasim
- Department of Medical Laboratory Technologies, Al Rafidain University College, Bagdad, Iraq
| | - Ahmed Alawadi
- College of technical engineering, the Islamic University, Najaf, Iraq
- College of technical engineering, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of technical engineering, the Islamic University of Babylon, Hilla, Iraq
| |
Collapse
|
2
|
Cheng HP, Jiang SH, Cai J, Luo ZQ, Li XH, Feng DD. Histone deacetylases: potential therapeutic targets for idiopathic pulmonary fibrosis. Front Cell Dev Biol 2024; 12:1426508. [PMID: 39193364 PMCID: PMC11347278 DOI: 10.3389/fcell.2024.1426508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/03/2024] [Indexed: 08/29/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive disease of unknown origin and the most common interstitial lung disease. However, therapeutic options for IPF are limited, and novel therapies are urgently needed. Histone deacetylases (HDACs) are enzymes that participate in balancing histone acetylation activity for chromatin remodeling and gene transcription regulation. Increasing evidence suggests that the HDAC family is linked to the development and progression of chronic fibrotic diseases, including IPF. This review aims to summarize available information on HDACs and related inhibitors and their potential applications in treating IPF. In the future, HDACs may serve as novel targets, which can aid in understanding the etiology of PF, and selective inhibition of single HDACs or disruption of HDAC genes may serve as a strategy for treating PF.
Collapse
Affiliation(s)
- Hai-peng Cheng
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and Diagnosis, Changsha, Hunan, China
| | - Shi-he Jiang
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and Diagnosis, Changsha, Hunan, China
| | - Jin Cai
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and Diagnosis, Changsha, Hunan, China
| | - Zi-qiang Luo
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, Hunan, China
| | - Xiao-hong Li
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and Diagnosis, Changsha, Hunan, China
| | - Dan-dan Feng
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| |
Collapse
|
3
|
Gupta N, Paryani M, Patel S, Bariya A, Srivastava A, Pathak Y, Butani S. Therapeutic Strategies for Idiopathic Pulmonary Fibrosis - Thriving Present and Promising Tomorrow. J Clin Pharmacol 2024; 64:779-798. [PMID: 38346921 DOI: 10.1002/jcph.2408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/11/2024] [Indexed: 06/27/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a continuous, progressive, and lethal age-related respiratory disease. It is characterized by condensed and rigid lung tissue, which leads to a decline in the normal functioning of the lungs. The pathophysiology of IPF has still not been completely elucidated, so current strategies are lagging behind with respect to improving the condition of patients with IPF and increasing their survival rate. The desire for a better understanding of the pathobiology of IPF and its early detection has led to the identification of various biomarkers associated with IPF. The use of drugs such as pirfenidone and nintedanib as a safe and effective treatment alternative have marked a new chapter in the treatment of IPF. However, nonpharmacological therapies, involving long-term oxygen therapy, transplantation of the lungs, pulmonary rehabilitation, ventilation, and palliative care for cough and dyspnea, are still considered to be beneficial as supplementary methods for IPF therapy. A major risk factor for IPF is aging, with associated hallmarks such as telomere attrition, senescence, epigenetic drift, stem cell exhaustion, loss of proteostasis, and mitochondrial dysfunction. These are promising earmarks for the development of potential therapy for the disease. In this review, we have discussed current and emerging novel therapeutic strategies for IPF, especially for targets associated with age-related mechanisms.
Collapse
Affiliation(s)
- Nikita Gupta
- Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India
| | - Mitali Paryani
- Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India
| | - Snehal Patel
- Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India
| | - Aditi Bariya
- Arihant School of Pharmacy Education and Research, Adalaj, Gandhinagar, Gujarat, India
| | - Anshu Srivastava
- Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India
| | - Yashwant Pathak
- USF Health Taneja College of Pharmacy, University of South Florida, Tampa, FL, USA
- Faculty of Pharmacy, Airlangga University, Surabaya, Indonesia
| | - Shital Butani
- Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India
| |
Collapse
|
4
|
Korfei M, Mahavadi P, Guenther A. Targeting Histone Deacetylases in Idiopathic Pulmonary Fibrosis: A Future Therapeutic Option. Cells 2022; 11:1626. [PMID: 35626663 PMCID: PMC9139813 DOI: 10.3390/cells11101626] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 02/07/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal lung disease with limited therapeutic options, and there is a huge unmet need for new therapies. A growing body of evidence suggests that the histone deacetylase (HDAC) family of transcriptional corepressors has emerged as crucial mediators of IPF pathogenesis. HDACs deacetylate histones and result in chromatin condensation and epigenetic repression of gene transcription. HDACs also catalyse the deacetylation of many non-histone proteins, including transcription factors, thus also leading to changes in the transcriptome and cellular signalling. Increased HDAC expression is associated with cell proliferation, cell growth and anti-apoptosis and is, thus, a salient feature of many cancers. In IPF, induction and abnormal upregulation of Class I and Class II HDAC enzymes in myofibroblast foci, as well as aberrant bronchiolar epithelium, is an eminent observation, whereas type-II alveolar epithelial cells (AECII) of IPF lungs indicate a significant depletion of many HDACs. We thus suggest that the significant imbalance of HDAC activity in IPF lungs, with a "cancer-like" increase in fibroblastic and bronchial cells versus a lack in AECII, promotes and perpetuates fibrosis. This review focuses on the mechanisms by which Class I and Class II HDACs mediate fibrogenesis and on the mechanisms by which various HDAC inhibitors reverse the deregulated epigenetic responses in IPF, supporting HDAC inhibition as promising IPF therapy.
Collapse
Affiliation(s)
- Martina Korfei
- Biomedical Research Center Seltersberg (BFS), Justus Liebig University Giessen, D-35392 Giessen, Germany; (P.M.); (A.G.)
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), D-35392 Giessen, Germany
| | - Poornima Mahavadi
- Biomedical Research Center Seltersberg (BFS), Justus Liebig University Giessen, D-35392 Giessen, Germany; (P.M.); (A.G.)
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), D-35392 Giessen, Germany
| | - Andreas Guenther
- Biomedical Research Center Seltersberg (BFS), Justus Liebig University Giessen, D-35392 Giessen, Germany; (P.M.); (A.G.)
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), D-35392 Giessen, Germany
- Lung Clinic, Evangelisches Krankenhaus Mittelhessen, D-35398 Giessen, Germany
- European IPF Registry and Biobank, D-35392 Giessen, Germany
| |
Collapse
|
5
|
Bollenbecker S, Czaya B, Gutiérrez OM, Krick S. Lung-kidney interactions and their role in chronic kidney disease-associated pulmonary diseases. Am J Physiol Lung Cell Mol Physiol 2022; 322:L625-L640. [PMID: 35272496 PMCID: PMC11684991 DOI: 10.1152/ajplung.00152.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 03/01/2022] [Accepted: 03/08/2022] [Indexed: 11/22/2022] Open
Abstract
Chronic illnesses rarely present in a vacuum, devoid of other complications, and chronic kidney disease is hardly an exception. Comorbidities associated with chronic kidney disease lead to faster disease progression, expedited dialysis dependency, and a higher mortality rate. Although chronic kidney disease is most commonly accompanied by cardiovascular diseases and diabetes, there is clear cross talk between the lungs and kidneys pH balance, phosphate metabolism, and immune system regulation. Our present understanding of the exact underlying mechanisms that contribute to chronic kidney disease-related pulmonary disease is poor. This review summarizes the current research on kidney-pulmonary interorgan cross talk in the context of chronic kidney disease, highlighting various acute and chronic pulmonary diseases that lead to further complications in patient care. Treatment options for patients presenting with chronic kidney disease and lung disease are explored by assessing activated molecular pathways and the body's compensatory response mechanisms following homeostatic imbalance. Understanding the link between the lungs and kidneys will potentially improve health outcomes for patients and guide healthcare professionals to better understand how and when to treat each of the pulmonary comorbidities that can present with chronic kidney disease.
Collapse
Affiliation(s)
- Seth Bollenbecker
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Brian Czaya
- Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Orlando M Gutiérrez
- Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Stefanie Krick
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
- Gregory Fleming James Cystic Fibrosis Research Center, The University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
6
|
Pharmacological targeting of endoplasmic reticulum stress in disease. Nat Rev Drug Discov 2021; 21:115-140. [PMID: 34702991 DOI: 10.1038/s41573-021-00320-3] [Citation(s) in RCA: 282] [Impact Index Per Article: 70.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2021] [Indexed: 02/08/2023]
Abstract
The accumulation of misfolded proteins in the endoplasmic reticulum (ER) leads to ER stress, resulting in activation of the unfolded protein response (UPR) that aims to restore protein homeostasis. However, the UPR also plays an important pathological role in many diseases, including metabolic disorders, cancer and neurological disorders. Over the last decade, significant effort has been invested in targeting signalling proteins involved in the UPR and an array of drug-like molecules is now available. However, these molecules have limitations, the understanding of which is crucial for their development into therapies. Here, we critically review the existing ER stress and UPR-directed drug-like molecules, highlighting both their value and their limitations.
Collapse
|
7
|
Fu L, Zhao H, Xiang Y, Xiang HX, Hu B, Tan ZX, Lu X, Gao L, Wang B, Wang H, Zhang C, Xu DX. Reactive oxygen species-evoked endoplasmic reticulum stress mediates 1-nitropyrene-induced epithelial-mesenchymal transition and pulmonary fibrosis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 283:117134. [PMID: 33866216 DOI: 10.1016/j.envpol.2021.117134] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 06/12/2023]
Abstract
1-Nitropyrene (1-NP) is one component of atmospheric fine particles. Previous report revealed that acute 1-NP exposure induced respiratory inflammation. This study aimed to investigate whether chronic 1-NP exposure induces pulmonary fibrosis. Male C57BL6/J mice were intratracheally instilled to 1-NP (20 μg/mouse/week) for 6 weeks. Diffuse interstitial inflammation, a-smooth muscle actin (a-SMA)-positive cells, a marker of epithelial-mesenchymal transition (EMT), and an extensive collagen deposition, measured by Masson staining, were observed in 1-NP-exposed mouse lungs. Pulmonary function showed that lung dynamic compliance (Cydn-min) was reduced in 1-NP-exposed mice. Conversely, inspiratory resistance (Ri) and expiratory resistance (Re) were elevated in 1-NP-exposed mice. Mechanistically, cell migration and invasion were accelerated in 1-NP-exposed pulmonary epithelial cells. In addition, E-cadherin, an epithelial marker, was downregulated, and vimentin, a-SMA and N-cadherin, three mesenchymal markers, were upregulated in 1-NP-exposed pulmonary epithelial cells. Although TGF-β wasn't altered, phosphorylated Smad2/3 were enhanced in 1-NP-exposed pulmonary epithelial cells. Moreover, reactive oxygen species (ROS) were increased and endoplasmic reticulum (ER) stress was activated in 1-NP-exposed pulmonary epithelial cells. N-Acetylcysteine (NAC), an antioxidant, attenuated 1-NP-evoked excess ROS, ER stress and EMT in pulmonary epithelial cells. Similarly, pretreatment with NAC alleviated 1-NP-caused pulmonary EMT and lung fibrosis in mice. These results demonstrate that ROS-evoked ER stress contributes, at least partially, to 1-NP-induced EMT and pulmonary fibrosis.
Collapse
Affiliation(s)
- Lin Fu
- Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China; Department of Toxicology, Anhui Medical University, Hefei, 230032, China
| | - Hui Zhao
- Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China; Department of Toxicology, Anhui Medical University, Hefei, 230032, China
| | - Ying Xiang
- Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China; Department of Toxicology, Anhui Medical University, Hefei, 230032, China
| | - Hui-Xian Xiang
- Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Biao Hu
- Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Zhu-Xia Tan
- Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China; Department of Toxicology, Anhui Medical University, Hefei, 230032, China
| | - Xue Lu
- Department of Toxicology, Anhui Medical University, Hefei, 230032, China
| | - Lan Gao
- Department of Toxicology, Anhui Medical University, Hefei, 230032, China
| | - Bo Wang
- Department of Toxicology, Anhui Medical University, Hefei, 230032, China
| | - Hua Wang
- Department of Toxicology, Anhui Medical University, Hefei, 230032, China
| | - Cheng Zhang
- Department of Toxicology, Anhui Medical University, Hefei, 230032, China
| | - De-Xiang Xu
- Department of Toxicology, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
8
|
Oxidative Stress and Endoplasmic Reticulum Stress in Rare Respiratory Diseases. J Clin Med 2021; 10:jcm10061268. [PMID: 33803835 PMCID: PMC8003245 DOI: 10.3390/jcm10061268] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 02/07/2023] Open
Abstract
Several studies have shown that some rare respiratory diseases, such as alpha-1 antitrypsin deficiency (AATD), idiopathic pulmonary fibrosis (IPF), cystic fibrosis (CF), and primary ciliary dyskinesia (PCD) present oxidative stress (OS) and endoplasmic reticulum (ER) stress. Their involvement in these pathologies and the use of antioxidants as therapeutic agents to minimize the effects of OS are discussed in this review.
Collapse
|
9
|
Chen X, Li C, Liu J, He Y, Wei Y, Chen J. Inhibition of ER stress by targeting the IRE1α-TXNDC5 pathway alleviates crystalline silica-induced pulmonary fibrosis. Int Immunopharmacol 2021; 95:107519. [PMID: 33691254 DOI: 10.1016/j.intimp.2021.107519] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 02/06/2021] [Accepted: 02/17/2021] [Indexed: 01/26/2023]
Abstract
Long-term exposure to crystalline silica (CS) results in silicosis, which is characterized by progressive pulmonary fibrosis. The endoplasmic reticulum (ER) plays a critical role in protein processing, and the accumulation of unfolded proteins triggered by external stimuli often leads to ER stress. In the present study, we found that inhibition of ER stress alleviated CS-induced pulmonary fibrosis. Moreover, we observed that TXNDC5, a resident ER protein, was involved in the activation of fibroblasts. Mechanistically, we explored the relationship between ER stress and TXNDC5 and demonstrated that IRE1α-XBP-1 signaling was closely related to TXNDC5. Pharmacological inhibition of IRE1α endoribonuclease activity, in addition to knockdown of Xbp1 expression, reduced TXNDC5 expression in activated fibroblasts. Furthermore, pharmacological inhibition of IRE1α in vivo ameliorated pulmonary function and delayed CS-induced lung fibrosis. In conclusion, the present study illuminates the role of ER stress-related IRE1α-TXNDC5 signaling in fibroblast activation and its effects on CS-induced pulmonary fibrogenesis, which may provide novel targets for silicosis therapy.
Collapse
Affiliation(s)
- Xi Chen
- Division of Pneumoconiosis, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China.
| | - Chao Li
- Division of Pneumoconiosis, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China.
| | - Jiali Liu
- Division of Pneumoconiosis, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China.
| | - Yangyang He
- Division of Pneumoconiosis, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China.
| | - Yungeng Wei
- Division of Pneumoconiosis, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China.
| | - Jie Chen
- Division of Pneumoconiosis, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China.
| |
Collapse
|
10
|
Bradley KL, Stokes CA, Marciniak SJ, Parker LC, Condliffe AM. Role of unfolded proteins in lung disease. Thorax 2021; 76:92-99. [PMID: 33077618 PMCID: PMC7803888 DOI: 10.1136/thoraxjnl-2019-213738] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 09/18/2020] [Accepted: 09/20/2020] [Indexed: 01/01/2023]
Abstract
The lungs are exposed to a range of environmental toxins (including cigarette smoke, air pollution, asbestos) and pathogens (bacterial, viral and fungal), and most respiratory diseases are associated with local or systemic hypoxia. All of these adverse factors can trigger endoplasmic reticulum (ER) stress. The ER is a key intracellular site for synthesis of secretory and membrane proteins, regulating their folding, assembly into complexes, transport and degradation. Accumulation of misfolded proteins within the lumen results in ER stress, which activates the unfolded protein response (UPR). Effectors of the UPR temporarily reduce protein synthesis, while enhancing degradation of misfolded proteins and increasing the folding capacity of the ER. If successful, homeostasis is restored and protein synthesis resumes, but if ER stress persists, cell death pathways are activated. ER stress and the resulting UPR occur in a range of pulmonary insults and the outcome plays an important role in many respiratory diseases. The UPR is triggered in the airway of patients with several respiratory diseases and in corresponding experimental models. ER stress has been implicated in the initiation and progression of pulmonary fibrosis, and evidence is accumulating suggesting that ER stress occurs in obstructive lung diseases (particularly in asthma), in pulmonary infections (some viral infections and in the setting of the cystic fibrosis airway) and in lung cancer. While a number of small molecule inhibitors have been used to interrogate the role of the UPR in disease models, many of these tools have complex and off-target effects, hence additional evidence (eg, from genetic manipulation) may be required to support conclusions based on the impact of such pharmacological agents. Aberrant activation of the UPR may be linked to disease pathogenesis and progression, but at present, our understanding of the context-specific and disease-specific mechanisms linking these processes is incomplete. Despite this, the ability of the UPR to defend against ER stress and influence a range of respiratory diseases is becoming increasingly evident, and the UPR is therefore attracting attention as a prospective target for therapeutic intervention strategies.
Collapse
Affiliation(s)
- Kirsty L Bradley
- Department of Infection, Immunity and Cardiovascular Diseases, The University of Sheffield, Sheffield, UK
| | - Clare A Stokes
- Department of Infection, Immunity and Cardiovascular Diseases, The University of Sheffield, Sheffield, UK
| | | | - Lisa C Parker
- Department of Infection, Immunity and Cardiovascular Diseases, The University of Sheffield, Sheffield, UK
| | - Alison M Condliffe
- Department of Infection, Immunity and Cardiovascular Diseases, The University of Sheffield, Sheffield, UK
| |
Collapse
|
11
|
Gong L, Liu G, Zhu H, Li C, Li P, Liu C, Tang H, Wu K, Wu J, Liu D, Tang X. IL-32 induces epithelial-mesenchymal transition by triggering endoplasmic reticulum stress in A549 cells. BMC Pulm Med 2020; 20:278. [PMID: 33097029 PMCID: PMC7585222 DOI: 10.1186/s12890-020-01319-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/18/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Epithelial-mesenchymal transition (EMT) is a key process in the onset and development of idiopathic pulmonary fibrosis (IPF) with unclear mechanisms. Our previous studies found that bleomycin and tunicamycin could induce ER stress and consequently trigger EMT accompanying with IL-32 overexpression. This study was aimed to investigate the effects of IL-32 on EMT and ER stress to elucidate the pathogenesis of IPF. METHODS Human lung adenocarcinoma A549 cells were treated with recombinant human (rh)IL-32, IL-32 siRNA and EMT inducer tunicamycin, or 4-phenylbutyric acid (4-PBA), respectively. Then the cell morphology was observed and the expression of ER-related markers and EMT-related markers were detected by RT-qPCR or western blotting. RESULTS Stimulation of A549 cells with rhIL-32 led to a morphological change from a pebble-like shape to an elongated shape in a portion of the cells, accompanied by down regulated expression of the epithelial cell marker E-cadherin and up regulated expression of the mesenchymal cell markers N-cadherin, Vimentin, and Zeb-1. However, these rhIL-32 induced changes were inhibited by the ER stress inhibitor 4-PBA. Suppression of IL-32 expression with siRNA inhibited TM-induced EMT. Further stimulation of the A549 cells with rhIL-32 demonstrated an increase in the expression of GRP78, although this increase was also inhibited by 4-PBA. CONCLUSIONS These results suggest that IL-32 induces EMT in A549 cells by triggering ER stress, and IL-32 may be a novel marker for IPF.
Collapse
Affiliation(s)
- Ling Gong
- The First Clinical Medical College, Jinan University, 601 W. Huangpu Avenue, Guangzhou, 510630, China
- Department of Respiratory Medicine, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, 563000, Guizhou, China
| | - Gang Liu
- Department of Respiratory Medicine, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, 563000, Guizhou, China
- Institute of Respiratory Diseases, The Second Affiliated Hospital of Army Medical University (Third Military Medical University), Chongqing, 400037, China
| | - Honglan Zhu
- Department of Respiratory Medicine, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, 563000, Guizhou, China
| | - Caihong Li
- Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Pengmei Li
- Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Changlu Liu
- Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Hongbo Tang
- Department of Respiratory Medicine, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, 563000, Guizhou, China
| | - Kaifeng Wu
- Department of Respiratory Medicine, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, 563000, Guizhou, China
- Scientific Research Center, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, 563000, Guizhou, China
| | - Jie Wu
- Department of Respiratory Medicine, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, 563000, Guizhou, China
- Scientific Research Center, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, 563000, Guizhou, China
| | - Daishun Liu
- Department of Respiratory Medicine, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, 563000, Guizhou, China.
- Department of Respiratory, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), No.98 Fenghuang Road, Zunyi, 563002, Guizhou, China.
| | - Xiaoping Tang
- The First Clinical Medical College, Jinan University, 601 W. Huangpu Avenue, Guangzhou, 510630, China.
| |
Collapse
|
12
|
Otoupalova E, Smith S, Cheng G, Thannickal VJ. Oxidative Stress in Pulmonary Fibrosis. Compr Physiol 2020; 10:509-547. [PMID: 32163196 DOI: 10.1002/cphy.c190017] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Oxidative stress has been linked to various disease states as well as physiological aging. The lungs are uniquely exposed to a highly oxidizing environment and have evolved several mechanisms to attenuate oxidative stress. Idiopathic pulmonary fibrosis (IPF) is a progressive age-related disorder that leads to architectural remodeling, impaired gas exchange, respiratory failure, and death. In this article, we discuss cellular sources of oxidant production, and antioxidant defenses, both enzymatic and nonenzymatic. We outline the current understanding of the pathogenesis of IPF and how oxidative stress contributes to fibrosis. Further, we link oxidative stress to the biology of aging that involves DNA damage responses, loss of proteostasis, and mitochondrial dysfunction. We discuss the recent findings on the role of reactive oxygen species (ROS) in specific fibrotic processes such as macrophage polarization and immunosenescence, alveolar epithelial cell apoptosis and senescence, myofibroblast differentiation and senescence, and alterations in the acellular extracellular matrix. Finally, we provide an overview of the current preclinical studies and clinical trials targeting oxidative stress in fibrosis and potential new strategies for future therapeutic interventions. © 2020 American Physiological Society. Compr Physiol 10:509-547, 2020.
Collapse
Affiliation(s)
- Eva Otoupalova
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sam Smith
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Guangjie Cheng
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Victor J Thannickal
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
13
|
Li J, Feng M, Sun R, Li Z, Hu L, Peng G, Xu X, Wang W, Cui F, Yue W, He J, Liu J. Andrographolide ameliorates bleomycin-induced pulmonary fibrosis by suppressing cell proliferation and myofibroblast differentiation of fibroblasts via the TGF-β1-mediated Smad-dependent and -independent pathways. Toxicol Lett 2020; 321:103-113. [DOI: 10.1016/j.toxlet.2019.11.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/01/2019] [Accepted: 11/05/2019] [Indexed: 12/15/2022]
|
14
|
Wang S, Luan J, Lv X. Inhibition of Endoplasmic Reticulum Stress Attenuated Ethanol-Induced Exosomal miR-122 and Acute Liver Injury in Mice. Alcohol Alcohol 2020; 54:465-471. [PMID: 31361816 DOI: 10.1093/alcalc/agz058] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 07/19/2019] [Indexed: 12/19/2022] Open
Abstract
AIMS In acute alcoholic liver injury, alcohol can directly or indirectly induce endoplasmic reticulum stress (ERS) to participate in liver injury, and it is found that the expression of serum exosomal miR-122 is significantly affected. Therefore, the present study investigated the effects of endoplasmic reticulum stress inhibition on the expression of serum exosomal miR-122 and acute liver injury. METHODS The acute alcoholic liver injury models were established by the intragastric administration of ethanol (5 g/kg) in ICR mice. Intervention group received 4-phenylbutyric acid (PBA, endoplasmic reticulum stress inhibitor; 75 mg/kg and 150 mg/kg, intraperitoneal) 12 and 24 hours before intragastric administration. Mice treated with saline were used as controls. RESULTS The ethanol treated mice exhibited significantly elevated hepatosomatic index (liver weight/body weight) and alanine aminotransferase (ALT), compared with those in the control group (P < 0.05). The ERS inhibitor 4-phenylbutyric acid protected against ethanol induced acute liver injury and hepatocyte necrosis, and PBA 150 mg/kg significantly attenuated ethanol induced hepatic ER stress-related proteins (GRP78, pIRE1α and pIF2α) (P < 0.05). Moreover, PBA 150 mg/kg markedly alleviated ethanol induced elevation of hepatic and serum exosomal miR-122 and pri-miR-122 (P < 0.05). CONCLUSIONS These findings suggest that ER stress inhibitor PBA attenuated ethanol induced acute liver injury and serum exosomal miR-122, and provides a potential therapy strategy for acute alcoholic liver injury.
Collapse
Affiliation(s)
- Sheng Wang
- Department of Pharmacy, Yijishan Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, China.,The Key Laboratory of Anti-inflammatory and Immune medicines, Ministry of Education, School of Pharmacy, Institute for Liver Disease of Anhui Medical University, Hefei, Anhui Province, China
| | - Jiajie Luan
- Department of Pharmacy, Yijishan Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Xiongwen Lv
- The Key Laboratory of Anti-inflammatory and Immune medicines, Ministry of Education, School of Pharmacy, Institute for Liver Disease of Anhui Medical University, Hefei, Anhui Province, China
| |
Collapse
|
15
|
Hu B, Tong B, Xiang Y, Li SR, Tan ZX, Xiang HX, Fu L, Wang H, Zhao H, Xu DX. Acute 1-NP exposure induces inflammatory responses through activating various inflammatory signaling pathways in mouse lungs and human A549 cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 189:109977. [PMID: 31759747 DOI: 10.1016/j.ecoenv.2019.109977] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
1-Nitropyrene (1-NP), a key component of fine particulate matter (PM2.5), is a representative of nitrated polycyclic aromatic hydrocarbons (NPAHs). The aim of this research is to investigate proinflammatory effects of acute 1-NP exposure in mouse lungs and human A549 cells. All mice except controls were intratracheally instilled with 1-NP (20 μg/mouse). A549 cell, a human lung cancer cell line, was cultured with or without 1-NP (5 μM). Acute 1-NP exposure elevated lung weight and caused infiltration of inflammatory cells, especially neutrophils in mouse lungs. Although it had little effect on serum TNF-α and KC, acute 1-NP exposure elevated the levels of TNF-α and KC in BALF. Correspondingly, acute 1-NP exposure upregulated pulmonary Il-1β, Il-6, Tnf-α and Kc. Mechanistically, acute 1-NP exposure activated nuclear factor kappa B (NF-κB) in mouse lungs and human A549 cells. Additionally, acute 1-NP exposure induced Akt phosphorylation in mouse lungs and human A549 cells. Moreover, acute 1-NP exposure induced phosphorylation of pulmonary JNK and ERK1/2, molecules of the mitogen-activated protein kinase (MAPK) pathway. This study provides evidence that acute 1-NP exposure induces inflammatory responses through activating various inflammatory signaling pathways in mouse lungs and human A549 cells.
Collapse
Affiliation(s)
- Biao Hu
- Second Affiliated Hospital, Anhui Medical University, Hefei, 230032, China; Department of Toxicology, Anhui Medical University, Hefei, 230032, China
| | - Bin Tong
- Second Affiliated Hospital, Anhui Medical University, Hefei, 230032, China
| | - Ying Xiang
- Second Affiliated Hospital, Anhui Medical University, Hefei, 230032, China; Department of Toxicology, Anhui Medical University, Hefei, 230032, China
| | - Se-Ruo Li
- Second Affiliated Hospital, Anhui Medical University, Hefei, 230032, China
| | - Zhu-Xia Tan
- Second Affiliated Hospital, Anhui Medical University, Hefei, 230032, China
| | - Hui-Xian Xiang
- Second Affiliated Hospital, Anhui Medical University, Hefei, 230032, China
| | - Lin Fu
- Second Affiliated Hospital, Anhui Medical University, Hefei, 230032, China; Department of Toxicology, Anhui Medical University, Hefei, 230032, China
| | - Hua Wang
- Department of Toxicology, Anhui Medical University, Hefei, 230032, China
| | - Hui Zhao
- Second Affiliated Hospital, Anhui Medical University, Hefei, 230032, China.
| | - De-Xiang Xu
- Department of Toxicology, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
16
|
Li SR, Tan ZX, Chen YH, Hu B, Zhang C, Wang H, Zhao H, Xu DX. Vitamin D deficiency exacerbates bleomycin-induced pulmonary fibrosis partially through aggravating TGF-β/Smad2/3-mediated epithelial-mesenchymal transition. Respir Res 2019; 20:266. [PMID: 31775746 PMCID: PMC6882226 DOI: 10.1186/s12931-019-1232-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/05/2019] [Indexed: 12/19/2022] Open
Abstract
Background Our earlier report indicated that active vitamin D3 inhibited epithelial-mesenchymal transition (EMT) in bleomycin (BLM)-induced pulmonary fibrosis. The objective of this study was to further investigate whether vitamin D deficiency exacerbates BLM-induced pulmonary fibrosis. Methods This study consists of two independent experiments. Experiment 1, male mice were fed with vitamin D deficient (VDD) fodder. Experiment 2, Cyp27b1+/+, Cyp27b1+/− and Cyp27b1−/− mice were fed with standard diet. For pulmonary fibrosis, mice were intratracheally instilled with a single dose of BLM (1.5 mg/kg). Serum 25(OH) D level was measured. Pulmonary collagen deposition was assessed by Sirius red staining. EMT was measured and transforming growth factor-beta (TGF-β)/Smad3 signaling was evaluated in the lungs of BLM-treated mice. Results The relative weight of lungs was elevated in BLM-treated mice. Col1α1 and Col1α2, two collagen protein genes, were upregulated, and collagen deposition, as determined by Sirius red staining, was observed in the lungs of BLM-treated mice. E-cadherin, an epithelial marker, was downregulated. By contrast, vimentin and α-SMA, two EMT markers, were upregulated in the lungs of BLM-treated mice. Pulmonary TGF-β/Smad3 signaling was activated in BLM-induced lung fibrosis. Further analysis showed that feeding VDD diet, leading to vitamin D deficiency, aggravated elevation of BLM-induced relative lung weight. Moreover, feeding VDD diet aggravated BLM-induced TGF-β/Smad3 activation and subsequent EMT in the lungs. In addition, feeding VDD diet exacerbated BLM-induced pulmonary fibrosis. Additional experiment showed that Cyp27b1 gene knockout, leading to active vitamin D3 deficiency, exacerbated BLM-induced pulmonary fibrosis. Moreover, Cyp27b1 gene knockout aggravated pulmonary TGF-β/Smad2/3 activation and subsequent EMT in BLM-induced lung fibrosis. Conclusion Vitamin D deficiency exacerbates BLM-induced pulmonary fibrosis partially through aggravating TGF-β/Smad2/3-mediated EMT in the lungs.
Collapse
Affiliation(s)
- Se-Ruo Li
- Second Affiliated Hospital, Anhui Medical University, Hefei, 230032, China
| | - Zhu-Xia Tan
- Second Affiliated Hospital, Anhui Medical University, Hefei, 230032, China
| | - Yuan-Hua Chen
- Department of Toxicology, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Biao Hu
- Second Affiliated Hospital, Anhui Medical University, Hefei, 230032, China
| | - Cheng Zhang
- Department of Toxicology, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Hua Wang
- Department of Toxicology, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Hui Zhao
- Second Affiliated Hospital, Anhui Medical University, Hefei, 230032, China.
| | - De-Xiang Xu
- Department of Toxicology, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China.
| |
Collapse
|
17
|
Protein Misfolding and Endoplasmic Reticulum Stress in Chronic Lung Disease: Will Cell-Specific Targeting Be the Key to the Cure? Chest 2019; 157:1207-1220. [PMID: 31778676 DOI: 10.1016/j.chest.2019.11.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 11/07/2019] [Accepted: 11/10/2019] [Indexed: 12/31/2022] Open
Abstract
Chronic lung disease accounts for a significant global burden with respect to death, disability, and health-care costs. Due to the heterogeneous nature and limited treatment options for these diseases, it is imperative that the cellular and molecular mechanisms underlying the disease pathophysiology are further understood. The lung is a complex organ with a diverse cell population, and each cell type will likely have different roles in disease initiation, progression, and resolution. The effectiveness of a given therapeutic agent may depend on the net effect on each of these cell types. Over the past decade, it has been established that endoplasmic reticulum stress and the unfolded protein response are involved in the development of several chronic lung diseases. These conserved cellular pathways are important for maintaining cellular proteostasis, but their aberrant activation can result in pathology. This review discusses the current understanding of endoplasmic reticulum stress and the unfolded protein response at the cellular level in the development and progression of various chronic lung diseases. We highlight the need for increased understanding of the specific cellular contributions of unfolded protein response activation to these pathologies and suggest that the development of cell-specific targeted therapies is likely required to further decrease disease progression and to promote resolution of chronic lung disease.
Collapse
|
18
|
Fei J, Fu L, Cao W, Hu B, Zhao H, Li JB. Low Vitamin D Status Is Associated with Epithelial-Mesenchymal Transition in Patients with Chronic Obstructive Pulmonary Disease. THE JOURNAL OF IMMUNOLOGY 2019; 203:1428-1435. [PMID: 31427443 DOI: 10.4049/jimmunol.1900229] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 07/19/2019] [Indexed: 01/04/2023]
Abstract
Vitamin D deficiency is correlated with the increased morbidity of chronic obstructive pulmonary disease (COPD). However, the mechanisms underlying these effects have largely remained elusive. This study analyzed the correlations among COPD, vitamin D concentration, and epithelial-mesenchymal transition (EMT). Ninety-five patients with newly diagnosed COPD and 190 age- and sex-matched healthy subjects were recruited for this research. Serum 25(OH)D levels were detected, and pulmonary EMT biomarkers and TGF-β/Smad signaling were evaluated. Serum 25(OH)D level was remarkably decreased in COPD patients compared with that in control subjects. Furthermore, serum 25(OH)D concentration gradually decreased in COPD patients ranging from grade 1-2 to 4. However, reduced expression of the epithelial biomarker E-cadherin and increased expression of the mesenchymal biomarkers vimentin and α-SMA were found in COPD patients. Mechanistic analysis showed that pulmonary nuclear vitamin D receptor (VDR) was decreased in patients with COPD. In contrast, TGF-β/Smad signaling was obviously activated in COPD patients. Furthermore, the level of serum TGF-β in COPD patients increased in parallel with COPD severity. Serum 25(OH)D concentration was inversely associated with TGF-β levels in COPD patients. In vitro experiments showed that active vitamin D3 inhibits TGF-β-induced Smad2/3 phosphorylation in MRC-5 cells. Furthermore, vitamin D concentration was inversely correlated with TGF-β/Smad signaling and EMT in COPD patients, suggesting EMT as a vital mediator of COPD development in patients with low vitamin D concentrations.
Collapse
Affiliation(s)
- Jun Fei
- First Affiliated Hospital, Anhui Medical University, Hefei 230032, China; .,Second Affiliated Hospital, Anhui Medical University, Hefei 230032, China
| | - Lin Fu
- Second Affiliated Hospital, Anhui Medical University, Hefei 230032, China; .,Department of Toxicology, Anhui Medical University, Hefei 230032, China; and
| | - Wei Cao
- Second Affiliated Hospital, Anhui Medical University, Hefei 230032, China
| | - Biao Hu
- Second Affiliated Hospital, Anhui Medical University, Hefei 230032, China
| | - Hui Zhao
- Second Affiliated Hospital, Anhui Medical University, Hefei 230032, China
| | - Jia-Bin Li
- First Affiliated Hospital, Anhui Medical University, Hefei 230032, China; .,Anhui Center for Surveillance of Bacterial Resistance, Hefei 230032, China
| |
Collapse
|
19
|
Dickens JA, Malzer E, Chambers JE, Marciniak SJ. Pulmonary endoplasmic reticulum stress-scars, smoke, and suffocation. FEBS J 2019; 286:322-341. [PMID: 29323786 DOI: 10.1111/febs.14381] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/11/2017] [Accepted: 01/08/2018] [Indexed: 12/14/2022]
Abstract
Protein misfolding within the endoplasmic reticulum (ER stress) can be a cause or consequence of pulmonary disease. Mutation of proteins restricted to the alveolar type II pneumocyte can lead to inherited forms of pulmonary fibrosis, but even sporadic cases of pulmonary fibrosis appear to be strongly associated with activation of the unfolded protein response and/or the integrated stress response. Inhalation of smoke can impair protein folding and may be an important cause of pulmonary ER stress. Similarly, tissue hypoxia can lead to impaired protein homeostasis (proteostasis). But the mechanisms linking smoke and hypoxia to ER stress are only partially understood. In this review, we will examine the role of ER stress in the pathogenesis of lung disease by focusing on fibrosis, smoke, and hypoxia.
Collapse
Affiliation(s)
- Jennifer A Dickens
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, UK
| | - Elke Malzer
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, UK
| | - Joseph E Chambers
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, UK
| | - Stefan J Marciniak
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, UK
| |
Collapse
|
20
|
Delbrel E, Soumare A, Naguez A, Label R, Bernard O, Bruhat A, Fafournoux P, Tremblais G, Marchant D, Gille T, Bernaudin JF, Callard P, Kambouchner M, Martinod E, Valeyre D, Uzunhan Y, Planès C, Boncoeur E. HIF-1α triggers ER stress and CHOP-mediated apoptosis in alveolar epithelial cells, a key event in pulmonary fibrosis. Sci Rep 2018; 8:17939. [PMID: 30560874 PMCID: PMC6299072 DOI: 10.1038/s41598-018-36063-2] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 11/09/2018] [Indexed: 12/28/2022] Open
Abstract
Endoplasmic Reticulum (ER) stress of alveolar epithelial cells (AECs) is recognized as a key event of cell dysfunction in pulmonary fibrosis (PF). However, the mechanisms leading to AECs ER stress and ensuing unfolded protein response (UPR) pathways in idiopathic PF (IPF) remain unclear. We hypothesized that alveolar hypoxic microenvironment would generate ER stress and AECs apoptosis through the hypoxia-inducible factor-1α (HIF-1α). Combining ex vivo, in vivo and in vitro experiments, we investigated the effects of hypoxia on the UPR pathways and ER stress-mediated apoptosis, and consecutively the mechanisms linking hypoxia, HIF-1α, UPR and apoptosis. HIF-1α and the pro-apoptotic ER stress marker C/EBP homologous protein (CHOP) were co-expressed in hyperplastic AECs from bleomycin-treated mice and IPF lungs, not in controls. Hypoxic exposure of rat lungs or primary rat AECs induced HIF-1α, CHOP and apoptosis markers expression. In primary AECs, hypoxia activated UPR pathways. Pharmacological ER stress inhibitors and pharmacological inhibition or silencing of HIF-1α both prevented hypoxia-induced upregulation of CHOP and apoptosis. Interestingly, overexpression of HIF-1α in normoxic AECs increased UPR pathways transcription factors activities, and CHOP expression. These results indicate that hypoxia and HIF-1α can trigger ER stress and CHOP-mediated apoptosis in AECs, suggesting their potential contribution to the development of IPF.
Collapse
Affiliation(s)
- Eva Delbrel
- Université Paris 13, Sorbonne Paris Cité, Laboratoire 'Hypoxie & Poumon' (EA 2363), F-93017, Bobigny, France
| | - Abdoulaye Soumare
- Université Paris 13, Sorbonne Paris Cité, Laboratoire 'Hypoxie & Poumon' (EA 2363), F-93017, Bobigny, France
| | - Adnan Naguez
- Université Paris 13, Sorbonne Paris Cité, Laboratoire 'Hypoxie & Poumon' (EA 2363), F-93017, Bobigny, France
| | - Rabab Label
- Université Paris 13, Sorbonne Paris Cité, Laboratoire 'Hypoxie & Poumon' (EA 2363), F-93017, Bobigny, France
| | - Olivier Bernard
- Université Paris 13, Sorbonne Paris Cité, Laboratoire 'Hypoxie & Poumon' (EA 2363), F-93017, Bobigny, France
| | - Alain Bruhat
- Institut National de la Recherche Agronomique (INRA), UMR-1019 Nutrition Humaine, Centre INRA Auvergne Rhône-Alpes, Clermont Auvergne Université, 63122, Saint Genès Champanelle, France
| | - Pierre Fafournoux
- Institut National de la Recherche Agronomique (INRA), UMR-1019 Nutrition Humaine, Centre INRA Auvergne Rhône-Alpes, Clermont Auvergne Université, 63122, Saint Genès Champanelle, France
| | - Geoffrey Tremblais
- Université Paris 13, Sorbonne Paris Cité, Laboratoire 'Hypoxie & Poumon' (EA 2363), F-93017, Bobigny, France
| | - Dominique Marchant
- Université Paris 13, Sorbonne Paris Cité, Laboratoire 'Hypoxie & Poumon' (EA 2363), F-93017, Bobigny, France
| | - Thomas Gille
- Université Paris 13, Sorbonne Paris Cité, Laboratoire 'Hypoxie & Poumon' (EA 2363), F-93017, Bobigny, France.,APHP, Hôpital Avicenne, F-93017, Bobigny, France
| | - Jean-François Bernaudin
- Université Paris 13, Sorbonne Paris Cité, Laboratoire 'Hypoxie & Poumon' (EA 2363), F-93017, Bobigny, France.,APHP, Hôpital Avicenne, F-93017, Bobigny, France.,Sorbonne Université, Faculté de Médecine, 75013, Paris, France
| | - Patrice Callard
- Sorbonne Université, Faculté de Médecine, 75013, Paris, France
| | | | - Emmanuel Martinod
- Université Paris 13, Sorbonne Paris Cité, Laboratoire 'Hypoxie & Poumon' (EA 2363), F-93017, Bobigny, France.,APHP, Hôpital Avicenne, F-93017, Bobigny, France
| | - Dominique Valeyre
- Université Paris 13, Sorbonne Paris Cité, Laboratoire 'Hypoxie & Poumon' (EA 2363), F-93017, Bobigny, France.,APHP, Hôpital Avicenne, F-93017, Bobigny, France
| | - Yurdagül Uzunhan
- Université Paris 13, Sorbonne Paris Cité, Laboratoire 'Hypoxie & Poumon' (EA 2363), F-93017, Bobigny, France.,APHP, Hôpital Avicenne, F-93017, Bobigny, France
| | - Carole Planès
- Université Paris 13, Sorbonne Paris Cité, Laboratoire 'Hypoxie & Poumon' (EA 2363), F-93017, Bobigny, France.,APHP, Hôpital Avicenne, F-93017, Bobigny, France
| | - Emilie Boncoeur
- Université Paris 13, Sorbonne Paris Cité, Laboratoire 'Hypoxie & Poumon' (EA 2363), F-93017, Bobigny, France.
| |
Collapse
|
21
|
Zheng Q, Tong M, Ou B, Liu C, Hu C, Yang Y. Isorhamnetin protects against bleomycin-induced pulmonary fibrosis by inhibiting endoplasmic reticulum stress and epithelial-mesenchymal transition. Int J Mol Med 2018; 43:117-126. [PMID: 30387812 PMCID: PMC6257865 DOI: 10.3892/ijmm.2018.3965] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 10/10/2018] [Indexed: 02/06/2023] Open
Abstract
The present study aimed to determine whether isorhamnetin (Isor), a natural antioxidant polyphenol, has antifibrotic effects in a murine model of bleomycin-induced pulmonary fibrosis. A C57 mouse model of pulmonary fibrosis was established by intraperitoneal injection of a single dose of bleomycin (3.5 U/kg), and then Isor (10 and 30 mg/kg) was administered intragastrically. The level of fibrosis was assessed by hematoxylin and eosin and Sirius red staining. α-smooth muscle actin and type I collagen levels in lung tissues were determined by western blotting and immunohistochemistry (IHC). Epithelial-mesenchymal transition (EMT), endoplasmic reticulum stress (ERS) and related signaling pathways were examined by western blotting and IHC. In vitro, human bronchial epithelial cells (HBECs) and A549 cells were treated with transforming growth factor (TGF)β1 with or without Isor, and collagen deposition and the expression levels of EMT- and ERS-related genes or proteins were analyzed by reverse transcription-quantitative polymerase chain reaction, western blotting, and immunofluorescence. The results demonstrated that Isor inhibited bleomycin-induced collagen deposition, reduced type I collagen and α-SMA expression, and alleviated EMT and ERS in vivo. Furthermore, incubation of HBECs and A549 cells with TGFβ1 activated EMT and ERS, and this effect was reversed by Isor. In conclusion, Isor treatment attenuated bleomycin-induced EMT and pulmonary fibrosis and suppressed bleomycin-induced ERS and the activation of PERK signaling.
Collapse
Affiliation(s)
- Qing Zheng
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Ming Tong
- Department of Infectious Diseases, Hunan Provincial People's Hospital, Hunan Normal University, Changsha, Hunan 410005, P.R. China
| | - Baiqing Ou
- Department of Geriatrics, Hunan Provincial People's Hospital, Hunan Normal University, Changsha, Hunan 410005, P.R. China
| | - Cuizhong Liu
- Department of Geriatrics, Hunan Provincial People's Hospital, Hunan Normal University, Changsha, Hunan 410005, P.R. China
| | - Changping Hu
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410078, P.R. China
| | - Yu Yang
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
22
|
Mukai S, Ogawa Y, Urano F, Kawakami Y, Tsubota K. Novel elucidation and treatment of pancreatic chronic graft-versus-host disease in mice. ROYAL SOCIETY OPEN SCIENCE 2018; 5:181067. [PMID: 30473850 PMCID: PMC6227968 DOI: 10.1098/rsos.181067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 09/20/2018] [Indexed: 06/09/2023]
Abstract
Chronic graft-versus-host disease (cGVHD) is a severe complication of allogeneic haematopoietic stem cell transplantation. There is a growing understanding of cGVHD, and several effective therapies for cGVHD have been reported. However, pancreatic cGVHD is a potentially untapped study field. Our thought-provoking study using a mouse model of cGVHD suggested that the pancreas could be impaired by cGVHD-induced inflammation and fibrosis and that endoplasmic reticulum (ER) stress was augmented in the pancreas affected by cGVHD. These findings urged us to treat pancreatic cGVHD through reduction of ER stress, and we used 4-phenylbutyric acid (PBA) as an ER stress reducer. A series of experiments has indicated that PBA can suppress cGVHD-elicited ER stress in the pancreas and accordingly alleviate pancreatic cGVHD. Furthermore, we focused on a correlation between epithelial to mesenchymal transition (EMT) and fibrosis in the cGVHD-affected pancreas, because EMT was conceivably implicated in various fibrosis-associated diseases. Our investigation has suggested that the expression of EMT markers was increased in the cGVHD-disordered pancreas and that it could be reduced by PBA. Taken together, we have provided a clue to elucidate the pathogenic process of pancreatic cGVHD and created a potentially effective treatment of this disease using the ER stress alleviator PBA.
Collapse
Affiliation(s)
- Shin Mukai
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- Division of Cellular Signalling, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Yoko Ogawa
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Fumihiko Urano
- Department of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Yutaka Kawakami
- Division of Cellular Signalling, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Kazuo Tsubota
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
23
|
Chen ACH, Burr L, McGuckin MA. Oxidative and endoplasmic reticulum stress in respiratory disease. Clin Transl Immunology 2018; 7:e1019. [PMID: 29928501 PMCID: PMC5999202 DOI: 10.1002/cti2.1019] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 05/01/2018] [Accepted: 05/03/2018] [Indexed: 01/01/2023] Open
Abstract
Oxidative stress and endoplasmic reticulum (ER) stress are related states that can occur in cells as part of normal physiology but occur frequently in diseases involving inflammation. In this article, we review recent findings relating to the role of oxidative and ER stress in the pathophysiology of acute and chronic nonmalignant diseases of the lung, including infections, cystic fibrosis, idiopathic pulmonary fibrosis and asthma. We also explore the potential of drugs targeting oxidative and ER stress pathways to alleviate disease.
Collapse
Affiliation(s)
- Alice C-H Chen
- Diamantina Institute Faculty of Medicine The University of Queensland Brisbane QLD Australia.,Department of Cell and Molecular Therapy Royal Prince Alfred Hospital Sydney NSW Australia
| | - Lucy Burr
- Department of Respiratory Medicine Mater Adult Hospital and Mater Research Institute - The University of Queensland Raymond Tce, South Brisbane QLD Australia
| | - Michael A McGuckin
- Inflammatory Disease Biology and Therapeutics Group Translational Research Institute Mater Research Institute - The University of Queensland Brisbane QLD Australia
| |
Collapse
|
24
|
Kropski JA, Blackwell TS. Endoplasmic reticulum stress in the pathogenesis of fibrotic disease. J Clin Invest 2018; 128:64-73. [PMID: 29293089 DOI: 10.1172/jci93560] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Eukaryotic cells contain an elegant protein quality control system that is crucial in maintaining cellular homeostasis; however, dysfunction of this system results in endoplasmic reticulum (ER) stress and activation of the unfolded protein response (UPR). Severe or prolonged ER stress is associated with the development of degenerative and fibrotic disorders in multiple organs, as evidenced by the identification of disease-causing mutations in epithelial-restricted genes that lead to protein misfolding or mistrafficking in familial fibrotic diseases. Emerging evidence implicates ER stress and UPR signaling in a variety of profibrotic mechanisms in individual cell types. In epithelial cells, ER stress can induce apoptosis, inflammatory signaling, and epithelial-mesenchymal transition. In other cell types, ER stress is linked to myofibroblast activation, macrophage polarization, and T cell differentiation. ER stress-targeted therapies have begun to emerge using approaches that range from global enhancement of chaperone function to selective targeting of activated ER stress sensors and other downstream mediators. As the complex regulatory mechanisms of this system are further clarified, there are opportunities to develop new disease-modifying therapeutic strategies in a wide range of chronic fibrotic diseases.
Collapse
Affiliation(s)
- Jonathan A Kropski
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Veterans Affairs Medical Center, Nashville, Tennessee, USA
| | - Timothy S Blackwell
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Veterans Affairs Medical Center, Nashville, Tennessee, USA.,Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
25
|
Nemmar A, Karaca T, Beegam S, Yuvaraju P, Yasin J, Ali BH. Lung Oxidative Stress, DNA Damage, Apoptosis, and Fibrosis in Adenine-Induced Chronic Kidney Disease in Mice. Front Physiol 2017; 8:896. [PMID: 29218013 PMCID: PMC5703828 DOI: 10.3389/fphys.2017.00896] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 10/24/2017] [Indexed: 12/11/2022] Open
Abstract
It is well-established that there is a crosstalk between the lung and the kidney, and several studies have reported association between chronic kidney disease (CKD) and pulmonary pathophysiological changes. Experimentally, CKD can be caused in mice by dietary intake of adenine. Nevertheless, the consequence of such intervention on the lung received only scant attention. Here, we assessed the pulmonary effects of adenine (0.2% w/w in feed for 4 weeks)-induced CKD in mice by assessing various physiological histological and biochemical endpoints. Adenine treatment induced a significant increase in urine output, urea and creatinine concentrations, and it decreased the body weight and creatinine clearance. It also increased proteinuria and the urinary levels of kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin. Compared with control group, the histopathological evaluation of lungs from adenine-treated mice showed polymorphonuclear leukocytes infiltration in alveolar and bronchial walls, injury, and fibrosis. Moreover, adenine caused a significant increase in lung lipid peroxidation and reactive oxygen species and decreased the antioxidant catalase. Adenine also induced DNA damage assessed by COMET assay. Similarly, adenine caused apoptosis in the lung characterized by a significant increase of cleaved caspase-3. Moreover, adenine induced a significant increase in the expression of nuclear factor erythroid 2–related factor 2 (Nrf2) in the lung. We conclude that administration of adenine in mice induced CKD is accompanied by lung oxidative stress, DNA damage, apoptosis, and Nrf2 expression and fibrosis.
Collapse
Affiliation(s)
- Abderrahim Nemmar
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Turan Karaca
- Department of Histology and Embryology, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Sumaya Beegam
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Priya Yuvaraju
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Javed Yasin
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Badreldin H Ali
- Department of Pharmacology and Clinical Pharmacy, College of Medicine & Health Sciences, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
26
|
Mora AL, Rojas M, Pardo A, Selman M. Emerging therapies for idiopathic pulmonary fibrosis, a progressive age-related disease. Nat Rev Drug Discov 2017; 16:810. [PMID: 29081515 DOI: 10.1038/nrd.2017.225] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
27
|
Mora AL, Rojas M, Pardo A, Selman M. Emerging therapies for idiopathic pulmonary fibrosis, a progressive age-related disease. Nat Rev Drug Discov 2017; 16:755-772. [DOI: 10.1038/nrd.2017.170] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
28
|
Jenkins RG, Moore BB, Chambers RC, Eickelberg O, Königshoff M, Kolb M, Laurent GJ, Nanthakumar CB, Olman MA, Pardo A, Selman M, Sheppard D, Sime PJ, Tager AM, Tatler AL, Thannickal VJ, White ES. An Official American Thoracic Society Workshop Report: Use of Animal Models for the Preclinical Assessment of Potential Therapies for Pulmonary Fibrosis. Am J Respir Cell Mol Biol 2017; 56:667-679. [PMID: 28459387 DOI: 10.1165/rcmb.2017-0096st] [Citation(s) in RCA: 285] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Numerous compounds have shown efficacy in limiting development of pulmonary fibrosis using animal models, yet few of these compounds have replicated these beneficial effects in clinical trials. Given the challenges associated with performing clinical trials in patients with idiopathic pulmonary fibrosis (IPF), it is imperative that preclinical data packages be robust in their analyses and interpretations to have the best chance of selecting promising drug candidates to advance to clinical trials. The American Thoracic Society has convened a group of experts in lung fibrosis to discuss and formalize recommendations for preclinical assessment of antifibrotic compounds. The panel considered three major themes (choice of animal, practical considerations of fibrosis modeling, and fibrotic endpoints for evaluation). Recognizing the need for practical considerations, we have taken a pragmatic approach. The consensus view is that use of the murine intratracheal bleomycin model in animals of both genders, using hydroxyproline measurements for collagen accumulation along with histologic assessments, is the best-characterized animal model available for preclinical testing. Testing of antifibrotic compounds in this model is recommended to occur after the acute inflammatory phase has subsided (generally after Day 7). Robust analyses may also include confirmatory studies in human IPF specimens and validation of results in a second system using in vivo or in vitro approaches. The panel also strongly encourages the publication of negative results to inform the lung fibrosis community. These recommendations are for preclinical therapeutic evaluation only and are not intended to dissuade development of emerging technologies to better understand IPF pathogenesis.
Collapse
|
29
|
Wang Y, Chen C, Deng Z, Bian E, Huang C, Lei T, Lv X, Liu L, Li J. Repression of TSC1/TSC2 mediated by MeCP2 regulates human embryo lung fibroblast cell differentiation and proliferation. Int J Biol Macromol 2016; 96:578-588. [PMID: 28041914 DOI: 10.1016/j.ijbiomac.2016.12.062] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 12/22/2016] [Accepted: 12/22/2016] [Indexed: 12/12/2022]
Abstract
Pulmonary fibrosis (PF) is a severe inflammatory disease with limited effective treatments. It is known that the transdifferentiation of human embryo lung fibroblast (HELF) cells from pulmonary fibroblasts into myofibroblasts, contributes to the progression of pulmonary fibrogenesis. The tuberous sclerosis proteins TSC1 and TSC2 are two key signaling factors which can suppress cell growth and proliferation. However, the roles of TSC1 and TSC2 in lung fibroblast are unclear. Here, we developed a PF model with bleomycin (BLM) in mice and conducted several simulation experiments in HELF cells. Our study shows that the expression of TSC1 and TSC2 in fibrotic mice lung was reduced and stimulation of HELF cells with TGF-β1 resulted in a down-regulation of TSC1 and TSC2. In addition, overexpression of TSC1 or TSC2 decreased cell proliferation and differentiation. Furthermore, we found that reduced expression of TSC1 and TSC2 caused by TGF-β1 is associated with the promoter methylation status of TSC1 and TSC2. MeCP2, controls an epigenetic pathway that promotes myofibroblast transdifferentiation and fibrosis. We found that expression of TSC1 and TSC2 can be repressed by MeCP2, which regulates HELF cell differentiation and proliferation as myofibroblasts and lead to PF ultimately.
Collapse
Affiliation(s)
- Yuanyuan Wang
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China; Department of Pharmacology, The Second Hospital of Anhui Medical University, 678 Furong Road, Hefei 230601, Anhui, China
| | - Chen Chen
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China; Hefei Binghu Hospital, 3200 Changsha Road, Hefei 230000, Anhui, China
| | - Ziyu Deng
- Department of Scientific and Educational, The Second Hospital of Anhui Medical University, 678 Furong Road, Hefei 230601, Anhui, China
| | - Erbao Bian
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China
| | - Cheng Huang
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China
| | - Ting Lei
- Department of Pharmacology, The Second Hospital of Anhui Medical University, 678 Furong Road, Hefei 230601, Anhui, China
| | - Xiongwen Lv
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China
| | - Liping Liu
- Department of Pharmacology, The Second Hospital of Anhui Medical University, 678 Furong Road, Hefei 230601, Anhui, China
| | - Jun Li
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China.
| |
Collapse
|
30
|
Lu Y, Xing QQ, Xu JY, Ding D, Zhao X. Astragalus polysaccharide modulates ER stress response in an OVA-LPS induced murine model of severe asthma. Int J Biol Macromol 2016; 93:995-1006. [PMID: 27645929 DOI: 10.1016/j.ijbiomac.2016.09.058] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 08/24/2016] [Accepted: 09/15/2016] [Indexed: 11/30/2022]
Abstract
Endoplasmic reticulum (ER) stress has been recently revealed to play a pivotal role in the pathogenesis of severe asthma. Astragalus polysaccharide (APS), a major bioactive component from Astragalus membranaceus, exerts immunomodulatory and anti-inflammatory effects and has been shown to suppress ER stress in chronic diseases such as type-2 diabetes. However, the pharmaceutical application of APS in the treatment of severe asthma is unknown. The results obtained here indicate that APS significantly attenuates eosinophils and neutrophil-dominant airway inflammation by reducing the mRNA levels of Cxcl5, Il8, and chemokine (C-C motif) ligand 20 (Ccl20) and the protein levels of IL13RA and IL17RA. APS also inhibits the activation of unfolded protein response by decreasing the levels of ER stress markers such as C/EBP homologous protein (CHOP), which was associated with a reduction of PERK phosphorylation. Moreover, APS substantially blocks the nuclear translocation of ATF6 and NF-κB p65. Interestingly, we observed that APS markedly suppresses mucus hypersecretion by decreasing the levels of mucin (MUC) 5AC and MUC5B, which might be due to inhibition of goblet cells differentiation by suppressing the expression of IRE1β-correlated genes. In summary, APS can have potential pharmaceutical application in treatment of severe asthma.
Collapse
Affiliation(s)
- Yuan Lu
- Pediatric institution of Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing, 210023, China
| | - Qiong-Qiong Xing
- Pediatric institution of Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing, 210023, China
| | - Jian-Ya Xu
- Pediatric institution of Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing, 210023, China
| | - Dou Ding
- Pediatric institution of Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing, 210023, China
| | - Xia Zhao
- Pediatric institution of Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing, 210023, China.
| |
Collapse
|
31
|
Foufelle F, Fromenty B. Role of endoplasmic reticulum stress in drug-induced toxicity. Pharmacol Res Perspect 2016; 4:e00211. [PMID: 26977301 PMCID: PMC4777263 DOI: 10.1002/prp2.211] [Citation(s) in RCA: 179] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 12/14/2015] [Indexed: 12/13/2022] Open
Abstract
Drug‐induced toxicity is a key issue for public health because some side effects can be severe and life‐threatening. These adverse effects can also be a major concern for the pharmaceutical companies since significant toxicity can lead to the interruption of clinical trials, or the withdrawal of the incriminated drugs from the market. Recent studies suggested that endoplasmic reticulum (ER) stress could be an important event involved in drug liability, in addition to other key mechanisms such as mitochondrial dysfunction and oxidative stress. Indeed, drug‐induced ER stress could lead to several deleterious effects within cells and tissues including accumulation of lipids, cell death, cytolysis, and inflammation. After recalling important information regarding drug‐induced adverse reactions and ER stress in diverse pathophysiological situations, this review summarizes the main data pertaining to drug‐induced ER stress and its potential involvement in different adverse effects. Drugs presented in this review are for instance acetaminophen (APAP), arsenic trioxide and other anticancer drugs, diclofenac, and different antiretroviral compounds. We also included data on tunicamycin (an antibiotic not used in human medicine because of its toxicity) and thapsigargin (a toxic compound of the Mediterranean plant Thapsia garganica) since both molecules are commonly used as prototypical toxins to induce ER stress in cellular and animal models.
Collapse
|
32
|
Ying R, Wang XQ, Yang Y, Gu ZJ, Mai JT, Qiu Q, Chen YX, Wang JF. Hydrogen sulfide suppresses endoplasmic reticulum stress-induced endothelial-to-mesenchymal transition through Src pathway. Life Sci 2015; 144:208-17. [PMID: 26656263 DOI: 10.1016/j.lfs.2015.11.025] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Revised: 10/20/2015] [Accepted: 11/24/2015] [Indexed: 01/09/2023]
Abstract
AIMS Hydrogen sulfide (H2S) ameliorates cardiac fibrosis in several models by suppressing endoplasmic reticulum (ER) stress. Endothelial-to-mesenchymal transition (EndMT) is implicated in the development of cardiac fibrosis. Therefore, we investigated whether H2S could attenuate EndMT by suppressing ER stress. MAIN METHODS ER stress was induced by tunicamycin (TM) and thapsigargin (TG) and inhibited by 4-phenylbutyrate (4-PBA) in human umbilical vein endothelial cells (HUVECs). ER stress and EndMT were measured by Western blot, Real-Time PCR and immunofluorescence staining. Inhibition Smad2 and Src pathway were performed by specific inhibitors and siRNA. Ultrastructural examination was detected by transmission electron microscope. The functions of HUVECs were investigated by cell migration assay and tube formation in vitro. KEY FINDINGS Under ER stress, the expression of endothelial marker CD31 significantly decreased while mesenchymal markers α-SMA, vimentin and collagen 1 increased which could be inhibited by 4-PBA. Moreover, HUVECs changed into a fibroblast-like appearance with the activation of Smad2 and Src kinase pathway. After inhibiting Src pathway, EndMT would be significantly inhibited. TM reduced H2S levels in cell lysate and H2S pretreatment could preserve endothelial cell appearance with decreased ER stress and ameliorated dilation of ER. H2S could also downregulate the mesenchymal marker expression, and upregulate the endothelial markers expression, accompanied with the suppression of Src pathway. Moreover, H2S partially restored the capacity of migration and tube formation in HUVECs. SIGNIFICANCE These results revealed that H2S could protect against ER stress-induced EndMT through Src pathway, which may be a novel role for the cardioprotection of H2S.
Collapse
Affiliation(s)
- Ru Ying
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou 510120, People's Republic of China; Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou 510120, People's Republic of China
| | - Xiao-Qiao Wang
- Department of Anesthesia, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, People's Republic of China
| | - Ying Yang
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou 510120, People's Republic of China; Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou 510120, People's Republic of China
| | - Zhen-Jie Gu
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou 510120, People's Republic of China; Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou 510120, People's Republic of China
| | - Jing-Ting Mai
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou 510120, People's Republic of China; Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou 510120, People's Republic of China
| | - Qiong Qiu
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou 510120, People's Republic of China; Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou 510120, People's Republic of China
| | - Yang-Xin Chen
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou 510120, People's Republic of China; Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou 510120, People's Republic of China.
| | - Jing-Feng Wang
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou 510120, People's Republic of China; Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou 510120, People's Republic of China.
| |
Collapse
|
33
|
Tan ZX, Chen YH, Xu S, Qin HY, Zhang C, Zhao H, Xu DX. Calcitriol inhibits bleomycin-induced early pulmonary inflammatory response and epithelial-mesenchymal transition in mice. Toxicol Lett 2015; 240:161-71. [PMID: 26520185 DOI: 10.1016/j.toxlet.2015.10.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 10/18/2015] [Accepted: 10/25/2015] [Indexed: 12/24/2022]
Abstract
Early pulmonary inflammation and epithelial-mesenchymal transition (EMT) play important roles during lung fibrosis. Increasing evidence demonstrates that calcitriol, the active form of vitamin D3, has anti-inflammatory activities. The aim of this study was to investigate the effects of calcitriol on bleomycin (BLM)-induced early pulmonary inflammation and subsequent EMT. Mice were intratracheally injected with BLM (3.0mg/kg). In three calcitriol+BLM groups, mice were intraperitoneal (i.p.) injected with different doses of calcitriol (0.2, 1.0 or 5.0 μg/kg) daily, beginning at 48 h before BLM injection. Twenty-four hours, seven and fourteen days after BLM injection, pulmonary inflammation and EMT were evaluated. As expected, BLM-induced infiltration of inflammatory cells in the lungs was attenuated by calcitriol. BLM-induced pulmonary inflammatory cytokines were repressed by calcitriol. Moreover, BLM-induced nuclear translocation of nuclear factor kappa B (NF-κB) p65 was blocked by calcitriol. In addition, BLM-induced phosphorylation of pulmonary p38 MAPK and protein kinase B (Akt) was inhibited by calcitriol. Further analysis showed that BLM-induced α-smooth muscle actin (α-SMA), a marker for EMT in the lungs, was significantly attenuated by calcitriol. BLM-induced transforming growth factor-beta 1 (TGF-β1) up-regulation and Smad phosphorylation were attenuated by calcitriol. In conclusion, calcitriol inhibits BLM-induced early pulmonary inflammation and subsequent EMT.
Collapse
Affiliation(s)
- Zhu-Xia Tan
- Second Affiliated Hospital, Anhui Medical University, Hefei 230022, China
| | - Yuan-Hua Chen
- Department of Toxicology, Anhui Medical University, Hefei 230032, China; Department of Histology and Embryology, Anhui Medical University, Hefei 230032, China
| | - Shen Xu
- Second Affiliated Hospital, Anhui Medical University, Hefei 230022, China
| | - Hou-Ying Qin
- Second Affiliated Hospital, Anhui Medical University, Hefei 230022, China
| | - Cheng Zhang
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Hui Zhao
- Second Affiliated Hospital, Anhui Medical University, Hefei 230022, China.
| | - De-Xiang Xu
- Department of Toxicology, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
34
|
Ye JJ, Ma SS, Gao YF, Shen YJ, Shen YX. Association between expression level of mesencephalic astrocyte-derived neurotrophic factor protein and disease progression in patients with chronic hepatitis B virus infection. Shijie Huaren Xiaohua Zazhi 2015; 23:3532-3537. [DOI: 10.11569/wcjd.v23.i22.3532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the expression level of endoplasmic reticulum stress related mesencephalic astrocyte-derived neurotrophic factor (MANF) protein and assess its clinical significance in patients with chronic hepatitis B virus (HBV) infection.
METHODS: The expression levels of MANF protein in peripheral blood plasma was measured by ELISA in asymptomatic hepatitis B virus surface antigen (HBsAg) carriers (ASC), chronic hepatitis B (CHB), compensatory liver cirrhosis (CLC) and decompensated liver cirrhosis (DLC) patients after chronic HBV infection and normal healthy controls (HC). The relationship between MANF protein expression and different stages of chronic HBV infection was analyzed.
RESULTS: The expression levels of MANF protein among the HC, ASC, CHB, CLC, and DLC groups had a statistically significant difference (F = 7.391, P = 0.00). Further data analysis showed that the expression levels of MANF protein in the CLC and DLC groups had a statistically significant difference compared with the HC, ASC and CHB groups, but there was no significant difference between the HC, ASC and CHB groups. The expression levels of MANF protein had a statistically significant difference in the three groups of patients stratified by HBsAg level (< 1500 IU/mL, 1500-20000 IU/mL and > 20000 IU/mL) (F = 9.420, P = 0.000). The difference in MANF protein expression levels was statistically significant between patients with different levels of aspartate aminotransferase and total bilirubin, but there was no statistical difference between patients with different levels of alanine aminotransferase, HBV DNA, or between hepatitis B e antigen (HBeAg) positive group and HBeAg-negative group.
CONCLUSION: The expression levels of MANF protein are negatively associated with the disease progression in patients with chronic HBV infection.
Collapse
|
35
|
Mo XT, Zhou WC, Cui WH, Li DL, Li LC, Xu L, Zhao P, Gao J. Inositol-requiring protein 1 - X-box-binding protein 1 pathway promotes epithelial-mesenchymal transition via mediating snail expression in pulmonary fibrosis. Int J Biochem Cell Biol 2015; 65:230-8. [PMID: 26065400 DOI: 10.1016/j.biocel.2015.06.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 05/28/2015] [Accepted: 06/04/2015] [Indexed: 11/30/2022]
Abstract
Epithelial-mesenchymal transition (EMT) is a complex biological program during which cells loss epithelial phenotype and acquire mesenchymal features. EMT is thought to be involved in the pathogenesis of various fibrotic diseases including pulmonary fibrosis (PF). Recent studies suggest that endoplasmic reticulum (ER) stress is associated with EMT in the progression of PF. However, the exact mechanism is unclear. Here, we developed a PF model with bleomycin (BLM) administration in rats and conducted several simulation experiments in alveolar epithelial cell (AECs) RLE-6TN to unravel the role of inositol-requiring protein 1 (IRE1) - X-box-binding protein 1 (XBP1) signal pathway in ER stress-induced EMT in PF. First, we observed that ER stress was occurred in type II AECs accompanied by EMT in BLM-induced PF. Then we explored the role of IRE1-XBP1-snail pathway in transforming growth factor (TGF)-β1/tunicamycin (TM)-induced EMT. When TGF-β1/TM was treated on AECs, IRE1 and XBP1 were overexpressed, meanwhile, snail expression was upregulated accompanied with EMT. However, when IRE1 or XBP1 was knockdown, TGF-β1/TM-induced EMT were blocked while the expression of snail was inhibited. Then we silenced snail and found that TGF-β1/TM-induced EMT were also suppressed, but it had no effect on the up-regulated expression of IRE1 and XBP1. Thus, we concluded that IRE1-XBP1 pathway promotes EMT via mediating snail expression in PF.
Collapse
Affiliation(s)
- Xiao-Ting Mo
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Wen-Cheng Zhou
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Wen-Hui Cui
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - De-Lin Li
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Liu-Cheng Li
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Department of Pharmacy, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Liang Xu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Ping Zhao
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Jian Gao
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.
| |
Collapse
|
36
|
Tanaka Y, Ishitsuka Y, Hayasaka M, Yamada Y, Miyata K, Endo M, Kondo Y, Moriuchi H, Irikura M, Tanaka KI, Mizushima T, Oike Y, Irie T. The exacerbating roles of CCAAT/enhancer-binding protein homologous protein (CHOP) in the development of bleomycin-induced pulmonary fibrosis and the preventive effects of tauroursodeoxycholic acid (TUDCA) against pulmonary fibrosis in mice. Pharmacol Res 2015; 99:52-62. [PMID: 26005208 DOI: 10.1016/j.phrs.2015.05.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 04/30/2015] [Accepted: 05/14/2015] [Indexed: 12/16/2022]
Abstract
The purpose of this study was to evaluate the role of CCAAT/enhancer-binding protein homologous protein (CHOP), an important transcription factor that regulates the inflammatory reaction during the endoplasmic reticulum (ER) stress response, in the development of pulmonary fibrosis induced by bleomycin (BLM) in mice. An intratracheal injection of BLM transiently increased the expression of CHOP mRNA and protein in an early phase (days 1 and 3) in mice lungs. BLM-induced pulmonary fibrosis was significantly attenuated in Chop gene deficient (Chop KO) mice, compared with wild-type (WT) mice. Furthermore, the inflammatory reactions evaluated by protein concentration, the total number of leucocytes and neutrophils in the bronchoalveolar lavage fluid (BALF), the mRNA expression of interleukin 1b and caspase 11, and the apoptotic cell death were suppressed in Chop KO mice compared with those in WT mice. In addition, administration of tauroursodeoxycholic acid (TUDCA), a pharmacological agent that can inhibit CHOP expression, inhibited the BLM-induced pulmonary fibrosis and inflammation, and the increase in Chop mRNA expression in WT mice in a dose-dependent manner. These results suggest that the ER stress-induced transcription factor, CHOP, at least in part, plays an important role in the development of BLM-induced pulmonary fibrosis in mice, and that the inhibition of CHOP expression by a pharmacological agent, such as TUDCA, may be a promising strategy for the prevention of pulmonary fibrosis.
Collapse
Affiliation(s)
- Yuta Tanaka
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Yoichi Ishitsuka
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
| | - Marina Hayasaka
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Yusei Yamada
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Keishi Miyata
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Motoyoshi Endo
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Yuki Kondo
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Hiroshi Moriuchi
- Department of Clinical Pharmacy, Faculty of Pharmaceutical Science, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan
| | - Mitsuru Irikura
- Laboratory of Evidence-Based Pharmacotherapy, College of Pharmaceutical Sciences, Daiichi University, 22-1 Tamagawa-Cho, Minami-Ku, Fukuoka 815-8511, Japan
| | - Ken-ichiro Tanaka
- Department of Analytical Chemistry, Faculty of Pharmacy, Keio University, Tokyo 105-8512, Japan
| | - Tohru Mizushima
- Department of Analytical Chemistry, Faculty of Pharmacy, Keio University, Tokyo 105-8512, Japan
| | - Yuichi Oike
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Tetsumi Irie
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Center for Clinical Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| |
Collapse
|