1
|
Feng Q, Gong H, Zhu H, Zhang X, Wang Y, Yang Y, Wu J, Zhao M, Peng S. PD-E2: a nano-scaled delivery for estradiol to decrease uterus damage and increase bone mineral density. J Mater Chem B 2025. [PMID: 40365736 DOI: 10.1039/d4tb02764g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
It is well known that a specific application of 17β-estradiol (E2) is in hormone replacement therapy (HRT), but it is capable of inducing uterine gland cysts. However, the concentration of E2 that causes uterine gland cysts and bone loss remains unknown. To better understand this, we used an ovariectomized (OVX) mouse as the animal model and administered poly-α,β-DL-aspartyl-Lys-coupled E2 (PD-E2) as the bone targeting agent. HPLC-FT-MS analysis showed that the amounts of E2 in the uterus and the femurs of the OVX mice treated with 2.3 μmol kg-1 per day of E2 were 0.62 ± 0.15 ng g-1 and 0.31 ± 0.09 ng g-1, respectively, while the amounts of E2 in the uterus and the femurs of the OVX mice treated with 10 nmol kg-1 per day of PD-E2 were 0 ± 0 ng g-1 and 1.11 ± 0.27 ng g-1, respectively. The data suggested that if the amount of E2 in the uterus was equal to 0.62 ± 0.15 ng g-1, the uterine gland will form cysts, and if the amount of E2 in the femurs was less than 0.31 ± 0.09 ng g-1, the bone loss will be significant. Furthermore, the nano-scaled PD-E2 agent reported in this study provides an innovative strategy for HRT.
Collapse
Affiliation(s)
- Qiqi Feng
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Capital Medical University, Beijing100069, China.
| | - Hao Gong
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Capital Medical University, Beijing100069, China.
| | - Haimei Zhu
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Capital Medical University, Beijing100069, China.
| | - Xiaoyi Zhang
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Capital Medical University, Beijing100069, China.
| | - Yaonan Wang
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Capital Medical University, Beijing100069, China.
| | - Yifan Yang
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Capital Medical University, Beijing100069, China.
| | - Jianhui Wu
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Capital Medical University, Beijing100069, China.
| | - Ming Zhao
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Capital Medical University, Beijing100069, China.
| | - Shiqi Peng
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Capital Medical University, Beijing100069, China.
| |
Collapse
|
2
|
Myachina TA, Butova XA, Simonova RA, Volzhaninov DA, Kochurova AM, Kopylova GV, Shchepkin DV, Khokhlova AD. The Contractile Function of Ventricular Cardiomyocytes Is More Sensitive to Acute 17β-Estradiol Treatment Compared to Atrial Cardiomyocytes. Cells 2025; 14:561. [PMID: 40277887 PMCID: PMC12026394 DOI: 10.3390/cells14080561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/03/2025] [Accepted: 04/07/2025] [Indexed: 04/26/2025] Open
Abstract
17β-estradiol (E2) is the most active metabolite of estrogen with a wide range of physiological action on cardiac muscle. Previous studies have reported E2 effects predominantly for the ventricles, while the E2 impact on the atria has been less examined. In this study, we focused on the direct E2 effects on atrial and ventricular contractility at the cellular and molecular levels. Single atrial and ventricular cardiomyocytes (CM) from adult (24 weeks-old) female Wistar rats were incubated with 10 nM E2 for 15 min. Sarcomere length and cytosolic [Ca2+]i transients were measured in mechanically non-loaded CM, and the tension-length relationship was studied in CM mechanically loaded by carbon fibers. The actin-myosin interaction and sarcomeric protein phosphorylation were analyzed using an in vitro motility assay and gel electrophoresis with Pro-Q Diamond phosphoprotein stain. E2 had chamber-specific effects on the contractile function of CM with a pronounced influence on ventricular CM. The characteristics of [Ca2+]i transients did not change in both atrial and ventricular CM. However, in ventricular CM, E2 reduced the amplitude and maximum velocity of sarcomere shortening and decreased the slope of the passive tension-length relationship that was associated with increased TnI and cMyBP-C phosphorylation. E2 treatment accelerated the cross-bridge cycle of both atrial and ventricular myosin that was associated with increased phosphorylation of the myosin essential light chain. This study shows that E2 impairs the mechanical function of the ventricular myocardium while atrial contractility remains mostly preserved. Hormonal replacement therapy (HRT) with estrogen is by far the most effective therapy for treating climacteric symptoms experienced during menopause. Here we found a chamber specificity of myocardial contractile function to E2 that should be taken into account for the potential side effects of HRT.
Collapse
Affiliation(s)
- Tatiana A. Myachina
- Institute of Immunology and Physiology UrB RAS, 620049 Yekaterinburg, Russia; (T.A.M.); (R.A.S.); (D.A.V.); (D.V.S.)
| | - Xenia A. Butova
- Institute of Immunology and Physiology UrB RAS, 620049 Yekaterinburg, Russia; (T.A.M.); (R.A.S.); (D.A.V.); (D.V.S.)
| | - Raisa A. Simonova
- Institute of Immunology and Physiology UrB RAS, 620049 Yekaterinburg, Russia; (T.A.M.); (R.A.S.); (D.A.V.); (D.V.S.)
| | - Denis A. Volzhaninov
- Institute of Immunology and Physiology UrB RAS, 620049 Yekaterinburg, Russia; (T.A.M.); (R.A.S.); (D.A.V.); (D.V.S.)
| | - Anastasia M. Kochurova
- Institute of Immunology and Physiology UrB RAS, 620049 Yekaterinburg, Russia; (T.A.M.); (R.A.S.); (D.A.V.); (D.V.S.)
| | - Galina V. Kopylova
- Institute of Immunology and Physiology UrB RAS, 620049 Yekaterinburg, Russia; (T.A.M.); (R.A.S.); (D.A.V.); (D.V.S.)
| | - Daniil V. Shchepkin
- Institute of Immunology and Physiology UrB RAS, 620049 Yekaterinburg, Russia; (T.A.M.); (R.A.S.); (D.A.V.); (D.V.S.)
- Institute of Natural Sciences and Mathematics, Ural Federal University, 620026 Yekaterinburg, Russia
| | | |
Collapse
|
3
|
Elias-Llumbet A, Sharmin R, Berg-Sorensen K, Schirhagl R, Mzyk A. The Interplay between Mechanoregulation and ROS in Heart Physiology, Disease, and Regeneration. Adv Healthc Mater 2024; 13:e2400952. [PMID: 38962858 DOI: 10.1002/adhm.202400952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/16/2024] [Indexed: 07/05/2024]
Abstract
Cardiovascular diseases are currently the most common cause of death in developed countries. Due to lifestyle and environmental factors, this problem is only expected to increase in the future. Reactive oxygen species (ROS) are a key player in the onset of cardiovascular diseases but also have important functions in healthy cardiac tissue. Here, the interplay between ROS generation and cardiac mechanical forces is shown, and the state of the art and a perspective on future directions are discussed. To this end, an overview of what is currently known regarding ROS and mechanosignaling at a subcellular level is first given. There the role of ROS in mechanosignaling as well as the interplay between both factors in specific organelles is emphasized. The consequences at a larger scale across the population of heart cells are then discussed. Subsequently, the roles of ROS in embryogenesis, pathogenesis, and aging are further discussed, exemplifying some aspects of mechanoregulation. Finally, different models that are currently in use are discussed to study the topics above.
Collapse
Affiliation(s)
- Arturo Elias-Llumbet
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen, 9713AW, The Netherlands
- Laboratory of Genomic of Germ Cells, Biomedical Sciences Institute, Faculty of Medicine, University of Chile, Independencia, Santiago, 1027, Chile
| | - Rokshana Sharmin
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen, 9713AW, The Netherlands
| | | | - Romana Schirhagl
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen, 9713AW, The Netherlands
| | - Aldona Mzyk
- DTU Health Tech, Ørsteds Plads Bldg 345C, Kongens Lyngby, 2800, Denmark
| |
Collapse
|
4
|
Galow AM, Brenmoehl J, Hoeflich A. Synergistic effects of hormones on structural and functional maturation of cardiomyocytes and implications for heart regeneration. Cell Mol Life Sci 2023; 80:240. [PMID: 37541969 PMCID: PMC10403476 DOI: 10.1007/s00018-023-04894-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/18/2023] [Accepted: 07/22/2023] [Indexed: 08/06/2023]
Abstract
The limited endogenous regenerative capacity of the human heart renders cardiovascular diseases a major health threat, thus motivating intense research on in vitro heart cell generation and cell replacement therapies. However, so far, in vitro-generated cardiomyocytes share a rather fetal phenotype, limiting their utility for drug testing and cell-based heart repair. Various strategies to foster cellular maturation provide some success, but fully matured cardiomyocytes are still to be achieved. Today, several hormones are recognized for their effects on cardiomyocyte proliferation, differentiation, and function. Here, we will discuss how the endocrine system impacts cardiomyocyte maturation. After detailing which features characterize a mature phenotype, we will contemplate hormones most promising to induce such a phenotype, the routes of their action, and experimental evidence for their significance in this process. Due to their pleiotropic effects, hormones might be not only valuable to improve in vitro heart cell generation but also beneficial for in vivo heart regeneration. Accordingly, we will also contemplate how the presented hormones might be exploited for hormone-based regenerative therapies.
Collapse
Affiliation(s)
- Anne-Marie Galow
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany.
| | - Julia Brenmoehl
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany
| | - Andreas Hoeflich
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany
| |
Collapse
|
5
|
Prajapati C, Koivumäki J, Pekkanen-Mattila M, Aalto-Setälä K. Sex differences in heart: from basics to clinics. Eur J Med Res 2022; 27:241. [PMID: 36352432 PMCID: PMC9647968 DOI: 10.1186/s40001-022-00880-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 10/24/2022] [Indexed: 11/11/2022] Open
Abstract
Sex differences exist in the structure and function of human heart. The patterns of ventricular repolarization in normal electrocardiograms (ECG) differ in men and women: men ECG pattern displays higher T-wave amplitude and increased ST angle. Generally, women have longer QT duration because of reduced repolarization reserve, and thus, women are more susceptible for the occurrence of torsades de pointes associated with drugs prolonging ventricular repolarization. Sex differences are also observed in the prevalence, penetrance and symptom severity, and also in the prognosis of cardiovascular disease. Generally, women live longer, have less clinical symptoms of cardiac diseases, and later onset of symptoms than men. Sex hormones also play an important role in regulating ventricular repolarization, suggesting that hormones directly influence various cellular functions and adrenergic regulation. From the clinical perspective, sex-based differences in heart physiology are widely recognized, but in daily practice, cardiac diseases are often underdiagnosed and untreated in the women. The underlying mechanisms of sex differences are, however, poorly understood. Here, we summarize sex-dependent differences in normal cardiac physiology, role of sex hormones, and differences in drug responses. Furthermore, we also discuss the importance of human induced pluripotent stem cell-derived cardiomyocytes in further understanding the mechanism of differences in women and men.
Collapse
Affiliation(s)
- Chandra Prajapati
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön Katu 34, 33520 Tampere, Finland
| | - Jussi Koivumäki
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön Katu 34, 33520 Tampere, Finland
| | - Mari Pekkanen-Mattila
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön Katu 34, 33520 Tampere, Finland
| | - Katriina Aalto-Setälä
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön Katu 34, 33520 Tampere, Finland
- Heart Center, Tampere University Hospital, Ensitie 4, 33520 Tampere, Finland
| |
Collapse
|
6
|
Yu YM, Zhou BH, Yang YL, Guo CX, Zhao J, Wang HW. Estrogen Deficiency Aggravates Fluoride-Induced Liver Damage and Lipid Metabolism Disorder in Rats. Biol Trace Elem Res 2022; 200:2767-2776. [PMID: 34392477 DOI: 10.1007/s12011-021-02857-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 07/29/2021] [Indexed: 12/14/2022]
Abstract
Estrogen exerts essential role in liver metabolism, and its deficiency is frequently accompanied by a series of metabolic disorder diseases. To investigate the role of estrogen deficiency in fluorine ions (F-) induced liver injury, the ovariectomy (OVX) rat models were performed by surgically removing the ovaries, and the rats from OVX and non-OVX models were exposed to differential dose of F- (0, 25, 50 and 100 mg/L) in drinking water for 90 days. The liver morphological structure was evaluated by hematoxylin-eosin staining. Proliferation ability of hepatocytes was evaluated by 5-bromo-2-deoxyuridine (BrdU) assay. And distribution of lipid droplets in liver tissue was observed via oil red O staining. In addition, the liver function and lipid metabolism parameters in serum were detected by commercial kits. Results showed that F- induced hepatocytes morphological damage and inhibited the proliferation ability of hepatocytes; estrogen deficiency exacerbated these changes. The deposition of lipid droplets in the liver tissue was multiplicative with increased F- dose, especially after estrogen deficiency. In addition, F- exposure increased (P < 0.05 or P < 0.01) serum aminotransferase (ALT), aminotransferase (AST), alkaline phosphatase (ALP), and γ-glutamyl transpeptidase (γ-GT) activities and total bilirubin (T-bil) level; meanwhile, serum triglyceride (TG) and cholesterol (TC) levels were also elevated (P < 0.05 or P < 0.01). F--induced liver function and lipid metabolism indexes were further increased (P < 0.05 or P < 0.01) in the state of estrogen deficiency. In conclusion, estrogen deficiency aggravated F--induced liver damage and lipid metabolism disorder.
Collapse
Affiliation(s)
- Ya-Ming Yu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, Henan, People's Republic of China
| | - Bian-Hua Zhou
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, Henan, People's Republic of China.
| | - Yi-Lin Yang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, Henan, People's Republic of China
| | - Cheng-Xiang Guo
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, Henan, People's Republic of China
| | - Jing Zhao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, Henan, People's Republic of China
| | - Hong-Wei Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, Henan, People's Republic of China
| |
Collapse
|
7
|
Effects of Moderate-Intensity Physical Training on Skeletal Muscle Substrate Transporters and Metabolic Parameters of Ovariectomized Rats. Metabolites 2022; 12:metabo12050402. [PMID: 35629906 PMCID: PMC9145860 DOI: 10.3390/metabo12050402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/13/2022] [Accepted: 04/20/2022] [Indexed: 11/20/2022] Open
Abstract
A deficit of estrogen is associated with energy substrate imbalance, raising the risk of metabolic diseases. Physical training (PT) is a potent metabolic regulator through oxidation and storage of substrates transported by GLUT4 and FAT CD36 in skeletal muscle. However, little is known about the effects of PT on these carriers in an estrogen-deficit scenario. Thus, the aim of this study was to determine the influence of 12 weeks of PT on metabolic variables and GLUT4 and FAT CD36 expression in the skeletal muscle of animals energetically impaired by ovariectomy (OVX). The trained animals swam 30 min/day, 5 days/week, at 80% of the critical load intensity. Spontaneous physical activity was measured biweekly. After training, FAT CD36 and GLUT4 expressions were quantified by immunofluorescence in the soleus, as well as muscular glycogen and triglyceride of the soleus, gluteus maximus and gastrocnemius. OVX significantly reduced FAT CD36, GLUT4 and spontaneous physical activity (p < 0.01), while PT significantly increased FAT CD36, GLUT4 and spontaneous physical activity (p < 0.01). PT increased soleus glycogen, and OVX decreased muscular triglyceride of gluteus maximus. Therefore, OVX can cause energy disarray through reduction in GLUT4 and FAT CD36 and their muscle substrates and PT prevented these metabolic consequences, masking ovarian estrogen’s absence.
Collapse
|
8
|
Cheng TC, Tabima DM, Caggiano LR, Frump AL, Hacker TA, Eickhoff JC, Lahm T, Chesler NC. Sex differences in right ventricular adaptation to pressure overload in a rat model. J Appl Physiol (1985) 2022; 132:888-901. [PMID: 35112927 PMCID: PMC8934674 DOI: 10.1152/japplphysiol.00175.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
With severe right ventricular (RV) pressure overload, women demonstrate better clinical outcomes compared with men. The mechanoenergetic mechanisms underlying this protective effect, and their dependence on female endogenous sex hormones, remain unknown. To investigate these mechanisms and their impact on RV systolic and diastolic functional adaptation, we created comparable pressure overload via pulmonary artery banding (PAB) in intact male and female Wistar rats and ovariectomized (OVX) female rats. At 8 wk after surgery, right heart catheterization demonstrated increased RV energy input [indexed pressure-volume area (iPVA)] in all PAB groups, with the greatest increase in intact females. PAB also increased RV energy output [indexed stroke or external work (iEW)] in all groups, again with the greatest increase in intact females. In contrast, PAB only increased RV contractility-indexed end-systolic elastance (iEes)] in females. Despite these sex-dependent differences, no statistically significant effects were observed in the ratio of RV energy output to input (mechanical efficiency) or in mechanoenergetic cost to pump blood with pressure overload. These metrics were similarly unaffected by loss of endogenous sex hormones in females. Also, despite sex-dependent differences in collagen content and organization with pressure overload, decreases in RV compliance and relaxation time constant (tau Weiss) were not determined to be sex dependent. Overall, despite sex-dependent differences in RV contractile and fibrotic responses, RV mechanoenergetics for this degree and duration of pressure overload are comparable between sexes and suggest a homeostatic target.NEW & NOTEWORTHY Sex differences in right ventricular mechanical efficiency and energetic adaptation to increased right ventricular afterload were measured. Despite sex-dependent differences in contractile and fibrotic responses, right ventricular mechanoenergetic adaptation was comparable between the sexes, suggesting a homeostatic target.
Collapse
Affiliation(s)
- Tik-Chee Cheng
- 1Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin
| | - Diana M. Tabima
- 1Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin
| | - Laura R. Caggiano
- 2University of California, Irvine Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center, Irvine, California
| | - Andrea L. Frump
- 3Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Timothy A. Hacker
- 4Cardiovascular Physiology Core Facility, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| | - Jens C. Eickhoff
- 5Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, Wisconsin
| | - Tim Lahm
- 3Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana,6Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, Colorado,7Richard L. Roudebush Department of Veterans Affairs Medical Center, Indianapolis, Indiana
| | - Naomi C. Chesler
- 1Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin,2University of California, Irvine Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center, Irvine, California,8Department of Biomedical Engineering, University of California, Irvine, California
| |
Collapse
|
9
|
Crescioli C. The Role of Estrogens and Vitamin D in Cardiomyocyte Protection: A Female Perspective. Biomolecules 2021; 11:1815. [PMID: 34944459 PMCID: PMC8699224 DOI: 10.3390/biom11121815] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/23/2021] [Accepted: 11/30/2021] [Indexed: 12/20/2022] Open
Abstract
Women experience a dramatical raise in cardiovascular events after menopause. The decline in estrogens is pointed to as the major responsible trigger for the increased risk of cardiovascular disease (CVD). Indeed, the menopausal transition associates with heart macro-remodeling, which results from a fine-tuned cell micro-remodeling. The remodeling of cardiomyocytes is a biomolecular response to several physiologic and pathologic stimuli, allowing healthy adaptation in normal conditions or maladaptation in an unfavorable environment, ending in organ architecture disarray. Estrogens largely impinge on cardiomyocyte remodeling, but they cannot fully explain the sex-dimorphism of CVD risk. Albeit cell remodeling and adaptation are under multifactorial regulation, vitamin D emerges to exert significant protective effects, controlling some intracellular paths, often shared with estrogen signaling. In post-menopause, the unfavorable association of hypoestrogenism-D hypovitaminosis may converge towards maladaptive remodeling and contribute to increased CVD risk. The aim of this review is to overview the role of estrogens and vitamin D in female cardiac health, speculating on their potential synergistic effect in cardiomyocyte remodeling, an issue that is not yet fully explored. Further learning the crosstalk between these two steroids in the biomolecular orchestration of cardiac cell fate during adaptation may help the translational approach to future cardioprotective strategies for women health.
Collapse
Affiliation(s)
- Clara Crescioli
- Department of Movement, Human and Health Sciences, Section of Health Sciences, University of Rome "Foro Italico", 00135 Rome, Italy
| |
Collapse
|
10
|
Adekunle AO, Adzika GK, Mprah R, Ndzie Noah ML, Adu-Amankwaah J, Rizvi R, Akhter N, Sun H. Predominance of Heart Failure With Preserved Ejection Fraction in Postmenopausal Women: Intra- and Extra-Cardiomyocyte Maladaptive Alterations Scaffolded by Estrogen Deficiency. Front Cell Dev Biol 2021; 9:685996. [PMID: 34660569 PMCID: PMC8511782 DOI: 10.3389/fcell.2021.685996] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 09/09/2021] [Indexed: 12/11/2022] Open
Abstract
Heart failure (HF) remains a public health concern as it is associated with high morbidity and death rates. In particular, heart failure with preserved ejection fraction (HFpEF) represents the dominant (>50%) form of HF and mostly occurring among postmenopausal women. Hence, the initiation and progression of the left ventricular diastolic dysfunctions (LVDD) (a typically clinical manifestation of HFpEF) in postmenopausal women have been attributed to estrogen deficiency and the loss of its residue cardioprotective effects. In this review, from a pathophysiological and immunological standpoint, we discuss the probable multiple pathomechanisms resulting in HFpEF, which are facilitated by estrogen deficiency. The initial discussions recap estrogen and estrogen receptors (ERs) and β-adrenergic receptors (βARs) signaling under physiological/pathological states to facilitate cardiac function/dysfunction, respectively. By reconciling these prior discussions, attempts were made to explain how the loss of estrogen facilitates the disruptions both ERs and βARs-mediated signaling responsible for; the modulation of intra-cardiomyocyte calcium homeostasis, maintenance of cardiomyocyte cytoskeletal and extracellular matrix, the adaptive regulation of coronary microvascular endothelial functions and myocardial inflammatory responses. By scaffolding the disruption of these crucial intra- and extra-cardiomyocyte physiological functions, estrogen deficiency has been demonstrated to cause LVDD and increase the incidence of HFpEF in postmenopausal women. Finally, updates on the advancements in treatment interventions for the prevention of HFpEF were highlighted.
Collapse
Affiliation(s)
| | | | - Richard Mprah
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
| | | | | | | | - Nazma Akhter
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
| | - Hong Sun
- Department of Physiology, Xuzhou Medical University, Xuzhou, China.,Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
11
|
Morán-Costoya A, Proenza AM, Gianotti M, Lladó I, Valle A. Sex Differences in Nonalcoholic Fatty Liver Disease: Estrogen Influence on the Liver-Adipose Tissue Crosstalk. Antioxid Redox Signal 2021; 35:753-774. [PMID: 33736456 DOI: 10.1089/ars.2021.0044] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Significance: Nonalcoholic fatty liver disease (NAFLD) is a hepatic and systemic disorder with a complex multifactorial pathogenesis. Owing to the rising incidence of obesity and diabetes mellitus, the prevalence of NAFLD and its impact on global health care are expected to increase in the future. Differences in NAFLD exist between males and females, and among females depending on their reproductive status. Clinical and preclinical data show that females in the fertile age are more protected against NAFLD, and studies in postmenopausal women and ovariectomized animal models support a protective role for estrogens. Recent Advances: An efficient crosstalk between the liver and adipose tissue is necessary to regulate lipid and glucose metabolism, protecting the liver from steatosis and insulin resistance contributing to NALFD. New advances in the knowledge of sexual dimorphism in liver and adipose tissue are providing interesting clues about the sex differences in NAFLD pathogenesis that could inspire new therapeutic strategies. Critical Issues: Sex hormones influence key master regulators of lipid metabolism and oxidative stress in liver and adipose tissue. All these sex-biased metabolic adjustments shape the crosstalk between liver and adipose tissue, contributing to the higher protection of females to NAFLD. Future Directions: The development of novel drugs based on the protective action of estrogens, but without its feminizing or undesired side effects, might provide new therapeutic strategies for the management of NAFLD. Antioxid. Redox Signal. 35, 753-774.
Collapse
Affiliation(s)
- Andrea Morán-Costoya
- Energy Metabolism and Nutrition Group, Department of Fundamental Biology and Health Sciences, Research Institute of Health Sciences (IUNICS), University of the Balearic Islands, Palma, Spain.,Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Ana M Proenza
- Energy Metabolism and Nutrition Group, Department of Fundamental Biology and Health Sciences, Research Institute of Health Sciences (IUNICS), University of the Balearic Islands, Palma, Spain.,Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain.,Center for Biomedical Research in the Pathophysiology of Obesity and Nutrition Network, Carlos III Health Institute, Madrid, Spain
| | - Magdalena Gianotti
- Energy Metabolism and Nutrition Group, Department of Fundamental Biology and Health Sciences, Research Institute of Health Sciences (IUNICS), University of the Balearic Islands, Palma, Spain.,Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain.,Center for Biomedical Research in the Pathophysiology of Obesity and Nutrition Network, Carlos III Health Institute, Madrid, Spain
| | - Isabel Lladó
- Energy Metabolism and Nutrition Group, Department of Fundamental Biology and Health Sciences, Research Institute of Health Sciences (IUNICS), University of the Balearic Islands, Palma, Spain.,Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain.,Center for Biomedical Research in the Pathophysiology of Obesity and Nutrition Network, Carlos III Health Institute, Madrid, Spain
| | - Adamo Valle
- Energy Metabolism and Nutrition Group, Department of Fundamental Biology and Health Sciences, Research Institute of Health Sciences (IUNICS), University of the Balearic Islands, Palma, Spain.,Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain.,Center for Biomedical Research in the Pathophysiology of Obesity and Nutrition Network, Carlos III Health Institute, Madrid, Spain
| |
Collapse
|
12
|
Differing effects of estrogen deficiency on the contractile function of atrial and ventricular myocardium. Biochem Biophys Res Commun 2021; 541:30-35. [PMID: 33461065 DOI: 10.1016/j.bbrc.2020.12.102] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 12/30/2020] [Indexed: 11/20/2022]
Abstract
Estrogen deficiency has a significant influence on the excitation-contraction coupling in the ventricular myocardium but its impact on the atrial contractile function has not been studied. We have compared the effects of estrogen deficiency on the contractility and cytosolic Ca2+ transient of single cardiomyocytes isolated from the left atrium (LA) and the left ventricle (LV) of rats subjected to ovariectomy (OVX) or sham surgery (Sham). The characteristics of actin-myosin interaction were studied in an in vitro motility assay. We found that OVX decreased the contractility of LV single cardiomyocytes but increased that of LA myocytes. The disturbance of ventricular mechanical function may be explained by the acceleration of Ca2+ transient and reduced Ca2+ sensitivity of the actin-myosin interaction. The augmentation of LA contractility may be explained by accelerated cross-bridge kinetics and increased end-diastolic sarcomere length, which may lead to elevated tension in atrial cells due to the Frank-Starling mechanism.
Collapse
|
13
|
Haye A, Ansari MA, Rahman SO, Shamsi Y, Ahmed D, Sharma M. Role of AMP-activated protein kinase on cardio-metabolic abnormalities in the development of diabetic cardiomyopathy: A molecular landscape. Eur J Pharmacol 2020; 888:173376. [PMID: 32810493 DOI: 10.1016/j.ejphar.2020.173376] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 12/13/2022]
Abstract
Cardiovascular complications associated with diabetes mellitus remains a leading cause of morbidity and mortality across the world. Diabetic cardiomyopathy is a descriptive pathology that in absence of co-morbidities such as hypertension, dyslipidemia initially characterized by cardiac stiffness, myocardial fibrosis, ventricular hypertrophy, and remodeling. These abnormalities further contribute to diastolic dysfunctions followed by systolic dysfunctions and eventually results in clinical heart failure (HF). The clinical outcomes associated with HF are considerably worse in patients with diabetes. The complexity of the pathogenesis and clinical features of diabetic cardiomyopathy raises serious questions in developing a therapeutic strategy to manage cardio-metabolic abnormalities. Despite extensive research in the past decade the compelling approaches to manage and treat diabetic cardiomyopathy are limited. AMP-Activated Protein Kinase (AMPK), a serine-threonine kinase, often referred to as cellular "metabolic master switch". During the development and progression of diabetic cardiomyopathy, a plethora of evidence demonstrate the beneficial role of AMPK on cardio-metabolic abnormalities including altered substrate utilization, impaired cardiac insulin metabolic signaling, mitochondrial dysfunction and oxidative stress, myocardial inflammation, increased accumulation of advanced glycation end-products, impaired cardiac calcium handling, maladaptive activation of the renin-angiotensin-aldosterone system, endoplasmic reticulum stress, myocardial fibrosis, ventricular hypertrophy, cardiac apoptosis, and impaired autophagy. Therefore, in this review, we have summarized the findings from pre-clinical and clinical studies and provided a collective overview of the pathophysiological mechanism and the regulatory role of AMPK on cardio-metabolic abnormalities during the development of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Abdul Haye
- Pharmaceutical Medicine, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohd Asif Ansari
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Syed Obaidur Rahman
- Pharmaceutical Medicine, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Yasmeen Shamsi
- Department of Moalejat, School of Unani Medical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Danish Ahmed
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, Sam Higginbottom University of Agriculture Technology and Sciences, Allahabad, Uttar Pradesh, India
| | - Manju Sharma
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
14
|
Abstract
PURPOSE OF THE REVIEW This review summarizes sex-related changes in the heart and vasculature that occur with aging, both in the presence and absence of cardiovascular disease (CVD). RECENT FINDINGS In the presence of CVD risk factors and/or overt CVD, sex-specific changes in the number of cardiomyocytes, extent of the myocardial extracellular matrix, and myocellular hypertrophy promote unique patterns of LV remodeling in men and women. In addition, age- and sex-specific vascular stiffening is also well established, driven by changes in endothelial dysfunction, elastin-collagen content, microvascular dysfunction, and neurohormonal signaling. Together, these changes in LV chamber geometry and morphology, coupled with heightened vascular stiffness, appear to drive both age-related increases in systolic function and declines in diastolic function, particularly in postmenopausal women. Accordingly, estrogen has been implicated as a key mediator, given its direct vasodilating properties, association with nitric oxide excretion, and involvement in myocellular Ca2+ handling, mitochondrial energy production, and oxidative stress. The culmination of the abovementioned sex-specific cardiac and vascular changes across the lifespan provides important insight into heart failure development, particularly of the preserved ejection fraction variety, while offering promise for future preventive strategies and therapeutic approaches.
Collapse
Affiliation(s)
- Andrew Oneglia
- Applied Physiology and Advanced Imaging Lab, University of Texas at Arlington, 655 West Mitchell St, Arlington, TX, 76010, USA
| | - Michael D Nelson
- Applied Physiology and Advanced Imaging Lab, University of Texas at Arlington, 655 West Mitchell St, Arlington, TX, 76010, USA
- Barbra Streisand Women's Heart Center, Smidt Heart Institute, Cedars-Sinai Medical Center, 127 S San Vicente Blvd, AHSP Suite A3206, Los Angeles, CA, 90048, USA
| | - C Noel Bairey Merz
- Barbra Streisand Women's Heart Center, Smidt Heart Institute, Cedars-Sinai Medical Center, 127 S San Vicente Blvd, AHSP Suite A3206, Los Angeles, CA, 90048, USA.
| |
Collapse
|
15
|
Ovary removal modifies liver message RNA profiles in single Comb White Leghorn chickens. Poult Sci 2020; 99:1813-1821. [PMID: 32241461 PMCID: PMC7587799 DOI: 10.1016/j.psj.2019.12.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 11/29/2019] [Accepted: 12/02/2019] [Indexed: 12/12/2022] Open
Abstract
Ovaries produce sex hormones, and ovariectomized animals are often used as models for ovarian dysfunction. The liver is a vital organ involved in metabolism and immunity. In the present study, we conducted experiments to investigate the effects of ovariectomy on transcription and metabolic processes in the liver in chicken. Eight Single Comb White Leghorn (SCWL) female chickens were ovariectomized at 17 wk of age, and 8 intact SCWL females served as controls. At 100 wk of age, all chickens were euthanized. High-throughput transcriptome sequencing was performed on liver RNA obtained from ovariectomized and intact females. A total of 267 differentially expressed genes (DEG) were identified in our study. After analysis using DAVID functional annotation tool, one significant Kyoto Encyclopedia of Genes and Genomes pathway, the phosphatidylinositol signaling pathway, was clustered. Gene Ontology enrichment analysis yielded 46 significant Gene Ontology terms. Among terms describing biological processes, the glycerolipid metabolic and lipid localization processes were dominant. The anabolic genes, PEPCK and GK5, and the catabolic genes, VTG1; VTG2; PLD5; DGKQ; DGKE; and FABP3, were detected in ovariectomized chickens. Differentially expressed genes such as ENSGALG00000000162, IL-1Β, SVOPL, and CA12 implied that livers in ovariectomized chickens were subjected to strong inflammatory reactions, whereas defenses against endogenous materials were compromised. A comprehensive view of gene expression in the liver of ovariectomized chickens would advance our understanding of lipid metabolism, glycometabolism, and their relationships to pathologies induced by absence of the ovary. The identified DEG indicated that ovariectomy disturbed lipid metabolism in the liver and was accompanied by an increase in hepatic gluconeogenesis and reductions in phosphatidic acid synthesis and lipid carrier capacity.
Collapse
|
16
|
Jiao L, Machuki JO, Wu Q, Shi M, Fu L, Adekunle AO, Tao X, Xu C, Hu X, Yin Z, Sun H. Estrogen and calcium handling proteins: new discoveries and mechanisms in cardiovascular diseases. Am J Physiol Heart Circ Physiol 2020; 318:H820-H829. [PMID: 32083972 DOI: 10.1152/ajpheart.00734.2019] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Estrogen deficiency is considered to be an important factor leading to cardiovascular diseases (CVDs). Indeed, the prevalence of CVDs in postmenopausal women exceeds that of premenopausal women and men of the same age. Recent research findings provide evidence that estrogen plays a pivotal role in the regulation of calcium homeostasis and therefore fine-tunes normal cardiomyocyte contraction and relaxation processes. Disruption of calcium homeostasis is closely associated with the pathological mechanism of CVDs. Thus, this paper maps out and summarizes the effects and mechanisms of estrogen on calcium handling proteins in cardiac myocytes, including L-type Ca2+ channel, the sarcoplasmic reticulum Ca2+ release channel named ryanodine receptor, sarco(endo)plasmic reticulum Ca2+-ATPase, and sodium-calcium exchanger. In so doing, we provide theoretical and experimental evidence for the successful design of estrogen-based prevention and treatment therapies for CVDs.
Collapse
Affiliation(s)
- Lijuan Jiao
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | | | - Qi Wu
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Mingjin Shi
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lu Fu
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | | | - Xi Tao
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Chenxi Xu
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xide Hu
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zeyuan Yin
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hong Sun
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
17
|
Dai H, Gao S, Lai C, He H, Han F, Pan X. Biochar enhanced microbial degradation of 17β-estradiol. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2019; 21:1736-1744. [PMID: 31498354 DOI: 10.1039/c9em00168a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Steroid estrogens (SEs), especially 17β-estradiol (E2), can be a serious threat to the health of organisms. The removal of E2 from the natural environment is mainly carried out by microbial degradation partly mediated by biochar, which contains quinone structures. In this study, reed straw biochar samples made at four different heat treatment temperatures (HTTs) were used to mediate E2 microbial degradation by Shewanella oneidensis MR-1. The removal efficiency of E2 (95%) was highest in the presence of HTT - 500 °C biochar under anaerobic conditions after 120 h of microbial degradation. The effect of biochar on promoting microbial degradation was far more superior under anaerobic conditions than under aerobic conditions. The redox-activity and types of surface functional groups of biochar reveal that biochar can accept electrons generated by microorganisms in a timely manner. This mechanism promotes the metabolic process of cells and microbial degradation of E2 (exponential increase). Biochar particles rather than biochar-derived water-soluble organic compounds are responsible for this stimulating effect. These results highlight the impact that biochar has on microbial degradation of trace pollutants in a natural environment.
Collapse
Affiliation(s)
- Han Dai
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| | | | | | | | | | | |
Collapse
|
18
|
Huang B, Tang J, He H, Gu L, Pan X. Ecotoxicological effects and removal of 17β-estradiol in chlorella algae. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 174:377-383. [PMID: 30849658 DOI: 10.1016/j.ecoenv.2019.01.129] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 01/06/2019] [Accepted: 01/17/2019] [Indexed: 06/09/2023]
Abstract
17β-estradiol (E2) is a steroid estrogen able to affect the reproduction of aquatic organisms even at extremely low concentrations. The behavior of E2 in the presence of chlorella algae was investigated in laboratory experiments. The results showed that the algae's growth was inhibited by 26% after 7 days of culturing in a 2.0 mg L-1 solution of E2. The 96 h EC50 value of 21.46 mg L-1 reflected moderate toxicity. Even low concentrations of E2 were found to affect total chlorophyll and carotenoid levels after 7 and 10 days and to alter stress-generated enzymatic activity in the algae. The efficiency of chlorella's E2 degradation decreased with the increasing of E2 concentration, but 92% of the E2 can be removed from a 0.5 mg L-1 solution over 10 days. The degradation mechanism was speculated. The microalgae suffered relatively less growth inhibition at low E2 concentrations, and their removal effectiveness was then better. The data help to elucidate the interaction between chlorella algae and E2 in an aquatic environment.
Collapse
Affiliation(s)
- Bin Huang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, PR China
| | - Jin Tang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, PR China; College of Environmental Science and Engineering, Guilin University of Technology, Guilin, Guangxi 541006, PR China
| | - Huan He
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, PR China
| | - Lipeng Gu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, PR China
| | - Xuejun Pan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, PR China.
| |
Collapse
|
19
|
Mahmoodzadeh S, Dworatzek E. The Role of 17β-Estradiol and Estrogen Receptors in Regulation of Ca 2+ Channels and Mitochondrial Function in Cardiomyocytes. Front Endocrinol (Lausanne) 2019; 10:310. [PMID: 31156557 PMCID: PMC6529529 DOI: 10.3389/fendo.2019.00310] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 04/30/2019] [Indexed: 11/13/2022] Open
Abstract
Numerous epidemiological, clinical, and animal studies showed that cardiac function and manifestation of cardiovascular diseases (CVDs) are different between males and females. The underlying reasons for these sex differences are definitely multifactorial, but major evidence points to a causal role of the sex steroid hormone 17β-estradiol (E2) and its receptors (ER) in the physiology and pathophysiology of the heart. Interestingly, it has been shown that cardiac calcium (Ca2+) ion channels and mitochondrial function are regulated in a sex-specific manner. Accurate mitochondrial function and Ca2+ signaling are of utmost importance for adequate heart function and crucial to maintaining the cardiovascular health. Due to the highly sensitive nature of these processes in the heart, this review article highlights the current knowledge regarding sex dimorphisms in the heart implicating the importance of E2 and ERs in the regulation of cardiac mitochondrial function and Ca2+ ion channels, thus the contractility. In particular, we provide an overview of in-vitro and in-vivo studies using either E2 deficiency; ER deficiency or selective ER activation, which suggest that E2 and ERs are strongly involved in these processes. In this context, this review also discusses the divergent E2-responses resulting from the activation of different ER subtypes in these processes. Detailed understanding of the E2 and ER-mediated molecular and cellular mechanisms in the heart under physiological and pathological conditions may help to design more specifically targeted drugs for the management of CVDs in men and women.
Collapse
Affiliation(s)
- Shokoufeh Mahmoodzadeh
- Department of Molecular Muscle Physiology, Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- *Correspondence: Shokoufeh Mahmoodzadeh
| | - Elke Dworatzek
- Department of Molecular Muscle Physiology, Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Institute of Gender in Medicine, Charité Universitaetsmedizin, Berlin, Germany
| |
Collapse
|
20
|
The protective effect of Er-Xian decoction against myocardial injury in menopausal rat model. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 18:245. [PMID: 30176849 PMCID: PMC6122672 DOI: 10.1186/s12906-018-2311-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 08/22/2018] [Indexed: 11/30/2022]
Abstract
Background Er-Xian decoction (EXD), a formula of Chinese medicine, is often used to treat menopausal syndrome in China. The aim of the present study was to explore the potential cardioprotective mechanism of EXD against myocardial injury in an ovariectomy-induced menopausal rat model. Methods We divided the female Wistar rats into ovariectomy group and sham operation group (SHAM group). The ovariectomized (OVX) rats received treatment of vehicle (OVX group), EXD (EXD group) or 17β-estradiol (E2 group). After 12-week of treatment, the level of estradiol in serum was detected using an electrochemiluminescence immunoassay, and electrophysiologic changes in myocardial action potentials (AP) were evaluated using intracellular microelectrode technique. Changes in the histopathology of the left ventricle and the ultrastructure of the cardiomyocytes were observed by hematoxylin and eosin (HE) staining and transmission electronmicroscopy to assess myocardial injury. Microarrays were applied for the evaluation of gene expression profiles in ventricular muscle of the OVX and EXD rats. Further pathway analyses of the differential expression genes were carried out using the Kyoto Encyclopedia of Genes and Genomes (KEGG). And real-time quantitative RT-PCR (qRT-PCR) was used for verification of the key findings. Results The results from electrophysiological and histomorphological observations demonstrated that EXD had a substantial myocardial protective effect. The EXD-treated rats, in comparison with the OVX rats, demonstrated up-regulated expression of 28 genes yet down-regulated expression of 157 genes in the ventricular muscle. The qRT-PCR assay validated all selected differential expression genes. The KEGG pathway analysis showed that the down-regulated genes were relevant to cardiomyopathy and myocardial contractility. EXD could decrease the mRNA expressions of cardiac myosin (Myh7, Myl2) and integrin (Itgb5) in the ventricular myocardium. Conclusion EXD had a protective effect against myocardial injury in OVX rats, and this cardioprotective effect may be associated with modulation of the expression of cardiac myosin or integrin at the mRNA level. Electronic supplementary material The online version of this article (10.1186/s12906-018-2311-9) contains supplementary material, which is available to authorized users.
Collapse
|
21
|
Machuki J, Zhang H, Harding S, Sun H. Molecular pathways of oestrogen receptors and β-adrenergic receptors in cardiac cells: Recognition of their similarities, interactions and therapeutic value. Acta Physiol (Oxf) 2018; 222. [PMID: 28994249 PMCID: PMC5813217 DOI: 10.1111/apha.12978] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 09/07/2017] [Accepted: 10/02/2017] [Indexed: 12/18/2022]
Abstract
Oestrogen receptors (ERs) and β-adrenergic receptors (βARs) play important roles in the cardiovascular system. Moreover, these receptors are expressed in cardiac myocytes and vascular tissues. Numerous experimental observations support the hypothesis that similarities and interactions exist between the signalling pathways of ERs (ERα, ERβ and GPR30) and βARs (β1 AR, β2 AR and β3 AR). The recently discovered oestrogen receptor GPR30 shares structural features with the βARs, and this forms the basis for the interactions and functional overlap. GPR30 possesses protein kinase A (PKA) phosphorylation sites and PDZ binding motifs and interacts with A-kinase anchoring protein 5 (AKAP5), all of which enable its interaction with the βAR pathways. The interactions between ERs and βARs occur downstream of the G-protein-coupled receptor, through the Gαs and Gαi proteins. This review presents an up-to-date description of ERs and βARs and demonstrates functional synergism and interactions among these receptors in cardiac cells. We explore their signalling cascades and the mechanisms that orchestrate their interactions and propose new perspectives on the signalling patterns for the GPR30 based on its structural resemblance to the βARs. In addition, we explore the relevance of these interactions to cell physiology, drugs (especially β-blockers and calcium channel blockers) and cardioprotection. Furthermore, a receptor-independent mechanism for oestrogen and its influence on the expression of βARs and calcium-handling proteins are discussed. Finally, we highlight promising therapeutic avenues that can be derived from the shared pathways, especially the phosphatidylinositol-3-OH kinase (PI3K/Akt) pathway.
Collapse
Affiliation(s)
- J.O. Machuki
- Department of Physiology; Xuzhou Medical University; Xuzhou China
| | - H.Y. Zhang
- Department of Physiology; Xuzhou Medical University; Xuzhou China
| | - S.E. Harding
- National Heart and Lung Institute; Imperial College; London UK
| | - H. Sun
- Department of Physiology; Xuzhou Medical University; Xuzhou China
| |
Collapse
|
22
|
Yang HY, Firth JM, Francis AJ, Alvarez-Laviada A, MacLeod KT. Effect of ovariectomy on intracellular Ca 2+ regulation in guinea pig cardiomyocytes. Am J Physiol Heart Circ Physiol 2017; 313:H1031-H1043. [PMID: 28778911 DOI: 10.1152/ajpheart.00249.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/17/2017] [Accepted: 08/02/2017] [Indexed: 01/30/2023]
Abstract
This study addressed the hypothesis that long-term deficiency of ovarian hormones after ovariectomy (OVx) alters cellular Ca2+-handling mechanisms in the heart, resulting in the formation of a proarrhythmic substrate. It also tested whether estrogen supplementation to OVx animals reverses any alterations to cardiac Ca2+ handling and rescues proarrhythmic behavior. OVx or sham operations were performed on female guinea pigs using appropriate anesthetic and analgesic regimes. Pellets containing 17β-estradiol (1 mg, 60-day release) were placed subcutaneously in selected OVx animals (OVx + E). Cardiac myocytes were enzymatically isolated, and electrophysiological measurements were conducted with a switch-clamp system. In fluo-4-loaded cells, Ca2+ transients were 20% larger, and fractional sarcoplasmic reticulum (SR) Ca2+ release was 7% greater in the OVx group compared with the sham group. Peak L-type Ca2+ current was 16% larger in OVx myocytes with channel inactivation shifting to more positive membrane potentials, creating a larger "window" current. SR Ca2+ stores were 22% greater in the OVx group, and these cells showed a higher frequency of Ca2+ sparks and waves and shorter wave-free intervals. OVx myocytes showed higher frequencies of early afterdepolarizations, and a greater percentage of these cells showed delayed afterdepolarizations after exposure to isoprenaline compared with sham myocytes. The altered Ca2+ regulation occurring in the OVx group was not observed in the OVx + E group. These findings suggest that long-term deprivation of ovarian hormones in guinea pigs lead to changes in myocyte Ca2+-handling mechanisms that are considered proarrhythmogenic. 17β-Estradiol replacement prevented these adverse effects.NEW & NOTEWORTHY Ovariectomized guinea pig cardiomyocytes have higher frequencies of Ca2+ waves, and isoprenaline-challenged cells display more early afterdepolarizations, delayed afterdepolarizations, and extra beats compared with sham myocytes. These alterations to Ca2+ regulation were not observed in myocytes from ovariectomized guinea pigs supplemented with 17β-estradiol, suggesting that ovarian hormone deficiency modifies cardiac Ca2+ regulation, potentially creating proarrhythmic substrates.
Collapse
Affiliation(s)
- Hsiang-Yu Yang
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; and.,Division of Cardiovascular Surgery, Department of Surgery, Tri-Service General Hospital, National Defence Medical Center, Taipei, Taiwan
| | - Jahn M Firth
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; and
| | - Alice J Francis
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; and
| | - Anita Alvarez-Laviada
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; and
| | - Kenneth T MacLeod
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; and
| |
Collapse
|
23
|
Guo JM, Shu H, Wang L, Xu JJ, Niu XC, Zhang L. SIRT1-dependent AMPK pathway in the protection of estrogen against ischemic brain injury. CNS Neurosci Ther 2017; 23:360-369. [PMID: 28256111 DOI: 10.1111/cns.12686] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 01/22/2017] [Accepted: 02/07/2017] [Indexed: 01/06/2023] Open
Abstract
AIMS Stroke is a major cause of mortality and disability, especially for postmenopausal women. In view of the protective action of estrogen, hormone therapy remains the only effective way to limit this risk. The objective of this study was to investigate the efficiency and underlying mechanisms of estrogen neuroprotection. METHODS Subcutaneous injection of 17β-estradiol in rats after ovariectomy (OVX) was used to manipulate estrogen level and explore the effects of estrogen in cerebral ischemic damage both in vivo and in vitro. Silent mating type information regulation 2 homolog 1 (SIRT1) knockout mice and adenosine monophosphate (AMP)-activated kinase (AMPK) inhibitor Compound C were also used to investigate the underlying pathway of estrogen. RESULTS Estrogen deficiency induced by OVX aggravated brain infarction in experimentally induced cerebral ischemia rats, whereas estrogen pretreatment reduced ischemia-induced cerebral injuries. Neurons of estrogen deficiency models were susceptible to apoptosis under oxygen-glucose deprivation (OGD). In contrast, neurons with estrogen-supplemented serum exhibited restored resistance to cell apoptosis. In OGD neurons, estrogen promoted AMPK activation through estrogen receptor α, and neuroprotection of estrogen was prevented by AMPK inhibition. Estrogen increased SIRT1 expression and activation, and estrogen-induced AMPK activation disappeared in SIRT1 knockout neurons. Moreover, estrogen-induced neuroprotection was abolished in SIRT1 knockout mice and AMPK-inhibited rats. CONCLUSION Our data support that estrogen protects against ischemic stroke through preventing neuron death via the SIRT1-dependent AMPK pathway.
Collapse
Affiliation(s)
- Jin-Min Guo
- Department of Pharmacology, Jinan Military General Hospital, Jinan, Shandong, China
| | - He Shu
- Department of Pharmacology, Jinan Military General Hospital, Jinan, Shandong, China
| | - Lei Wang
- Department of Orthopaedics, Jinan Military General Hospital, Jinan, Shandong, China
| | - Jian-Jiang Xu
- Department of Pharmacology, Jinan Military General Hospital, Jinan, Shandong, China
| | - Xue-Cai Niu
- Department of Radiotheropy, The Forth Hospital of Jinan City, Jinan, Shandong, China
| | - Li Zhang
- Department of Pharmacology, Jinan Military General Hospital, Jinan, Shandong, China
| |
Collapse
|
24
|
Delgado NTB, Rouver WDN, Freitas-Lima LC, de Paula TDC, Duarte A, Silva JF, Lemos VS, Santos AMC, Mauad H, Santos RL, Moysés MR. Pomegranate Extract Enhances Endothelium-Dependent Coronary Relaxation in Isolated Perfused Hearts from Spontaneously Hypertensive Ovariectomized Rats. Front Pharmacol 2017; 7:522. [PMID: 28101057 PMCID: PMC5209391 DOI: 10.3389/fphar.2016.00522] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 12/15/2016] [Indexed: 12/31/2022] Open
Abstract
Decline in estrogen levels promotes endothelial dysfunction and, consequently, the most prevalent cardiovascular diseases in menopausal women. The use of natural therapies such as pomegranate can change these results. Pomegranate [Punica granatum L. (Punicaceae)] is widely used as a phytotherapeutic agent worldwide, including in Brazil. We hypothesized that treatment with pomegranate hydroalcoholic extract (PHE) would improve coronary vascular reactivity and cardiovascular parameters. At the beginning of treatment, spontaneously hypertensive female rats were divided into Sham and ovariectomized (OVX) groups, which received pomegranate extract (PHE) (250 mg/kg) or filtered water (V) for 30 days by gavage. Systolic blood pressure was measured by tail plethysmography. After euthanasia, the heart was removed and coronary vascular reactivity was assessed by Langendorff retrograde perfusion technique. A dose-response curve for bradykinin was performed, followed by L-NAME inhibition. The protein expression of p-eNOS Ser1177, p-eNOS Thr495, total eNOS, p-AKT Ser473, total AKT, SOD-2, and catalase was quantified by Western blotting. The detection of coronary superoxide was performed using the protocol of dihydroethidium (DHE) staining Plasma nitrite measurement was analyzed by Griess method. Systolic blood pressure increased in both Sham-V and OVX-V groups, whereas it was reduced after treatment in Sham-PHE and OVX-PHE groups. The baseline coronary perfusion pressure was reduced in the Sham-PHE group. The relaxation was significantly higher in the treated group, and L-NAME attenuated the relaxation in all groups. The treatment has not changed p-eNOS (Ser1177), total eNOS, p-AKT (Ser473) and total AKT in any groups. However, in Sham and OVX group the treatment reduced the p-eNOS (Thr495) and SOD-2. The ovariectomy promoted an increasing in the superoxide anion levels and the treatment was able to prevent this elevation and reducing oxidative stress. Moreover, the treatment prevented the decreasing in plasmatic nitrite. We observed a reduction in total cholesterol and LDL in the Sham-PHE group. The treatment with PHE enhances the endothelium-dependent coronary relaxation and improves cardiovascular parameters, which suggests a therapeutic role of PHE.
Collapse
Affiliation(s)
- Nathalie T B Delgado
- Department of Physiological Sciences, Centre of Health Sciences, Federal University of Espirito Santo Vitoria, Brazil
| | - Wender do N Rouver
- Department of Physiological Sciences, Centre of Health Sciences, Federal University of Espirito Santo Vitoria, Brazil
| | - Leandro C Freitas-Lima
- Department of Physiological Sciences, Centre of Health Sciences, Federal University of Espirito Santo Vitoria, Brazil
| | - Tiago D-C de Paula
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo Ribeirão Preto, Brazil
| | - Andressa Duarte
- School of Medicine of Ribeirão Preto, University of São Paulo Ribeirão Preto, Brazil
| | - Josiane F Silva
- Department of Physiology and Biophysics, Federal University of Minas Gerais Belo Horizonte, Brazil
| | - Virgínia S Lemos
- Department of Physiology and Biophysics, Federal University of Minas Gerais Belo Horizonte, Brazil
| | - Alexandre M C Santos
- Department of Physiological Sciences, Centre of Health Sciences, Federal University of Espirito Santo Vitoria, Brazil
| | - Helder Mauad
- Department of Physiological Sciences, Centre of Health Sciences, Federal University of Espirito Santo Vitoria, Brazil
| | - Roger L Santos
- Department of Physiological Sciences, Centre of Health Sciences, Federal University of Espirito Santo Vitoria, Brazil
| | - Margareth R Moysés
- Department of Physiological Sciences, Centre of Health Sciences, Federal University of Espirito Santo Vitoria, Brazil
| |
Collapse
|
25
|
Blankenship K, Gilley A, Piekarski A, Orlowski S, Greene E, Bottje W, Anthony N, Dridi S. Differential expression of feeding-related hypothalamic neuropeptides in the first generation of quails divergently selected for low or high feed efficiency. Neuropeptides 2016; 58:31-40. [PMID: 26707635 DOI: 10.1016/j.npep.2015.12.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 12/09/2015] [Accepted: 12/10/2015] [Indexed: 12/14/2022]
Abstract
Livestock and poultry sectors are facing a combination of challenges, including a substantial increase in global demand for high quality animal protein, general droughts and steady rise in animal feed cost. Thus feed efficiency (FE), which defines the animal's ability to convert feed into body weight, is a vital economic and agricultural trait. Genetic selection for FE has been largely used in chickens and has been applied without knowledge of the underlying molecular mechanisms. Although it has made tremendous progress (breast yield, growth rate, egg production), there have been a number of undesirable changes such as metabolic disorders. In the present study we divergently selected male and female quail for high and low FE and we aimed to characterize the molecular basis of these differences at the central level, with the long-term goal of maximizing FE and avoiding the unfavorable consequences. The FE phenotype in first generation quails seemed to be achieved by reduced feed intake in female and increased body weight gain in males. At the molecular level, we found that the expression of feeding-related hypothalamic genes is gender- and line-dependent. Indeed, the expression of NPY, POMC, CART, CRH, melanocortin system (MC1R, MC2R, MC4R, MC5R), ORX, mTOR and ACCα was significantly decreased, however ORXR1/2, AMPKα1, S6K1 and STAT1, 5 and 6 were increased in high compared to low FE males (P<0.05). These genes did not differ between the two female lines. ADPN gene expression was higher and its receptor Adip-R1 was lower in LFE compared to HFE females (P<0.05). In male however, although there was no difference in ADPN gene expression between the genotypes, Adip-R1 and Adip-R2 mRNA abundances were higher in the LFE compared to HFE line (P<0.05). This study identified several key central feeding-related genes that are differentially expressed between low and high FE male and female quails which might explain the differences in feed intake/body weight gain observed between the two lines. Of particular interest, we provided novel insights into central AMPK-mTOR-ACC transcriptional differences between low and high FE quail which may open new research avenues on their roles in the regulation of energy balance and FE in poultry and livestock species.
Collapse
Affiliation(s)
- Kaley Blankenship
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, United States
| | - Alex Gilley
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, United States
| | - Alissa Piekarski
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, United States
| | - Sara Orlowski
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, United States
| | - Elizabeth Greene
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, United States
| | - Walter Bottje
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, United States
| | - Nicholas Anthony
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, United States
| | - Sami Dridi
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, United States.
| |
Collapse
|
26
|
Sbert-Roig M, Bauzá-Thorbrügge M, Galmés-Pascual BM, Capllonch-Amer G, García-Palmer FJ, Lladó I, Proenza AM, Gianotti M. GPER mediates the effects of 17β-estradiol in cardiac mitochondrial biogenesis and function. Mol Cell Endocrinol 2016; 420:116-24. [PMID: 26628039 DOI: 10.1016/j.mce.2015.11.027] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 11/09/2015] [Accepted: 11/22/2015] [Indexed: 12/28/2022]
Abstract
Considering the sexual dimorphism described in cardiac mitochondrial function and oxidative stress, we aimed to investigate the role of 17β-estradiol (E2) in these sex differences and the contribution of E2 receptors to these effects. As a model of chronic deprivation of ovarian hormones, we used ovariectomized (OVX) rats, half of which were treated with E2. Ovariectomy decreased markers of cardiac mitochondrial biogenesis and function and also increased oxidative stress, whereas E2 counteracted these effects. In H9c2 cardiomyocytes we observed that G-protein coupled estrogen receptor (GPER) agonist mimicked the effects of E2 in enhancing mitochondrial function and biogenesis, whereas GPER inhibitor neutralized them. These data suggest that E2 enhances mitochondrial function and decreases oxidative stress in cardiac muscle, thus it could be responsible for the sexual dimorphism observed in mitochondrial biogenesis and function in this tissue. These effects seem to be mediated through GPER stimulation.
Collapse
Affiliation(s)
- Miquel Sbert-Roig
- Grup Metabolisme Energètic i Nutrició, Departament de Biologia Fonamental i Ciències de la Salut, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, Ctra. Valldemossa, km 7, 5. E-07122 Palma de Mallorca, Illes Balears, Spain; Instituto de Investigación Sanitaria de Palma (IdISPa), Hospital Universitario Son Espases, edificio S. E-07120 Palma de Mallorca, Illes Balears, Spain
| | - Marco Bauzá-Thorbrügge
- Grup Metabolisme Energètic i Nutrició, Departament de Biologia Fonamental i Ciències de la Salut, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, Ctra. Valldemossa, km 7, 5. E-07122 Palma de Mallorca, Illes Balears, Spain; Instituto de Investigación Sanitaria de Palma (IdISPa), Hospital Universitario Son Espases, edificio S. E-07120 Palma de Mallorca, Illes Balears, Spain
| | - Bel M Galmés-Pascual
- Grup Metabolisme Energètic i Nutrició, Departament de Biologia Fonamental i Ciències de la Salut, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, Ctra. Valldemossa, km 7, 5. E-07122 Palma de Mallorca, Illes Balears, Spain; Instituto de Investigación Sanitaria de Palma (IdISPa), Hospital Universitario Son Espases, edificio S. E-07120 Palma de Mallorca, Illes Balears, Spain
| | - Gabriela Capllonch-Amer
- Grup Metabolisme Energètic i Nutrició, Departament de Biologia Fonamental i Ciències de la Salut, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, Ctra. Valldemossa, km 7, 5. E-07122 Palma de Mallorca, Illes Balears, Spain; Instituto de Investigación Sanitaria de Palma (IdISPa), Hospital Universitario Son Espases, edificio S. E-07120 Palma de Mallorca, Illes Balears, Spain
| | - Francisco J García-Palmer
- Grup Metabolisme Energètic i Nutrició, Departament de Biologia Fonamental i Ciències de la Salut, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, Ctra. Valldemossa, km 7, 5. E-07122 Palma de Mallorca, Illes Balears, Spain; Instituto de Investigación Sanitaria de Palma (IdISPa), Hospital Universitario Son Espases, edificio S. E-07120 Palma de Mallorca, Illes Balears, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBERobn, CB06/03/0043), Instituto de Salud Carlos III, Madrid, Spain
| | - Isabel Lladó
- Grup Metabolisme Energètic i Nutrició, Departament de Biologia Fonamental i Ciències de la Salut, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, Ctra. Valldemossa, km 7, 5. E-07122 Palma de Mallorca, Illes Balears, Spain; Instituto de Investigación Sanitaria de Palma (IdISPa), Hospital Universitario Son Espases, edificio S. E-07120 Palma de Mallorca, Illes Balears, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBERobn, CB06/03/0043), Instituto de Salud Carlos III, Madrid, Spain
| | - Ana M Proenza
- Grup Metabolisme Energètic i Nutrició, Departament de Biologia Fonamental i Ciències de la Salut, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, Ctra. Valldemossa, km 7, 5. E-07122 Palma de Mallorca, Illes Balears, Spain; Instituto de Investigación Sanitaria de Palma (IdISPa), Hospital Universitario Son Espases, edificio S. E-07120 Palma de Mallorca, Illes Balears, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBERobn, CB06/03/0043), Instituto de Salud Carlos III, Madrid, Spain
| | - Magdalena Gianotti
- Grup Metabolisme Energètic i Nutrició, Departament de Biologia Fonamental i Ciències de la Salut, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, Ctra. Valldemossa, km 7, 5. E-07122 Palma de Mallorca, Illes Balears, Spain; Instituto de Investigación Sanitaria de Palma (IdISPa), Hospital Universitario Son Espases, edificio S. E-07120 Palma de Mallorca, Illes Balears, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBERobn, CB06/03/0043), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
27
|
de Souza AA, de Menezes RC, Abreu AR, Araujo GR, Costa DC, Chianca DA. Increased α1-adrenoreceptor activity is required to sustain blood pressure in female rats under food restriction. Life Sci 2015; 128:55-63. [DOI: 10.1016/j.lfs.2015.02.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 12/18/2014] [Accepted: 02/11/2015] [Indexed: 11/15/2022]
|