1
|
Vítků J, Hampl R. Steroid Conjugates and Their Physiological Role. Physiol Res 2023; 72:S317-S322. [PMID: 38116768 DOI: 10.33549/physiolres.935080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024] Open
Abstract
While there are hundreds of synthetic steroids conjugates with acids, sugars, proteins and other molecules, only two types of conjugates occur in living organisms, namely sulfates and glucuronides. Steroid glucuronidation in the human liver is the main mechanism controlling the levels and biological activity of unconjugated hormones, and glucuronides are their main excretion products. This process is generally irreversible. On the other hand, sulfates possess their own biological activity that differs from that of the unconjugated steroid, emphasizing the importance of steroid sulfatases and sulfotransferases. Due to their negative charge, steroid sulfates cannot cross the blood-cell barrier and have to use transporters. Their efflux is mediated by specific transporters of the ATP binding cassette protein group, which thus are further factors controlling their physiological effects. Steroid sulfates, especially dehydroepiandrosterone sulfate (DHEAS) are neuroactive steroids, with well-known effects as allosteric modulators of some neurotransmitter receptors, functioning as ion channels, such as gamma-aminobutyric acid, type A (GABAA) receptors or N-methyl-D-aspartate (NMDA) receptors. In this minireview, we highlight some recent findings of non-genomic steroid sulfate actions through specific G-protein coupled receptors (GPCR), which we believe show the way of further research. A few studies have even indicated that sulfates such as DHEAS may even indirectly regulate gene expression via ligand binding to the membrane receptor and, through G-protein and second messenger formation, activate proteins like cAMP Regulated Elements Binding protein (CREB), which then binds to regulated DNA elements of the expressed gene, in a "classical" genomic effect.
Collapse
Affiliation(s)
- J Vítků
- Department of Steroids and Proteofactors, Institute of Endocrinology, Prague, Czech Republic.
| | | |
Collapse
|
2
|
Ding S, Liu S, Chen Y, Peng Y, Zheng J. Anastrozole and Related Glucuronic Acid Conjugate are Electrophilic Species. Xenobiotica 2022; 52:380-388. [PMID: 35656966 DOI: 10.1080/00498254.2022.2086503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Anastrozole (ANA), is an inhibitor of non-steroidal aromatase, widely employed for the treatment of breast cancer. However, ANA-associated liver injury cases have been documented in the application of the drug.The major purposes of the present study were to identify the structure of reactive metabolites derived from ANA and to study related metabolic pathways of ANA.We found ANA itself is an electrophilic species reactive to GSH. ANA can be metabolized to ANA-N+-glucuronide (1) catalyzed by UGT1A4. An ANA GSH conjugate (2) was detected in bile and livers of rats treated with ANA. UGT1A4 participated in the phase II metabolic pathway.This work allowed us to better understand the mechanisms of the hepatotoxicity of ANA and provided new avenue to define the possible role of metabolic activation in hepatotoxicity.
Collapse
Affiliation(s)
- Siyu Ding
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Siyu Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Yaxuan Chen
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Ying Peng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Jiang Zheng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China.,State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou 550025, P. R. China.,Key Laboratory of Environmental Pollution, Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, P. R. China
| |
Collapse
|
3
|
Jang SN, Park SY, Lee H, Jeong H, Jeon JH, Song IS, Kwon MJ, Liu KH. In vitro modulatory effects of ginsenoside compound K, 20( S)-protopanaxadiol and 20( S)-protopanaxatriol on uridine 5'-diphospho-glucuronosyltransferase activity and expression. Xenobiotica 2021; 51:1087-1094. [PMID: 34338601 DOI: 10.1080/00498254.2021.1963503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
We explored the inhibitory effect of ginsenoside compound K (CK), 20(S)-protopanaxadiol (PPD), and 20(S)-protopanaxatriol (PPT) on six uridine 5'-diphospho-glucuronosyltransferase (UGT) enzyme (UGT1A1, 1A3, 1A4, 1A6, 1A9, and 2B7) activities in human liver microsomes (HLMs) and 10 UGT enzyme (UGT1A1, 1A3, 1A4, 1A6, 1A9, 2B4, 2B7, 2B10, 2B15, and 2B17) activities in recombinant UGT isoforms.PPD was a potent inhibitor of UGT1A3 activity with half-maximal inhibitory concentration values of 5.62 and 3.38 μM in HLMs and recombinant UGT1A3, respectively. UGT1A3 inhibition by CK and PPD was competitive with inhibitory constant (Ki) values of 17.4 and 1.21 μM, respectively, and inhibition by PPT was non-competitive with a Ki value of 8.07 μM in HLMs. PPD exhibited more than 3.4-fold selectivity for UGT1A3 inhibition compared with other UGT isoforms inhibition, while CK and PPT showed more than 2.16- and 2.21-fold selectivity, respectively.PPD did not significantly increase the mRNA expression of UGT1A1, 1A3, 1A4, 1A9, and 2B7 in hepatocytes.Given the low plasma concentrations of PPD in healthy human subjects and the absence of induction potential on UGT isoforms, we conclude that PPD cause no pharmacokinetic interactions with other co-administered drugs metabolised by UGT1A3.
Collapse
Affiliation(s)
- Su-Nyeong Jang
- BK21 FOUR KNU Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy, Kyungpook National University, Daegu, South Korea.,College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, South Korea
| | - So-Young Park
- BK21 FOUR KNU Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy, Kyungpook National University, Daegu, South Korea.,College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, South Korea
| | - Hyunyoung Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, South Korea
| | - Hyojin Jeong
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, South Korea
| | - Ji-Hyeon Jeon
- BK21 FOUR KNU Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy, Kyungpook National University, Daegu, South Korea.,College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, South Korea
| | - Im-Sook Song
- BK21 FOUR KNU Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy, Kyungpook National University, Daegu, South Korea.,College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, South Korea
| | - Mi Jeong Kwon
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, South Korea
| | - Kwang-Hyeon Liu
- BK21 FOUR KNU Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy, Kyungpook National University, Daegu, South Korea.,College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, South Korea.,Mass Spectrometry Based Convergence Research Institute, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
4
|
Vaillancourt J, Turcotte V, Caron P, Villeneuve L, Lacombe L, Pouliot F, Lévesque É, Guillemette C. Glucuronidation of Abiraterone and Its Pharmacologically Active Metabolites by UGT1A4, Influence of Polymorphic Variants and Their Potential as Inhibitors of Steroid Glucuronidation. Drug Metab Dispos 2020; 48:75-84. [PMID: 31727674 DOI: 10.1124/dmd.119.088229] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 11/08/2019] [Indexed: 02/13/2025] Open
Abstract
Abiraterone (Abi) acetate (AA) is a prodrug of Abi, a CYP17A1 inhibitor used to treat patients with advanced prostate cancer. Abi is a selective steroidal inhibitor that blocks the biosynthesis of androgens. It undergoes extensive biotransformation by steroid pathways, leading to the formation of pharmacologically active Δ4-Abi (D4A) and 5α-Abi. This study aimed to characterize the glucuronidation pathway of Abi and its two active metabolites. We show that Abi, its metabolites, and another steroidal inhibitor galeterone (Gal) undergo secondary metabolism to form glucuronides (G) in human liver microsomes with minor formation by intestine and kidney microsomal preparations. The potential clinical relevance of this pathway is supported by the detection by liquid chromatography-tandem mass spectrometry of Abi-G, D4A-G, and 5α-Abi-G in patients under AA therapy. A screening of UGT enzymes reveals that UGT1A4 is the main enzyme involved. This is supported by inhibition experiments using a selective UGT1A4 inhibitor hecogenin. A number of common and rare nonsynonymous variants significantly abrogate the UGT1A4-mediated formation of Abi-G, D4A-G, and 5α-Abi-G in vitro. We also identify Gal, Abi, and its metabolites as highly potent inhibitors of steroid inactivation by the UGT pathway with submicromolar inhibitor constant values. They reduce the glucuronidation of both the adrenal precursors and potent androgens in human liver, prostate cancer cells, and by recombinant UGTs involved in their inactivation. In conclusion, tested CYP17A1 inhibitors are metabolized through UGT1A4, and germline variations affecting this metabolic pathway may also influence drug metabolism. SIGNIFICANCE STATEMENT: The antiandrogen abiraterone (Abi) is a selective steroidal inhibitor of the cytochrome P450 17α-hydroxy/17,20-lyase, an enzyme involved in the biosynthesis of androgens. Abi is metabolized to pharmacologically active metabolites by steroidogenic enzymes. We demonstrate that Abi and its metabolites are glucuronidated in the liver and that their glucuronide derivatives are detected at variable levels in circulation of treated prostate cancer patients. UDP-glucuronosyltransferase (UGT)1A4 is the primary enzyme involved, and nonsynonymous germline variations affect this metabolic pathway in vitro, suggesting a potential influence of drug metabolism and action in patients. Their inhibitory effect on drug and steroid glucuronidation raises the possibility that these pharmacological compounds might affect the UGT-associated drug-metabolizing system and pre-receptor control of androgen metabolism in patients.
Collapse
Affiliation(s)
- Joanie Vaillancourt
- Pharmacogenomics Laboratory, Centre Hospitalier Universitaire de Québec (CHU de Québec) Research Center - Université Laval and Faculty of Pharmacy (J.V., V.T., P.C., L.V., C.G.), CHU de Québec Research Center - Université Laval, Division of Urology, Faculty of Medicine, Surgery Department (L.L., F.P.), and CHU de Québec Research Center - Université Laval, Division of Hematology-Oncology, Faculty of Medicine (E.L.), Laval University, Québec, Canada
| | - Véronique Turcotte
- Pharmacogenomics Laboratory, Centre Hospitalier Universitaire de Québec (CHU de Québec) Research Center - Université Laval and Faculty of Pharmacy (J.V., V.T., P.C., L.V., C.G.), CHU de Québec Research Center - Université Laval, Division of Urology, Faculty of Medicine, Surgery Department (L.L., F.P.), and CHU de Québec Research Center - Université Laval, Division of Hematology-Oncology, Faculty of Medicine (E.L.), Laval University, Québec, Canada
| | - Patrick Caron
- Pharmacogenomics Laboratory, Centre Hospitalier Universitaire de Québec (CHU de Québec) Research Center - Université Laval and Faculty of Pharmacy (J.V., V.T., P.C., L.V., C.G.), CHU de Québec Research Center - Université Laval, Division of Urology, Faculty of Medicine, Surgery Department (L.L., F.P.), and CHU de Québec Research Center - Université Laval, Division of Hematology-Oncology, Faculty of Medicine (E.L.), Laval University, Québec, Canada
| | - Lyne Villeneuve
- Pharmacogenomics Laboratory, Centre Hospitalier Universitaire de Québec (CHU de Québec) Research Center - Université Laval and Faculty of Pharmacy (J.V., V.T., P.C., L.V., C.G.), CHU de Québec Research Center - Université Laval, Division of Urology, Faculty of Medicine, Surgery Department (L.L., F.P.), and CHU de Québec Research Center - Université Laval, Division of Hematology-Oncology, Faculty of Medicine (E.L.), Laval University, Québec, Canada
| | - Louis Lacombe
- Pharmacogenomics Laboratory, Centre Hospitalier Universitaire de Québec (CHU de Québec) Research Center - Université Laval and Faculty of Pharmacy (J.V., V.T., P.C., L.V., C.G.), CHU de Québec Research Center - Université Laval, Division of Urology, Faculty of Medicine, Surgery Department (L.L., F.P.), and CHU de Québec Research Center - Université Laval, Division of Hematology-Oncology, Faculty of Medicine (E.L.), Laval University, Québec, Canada
| | - Frédéric Pouliot
- Pharmacogenomics Laboratory, Centre Hospitalier Universitaire de Québec (CHU de Québec) Research Center - Université Laval and Faculty of Pharmacy (J.V., V.T., P.C., L.V., C.G.), CHU de Québec Research Center - Université Laval, Division of Urology, Faculty of Medicine, Surgery Department (L.L., F.P.), and CHU de Québec Research Center - Université Laval, Division of Hematology-Oncology, Faculty of Medicine (E.L.), Laval University, Québec, Canada
| | - Éric Lévesque
- Pharmacogenomics Laboratory, Centre Hospitalier Universitaire de Québec (CHU de Québec) Research Center - Université Laval and Faculty of Pharmacy (J.V., V.T., P.C., L.V., C.G.), CHU de Québec Research Center - Université Laval, Division of Urology, Faculty of Medicine, Surgery Department (L.L., F.P.), and CHU de Québec Research Center - Université Laval, Division of Hematology-Oncology, Faculty of Medicine (E.L.), Laval University, Québec, Canada
| | - Chantal Guillemette
- Pharmacogenomics Laboratory, Centre Hospitalier Universitaire de Québec (CHU de Québec) Research Center - Université Laval and Faculty of Pharmacy (J.V., V.T., P.C., L.V., C.G.), CHU de Québec Research Center - Université Laval, Division of Urology, Faculty of Medicine, Surgery Department (L.L., F.P.), and CHU de Québec Research Center - Université Laval, Division of Hematology-Oncology, Faculty of Medicine (E.L.), Laval University, Québec, Canada
| |
Collapse
|
5
|
Jin SE, Ha H, Shin HK. Effects of Herbal Formulas Bojungikgi-tang and Palmijihwang-hwan on Inflammation in RAW 264.7 Cells and the Activities of Drug-Metabolizing Enzymes in Human Hepatic Microsomes. J Med Food 2018; 21:1173-1187. [PMID: 30457473 DOI: 10.1089/jmf.2017.4123] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In the present study, Bojungikgi-tang (BJIKT: Buzhongyiqi-tang, Hochuekki-to) and Palmijihwang-hwan (PMJHH: Baweidìhuang-wan, Hachimijio-gan), traditional herbal formulas, investigated anti-inflammatory efficacies in murine macrophage cell line and the influence on the activities of drug-metabolizing enzymes (DMEs). The anti-inflammatory potentials of the herbal formulas were evaluated to inhibit the production of the inflammatory mediators and cytokines and the protein expression of inducible nitric oxide and cyclooxygenase-2 (COX-2) in lipopolysaccharide (LPS)-treated RAW 264.7 cells. The activities of the major human DMEs, cytochrome P450 isozymes (CYP450s) and UDP-glucuronosyltransferase isozymes (UGTs), were measured by in vitro enzyme assay systems. BJIKT and PMJHH significantly suppressed the prostaglandin E2 (PGE2) production (IC50 = 317.3 and 282.2 μg/mL, respectively) and the protein expression of COX-2 in LPS-treated RAW264.7 cells. On the human microsomal DMEs, BJIKT inhibited the activities of CYP1A2 (IC50 = 535.05 μg/mL), CYP2B6 (IC50 > 1000 μg/mL), CYP2C9 (IC50 = 800.78 μg/mL), CYP2C19 (IC50 = 563.11 μg/mL), CYP2D6 (IC50 > 1000 μg/mL), CYP2E1 (IC50 > 1000 μg/mL), CYP3A4 (IC50 = 879.60 μg/mL), UGT1A1 (IC50 > 1000 μg/mL), and UGT1A4 (IC50 > 1000 μg/mL), but it showed no inhibition of the UGT2B7 activity at doses less than 1000 μg/mL. PMJHH inhibited the CYP2D6 activity (IC50 = 280.89 μg/mL), but IC50 values of PMJHH exceeded 1000 μg/mL on the activities of CYP1A2, CYP2C19, CYP2E1, and CYP3A4. At concentrations less than 1000 μg/mL, PMJHH did not affect the activities of CYP2B6, CYP2C9, UGT1A1, UGT1A4, and UGT2B7. The results indicate that both BJIKT and PMJHH may be potential candidates to prevent and treat PGE2- and COX-2-mediated inflammatory diseases. In addition, this study will expand current knowledge about herb-drug interactions by BJIKT and PMJHH.
Collapse
Affiliation(s)
- Seong Eun Jin
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine , Daejeon, Korea
| | - Hyekyung Ha
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine , Daejeon, Korea
| | - Hyeun-Kyoo Shin
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine , Daejeon, Korea
| |
Collapse
|
6
|
Identification and characterization of in vitro inhibitors against UDP-glucuronosyltransferase 1A1 in uva-ursi extracts and evaluation of in vivo uva-ursi-drug interactions. Food Chem Toxicol 2018; 120:651-661. [DOI: 10.1016/j.fct.2018.07.058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/27/2018] [Accepted: 07/30/2018] [Indexed: 02/06/2023]
|
7
|
Design and optimization of the cocktail assay for rapid assessment of the activity of UGT enzymes in human and rat liver microsomes. Toxicol Lett 2018; 295:379-389. [PMID: 30036684 DOI: 10.1016/j.toxlet.2018.07.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/21/2018] [Accepted: 07/19/2018] [Indexed: 12/26/2022]
Abstract
Along with the prevalence of drug combination therapies, an increasing number of cases about drug-drug interactions (DDI) have been reported, which has drawn a lot of attention due to the potential toxicity and/or therapeutic failure. Pharmacokinetic interactions based on drug metabolic enzymes should be responsible for a great many of DDI. UDP-glucuronosyltransferases (UGT) as the main phase II metabolic enzymes are involved in the metabolism of many endogenous and exogenous substrates. Herein, we designed and optimized a validated cocktail method for the simultaneous evaluation of drug-mediated inhibition of the main five UGT isoforms using respective specific probe substrates (estradiol for UGT1A1, chenodeoxycholic acid for UGT1A3, serotonin for UGT1A6, propofol for UGT1A9/PROG and zidovudine for UGT2B7/AZTG) in human and rat liver microsomes by liquid chromatography-tandem mass spectrometry (LCMS/MS). Moreover, we investigated the risk of interactions among UGT probe substrates, and validated the cocktail method by known positive inhibitors of UGT isoforms. To minimize the substrates interaction, we developed two cocktail subgroups which were further optimized via exploring the experimental conditions. In particular, the cocktail inhibition assay for rapid assessment of in vitro rat UGTs was firstly reported and the values of Km in the liver microsomes from humans and rats were close to each other in the specific UGT subtype. In conclusion, this study has successfully established the cocktail approach to explore UGT activity, especially for UGT inhibition in a fast and efficient way.
Collapse
|
8
|
Ema M, Xu Y, Gehrke S, Wagner GK. Identification of non-substrate-like glycosyltransferase inhibitors from library screening: pitfalls & hits. MEDCHEMCOMM 2017; 9:131-137. [PMID: 30108907 DOI: 10.1039/c7md00550d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 11/29/2017] [Indexed: 12/11/2022]
Abstract
Bacterial glycosyltransferases are potential targets for the development of novel antibiotics and anti-virulence agents. Most existing glycosyltransferase inhibitors are substrate analogues with limited potential for drug development. The identification of alternative inhibitor chemotypes is therefore of great interest for medicinal chemistry, drug discovery and chemical glycobiology. We describe the application of a biochemical glycosyltransferase assay to screen a small compound library containing three distinct chemical scaffolds (nucleosides, steroids and 5-methyl pyrazol-3-ones) against the retaining α-1,4-galactosyltransferase LgtC from Neisseria meningitidis. While no genuine LgtC inhibitory activity was observed in the nucleoside and steroid series, the best hit compounds in the 5-methyl pyrazol-3-one series showed low micromolar activity. We adapted our assay protocol to develop initial structure-activity relationships in this series, and to establish the target selectivity of the most potent inhibitor over two other glycosyltransferases. Our results provide insights into the activity of this class of non-substrate-like glycosyltransferase inhibitors, and highlight important general pitfalls for inhibitor screening against this enzyme family. Key elements of our experimental design, including a validated single-concentration protocol for inhibitor screening, and our process for elimination of false positives, are, in principle, directly transferable to many other sugar-nucleotide-dependent glycosyltransferases.
Collapse
Affiliation(s)
- Masaki Ema
- King's College London , Department of Chemistry , Faculty of Natural & Mathematical Sciences , Britannia House , 7 Trinity Street , London , SE1 1DB , UK . ; Tel: +44 (0)20 7848 1926
| | - Yong Xu
- King's College London , Department of Chemistry , Faculty of Natural & Mathematical Sciences , Britannia House , 7 Trinity Street , London , SE1 1DB , UK . ; Tel: +44 (0)20 7848 1926
| | - Sebastian Gehrke
- King's College London , Institute of Pharmaceutical Science , Faculty of Life Sciences & Medicine , UK
| | - Gerd K Wagner
- King's College London , Department of Chemistry , Faculty of Natural & Mathematical Sciences , Britannia House , 7 Trinity Street , London , SE1 1DB , UK . ; Tel: +44 (0)20 7848 1926
| |
Collapse
|
9
|
Xie H, Wu J, Liu D, Liu M, Zhang H, Huang S, Xiong Y, Xia C. In vitro inhibition of UGT1A3, UGT1A4 by ursolic acid and oleanolic acid and drug-drug interaction risk prediction. Xenobiotica 2017; 47:785-792. [PMID: 27600106 DOI: 10.1080/00498254.2016.1234087] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 09/05/2016] [Accepted: 09/05/2016] [Indexed: 12/13/2022]
Abstract
1. Ursolic acid (UA) and oleanolic acid (OA) may have important activity relevant to health and disease prevention. Thus, we studied the activity of UA and OA on UDP-glucuronosyltransferases (UGTs) and used trifluoperazine as a probe substrate to test UGT1A4 activity. Recombinant UGT-catalyzed 4-methylumbelliferone (4-MU) glucuronidation was used as a probe reaction for other UGT isoforms. 2. UA and OA inhibited UGT1A3 and UGT1A4 activity but did not inhibit other tested UGT isoforms. 3. UA-mediated inhibition of UGT1A3 catalyzed 4-MU-β-d-glucuronidation was via competitive inhibition (IC50 0.391 ± 0.013 μM; Ki 0.185 ± 0.015 μM). UA also competitively inhibited UGT1A4-mediated trifluoperazine-N-glucuronidation (IC50 2.651 ± 0.201 μM; Ki 1.334 ± 0.146 μM). 4. OA offered mixed inhibition of UGT1A3-mediated 4-MU-β-d-glucuronidation (IC50 0.336 ± 0.013 μM; Ki 0.176 ± 0.007 μM) and competitively inhibited UGT1A4-mediated trifluoperazine-N-glucuronidation (IC50 5.468 ± 0.697 μM; Ki 6.298 ± 0.891 μM). 5. Co-administering OA or UA with drugs or products that are substrates of UGT1A3 or UGT1A4 may produce drug-mediated side effects.
Collapse
Affiliation(s)
- Hongbo Xie
- a Clinical Pharmacology Institute, Nanchang University , Nanchang , P.R. China
| | - Jie Wu
- a Clinical Pharmacology Institute, Nanchang University , Nanchang , P.R. China
| | - Dan Liu
- a Clinical Pharmacology Institute, Nanchang University , Nanchang , P.R. China
| | - Mingyi Liu
- a Clinical Pharmacology Institute, Nanchang University , Nanchang , P.R. China
| | - Hong Zhang
- a Clinical Pharmacology Institute, Nanchang University , Nanchang , P.R. China
| | - Shibo Huang
- a Clinical Pharmacology Institute, Nanchang University , Nanchang , P.R. China
| | - Yuqing Xiong
- a Clinical Pharmacology Institute, Nanchang University , Nanchang , P.R. China
| | - Chunhua Xia
- a Clinical Pharmacology Institute, Nanchang University , Nanchang , P.R. China
| |
Collapse
|
10
|
In vitro stereoselective inhibition of ginsenosides toward UDP-glucuronosyltransferase (UGT) isoforms. Toxicol Lett 2016; 259:1-10. [DOI: 10.1016/j.toxlet.2016.07.108] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 07/21/2016] [Accepted: 07/22/2016] [Indexed: 12/15/2022]
|
11
|
In Vitro Inhibition of Human UDP-Glucuronosyl-Transferase (UGT) Isoforms by Astaxanthin, β-Cryptoxanthin, Canthaxanthin, Lutein, and Zeaxanthin: Prediction of in Vivo Dietary Supplement-Drug Interactions. Molecules 2016; 21:molecules21081052. [PMID: 27529203 PMCID: PMC6272861 DOI: 10.3390/molecules21081052] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/07/2016] [Accepted: 08/09/2016] [Indexed: 01/17/2023] Open
Abstract
Despite the widespread use of the five major xanthophylls astaxanthin, β-cryptoxanthin, canthaxanthin, lutein, and zeaxanthin as dietary supplements, there have been no studies regarding their inhibitory effects on hepatic UDP-glucuronosyltransferases (UGTs). Here, we evaluated the inhibitory potential of these xanthophylls on the seven major human hepatic UGTs (UGT1A1, UGT1A3, UGT1A4, UGT1A6, UGT1A9, UGT2B7 and UGT2B15) in vitro by LC-MS/MS using specific marker reactions in human liver microsomes (except UGT2B15) or recombinant supersomes (UGT2B15). We also predicted potential dietary supplement-drug interactions for β-cryptoxanthin via UGT1A1 inhibition. We demonstrated that astaxanthin and zeaxanthin showed no apparent inhibition, while the remaining xanthophylls showed only weak inhibitory effects on the seven UGTs. β-Cryptoxanthin mildly inhibited UGT1A1, UGT1A3, and UGT1A4, with IC50 values of 18.8 ± 2.07, 28.3 ± 4.40 and 34.9 ± 5.98 μM, respectively. Canthaxanthin weakly inhibited UGT1A1 and UGT1A3, with IC50 values of 38.5 ± 4.65 and 41.2 ± 3.14 μM, respectively; and lutein inhibited UGT1A1 and UGT1A4, with IC50 values of 45.5 ± 4.01 and 28.7 ± 3.79 μM, respectively. Among the tested xanthophyll-UGT pairs, β-cryptoxanthin showed the strongest competitive inhibition of UGT1A1 (Ki, 12.2 ± 0.985 μM). In addition, we predicted the risk of UGT1A1 inhibition in vivo using the reported maximum plasma concentration after oral administration of β-cryptoxanthin in humans. Our data suggests that these xanthophylls are unlikely to cause dietary supplement-drug interactions mediated by inhibition of the hepatic UGTs. These findings provide useful information for the safe clinical use of the tested xanthophylls.
Collapse
|
12
|
Xu M, Dong P, Tian X, Wang C, Huo X, Zhang B, Wu L, Deng S, Ma X. Drug interaction study of natural steroids from herbs specifically toward human UDP-glucuronosyltransferase (UGT) 1A4 and their quantitative structure activity relationship (QSAR) analysis for prediction. Pharmacol Res 2016; 110:139-150. [DOI: 10.1016/j.phrs.2016.05.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 04/26/2016] [Accepted: 05/06/2016] [Indexed: 12/11/2022]
|
13
|
Radix A, Sevelius J, Deutsch MB. Transgender women, hormonal therapy and HIV treatment: a comprehensive review of the literature and recommendations for best practices. J Int AIDS Soc 2016; 19:20810. [PMID: 27431475 PMCID: PMC4949308 DOI: 10.7448/ias.19.3.20810] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 04/13/2016] [Accepted: 04/25/2016] [Indexed: 01/25/2023] Open
Abstract
INTRODUCTION Studies have shown that transgender women (TGW) are disproportionately affected by HIV, with an estimated HIV prevalence of 19.1% among TGW worldwide. After receiving a diagnosis, HIV-positive TGW have challenges accessing effective HIV treatment, as demonstrated by lower rates of virologic suppression and higher HIV-related mortality. These adverse HIV outcomes have been attributed to the multiple sociocultural and structural barriers that negatively affect their engagement within the HIV care continuum. Guidelines for feminizing hormonal therapy among TGW recommend combinations of oestrogens and androgen blockers. Pharmacokinetic studies have shown that certain antiretroviral therapy (ART) agents, such as protease inhibitors (PIs), non-nucleoside reverse transcriptase inhibitors (NNRTIs) and cobicistat, interact with ethinyl estradiol, the key oestrogen component of oral contraceptives (OCPs). The goal of this article is to provide an overview of hormonal regimens used by TGW, to summarize the known drug-drug interactions (DDIs) between feminizing hormonal regimens and ART, and to provide clinical care recommendations. METHODS The authors identified English language articles examining DDIs between oestrogen therapy, androgen blockers and ART published between 1995 and 2015 using PubMed, Cumulative Index to Nursing and Allied Health Literature and EBSCOhost. RESULTS AND DISCUSSION Published articles predominantly addressed interactions between ethinyl estradiol and NNRTIs and PIs. No studies examined interactions between ART and the types and doses of oestrogens found in feminizing regimens. DDIs that may have the potential to result in loss of virologic suppression included ethinyl estradiol and amprenavir, unboosted fosamprenavir and stavudine. No clinically significant DDIs were noted with other anti-retroviral agents or androgen blockers. CONCLUSIONS There are insufficient data to address DDIs between ART and feminizing hormone regimens used by TGW. There is an urgent need for further research in this area, specifically pharmacokinetic studies to study the direction and degree of interactions between oral, injectable and transdermal estradiol and ART. Clinicians need to be vigilant about possible interactions and monitor hormone levels if concerns arise. More research is also needed on the provision of hormone therapy and gender-affirming care on the long-term health outcomes of HIV-positive TGW.
Collapse
Affiliation(s)
- Asa Radix
- Callen-Lorde Community Health Center New York, NY, USA;
| | - Jae Sevelius
- Department of Medicine, University of California San Francisco, CA, USA
| | - Madeline B Deutsch
- Department of Family and Community Medicine, University of California San Francisco, CA, USA
| |
Collapse
|
14
|
HIV epidemics among transgender populations: the importance of a trans-inclusive response. J Int AIDS Soc 2016. [DOI: 10.7448/ias.19.3.21259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|