1
|
Ren Z, Pan C, Dong Y, Fei Q, Li H, Ge RS. In Utero Perfluorodecanoic Acid Exposure Causes Fetal Leydig Cell Dysfunction via Endoplasmic Reticulum Stress-Mediated Lipid Composition Alteration. Chem Res Toxicol 2025; 38:314-324. [PMID: 39814558 DOI: 10.1021/acs.chemrestox.4c00467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Perfluorodecanoic acid (PFDA), a C10 fluorine-containing compound, is used widely and found to be present anywhere. However, whether it has reproductive toxicity for fetal Leydig cells and the underlying mechanisms remain unknown. PFDA was investigated for its effects on fetal Leydig cells (FLCs) following exposure to 0, 1, 2.5, and 5 mg/kg/days (gavage to dams) from day 14 to day 21 during gestation. The study showed that in utero medium-dose PFDA (1, 2.5 mg/kg/days) exposure increased fetal body weight. However, PFDA markedly reduced serum testosterone levels, downregulated FLC genes (Lhcgr, Star, Cyp11a1, Hsd3b1, Cyp17a1, and Insl3), and decreased their protein levels in neonatal rat testes. PFDA at 5 mg/kg/day altered lipid metabolism with upregulation of Elovl1 and downregulation of Scd2, subsequently inducing endoplasmic reticulum stress. Additionally, PFDA exposure downregulated transcription factor Gli1, thereby inhibiting fetal Leydig cell differentiation. Meanwhile, PFDA reduced testosterone biosynthesis in R2C Leydig cells in vitro, and the endoplasmic reticulum stress inhibitor tauroursodeoxycholic acid (TUDCA) reversed this process. In conclusion, PFDA disrupts fetal rat testicular lipid metabolism, induces endoplasmic reticulum stress, and interferes with the steroidogenesis network, leading to fetal Leydig cell dysfunction. This study underscores the potential environmental risk of PFDA exposure on the development of male reproductive function development.
Collapse
Affiliation(s)
- Zheyuan Ren
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Chengshuang Pan
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Reproductive Medicine Center, First Reproductive Medicine Center, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 32500, China
| | - Yaoyao Dong
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Qianjin Fei
- Reproductive Medicine Center, First Reproductive Medicine Center, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 32500, China
| | - Huitao Li
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Ren-Shan Ge
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Male Health and Environment of Wenzhou, Wenzhou, Zhejiang 325000, China
| |
Collapse
|
2
|
Rogers J, Buerger A, Heintz M, Palermo C, Haws L, Lea I. Evaluation of a hypothesized Sertoli cell-based adverse outcome pathway for effects of diisononyl phthalate on the developing testis. Curr Res Toxicol 2025; 8:100219. [PMID: 40123861 PMCID: PMC11930220 DOI: 10.1016/j.crtox.2025.100219] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/21/2025] [Accepted: 01/23/2025] [Indexed: 03/25/2025] Open
Abstract
Exposure of pregnant rats to some phthalates during the masculinization programming window (MPW) can lower fetal testis testosterone production and adversely affect development of the fetal male reproductive tract. Some of the effects in rats are androgen-dependent, while others also occur in mice without lower testosterone production. An adverse outcome pathway (AOP) network has been proposed for these developmental effects that includes both androgen-dependent and androgen-independent pathways, the latter of which includes a short list of putative molecular initiating events (MIEs) including peroxisome proliferator activated receptor (PPAR) activation, and effects on Sertoli cells in the developing testes as early key events (KEs) (PMID 34314370). Data from peer-reviewed literature, publicly cited toxicology reports, and EPA's Toxicity Forecaster (ToxCast) were evaluated in the context of this hypothesized Sertoli cell-based AOP and exposure to diisononyl phthalate (DINP). Each of the fifteen identified studies underwent a risk of bias (RoB) assessment, which revealed a high risk of bias for all but one study endpoint. In vitro evidence in kidney, liver, and fibroblast-like cell lines indicates that the DINP metabolites mono-isononyl phthalate (MINP) and mono-hydroxyisononyl phthalate (MHINP) activate PPARα/γ and that mouse PPARα/γ are more sensitive than human PPARα/γ. However, DINP did not activate PPARα-related genes in rat fetal testes at high maternal dosages (PMID 22112501), and it remains unknown whether PPARs are expressed in fetal Sertoli cells. Overall, there is insufficient evidence to evaluate whether PPAR activation in the developing male reproductive tract is causally linked to the KEs in the hypothesized AOP. Regarding the KEs, no in vivo studies were identified that examined the effects of DINP on Sertoli cell proliferation or cytoskeleton; a single in vitro study found no effect of DINP on Sertoli cell proliferation. There was limited and conflicting evidence for the effects of DINP on tubulogenesis, but strong in vivo evidence for increased multinucleated germ (MNG) cells. No evidence was found concerning germ cell apoptosis. For the adverse outcomes (AOs), there was limited in vivo evidence for testicular dysgenesis following altered tubulogenesis, and impaired spermatogenesis following increased MNGs. There was strong evidence against reduced fertility, but this is not a sensitive endpoint in rats given their robust sperm production and excess capacity. In conclusion, following in utero DINP exposure, while PPAR activation (MIE) is plausible, linkage to effects on Sertoli cells and downstream AOPs is lacking. The sparse evidence currently available is insufficient to support the applicability of the hypothesized Sertoli cell-based AOP to DINP.
Collapse
Affiliation(s)
- J.M. Rogers
- ToxStrategies LLC, 31 College Place Suite B118, Asheville, NC 28801, United States
| | - A.N. Buerger
- ToxStrategies LLC, 31 College Place Suite B118, Asheville, NC 28801, United States
| | - M.M. Heintz
- ToxStrategies LLC, 31 College Place Suite B118, Asheville, NC 28801, United States
| | - C.M. Palermo
- ExxonMobil Biomedical Sciences, Inc., Health and Environmental Sciences Division, Annandale, NJ, United States
| | - L.C. Haws
- ToxStrategies LLC, 31 College Place Suite B118, Asheville, NC 28801, United States
| | - I.A. Lea
- ToxStrategies LLC, 31 College Place Suite B118, Asheville, NC 28801, United States
| |
Collapse
|
3
|
Lea IA, Buerger AN, Feifarek D, Mihalchik A, Heintz MM, Haws LC, Nyambego H, Goyak K, Palermo C, Borghoff SJ. Evaluation of the endocrine disrupting potential of Di-isononyl phthalate. Curr Res Toxicol 2025; 8:100220. [PMID: 40092461 PMCID: PMC11910676 DOI: 10.1016/j.crtox.2025.100220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/13/2024] [Accepted: 01/23/2025] [Indexed: 03/19/2025] Open
Abstract
Low molecular weight ortho-phthalate compounds have been implicated in disruption of androgen pathways when exposure occurs during the masculinization programming window. Di-isononyl phthalate (DINP) is a high molecular weight phthalate and a high production volume chemical. To understand the potential for DINP and its metabolites to disrupt endocrine pathways, a weight of evidence assessment was conducted according to the European Chemicals Agency (ECHA)/ European Food Safety Authority (EFSA) Endocrine Disruptor Guidance (2018). Toxicological data related to estrogen (E), androgen (A), thyroid (T), or steroidogenesis (S) pathways was assessed. Literature searches returned 110 articles from which data were extracted and assessed in conjunction with 105 high-throughput assays. An in-silico assessment of the EATS activity for DINP metabolites also was conducted. Based on the available evidence, DINP did not elicit thyroid- or estrogen-related apical outcomes in vivo. There were no studies evaluating thyroid hormone levels in vivo which, according to the ECHA/EFSA guidance, constitutes a data gap and prevents a conclusion being drawn on the T-pathway. The E, A, and S-pathways were sufficiently assessed to conclude on the endocrine disrupting potential of DINP. Based on the lack of apical outcomes, DINP did not disrupt the E-pathway. For the A and S-pathways, there was limited evidence to support adverse apical outcomes, so a mode of action assessment using a structured adverse outcome pathway (AOP) framework was performed. No biologically plausible link could be established between the key events in the hypothesized AOP that lead to adverse outcomes. Further, no dose or temporal concordance for A- and S-mediated findings were identified. Therefore, DINP does not meet the ECHA/EFSA criteria to be considered an endocrine disruptor.
Collapse
Affiliation(s)
- I A Lea
- ToxStrategies LLC, 31 College Place Suite B118, Asheville, NC 28801, USA
| | - A N Buerger
- ToxStrategies LLC, 31 College Place Suite B118, Asheville, NC 28801, USA
| | - D Feifarek
- ToxStrategies LLC, 31 College Place Suite B118, Asheville, NC 28801, USA
| | - A Mihalchik
- ToxStrategies LLC, 31 College Place Suite B118, Asheville, NC 28801, USA
| | - M M Heintz
- ToxStrategies LLC, 31 College Place Suite B118, Asheville, NC 28801, USA
| | - L C Haws
- ToxStrategies LLC, 31 College Place Suite B118, Asheville, NC 28801, USA
| | - H Nyambego
- ExxonMobil Biomedical Sciences, Inc., Health and Environmental Sciences Division, Annandale, NJ, USA
| | - K Goyak
- ExxonMobil Biomedical Sciences, Inc., Health and Environmental Sciences Division, Annandale, NJ, USA
| | - C Palermo
- ExxonMobil Biomedical Sciences, Inc., Health and Environmental Sciences Division, Annandale, NJ, USA
| | - S J Borghoff
- ToxStrategies LLC, 31 College Place Suite B118, Asheville, NC 28801, USA
| |
Collapse
|
4
|
Alam MS, Maowa Z, Hasan MN. Phthalates toxicity in vivo to rats, mice, birds, and fish: A thematic scoping review. Heliyon 2025; 11:e41277. [PMID: 39811286 PMCID: PMC11731458 DOI: 10.1016/j.heliyon.2024.e41277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/08/2024] [Accepted: 12/12/2024] [Indexed: 01/16/2025] Open
Abstract
Background Phthalates, a large group of endocrine disruptors, are ubiquitous in the environment and detrimental to human health. This scoping review aimed to summarize the effects of phthalates on laboratory animals relevant to humans, assess toxicity, and analyze mechanisms of toxicity for public health concerns. Methods Articles were retrieved from Google Scholar, PubMed, ScienceDirect, and Web of Science search engines. The search used the term "toxicity of phthalates in vivo, animals or birds or fish." Original research articles published between 2010 and 2024 describing in vivo toxicity in rat, mouse, bird, and fish models, were included. Conversely, articles that did not meet the above criteria were excluded from this scoping review. Two authors independently extracted data using data extraction tools based on themes, while a third arbitrated if consensus was not met. A senior researcher developed the themes, which were further refined through discussions. Data analysis involved quantitative (percentage of studies) and qualitative (content analysis) methods. Results Of the 8180 articles screened, 153 met the inclusion criteria. Most of them were published after 2015 (74.50 %). The scoping review showed that DEHP (56.20 %) and DBP (21.57 %) were the most studied phthalates followed by BBP, DiBP, DMP, DEP, BBOP, and DiNP. Scarce data were available on DnOP, DPHP, DPeP, DUDP, DTDP, DMiP, and DiOP. Interestingly, studies of combinations of two or more phthalates were also present. The main laboratory animals employed were rats (48.37 %) and mice (39.87 %), while the least studied were birds (5.22 %) and fish (6.53 %). Most studies related to testicular toxicity (37.60 %), hepatotoxicity (23.53 %), and ovarian toxicity (18.30 %) investigations, while the rest consisted of neurotoxicity (6.88 %), renal toxicity (6.53 %), and thyroid toxicity studies (4.57 %). Studies focused on oxidative stress (34.64 %), apoptosis (22.22 %), steroid hormone deprivation (20.26 %), lipid metabolism disorder (11.76 %), and immunotoxicity (5.88 %) as mechanisms of toxicity. The most commonly used techniques were H&E, RT-qPCR, ROS assay, WB, IHC, ELISA, RIA, TUNEL, TEM, IFM, FCM, and RNA-seq. Conclusions DEHP and DBP are the most toxic and studied phthalates, while BBP, DiNP, DiBP, DiDP, BBOP, DMP, and DiOP and their combinations require more accurate studies to confirm their toxic effects on human health and mechanisms of action. These will assist policymakers in adopting strategies to minimize public exposure and adverse effects.
Collapse
Affiliation(s)
- Mohammad Shah Alam
- Department of Anatomy and Histology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Zannatul Maowa
- Department of Anatomy and Histology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Mohammad Nazmol Hasan
- Department of Statistics, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| |
Collapse
|
5
|
Renwick MJ, Bølling AK, Shellington E, Rider CF, Diamond ML, Carlsten C. Management of phthalates in Canada and beyond: can we do better to protect human health? Front Public Health 2024; 12:1473222. [PMID: 39606079 PMCID: PMC11599199 DOI: 10.3389/fpubh.2024.1473222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024] Open
Abstract
Ortho-phthalates (herein referred to as phthalates) are synthetic chemicals used in thousands of different everyday products and materials. Nearly ubiquitous environmental exposure is reflected by phthalate metabolites in the urine of almost all Canadians. However, phthalate exposure tends to be higher amongst people of low socioeconomic status and ethnic minorities. Substantial evidence shows that certain phthalates cause harm to human health, particularly developing fetuses and children. Governments vary in their approach to assessing and managing risks associated with phthalates. Canada continues to take a more permissive stance on phthalate regulations compared to the EU and some US states. We argue that the recent Canadian national risk assessment on phthalates does not appropriately reflect the growing evidence demonstrating harm to human health from phthalate exposure and does not adequately consider the evidence showing higher exposures faced by vulnerable populations. Canadians would benefit from adopting a more stringent regulatory approach to phthalates. Specifically, Canada should expand phthalate restrictions to apply to all consumer products, implement sunset dates toward eliminating the use of existing phthalates, and mandate publicly available evidence of no harm for phthalate alternatives. Canadian alignment on phthalate regulations with the EU and a growing number of US states could encourage other countries to follow suit.
Collapse
Affiliation(s)
- Matthew J. Renwick
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Anette K. Bølling
- Norwegian Institute of Public Health, Oslo, Norway
- Air Pollution Exposure Laboratory, Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Erin Shellington
- Legacy for Airway Health, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
| | - Christopher F. Rider
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- Air Pollution Exposure Laboratory, Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Miriam L. Diamond
- Department of Earth Sciences, University of Toronto, Toronto, ON, Canada
- School of the Environment, University of Toronto, Toronto, ON, Canada
| | - Chris Carlsten
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- Air Pollution Exposure Laboratory, Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- Legacy for Airway Health, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
| |
Collapse
|
6
|
Wang Y, Yang S, Hao C, Chen J, Wang J, Xu L. DDIT4 is essential for DINP-induced autophagy of ovarian granulosa cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 268:115686. [PMID: 37976928 DOI: 10.1016/j.ecoenv.2023.115686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 11/02/2023] [Accepted: 11/11/2023] [Indexed: 11/19/2023]
Abstract
As one of the most important phthalates, di-isononyl phthalate (DINP) has been widely used as a common plasticizer in the food and personal care products sectors. In our previous study, we found that DINP can induce autophagy of ovarian granulosa cells; while the underlying mechanism is unclear. In the study, we showed that DINP exposure could induce autophagy of ovarian granulosa cells and KGN cells, accompanied with the increase in the mRNA and protein level of DDIT4. Furthermore, overexpression of DDIT4 were shown to induce autophagy of KGN cells; while knockdown of DDIT4 inhibited DINP-induced autophagy, implying that DDIT4 played an important role in DINP-induced autophagy of ovarian granulosa cells. There were three putative binding sites of transcription factor ATF4 in the promoter region of DDIT4 gene, suggesting that DDIT4 might be regulated by ATF4. Herein, we found that overexpression of ATF4 could upregulate the expression of DDIT4 in KGN cells, while knockdown of ATF4 inhibited its expression. Subsequently, ATF4 was identified to bind to the promoter region of DDIT4 gene and promote its transcription. The expression of ATF4 was also increased in the DINP-exposed granulosa cells, and ATF4 overexpression promoted autophagy of KGN cells; whereas knockdown of ATF4 alleviated DINP-induced upregulation of DDIT4 and autophagy of the cells. Taken together, DINP triggered autophagy of ovarian granulosa cells through activating ATF4/DDIT4 signals.
Collapse
Affiliation(s)
- Yijing Wang
- Department of Pathology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, PR China; Department of Physiology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, PR China
| | - Si Yang
- Department of Physiology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, PR China
| | - Chaoju Hao
- Library, Medical College of Nanchang University, Nanchang 330006, PR China
| | - Jiaxiang Chen
- Department of Physiology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Nanchang 330006, PR China
| | - Jinglei Wang
- Department of Physiology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Nanchang 330006, PR China.
| | - Linlin Xu
- Department of Pathology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, PR China.
| |
Collapse
|
7
|
Tardif S, Rwigemera A, Letourneau N, Robaire B, Delbes G. Reproductive toxicity of emerging plasticizers, flame retardants, and bisphenols, using culture of the rat fetal testis†. Biol Reprod 2023; 108:837-848. [PMID: 36780129 PMCID: PMC10183361 DOI: 10.1093/biolre/ioad018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/10/2023] [Accepted: 02/01/2023] [Indexed: 02/14/2023] Open
Abstract
The use of bis (2-ethylhexyl) phthalate (DEHP), 2,2'4,4'-tetrabromodiphenyl ether (BDE47), and bisphenol A (BPA), as plasticizers, flame retardants, and epoxy resins, respectively, has been regulated due to their endocrine disrupting activities. Replacements for these chemicals are found in human matrices, yet the endocrine disrupting potential of these emerging contaminants is poorly characterized. We compared the effects of legacy chemicals with those of their replacements using fetal rat testis organ culture. Fetal testes sampled at gestation day 15 were grown ex vivo, and the impact was evaluated after a 3-day exposure to 10 μM of each legacy chemical; two BPA analogs (bisphenol M and bisphenol TMC); three replacements for DEHP/MEHP (2,2,4-trimethyl-1,3-pentanediol diisobutyrate, diisononyl-phthalate, and diisodecyl adipate); or two replacements for BDE47 (tributoxyethyl phosphate and isopropylated triphenyl phosphate). We showed that only BPA and MEHP significantly decrease testosterone secretions after 24 h, while BPM and BPTMC have the opposite effect. Luteinizing hormone-stimulated testosterone was reduced by BPA and MEHP but was increased by BPTMC. After exposure, testes were used for immunofluorescent staining of germ cells, Sertoli cells, and Leydig cells. Interestingly, exposures to BPM or BPTMC induced a significant increase in the Leydig cell density and surface area. A decrease in germ cell density was observed only after treatment with MEHP or BDE47. MEHP also significantly decreased Sertoli cell proliferation. These studies show that some replacement chemicals can affect testicular function, while others appear to show little toxicity in this model. These findings provide essential information regarding the need for their regulation.
Collapse
Affiliation(s)
- Sarah Tardif
- Centre Armand Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Quebec, Canada
| | - Arlette Rwigemera
- Centre Armand Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Quebec, Canada
| | - Natasha Letourneau
- Centre Armand Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Quebec, Canada
| | - Bernard Robaire
- Department of Pharmacology and Therapeutic, McGill University, Montreal, Quebec, Canada
- Department of Obstetrics & Gynecology, McGill University, Montreal, Quebec, Canada
| | - Geraldine Delbes
- Centre Armand Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Quebec, Canada
| |
Collapse
|
8
|
In utero di-(2-ethylhexyl) phthalate-induced testicular dysgenesis syndrome in male newborn rats is rescued by taxifolin through reducing oxidative stress. Toxicol Appl Pharmacol 2022; 456:116262. [PMID: 36198370 DOI: 10.1016/j.taap.2022.116262] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/22/2022]
Abstract
Testicular dysgenesis syndrome in male neonates manifests as cryptorchidism and hypospadias, which can be mimicked by in utero phthalate exposure. However, the underlying phthalate mediated mechanism and therapeutic effects of taxifolin remain unclear. Di-(2-ethylhexyl) phthalate (DEHP) is the most abundantly used phthalate and can induce testicular dysgenesis syndrome in male rats. To explore the mechanism of DEHP mediated effects and develop a therapeutic drug, the natural phytomedicine taxifolin was used. Pregnant Sprague-Dawley female rats were daily gavaged with 750 mg/kg/d DEHP or 10 or 20 mg/kg/d taxifolin alone or in combination from gestational day 14 to 21, and male pup's fetal Leydig cell function, testicular MDA, and antioxidants were examined. DEHP significantly reduced serum testosterone levels of male pups, down-regulated the expression of SCARB1, CYP11A1, HSD3B1, HSD17B3, and INSL3, reduced the cell size of fetal Leydig cells, decreased the levels of antioxidant and related signals (SOD2 and CAT, SIRT1, and PGC1α), induced abnormal aggregation of fetal Leydig cells, and stimulated formation of multinucleated gonocytes and MDA levels. Taxifolin alone (10 and 20 mg/kg/d) did not affect these parameters. However, taxifolin significantly rescued DEHP-induced alterations. DEHP exposure in utero can induce testicular dysgenesis syndrome by altering the oxidative balance and SIRT1/PGC1α levels, and taxifolin is an ideal phytomedicine to prevent phthalate induced testicular dysgenesis syndrome.
Collapse
|
9
|
Tian F, Li Q, Shi L, Li J, Shi M, Zhu Y, Li H, Ge RS. In utero bisphenol AF exposure causes fetal Leydig cell dysfunction and induces multinucleated gonocytes by generating oxidative stress and reducing the SIRT1/PGC1α signals. Toxicol Appl Pharmacol 2022; 447:116069. [PMID: 35605789 DOI: 10.1016/j.taap.2022.116069] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/20/2022] [Accepted: 05/13/2022] [Indexed: 12/01/2022]
Abstract
Bisphenol AF (BPAF) is one of the primary alternatives of bisphenol A. It has been ubiquitously detected in the environment and is an emerging endocrine disrupting compound. However, the effects of BPAF exposure on fetal Leydig cells and germ cells and the underlying mechanisms remain largely unknown. To this end, pregnant Sprague-Dawley rats were exposed to 10, 50, and 200 mg/kg/d BPAF by gavage from gestational days 14 to 21. The neonatal rats were sacrificed on day 1 at birth. The results showed that serum testosterone levels were significantly decreased at 50 and 200 mg/kg/d, the expression of Scarb1, Star, Cyp17a1, Hsd17b3, and Dhh and their proteins were markedly down-regulated at 50 and 100 mg/kg/d. BPAF exposure also significantly increased the incidence of multinucleated gonocytes at 200 mg/kg/d. We further detected significant increase of testicular malondialdehyde levels and reduction of antioxidants, including SOD1, SOD2, and CAT at 50 and/or 200 mg/kg/d. Furthermore, BPAF markedly reduced the levels of SIRT1 and PGC1α at 200 mg/kg/d while significantly increased AMPK phosphorylation in the testes at 50 and 200 mg/kg/d. In conclusion, our results provide novel in vivo data that BPAF can induce fetal Leydig cell dysfunction by interfering with steroidogenic networks and induce the formation of multinucleated gonocytes after suppressing the antioxidant defense system and reducing SIRT1 and PGC1α signals and increasing the phosphorylation of AMPK, which highlights the potential health risk of environmental exposure to BPAF in inducing male reproductive tract malformation.
Collapse
Affiliation(s)
- Fuhong Tian
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's, Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang 325027, China; Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
| | - Qiyao Li
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
| | - Lei Shi
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
| | - Jingjing Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's, Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
| | - Mengna Shi
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's, Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
| | - Yang Zhu
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's, Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
| | - Huitao Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's, Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
| | - Ren-Shan Ge
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's, Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang 325027, China; Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang 325027, China.
| |
Collapse
|
10
|
Delbes G, Blázquez M, Fernandino JI, Grigorova P, Hales BF, Metcalfe C, Navarro-Martín L, Parent L, Robaire B, Rwigemera A, Van Der Kraak G, Wade M, Marlatt V. Effects of endocrine disrupting chemicals on gonad development: Mechanistic insights from fish and mammals. ENVIRONMENTAL RESEARCH 2022; 204:112040. [PMID: 34509487 DOI: 10.1016/j.envres.2021.112040] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
Over the past century, evidence has emerged that endocrine disrupting chemicals (EDCs) have an impact on reproductive health. An increased frequency of reproductive disorders has been observed worldwide in both wildlife and humans that is correlated with accidental exposures to EDCs and their increased production. Epidemiological and experimental studies have highlighted the consequences of early exposures and the existence of key windows of sensitivity during development. Such early in life exposures can have an immediate impact on gonadal and reproductive tract development, as well as on long-term reproductive health in both males and females. Traditionally, EDCs were thought to exert their effects by modifying the endocrine pathways controlling reproduction. Advances in knowledge of the mechanisms regulating sex determination, differentiation and gonadal development in fish and rodents have led to a better understanding of the molecular mechanisms underlying the effects of early exposure to EDCs on reproduction. In this manuscript, we review the key developmental stages sensitive to EDCs and the state of knowledge on the mechanisms by which model EDCs affect these processes, based on the roadmap of gonad development specific to fish and mammals.
Collapse
Affiliation(s)
- G Delbes
- Centre Armand Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, Canada.
| | - M Blázquez
- Institute of Marine Sciences (ICM-CSIC), Barcelona, Spain
| | - J I Fernandino
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Argentina
| | | | - B F Hales
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - C Metcalfe
- School of Environment, Trent University, Trent, Canada
| | - L Navarro-Martín
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain
| | - L Parent
- Université TELUQ, Montréal, Canada
| | - B Robaire
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada; Department of Obstetrics and Gynecology, McGill University, Montreal, Canada
| | - A Rwigemera
- Centre Armand Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, Canada
| | - G Van Der Kraak
- Department of Integrative Biology, University of Guelph, Guelph, Canada
| | - M Wade
- Environmental Health Science & Research Bureau, Health Canada, Ottawa, Canada
| | - V Marlatt
- Department of Biological Sciences, Simon Fraser University, Burnaby, Canada
| |
Collapse
|
11
|
Rajkumar A, Luu T, Beal MA, Barton-Maclaren TS, Hales BF, Robaire B. Phthalates and Alternative Plasticizers Differentially affect Phenotypic Parameters in Gonadal Somatic and Germ Cell Lines. Biol Reprod 2021; 106:613-627. [PMID: 34792101 DOI: 10.1093/biolre/ioab216] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/11/2021] [Accepted: 11/12/2021] [Indexed: 11/13/2022] Open
Abstract
The developmental and reproductive toxicity associated with exposure to phthalates has motivated a search for alternatives. However, there is limited knowledge regarding the adverse effects of some of these chemicals. We used high-content imaging to compare the effects of mono (2-ethylhexyl) phthalate (MEHP) with six alternative plasticizers: di-2-ethylhexyl terephthalate (DEHTP); diisononyl-phthalate (DINP); di-isononylcyclohexane-1,2-dicarboxylate (DINCH); 2-ethylhexyl adipate (DEHA); 2,2,4-trimethyl 1,3-pentanediol diisobutyrate (TXIB) and di-iso-decyl-adipate (DIDA). A male germ spermatogonial cell line (C18-4), a Sertoli cell line (TM4) and two steroidogenic cell lines (MA-10 Leydig and KGN granulosa) were exposed for 48h to each chemical (0.001-100 μM). Cell images were analyzed to assess cytotoxicity and effects on phenotypic endpoints. Only MEHP (100 μM) was cytotoxic and only in C18-4 cells. However, several plasticizers had distinct phenotypic effects in all four cell lines. DINP increased Calcein intensity in C18-4 cells, whereas DIDA induced oxidative stress. In TM4 cells, MEHP, and DINCH affected lipid droplet numbers, while DEHTP and DINCH increased oxidative stress. In MA-10 cells, MEHP increased lipid droplet areas and oxidative stress; DINP decreased the number of lysosomes, while DINP, DEHA and DIDA altered mitochondrial activity. In KGN cells, MEHP, DINP and DINCH increased the number of lipid droplets, whereas DINP decreased the number of lysosomes, increased oxidative stress and affected mitochondria. The Toxicological Priority Index (ToxPi) provided a visual illustration of the cell line specificity of the effects on phenotypic parameters. The lowest administered equivalent doses were observed for MEHP. We propose that this approach may assist in screening alternative plasticizers.
Collapse
Affiliation(s)
- Abishankari Rajkumar
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada, H3G 1Y6
| | - Trang Luu
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada, H3G 1Y6
| | - Marc A Beal
- Existing Substances Risk Assessment Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, Canada, KIA 0K9
| | - Tara S Barton-Maclaren
- Existing Substances Risk Assessment Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, Canada, KIA 0K9
| | - Barbara F Hales
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada, H3G 1Y6
| | - Bernard Robaire
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada, H3G 1Y6.,Department of Obstetrics & Gynecology, McGill University, Montreal, QC, Canada. H3G 1Y6
| |
Collapse
|
12
|
Lin L, Xu Q, Chen Q, Chen H, Ying Y, Li Z, Zhang S, Ma F, Yu Y, Ge RS. Triadimefon increases fetal Leydig cell proliferation but inhibits its differentiation of male fetuses after gestational exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 228:112942. [PMID: 34737156 DOI: 10.1016/j.ecoenv.2021.112942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Triadimefon is a broad-spectrum fungicide widely applied in the agriculture. It is believed to be an endocrine disruptor. Whether triadimefon can inhibit the development of fetal Leydig cells and the underlying mechanisms are unknown. Thirty-two female pregnant Sprague-Dawley rats were randomly assigned into four groups and were dosed via gavage of triadimefon (0, 25, 50, and 100 mg/kg/day) for 9 days from gestational day (GD) 12-20. Triadimefon significantly reduced serum testosterone level in male fetuses at 100 mg/kg. The double immunofluorescence staining of proliferating cell nuclear antigen (PCNA) and cytochrome P450 cholesterol side-chain cleavage (a biomarker for fetal Leydig cells) was used to measure PCNA-labeling in fetal Leydig cells. It markedly increased fetal Leydig cell number primarily via increasing single cell population and elevated the PCNA-labeling of fetal Leydig cells in male fetuses at 100 mg/kg while it induced abnormal aggregation of fetal Leydig cells. The expression levels of fetal Leydig cell genes, Lhcgr, Scarb1, Star, Cyp11a1, Hsd3b1, Cyp17a1, Hsd17b3, Insl3 and Nr5a1, were determined to explore its effects on fetal Leydig cell development. We found that triadimefon markedly down-regulated the expression of Leydig cell genes, Hsd17b3, Insl3, and Nr5a1 as low as 25 mg/kg and Scarb1 and Cyp11a1 at 100 mg/kg. It did not affect Sertoli cell number but markedly down-regulated the expression of Sertoli cell gene Amh at 50 and 100 mg/kg. Triadimefon significantly down-regulated the expression of antioxidant genes Sod1, Gpx1, and Cat at 25-100 mg/kg, suggesting that it can induce oxidative stress in fetal testis, and it reduced the phosphorylation of ERK1/2 and AKT2 at 100 mg/kg, indicating that it can inhibit the development of fetal Leydig cells. In conclusion, gestational exposure to triadimefon inhibits the development of fetal Leydig cells in male fetuses by inhibiting its differentiation.
Collapse
Affiliation(s)
- Liben Lin
- Department of Pathology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| | - Qiang Xu
- Department of Pathology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| | - Quanxu Chen
- Department of Pathology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| | - Haiqiong Chen
- Department of Pediatrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| | - Yingfen Ying
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| | - Zengqiang Li
- Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| | - Song Zhang
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| | - Feifei Ma
- Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| | - Yige Yu
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| | - Ren-Shan Ge
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China; Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
13
|
Liu M, Chen H, Dai H, Zhou L, Wang Y, Xin X, Chen C, Li Z, Ge RS. Effects of bis(2-butoxyethyl) phthalate exposure in utero on the development of fetal Leydig cells in rats. Toxicol Lett 2021; 351:65-77. [PMID: 34454012 DOI: 10.1016/j.toxlet.2021.08.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 10/20/2022]
Abstract
Phthalates are plasticizers widely found in the environment. They are potential endocrine disruptors. Bis(2-butoxyethyl) phthalate (BBOP) is a unique phthalate that contains oxygen atoms in the carbon backbone. Little is known about its reproductive and developmental toxicity. The objective of this study was to determine the effect of BBOP on fetal Leydig cell development after in utero exposure to rats. Sprague Dawley pregnant dams were randomly allocated into 6 groups, and were gavaged with BBOP (0, 10, 100, 250, 500, and 1000 mg/kg body weight/day) from gestational day (GD) 14-21. Seven of the 8 dams in the 1000 mg/kg BBOP group died before giving birth. Twelve of the 20 dams in the 500 mg/kg BBOP group had whole litter loss. BBOP significantly reduced the body weight of dams and male offspring and serum testosterone level and anogenital distance of male fetus on GD 21 at 500 mg/kg. BBOP markedly increased fetal Leydig cell proliferation and number at 500 mg/kg while inducing their abnormal aggregation at 250 and 500 mg/kg. BBOP down-regulated the expression of Lhcgr, Scarb1, Star, Cyp11a1, Hsd3b1, Cyp17a1, Hsd17b3, Insl3, and Nr5a1 at various doses while up-regulating the expression of Sertoli cell gene Fshr and Sox9. The phosphorylation of AKT1, AKT2, and ERK1/2 was also markedly reduced by BBOP. In conclusion, BBOP in utero exposure can disrupt fetal Leydig cell development, possibly via the mechanism that may include inhibiting the phosphorylation of AKT1, AKT2, and ERK1/2.
Collapse
Affiliation(s)
- Miaoqing Liu
- Department of Pediatric Surgery, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haiqiong Chen
- Department of Pediatric Surgery, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haipeng Dai
- Department of Pediatric Surgery, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Liangbi Zhou
- Department of Pediatric Surgery, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yiyan Wang
- Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiu Xin
- Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Congde Chen
- Department of Pediatric Surgery, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhongrong Li
- Department of Pediatric Surgery, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Ren-Shan Ge
- Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
14
|
Giovanni SM, Letizia AAM, Chiara M, Vincenzo S, Erika P, Marta S. The Male Reproductive System and Endocrine Disruptors. Endocr Metab Immune Disord Drug Targets 2021; 22:686-703. [PMID: 34607552 DOI: 10.2174/1871530321666211004100633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 11/22/2022]
Abstract
The male reproductive system is exposed to a great number of chemical substances which can interfere with the normal hormonal milieu and reproductive function; these are called endocrine disruptors (EDs). Despite a growing number of studies evaluating the negative effects of EDs, their production is continuously growing although some of which have been prohibited. The prevalence of poor semen quality, hypospadias, cryptorchidism, and testicular cancer have increased in the last decades, and recently, it has been postulated that these could all be part of a unique syndrome called testicular dysgenesis syndrome. This syndrome could be related to exposure to a number of EDs which cause imbalances in the hormonal milieu and oestrogenic over-exposure during the foetal stage. The same EDs can also impair spermatogenesis in offspring and have epigenetic effects. Although studies on animal and in vitro models have raised concerns, data are conflicting. However, these studies must be considered as the basis for future research to promote male reproductive health.
Collapse
Affiliation(s)
| | | | - Maneschi Chiara
- Department of Internal Medicine, Villa Salus Hospital, Mestre (VE). Italy
| | - Sciabica Vincenzo
- Department of Internal Medicine, Villa Salus Hospital, Mestre (VE). Italy
| | - Pigatto Erika
- Department of Internal Medicine, Villa Salus Hospital, Mestre (VE). Italy
| | - Sanna Marta
- Department of Internal Medicine, Villa Salus Hospital, Mestre (VE). Italy
| |
Collapse
|
15
|
Repouskou A, Stamatakis A, Kitraki E. In utero exposure to phthalates and reproductive toxicity in rodents. Best Pract Res Clin Endocrinol Metab 2021; 35:101512. [PMID: 34266749 DOI: 10.1016/j.beem.2021.101512] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Phthalates, widely used as plasticizers, are contained in many everyday products. Human biomonitoring studies detect their presence in biological fluids of a large part of the population worldwide. Maternal exposure during pregnancy has been related with aberrations in the reproductive growth of male infants. Rodent studies show that gestational exposure to single phthalates elicits reproductive toxicity in both sexes. Early aberrations include inhibition of gonadal sex determining gene expression and steroidogenesis, histopathology, and disturbed gametogenesis, leading later in life to dysfunctions in sperm production and oocyte reserves. Animal studies of in utero exposure to mixtures of phthalates, better mimicking human exposures, revealed analogous reproductive dysfunctions with the single compounds, but also indicated the combined actions and cumulative effects exerted by these chemicals. Further understanding the underlying mechanisms and the species differences in phthalate-induced reproductive toxicity will help to improve the risk assessment for human exposure to these toxicants.
Collapse
Affiliation(s)
- Anastasia Repouskou
- Basic Sciences Lab, Faculty of Dentistry, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece.
| | - Antonios Stamatakis
- Biology- Biochemistry Lab, Faculty of Nursing, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece.
| | - Efthymia Kitraki
- Basic Sciences Lab, Faculty of Dentistry, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
16
|
Li C, Zou C, Yan H, Li Z, Li Y, Pan P, Ma F, Yu Y, Wang Y, Wen Z, Ge RS. Perfluorotridecanoic acid inhibits fetal Leydig cell differentiation after in utero exposure in rats via increasing oxidative stress and autophagy. ENVIRONMENTAL TOXICOLOGY 2021; 36:1206-1216. [PMID: 33683001 DOI: 10.1002/tox.23119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/31/2020] [Accepted: 02/19/2021] [Indexed: 05/23/2023]
Abstract
Perfluorotridecanoic acid (PFTrDA) is a long-chain perfluoroalkyl substance, and its effect on the differentiation of fetal Leydig cells remains unclear. The objective of this study is to explore the effect of in utero PFTrDA exposure on the differentiation of fetal Leydig cells and investigate its underlying mechanisms. Pregnant Sprague-Dawley female rats were daily administered by gavage of PFTrDA at doses of 0, 1, 5, and 10 mg/kg from gestational day 14 to 21. PFTrDA had no effect on the body weight of dams, but significantly reduced the body weight and anogenital distance of male pups at birth at a dose of 10 mg/kg. PFTrDA significantly decreased serum testosterone levels as low as 1 mg/kg. PFTrDA did not affect fetal Leydig cell number, but promoted abnormal aggregation of fetal Leydig cells at doses of 5 and 10 mg/kg. PFTrDA down-regulated the expression of Insl3, Lhcgr, Scarb1, Star, Hsd3b1, Cyp17a1, Nr5a1, and Dhh as well as their proteins. PFTrDA lowered the levels of antioxidants (SOD1, CAT, and GPX1), induced autophagy as shown by increased levels of LC3II and beclin1, and reduced the phosphorylation of mTOR. In conclusion, PFTrDA inhibits the differentiation of fetal Leydig cells in male pups after in utero exposure mainly through increasing oxidative stress and inducing autophagy.
Collapse
Affiliation(s)
- Changchang Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Cheng Zou
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haoni Yan
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Zengqiang Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Yang Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Peipei Pan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Feifei Ma
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Yige Yu
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Yiyan Wang
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Zina Wen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ren-Shan Ge
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
17
|
You HH, Song G. Review of endocrine disruptors on male and female reproductive systems. Comp Biochem Physiol C Toxicol Pharmacol 2021; 244:109002. [PMID: 33610819 DOI: 10.1016/j.cbpc.2021.109002] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/03/2021] [Accepted: 02/11/2021] [Indexed: 12/21/2022]
Abstract
Endocrine disruptors (EDs) interfere with different hormonal and metabolic processes and disrupt the development of organs and tissues, as well as the reproductive system. In toxicology research, various animal models have been utilized to compare and characterize the effects of EDs. We reviewed studies assessing the effect of ED exposure in humans, zebrafish, and mouse models and the adverse effects of EDs on male and female reproductive systems. This review outlines the distinctive morphological characteristics, as well as gene expression, factors, and mechanisms that are known to occur in response to EDs. In each animal model, disturbances in the reproductive system were associated with certain factors of apoptosis, the hypothalamic-pituitary-gonadal axis, estrogen receptor pathway-induced meiotic disruption, and steroidogenesis. The effects of bisphenol A, phthalate, and 17α-ethinylestradiol have been investigated in animal models, each providing supporting outcomes and elaborating the key regulators of male and female reproductive systems.
Collapse
Affiliation(s)
- Hyekyoung Hannah You
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Gwonhwa Song
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
18
|
Chen H, Xin X, Liu M, Ma F, Yu Y, Huang J, Dai H, Li Z, Ge RS. In utero exposure to dipentyl phthalate disrupts fetal and adult Leydig cell development. Toxicol Appl Pharmacol 2021; 419:115514. [PMID: 33798595 DOI: 10.1016/j.taap.2021.115514] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/23/2021] [Accepted: 03/27/2021] [Indexed: 01/20/2023]
Abstract
Phthalates as plasticizers are widely used in many consumer products. Dipentyl phthalate (DPeP) is one of phthalates. However, there are currently few data on whether DPeP exposure affects rat Leydig cell development. In this study, we investigated the effects of in utero DPeP exposure on Leydig cell development in the testes of male newborn and adult rats. From gestational days 14 to 21, Sprague-Dawley pregnant rats were gavaged vehicle (corn oil, control) or DPeP (10, 50, 100, and 500 mg/kg body weight/day). Testosterone and the expression of Leydig cell genes and proteins in the testis at birth and at postnatal day 56 were examined. DPeP dose-dependently reduced serum testosterone levels of male offspring at birth and at postnatal day 56 at 100 and 500 mg/kg and lowered serum luteinizing hormone levels at adult males at ≥10 mg/kg when compared with the control. In addition, DPeP increased number of fetal Leydig cells by inducing their proliferation but down-regulated the expression of Lhcgr, Scarb1, Star, Cyp11a1, Hsd3b1, Cyp17a1, Hsd17b3, and Insl3 in fetal Leydig cells per se. DPeP reduced number of adult Leydig cells by inducing cell apoptosis and down-regulated the expression of Lhcgr and Star in adult Leydig cells at postnatal day 56. DPeP lowered SIRT1 and BCL2 levels in the testis of adult rats. In conclusion, DPeP adversely affects both fetal and adult Leydig cell development after in utero exposure.
Collapse
Affiliation(s)
- Haiqiong Chen
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiu Xin
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Miaoqing Liu
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Feifei Ma
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yige Yu
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jie Huang
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haipeng Dai
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhongrong Li
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Ren-Shan Ge
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
19
|
Ji B, Wen Z, Ni C, Zhu Q, Wang Y, Li X, Zhong Y, Ge RS. The Production of Testosterone and Gene Expression in Neonatal Testes of Rats Exposed to Diisoheptyl Phthalate During Pregnancy is Inhibited. Front Pharmacol 2021; 12:568311. [PMID: 33912029 PMCID: PMC8072358 DOI: 10.3389/fphar.2021.568311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 02/17/2021] [Indexed: 11/18/2022] Open
Abstract
Background: Diisoheptyl phthalate (DIHP) is a phthalate plasticizer, which is a branched phthalate. Here, we reported the effects of gestational exposure to DIHP on testis development in male rats. Methods: Pregnant Sprague-Dawley rats were orally fed with vehicle (corn oil, control) or DIHP (10, 100, 500, and 1,000 mg/kg) from gestational day (GD) 12-21. At GD21, serum testosterone levels, the number and distribution of fetal Leydig cells, and testicular mRNA and protein levels, the incidence of multinucleated gonocytes, and focal testicular hypoplasia in the neonatal testis were measured. Results: DIHP increased the fetal Leydig cell cluster size and decreased the fetal Leydig cell size with LOAEL of 10 mg/kg. DIHP did not affect the fetal Leydig cell number. DIHP significantly lowered serum testosterone levels, down-regulated the expression of steroidogenesis-related genes (Lhcgr, Star, Cyp11a1, Hsd3b1, Cyp17a1, and Hsd17b3) and testis descent-related gene (Insl3) as well as protein levels of cholesterol side-chain cleavage enzyme (CYP11A1) and insulin-like 3 (INSL3). DIHP dose-dependently increased the percentage of multinucleated gonocytes with the low observed adverse-effect level (LOAEL) of 100 mg/kg. DIHP induced focal testicular hypoplasia. Conclusion: Gestational exposure to DIHP causes testis dysgenesis in rats.
Collapse
Affiliation(s)
- Bin Ji
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, China
| | - Zina Wen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Chengdu Jinjiang Maternal and Child Health Hospital and Chengdu Xi’nan Gynecology Hospital, Chengdu, China
| | - Chaobo Ni
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, China
| | - Qiqi Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yiyan Wang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, China
| | - Xiaoheng Li
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, China
| | - Ying Zhong
- Chengdu Jinjiang Maternal and Child Health Hospital and Chengdu Xi’nan Gynecology Hospital, Chengdu, China
| | - Ren-Shan Ge
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, China
- Chengdu Jinjiang Maternal and Child Health Hospital and Chengdu Xi’nan Gynecology Hospital, Chengdu, China
| |
Collapse
|
20
|
Li H, Wen Z, Ni C, Chen X, Cheng Y, Liu Y, Li X, Zhu Q, Ge RS. Perfluorododecanoic acid delays Leydig cell regeneration from stem cells in adult rats. Food Chem Toxicol 2021; 151:112152. [PMID: 33774092 DOI: 10.1016/j.fct.2021.112152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 02/26/2021] [Accepted: 03/19/2021] [Indexed: 11/25/2022]
Abstract
Perfluorododecanoic acid (PFDoA) is an endocrine-damaging compound in contaminated food and water. However, the potential role and underlying mechanism of PFDoA in Leydig cell regeneration from stem Leydig cells remain unclear. The current study aims to investigate the effect of PFDoA on the regeneration of Leydig cells in the testis of rats treated with ethylene dimethane sulfonate (EDS). PFDoA (0, 5 or 10 mg/kg/day) was gavaged to adult Sprague-Dawley male rats for 8 days, and 75 mg/kg EDS was intraperitoneally injected to eliminate Leydig cells to initiate its regeneration from day 21-56 after EDS. The serum testosterone levels in the 5 and 10 mg/kg/day PFDoA groups were significantly reduced at day 21 after EDS and the levels of serum luteinizing hormone and follicle-stimulating hormone were significantly decreased in the 10 mg/kg/day PFDoA groups at day 56 after EDS. PFDoA significantly reduced Leydig cell number and proliferation at a dose of 10 mg/kg at days 21 and 56 after EDS. PFDoA significantly down-regulated the expression of Leydig cell-specific genes (Lhcgr, Scarb1, Star, Cyp11a1, Hsd3b1 and Cyp17a1) and their proteins at both doses at days 21 and 56 after EDS. PFDoA significantly down-regulated the gene expression of Sertoli cells (Fshr, Dhh, and Sox9) at 5 mg/kg or higher at days 21 and 56 after EDS. In addition, we found that PFDoA significantly inhibited EdU incorporation into putative stem Leydig cells and their differentiation into the Leydig cell lineage in vitro. In conclusion, short-term PFDoA exposure in adulthood delayed the regeneration of Leydig cells by preventing Leydig cells from stem cells via multiple mechanisms.
Collapse
Affiliation(s)
- Huitao Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Zina Wen
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China; Chengdu Xi'nan Gynecological Hospital, Chengdu, Sichuan, China
| | - Chaobo Ni
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China; The First Hospital of Jiaxing & The Affiliated Hospital of Jiaxing University, China
| | - Xianwu Chen
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Yong Cheng
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Yuxin Liu
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Xiaoheng Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Qiqi Zhu
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Ren-Shan Ge
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China.
| |
Collapse
|
21
|
Zhu X, Hu M, Ji H, Huang T, Ge RS, Wang Y. Exposure to di-n-octyl phthalate during puberty induces hypergonadotropic hypogonadism caused by Leydig cell hyperplasia but reduced steroidogenic function in male rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111432. [PMID: 33075588 DOI: 10.1016/j.ecoenv.2020.111432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/18/2020] [Accepted: 09/27/2020] [Indexed: 06/11/2023]
Abstract
Humans are exposed to phthalates ubiquitously, which may threaten health. However, whether di-n-octyl phthalate can prevent pubertal sexual maturity is still elusive. In this study, male Sprague Dawley rats (age 35 days) were treated daily by gavage with 0, 10, 100, and 1000 mg/kg body weight of di-n-octyl phthalate from day 35 to day 49 after birth. Di-n-octyl phthalate significantly reduced serum testosterone levels at doses of 100 and 1000 mg/kg, but increased serum luteinizing hormone levels of 1000 mg/kg and decreased testosterone/luteinizing hormone ratio at ≥10 mg/kg, without affecting serum follicle-stimulating hormone levels. Di-n-octyl phthalate significantly induced Leydig cell hyperplasia (increased number of CYP11A1-positive Leydig cells) at 100 and 1000 mg/kg. Di-n-octyl phthalate down-regulates the gene expression of Cyp11a1, Hsd3b1 and Insl3 in individual Leydig cells. Di-n-octyl phthalate can also reduce the number of sperm in the epididymis. Di-n-octyl phthalate increased phosphorylated AKT1/AKT2 without affecting their total proteins, but increased the total protein and phosphorylated protein of ERK1/2 and GSK-3β. Primary immature Leydig cells isolated from 35-day-old rats were treated with 0-50 μM di-n-octyl phthalate for 3 h. This phthalate inhibited androgen production under basal, LH-stimulated, and cAMP-stimulated conditions by 5 and 50 μM in vitro via down-regulating Cyp11a1 expression but up-regulating Srd5a1 expression in vitro. In conclusion, di-n-octyl phthalate induces hypergonadotropic hypogonadism caused by Leydig cell hyperplasia but reduced steroidogenic function and prevents sperm production.
Collapse
Affiliation(s)
- Xiayan Zhu
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Miner Hu
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Haosen Ji
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Tongliang Huang
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Ren-Shan Ge
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| | - Yiyan Wang
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| |
Collapse
|
22
|
Erkekoglu P, Özyurt A, Yirün A, Çakır D. Testicular dysgenesis syndrome and phthalate exposure: A review of literature. ARHIV ZA FARMACIJU 2021. [DOI: 10.5937/arhfarm71-34438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Endocrine disruptors are chemicals that interfere with the body's endocrine system and cause adverse effects in biological systems. Phthalates are a group of man-made chemicals which are mainly used as plasticizers and classified as endocrine disruptors. They are also used in cosmetic and personal care products as color or smell fixators. Moreover, phthalates are present in inks, adhesives, sealants, automobile parts, tools, toys, carpets, medical tubing and blood storage bags, and food packages. Pathological condition known as "testicular dysgenesis syndrome" (TDS) or "phthalate syndrome" is usually linked to phthalate exposure and is coined to describe the rise in alterations in reproductive health in men, such as reduced semen quality (decrease in sperm counts, sperm motility and increase in abnormal sperms), hypospadias, cryptorchidism, reduced anogenital distance and early-life testicular cancer. Phthalates are suggested to cause direct effect on gonadal and non-gonadal tissues, impair the differentiation and morphogenesis of seminiferous tubules and accessory sex organs and testicular cells (both Sertoli and Leydig cells), alter estradiol and/or testosterone levels, decrease insulin-like 3 (INSL3) peptide production, impair spermatogenesis and lead to epigenetic alterations, all of which may lead to TDS. This review will mainly focus on phthalates as causes of TDS and their mechanisms of action.
Collapse
|
23
|
Yang S, Arcanjo RB, Nowak RA. The effects of the phthalate DiNP on reproduction†. Biol Reprod 2020; 104:305-316. [PMID: 33125036 DOI: 10.1093/biolre/ioaa201] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 01/12/2023] Open
Abstract
Di-isononyl phthalate (DiNP) is a high molecular weight, general purpose, plasticizer used primarily in the manufacture of polymers and consumer products. It can be metabolized rapidly and does not bioaccumulate. The primary metabolite of DiNP is monoisononyl-phthalate (MiNP) and the secondary metabolites include three oxidative derivatives of DiNP, which have been identified mainly in urine: mono-oxoisononyl phthalate (MOINP or oxo-MiNP), mono-carboxyisooctyl phthalate (MCIOP, MCOP or cx-MiNP), and mono-hydroxyisononyl phthalate (MHINP or OH-MiNP). The secondary metabolites are very sensitive biomarkers of DiNP exposure while primary metabolites are not. As the usage of DiNP worldwide increases, studies evaluating its potential reproductive toxicity are becoming more prevalent in the literature. In studies on female animals, the researchers found that the exposure to DiNP appears to induce negative effects on ovarian function and fertility in animal models. Whether or not DiNP has direct effects on the uterus is still controversial, and the effects on human reproduction require much more research. Studies on males indicate that DiNP exposure has disruptive effects on male reproduction and fertility. Occupational studies also indicate that the exposure to DiNP might induce negative effects on male reproduction, but larger cohort studies are needed to confirm this. This review presents an overview of the literature regarding the reproductive effects of exposure to DiNP.
Collapse
Affiliation(s)
- Shuhong Yang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.,Department of Animal Sciences, University of Illinois, Urbana, IL, USA
| | | | - Romana A Nowak
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA
| |
Collapse
|
24
|
Systematic comparison of the male reproductive tract in fetal and adult Wistar rats exposed to DBP and DINP in utero during the masculinisation programming window. Toxicol Lett 2020; 335:37-50. [PMID: 33086118 DOI: 10.1016/j.toxlet.2020.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 10/14/2020] [Accepted: 10/14/2020] [Indexed: 12/30/2022]
Abstract
This study investigates possible effects of in utero exposure of rats to a low dose (125 mg/kg bw/day) and a high dose (750 mg/kg bw/day) of Diisononyl phthalate (DINP) during the masculinisation programming window (MPW) which is embryonic days 15.5-18.5 (e15.5 - e18.5). Dibutyl phthalate (DBP) was used at a high dose level (750 mg/kg bw/day) as an established positive control substance for anti-androgenic effects on the developing male reproductive tract. We focussed on the MPW and measured a multitude of biological endpoints at various life stages and applied state of the art histopathology staining techniques to refine the characterization of potential changes to the testis, beyond what is currently available with DINP. If DINP can mediate testicular dysgenesis (TDS) disorders, this exposure window would be sufficient to induce androgen impacts and alter male reproductive tract development as shown earlier in this validated experimental model with DBP. Overall, the results of this systematic comparison provide convincing evidence on the differences between the effects occurring with DBP and DINP. In contrast to what was seen with DBP, DINP did not cause cryptorchidism or hypospadias, had no effect on anogenital distance/anogenital index (AGD/AGi) and Leydig cell aggregates on e17.5 and e21.5 did not increase. With DINP no reduction of intratesticular testosterone, no effects on sperm motility and sperm count and no effect on adult testosterone or luteinizing hormone (LH) levels were seen. Our results demonstrate that DINP does not cause the adverse reproductive effects known to occur with DBP, a well-established endocrine disruptor.
Collapse
|
25
|
Wu K, Li Y, Pan P, Li Z, Yu Y, Huang J, Ma F, Tian L, Fang Y, Wang Y, Lin H, Ge RS. Gestational vinclozolin exposure suppresses fetal testis development in rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 203:111053. [PMID: 32888615 DOI: 10.1016/j.ecoenv.2020.111053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 07/17/2020] [Accepted: 07/18/2020] [Indexed: 06/11/2023]
Abstract
Vinclozolin is a common dicarboximide fungicide used to protect crops from diseases. It is also an endocrine disruptor and is thought to be related to abnormalities of the reproductive tract. However, its mechanism of inducing abnormalities of the male reproductive tract is still unclear. The purpose of this study was to study the effect of gestational vinclozolin exposure on the development of rat fetal Leydig cells. Female pregnant Sprague-Dawley rats were exposed to vinclozolin (0, 25, 50, and 100 mg/kg body weight/day) by gavage from gestational day 14-21. Vinclozolin dose-dependently reduced serum testosterone levels at doses of 50 and 100 mg/kg and the anogenital distance at 100 mg/kg. RNA-seq, qPCR, and Western blotting showed that vinclozolin down-regulated the expression of Nr5a1, Sox9, Lhcgr, Cyp11a1, Hsd3b1, Hsd17b3, Amh, Pdgfa, and Dhh and their encoded proteins. Vinclozolin reduced the number of NR2F2-positive stem Leydig cells at a dose of 100 mg/kg and enhanced autophagy in the testes. In conclusion, vinclozolin disrupts reproductive tract development and testis development in male fetal rats via several pathways.
Collapse
Affiliation(s)
- Keyang Wu
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China; Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Yang Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China; Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Peipei Pan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Zengqiang Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Yige Yu
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Jianjian Huang
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Feifei Ma
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Lili Tian
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Yinghui Fang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Yiyan Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Han Lin
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China.
| | - Ren-Shan Ge
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China; Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China.
| |
Collapse
|
26
|
Ma L, Mo J, Chen Y, Li L, Xie L, Chen X, Li X, Wang Y, Lin Z, Ge RS. In utero cadmium and dibutyl phthalate combination exposure worsens the defects of fetal testis in rats. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114842. [PMID: 32497820 DOI: 10.1016/j.envpol.2020.114842] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 05/17/2020] [Accepted: 05/17/2020] [Indexed: 06/11/2023]
Abstract
Testicular dysgenesis syndrome might be due to the fetal testis defects caused by endocrine disruptors. Here, we report the combined effects of in utero exposure to cadmium (CdCl2, Cd) and di-n-butyl phthalate (DBP) on fetal testis development in rats. Pregnant Sprague-Dawley rats were randomly divided into four groups: control, Cd, DBP (250 mg/kg/day), and Cd + DBP. Cd (0.25 mg/kg/once) was intraperitoneally injected to the dam on gestational day 12 and DBP (250 mg/kg) was daily gavaged to the dam on gestational day 12 for 10 days. Cd, DBP, and Cd + DBP lowered serum testosterone levels in male fetuses. Cd and DBP did not alter fetal Leydig cell (FLC) number, but the combined exposure led to decreased FLC number. Cd did not affect FLC aggregation while DBP caused FLC aggregation and the combined exposure worsened FLC aggregation. Cd lowered FLC mRNA (Lhcgr, Star, Cyp11a1, and Insl3) levels and DBP lowered Lhcgr, Star, Insl3, and Nr5a1 levels. DBP up-regulated Scarb1 expression without affecting Cyp11a1 while the combined exposure antagonized DBP. These two chemicals and its combination did not affect Sertoli cell number and gene (Amh, Fshr, and Sox9) expression at current doses. In conclusion, the combined exposure of Cd and DBP exerts synergically antiandrogenic effects via targeting FLC development.
Collapse
Affiliation(s)
- Leikai Ma
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Jiaying Mo
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Yong Chen
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Linchao Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Lubin Xie
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Xianwu Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Xiaoheng Li
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Yiyan Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Zhenkun Lin
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Ren-Shan Ge
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China; Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China.
| |
Collapse
|
27
|
Hlisníková H, Petrovičová I, Kolena B, Šidlovská M, Sirotkin A. Effects and Mechanisms of Phthalates' Action on Reproductive Processes and Reproductive Health: A Literature Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E6811. [PMID: 32961939 PMCID: PMC7559247 DOI: 10.3390/ijerph17186811] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022]
Abstract
The production of plastic products, which requires phthalate plasticizers, has resulted in the problems for human health, especially that of reproductive health. Phthalate exposure can induce reproductive disorders at various regulatory levels. The aim of this review was to compile the evidence concerning the association between phthalates and reproductive diseases, phthalates-induced reproductive disorders, and their possible endocrine and intracellular mechanisms. Phthalates may induce alterations in puberty, the development of testicular dysgenesis syndrome, cancer, and fertility disorders in both males and females. At the hormonal level, phthalates can modify the release of hypothalamic, pituitary, and peripheral hormones. At the intracellular level, phthalates can interfere with nuclear receptors, membrane receptors, intracellular signaling pathways, and modulate gene expression associated with reproduction. To understand and to treat the adverse effects of phthalates on human health, it is essential to expand the current knowledge concerning their mechanism of action in the organism.
Collapse
Affiliation(s)
- Henrieta Hlisníková
- Department of Zoology and Anthropology, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia; (I.P.); (B.K.); (M.Š.); (A.S.)
| | | | | | | | | |
Collapse
|
28
|
Pan P, Ma F, Wu K, Yu Y, Li Y, Li Z, Chen X, Huang T, Wang Y, Ge RS. Maternal exposure to zearalenone in masculinization window affects the fetal Leydig cell development in rat male fetus. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114357. [PMID: 32229375 DOI: 10.1016/j.envpol.2020.114357] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 03/07/2020] [Accepted: 03/10/2020] [Indexed: 06/10/2023]
Abstract
Zearalenone is a phenolic Fusarium mycotoxin, which is ubiquitous in human and animal feedstuff and often co-occurs with other mycotoxins. ZEA has been reported to disturb Leydig cell function and even cause the apoptosis to the Leydig cells. However, the effects of gestational exposure to zearalenone on fetal Leydig cells and the underlying mechanism remain unknown. Sprague Dawley dams were daily gavaged with 0, 2.5, 5, 10, and 20 mg/kg body weight ZEA from gestational day 14-21. On gestational day 21, rats were euthanized and serum testosterone levels were measured, and testes were collected for further evaluation of Leydig cell number, cell size, gene, and protein expression. Zearalenone significantly decreased anogenital distance and its index of male fetus, serum testosterone levels, Leydig cell proteins (SCARB1, STAR, CYP11A1, CYP17A1, and INSL3), and fetal Leydig cell number at 10 and/or 20 mg/kg by delaying the commitment of stem Leydig cells into the Leydig cell lineage and proliferation. Further study found that Notch signaling (RFNG, PSEN1, NOTCH1, and NOTCH3) was up-regulated by zearalenone. In conclusion, gestational exposure to high doses of zearalenone (10 and 20 mg/kg) blocks fetal Leydig cell development, thus possibly causing the anomalies of the male reproductive tract.
Collapse
Affiliation(s)
- Peipei Pan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Feifei Ma
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Keyang Wu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Yige Yu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Yang Li
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Zengqiang Li
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Xiuxiu Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Tongliang Huang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Yiyan Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Ren-Shan Ge
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
| |
Collapse
|
29
|
Di-n-hexyl phthalate causes Leydig cell hyperplasia in rats during puberty. Toxicol Lett 2020; 332:213-221. [PMID: 32693021 DOI: 10.1016/j.toxlet.2020.07.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/29/2020] [Accepted: 07/13/2020] [Indexed: 11/21/2022]
Abstract
Di-n-hexyl phthalate (DNHP) is commonly used as a plasticizer. However, whether DNHP influences Leydig cell development during puberty remains unexplored. In this study, DNHP (0, 10, 100, and 1000 mg/kg) was administered via gavage to 35-day-old male Sprague-Dawley rats for 21 days. Serum levels of testosterone, luteinizing hormone, follicle-stimulating hormone, Leydig cell number, the expression of Leydig and Sertoli cell genes and proteins were investigated. DNHP significantly increased serum testosterone levels at 10 mg/kg but lowered its level at 1000 mg/kg. DNHP significantly increased luteinizing hormone levels at 1000 mg/kg without affecting follicle-stimulating hormone levels. DNHP increased Leydig cell number at all doses but down-regulated the expression of Lhcgr, Hsd3b1, Hsd17b3, and Hsd11b1 in Leydig cell per se at 1000 mg/kg. DNHP elevated phosphorylation of ERK1/2 and GSK-3β at 10 mg/kg but decreased SIRT1 and PGC-1α levels at 1000 mg/kg. In conclusion, DNHP exposure causes Leydig cell hyperplasia possibly via stimulating phosphorylation of ERK1/2 and GSK-3β signaling pathways.
Collapse
|
30
|
Li Z, Yu Y, Li Y, Ma F, Fang Y, Ni C, Wu K, Pan P, Ge RS. Taxifolin attenuates the developmental testicular toxicity induced by di-n-butyl phthalate in fetal male rats. Food Chem Toxicol 2020; 142:111482. [PMID: 32525071 DOI: 10.1016/j.fct.2020.111482] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 05/12/2020] [Accepted: 05/28/2020] [Indexed: 01/01/2023]
Abstract
Di-n-butyl phthalate (DBP) is widely used in consumer products as a plasticizer. Here, we report a natural product taxifolin that can attenuate developmental and reproductive toxicity of DBP. Pregnant rats were daily gavaged with 500 mg/kg DBP alone or together with taxifolin (10 and 20 mg/kg) from gestational day (GD) 12-21. At GD21, sera and testes of male fetus were collected. DBP significantly lowered serum testosterone level at 500 mg/kg and taxifolin can completely reverse its action. DBP caused abnormal aggregation of fetal Leydig cells and taxifolin can reverse it. DBP down-regulated the expression of the genes of cholesterol side-chain cleavage enzyme (Cyp11a1), 17β-hydroxysteroid dehydrogenase 3 (Hsd17b3), and insulin-like 3 (Insl3) and taxifolin can reverse its action. DBP increased malondialdehyde levels and decreased superoxide dismutase and glutathione peroxidase expression and taxifolin can reverse it. DBP increased incidence of multinucleated gonocytes and taxifolin can prevent it. Moreover, DBP lowered sirtuin 1 (SIRT1)/peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α) and phosphorylated AMP-activated protein kinase (pAMPK) signalling and taxifolin antagonized DBP. In conclusion, in utero exposure to DBP caused developmental/reproductive toxicity of male offspring via increasing reactive oxygen species and taxifolin is an effective food component that completely reverses DBP-mediated action.
Collapse
Affiliation(s)
- Zengqiang Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China
| | - Yige Yu
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China
| | - Yang Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China
| | - Feifei Ma
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China
| | - Yinghui Fang
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China
| | - Chaobo Ni
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China
| | - Keyang Wu
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China
| | - Peipei Pan
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China
| | - Ren-Shan Ge
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China.
| |
Collapse
|
31
|
Dekant W. Grouping of phthalates for risk characterization of human exposures. Toxicol Lett 2020; 330:1-6. [PMID: 32389706 DOI: 10.1016/j.toxlet.2020.05.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/28/2020] [Accepted: 05/03/2020] [Indexed: 10/24/2022]
Abstract
The European Food Safety Authority (EFSA) has developed a group tolerable daily intake (TDI) for low molecular weight phthalates (LWP) including diisononyl phthalate (DINP). The LWP covered by the group TDI induce clear adverse effects on rat testicular development and pronounced reductions in fetal testicular testosterone. In contrast, DINP has a very low potency regarding changes in testicular testosterone in fetal rodents and does not induce adverse effects on reproductive endpoints. The most sensitive toxicity endpoint for DINP is liver toxicity. Due to the much lower potency of DINP for effects on testosterone, absence of reproductive toxicity, and its noted liver toxicity as compared to the LWP in the group, DINP should not be included in the group TDI.
Collapse
Affiliation(s)
- Wolfgang Dekant
- Department of Toxicology, University of Würzburg, Versbacher Strasse 9, 97078 Würzburg, Germany.
| |
Collapse
|
32
|
Zhang S, Chen X, Li X, Wang Y, Zhu Q, Huang T, Ge RS. Effects of in utero exposure to diisodecyl phthalate on fetal testicular cells in rats. Toxicol Lett 2020; 330:23-29. [PMID: 32387388 DOI: 10.1016/j.toxlet.2020.04.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 03/18/2020] [Accepted: 04/29/2020] [Indexed: 02/06/2023]
Abstract
Diisodecyl phthalate (DIDP) is one of synthetic phthalate plasticizers. It is widely used in plastic products and is a potential endocrine disruptor. However, the effects of DIDP on fetal testicular cell development remain unclear. The objective of the present study was to determine the effects of DIDP on fetal testis development in rats after in utero exposure. Sprague Dawley dams were randomly divided into 5 groups and were daily gavaged with DIDP (0, 10, 100, 500, and 1000 mg/kg body weight) from gestational day 14-21. Serum testosterone levels, fetal Leydig cell number and distribution, testicular gene and protein expression in male pups were examined. DIDP decreased serum testosterone levels at 1000 mg/kg (1.37 ± 0.40 ng/mL, mean ± SE) when compared to the control level (3.14 ± 0.60 ng/mL). DIDP did not affect numbers of Leydig and Sertoli cells. DIDP significantly induced abnormal aggregation of fetal Leydig cells and increased the incidence of multinucleated gonocytes at 1000 mg/kg. Furthermore, DIDP down-regulated expression of Star, Cyp11a1, Hsd17b3, and Insl3 in fetal Leydig cells at 1000 mg/kg and Sox9 in Sertoli cells at 1000 mg/kg. In conclusion, the current study indicates that in utero exposure to high-dose DIDP disrupts the development of fetal testicular cells, thus affecting the male reproductive system.
Collapse
Affiliation(s)
- Song Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Xiuxiu Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Xiaoheng Li
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yiyan Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Qiqi Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Tongliang Huang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Ren-Shan Ge
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| |
Collapse
|
33
|
Chiang C, Flaws JA. Subchronic Exposure to Di(2-ethylhexyl) Phthalate and Diisononyl Phthalate During Adulthood Has Immediate and Long-Term Reproductive Consequences in Female Mice. Toxicol Sci 2020; 168:620-631. [PMID: 30649530 DOI: 10.1093/toxsci/kfz013] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is a plasticizer used in a variety of consumer products. This is concerning because DEHP is an endocrine disruptor and ovarian toxicant. Diisononyl phthalate (DiNP) is a DEHP replacement that is a rising human toxicant due to its increased use as a DEHP substitute. However, little is known about the effects of DEHP or DiNP exposure during adulthood on female reproduction. Thus, this study tested the hypothesis that DEHP or DiNP exposure during adulthood has long-term consequences for female reproduction in mice. Adult female CD-1 mice (39-40 days) were orally dosed with vehicle control (corn oil), DEHP (20 µg/kg/day-200 mg/kg/day), or DiNP (20 µg/kg/day-200 mg/kg/day) for 10 days. Females were paired with untreated male mice for breeding trials immediately post-dosing and again at 3 and 9 months post-dosing. Immediately post-dosing, DEHP and DiNP did not affect fertility. At 3 months post-dosing, DiNP (20 and 100 µg/kg/day and 200 mg/kg/day) significantly disrupted estrous cyclicity, and DiNP and DEHP (20 µg/kg/day) significantly reduced the ability of females to get pregnant. At 9 months post-dosing, DiNP significantly disrupted estrous cyclicity (100 µg/kg/day), reduced time to mating (100 µg/kg/day-200 mg/kg/day), and borderline reduced percent of females who produced offspring (20 mg/kg/day). At 9 months post-dosing, DEHP (200 µg/kg/day and 200 mg/kg/day) and DiNP (100 µg/kg/day and 20 and 200 mg/kg/day) increased numbers of male-biased litters. These data show that DEHP and DiNP exposure has long-term consequences for female reproduction, even long after cessation of exposure.
Collapse
Affiliation(s)
- Catheryne Chiang
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Jodi A Flaws
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
| |
Collapse
|
34
|
Exposure to di(2-ethylhexyl) phthalate and diisononyl phthalate during adulthood disrupts hormones and ovarian folliculogenesis throughout the prime reproductive life of the mouse. Toxicol Appl Pharmacol 2020; 393:114952. [PMID: 32165126 DOI: 10.1016/j.taap.2020.114952] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 03/06/2020] [Accepted: 03/07/2020] [Indexed: 11/23/2022]
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is a phthalate commonly used for its plasticizing capabilities. Because of the wide production and use of DEHP, humans are exposed to DEHP on a daily basis. Diisononyl phthalate (DiNP) is often used as a DEHP replacement chemical, and because of the increased use of DiNP, humans are increasingly exposed to DiNP over time. Of concern is that DEHP and DiNP both exhibit endocrine disrupting capabilities, and little is known about how short-term exposure to either of these phthalates affects aspects of female reproduction. Thus, this study tested the hypothesis that short-term exposure to DEHP or DiNP during adulthood has long-lasting consequences on ovarian follicles and hormones in female mice. Female CD-1 mice aged 39-40 days were orally dosed with either vehicle control (corn oil), DEHP (20 μg/kg/day-200 mg/kg/day), or DiNP (20 μg/kg/day-200 mg/kg/day) for 10 days. Ovarian follicle populations, estradiol, testosterone, progesterone, follicle stimulating hormone (FSH), and inhibin B were analyzed at time points immediately post-dosing and 3, 6, and 9 months post-dosing. The results indicate that 10 days of exposure to DEHP and DiNP changed the distribution of ovarian follicle populations and sex steroid hormones at multiple time points, including the last time point, 9 months post-dosing. Further, FSH was increased at multiple doses up to 6 months post-dosing. Inhibin B was not affected by treatment. These data show that short-term exposure to either DEHP or DiNP has long-term consequences that persist long after cessation of exposure.
Collapse
|
35
|
Mechanisms of Testicular Disruption from Exposure to Bisphenol A and Phtalates. J Clin Med 2020; 9:jcm9020471. [PMID: 32046352 PMCID: PMC7074154 DOI: 10.3390/jcm9020471] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 12/20/2022] Open
Abstract
Great attention has been paid in recent years to the harmful effects of various chemicals that interfere with our natural hormone balance, collectively known as endocrine-disrupting chemicals (EDCs) or endocrine disruptors. The effects on the reproductive system of bisphenol A (BPA) and phthalates have received particular attention: while they have a short half-life, they are so widespread that human exposure can be considered as continuous. Evidence is often limited to the animal model, disregarding the likelihood of human exposure to a mixture of contaminants. Data from animal models show that maternal exposure probably has harmful effects on the male fetus, with an increased risk of urogenital developmental abnormalities. After birth, exposure is associated with changes in the hypothalamic-pituitary-testicular axis, hindering the development and function of the male genital pathways through the mediation of inflammatory mechanisms and oxidative stress. The epidemiological and clinical evidence, while generally confirming the association between reproductive abnormalities and some phthalate esters and BPA, is more contradictory, with wildly different findings. The aim of this review is therefore to provide an update of the potential mechanisms of the damage caused by BPA and phthalates to reproductive function and a review of the clinical evidence currently available in the literature.
Collapse
|
36
|
Li H, Hong T, Zhu Q, Wang S, Huang T, Li X, Lian Q, Ge RS. Paraquat exposure delays late-stage Leydig cell differentiation in rats during puberty. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113316. [PMID: 31610511 DOI: 10.1016/j.envpol.2019.113316] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 08/11/2019] [Accepted: 09/27/2019] [Indexed: 06/10/2023]
Abstract
Paraquat is a fast and non-selective herbicide that is widely used in crop cultivation and conservation tillage systems. Animal experiments have shown that paraquat decreases sperm quality and testicular organ coefficient, but its effects on the development of Leydig cells remain unclear. The objective of the current study was to investigate the effects of paraquat exposure on the Leydig cell development in rats during puberty. Twenty-eight male 35-day-old Sprague-Dawley rats were divided into 4 groups: 0, 0.5, 2.0, and 8 mg kg-1 d-1 paraquat. Paraquat was gavaged for 10 d. Adult Leydig cells were isolated and treated with paraquat for 24 h. Paraquat in vivo significantly decreased body and testis weights at 8 mg kg-1 and lowered serum testosterone levels at 2 and 8 mg kg-1 without affecting the levels of serum luteinizing hormone and follicle-stimulating hormone. Paraquat did not alter Leydig cell number and PCNA labeling index. Real-time PCR showed that paraquat down-regulated the expression of Lhcgr, Scarb1, Cyp11a1, Cyp17a1, and Hsd17b3 genes and their proteins at 2 or 8 mg kg-1, while it up-regulated the expression of Srd5a1 at 8 mg kg-1. Paraquat increased ROS and decreased testosterone production by Leydig cells at 1 and 10 μM after in vitro 24-h exposure. Vitamin E (40 μg/ml) reversed paraquat-induced ROS and suppression of testosterone synthesis in vitro. In conclusion, paraquat directly delays Leydig cell differentiation to block testosterone synthesis via down-regulating the expression of critical testosterone synthesis-related genes and up-regulating the expression of testosterone metabolic enzyme (Srd5a1) gene and possibly via increasing ROS production.
Collapse
Affiliation(s)
- Huitao Li
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Tingting Hong
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Qiqi Zhu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Songxue Wang
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Tongliang Huang
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Xiaoheng Li
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Qingquan Lian
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Ren-Shan Ge
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China.
| |
Collapse
|
37
|
EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP), Silano V, Barat Baviera JM, Bolognesi C, Chesson A, Cocconcelli PS, Crebelli R, Gott DM, Grob K, Lampi E, Mortensen A, Rivière G, Steffensen I, Tlustos C, Van Loveren H, Vernis L, Zorn H, Cravedi J, Fortes C, Tavares Poças MDF, Waalkens‐Berendsen I, Wölfle D, Arcella D, Cascio C, Castoldi AF, Volk K, Castle L. Update of the risk assessment of di-butylphthalate (DBP), butyl-benzyl-phthalate (BBP), bis(2-ethylhexyl)phthalate (DEHP), di-isononylphthalate (DINP) and di-isodecylphthalate (DIDP) for use in food contact materials. EFSA J 2019; 17:e05838. [PMID: 32626195 PMCID: PMC7008866 DOI: 10.2903/j.efsa.2019.5838] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP Panel) was asked by the European Commission to update its 2005 risk assessments of di-butylphthalate (DBP), butyl-benzyl-phthalate (BBP), bis(2-ethylhexyl)phthalate (DEHP), di-isononylphthalate (DINP) and di-isodecylphthalate (DIDP), which are authorised for use in plastic food contact material (FCM). Dietary exposure estimates (mean and high (P95)) were obtained by combining literature occurrence data with consumption data from the EFSA Comprehensive Database. The highest exposure was found for DINP, ranging from 0.2 to 4.3 and from 0.4 to 7.0 μg/kg body weight (bw) per day for mean and high consumers, respectively. There was not enough information to draw conclusions on how much migration from plastic FCM contributes to dietary exposure to phthalates. The review of the toxicological data focused mainly on reproductive effects. The CEP Panel derived the same critical effects and individual tolerable daily intakes (TDIs) (mg/kg bw per day) as in 2005 for all the phthalates, i.e. reproductive effects for DBP (0.01), BBP (0.5), DEHP (0.05), and liver effects for DINP and DIDP (0.15 each). Based on a plausible common mechanism (i.e. reduction in fetal testosterone) underlying the reproductive effects of DEHP, DBP and BBP, the Panel considered it appropriate to establish a group-TDI for these phthalates, taking DEHP as index compound as a basis for introducing relative potency factors. The Panel noted that DINP also affected fetal testosterone levels at doses around threefold higher than liver effects and therefore considered it conservative to include it within the group-TDI which was established to be 50 μg/kg bw per day, expressed as DEHP equivalents. The aggregated dietary exposure for DBP, BBP, DEHP and DINP was estimated to be 0.9-7.2 and 1.6-11.7 μg/kg bw per day for mean and high consumers, respectively, thus contributing up to 23% of the group-TDI in the worst-case scenario. For DIDP, not included in the group-TDI, dietary exposure was estimated to be always below 0.1 μg/kg bw per day and therefore far below the TDI of 150 μg/kg bw per day. This assessment covers European consumers of any age, including the most sensitive groups. Based on the limited scope of the mandate and the uncertainties identified, the Panel considered that the current assessment of the five phthalates, individually and collectively, should be on a temporary basis.
Collapse
|
38
|
Wang Y, Ni C, Li X, Lin Z, Zhu Q, Li L, Ge RS. Phthalate-Induced Fetal Leydig Cell Dysfunction Mediates Male Reproductive Tract Anomalies. Front Pharmacol 2019; 10:1309. [PMID: 31780936 PMCID: PMC6851233 DOI: 10.3389/fphar.2019.01309] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 10/15/2019] [Indexed: 12/19/2022] Open
Abstract
Male fetal Leydig cells in the testis secrete androgen and insulin-like 3, determining the sexual differentiation. The abnormal development of fetal Leydig cells could lead to the reduction of androgen and insulin-like 3, thus causing the male reproductive tract anomalies in male neonates, including cryptorchidism and hypospadias. Environmental pollutants, such as phthalic acid esters (phthalates), can perturb the development and differentiated function of Leydig cells, thereby contributing to the reproductive toxicity in the male. Here, we review the epidemiological studies in humans and experimental investigations in rodents of various phthalates. Most of phthalates disturb the expression of various genes encoded for steroidogenesis-related proteins and insulin-like 3 in fetal Leydig cells and the dose-additive effects are exerted after exposure in a mixture.
Collapse
Affiliation(s)
- Yiyan Wang
- Department of Anesthesiology The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chaobo Ni
- Department of Anesthesiology The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaoheng Li
- Department of Anesthesiology The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhenkun Lin
- Center of Scientific Research, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qiqi Zhu
- Center of Scientific Research, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Linxi Li
- Center of Scientific Research, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ren-Shan Ge
- Department of Anesthesiology The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Center of Scientific Research, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
39
|
Benzyl butyl phthalate non-linearly affects rat Leydig cell development during puberty. Toxicol Lett 2019; 314:53-62. [DOI: 10.1016/j.toxlet.2019.07.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 06/10/2019] [Accepted: 07/08/2019] [Indexed: 11/17/2022]
|
40
|
Chen X, Li C, Chen Y, Ni C, Chen X, Zhang L, Xu X, Chen M, Ma X, Zhan H, Xu A, Ge R, Guo X. Aflatoxin B1 impairs leydig cells through inhibiting AMPK/mTOR-mediated autophagy flux pathway. CHEMOSPHERE 2019; 233:261-272. [PMID: 31176127 DOI: 10.1016/j.chemosphere.2019.05.273] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/19/2019] [Accepted: 05/29/2019] [Indexed: 06/09/2023]
Abstract
Aflatoxin B1 (AFB1), a potential endocrine disrupter, has been shown to induce hepatotoxicity in animal models, but the effects of AFB1 on Leydig cell function are unclear. In this study, in vivo exposure to AFB1 at 15 and 150 μg/kg/day lowered serum testosterone (T), luteinizing hormone (LH), and follicle-stimulating hormone (FSH) levels, reduced Leydig cell number, and down-regulated the expression of testosterone biosynthesis-related genes. In vitro study showed that AFB1 (10 μM) significantly increased ROS levels, and decreased T production in Leydig cells by suppressing certain T-biosynthesis gene expressions. Moreover, AFB1 induced Leydig cell apoptosis through lowering pAMPK/AMPK ratio and increasing pmTOR/mTOR ratio, and then further up-regulating autophagy and apoptosis proteins, LC3, BECLIN 1, and BAX, as well as down-regulating autophagy flux protein P62 and anti-apoptosis protein BCL-2. AFB1-induced toxicity in Leydig cells was characterized by inhibiting T-biosynthesis gene expression, reducing Leydig cell number, promoting ROS production, and inducing cell apoptosis via suppressing AMPK/mTOR-mediated autophagy flux pathway.
Collapse
Affiliation(s)
- Xianwu Chen
- Center of Scientific Research, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chao Li
- Center of Scientific Research, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yong Chen
- Center of Scientific Research, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chaobo Ni
- Center of Scientific Research, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiuxiu Chen
- Center of Scientific Research, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Linlei Zhang
- Center of Scientific Research, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xuni Xu
- Center of Scientific Research, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; The Second Clinical Medical School of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Min Chen
- Center of Scientific Research, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; The Second Clinical Medical School of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xinyi Ma
- Center of Scientific Research, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; The Second Clinical Medical School of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Huilu Zhan
- Center of Scientific Research, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; The Second Clinical Medical School of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Aoyu Xu
- Center of Scientific Research, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; The Second Clinical Medical School of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Renshan Ge
- Center of Scientific Research, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaoling Guo
- Center of Scientific Research, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; The Second Clinical Medical School of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
41
|
Chen X, Mo J, Zhang S, Li X, Huang T, Zhu Q, Wang S, Chen X, Ge RS. 4-Bromodiphenyl Ether Causes Adrenal Gland Dysfunction in Rats during Puberty. Chem Res Toxicol 2019; 32:1772-1779. [PMID: 31423765 DOI: 10.1021/acs.chemrestox.9b00123] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Polybrominated diphenyl ethers (PBDEs) are a group of flame retardants with two or more bromines attached. They are endocrine disruptors. PBDEs photodegrade into 4-bromodiphenyl ether (BDE3). Whether BDE3 impairs adrenal cortical cell function during postnatal development still remains unknown. The aim of the current study was to investigate the influence of BDE3 on adrenal cortical cell function. Sprague-Dawley rats (35 days of age, male) were orally administered with BDE3 (0, 50, 100, and 200 mg/kg/day body weight) for 21 days. BDE3 significantly increased serum aldosterone and corticosterone levels at 200 mg/kg without affecting adrenocorticotropic hormone level. Further study showed that BDE3 up-regulated Cyp11b1 at 100 and 200 mg/kg and Scarb1, Star, Cyp11b2, Cyp21, and Nr5a1 mRNA levels in the 200 mg/kg group. BDE3 also decreased the phosphorylation of AMP-activated protein kinase (AMPK) at 200 mg/kg and increased PGC-1α and phosphorylated cyclic AMP-responsive element-binding protein (CREB)/CREB at 200 mg/kg. Taken together, these findings demonstrate that BDE3 stimulates adrenal cell function likely through decreasing phosphorylation of AMPK and increasing phosphorylation of CREB.
Collapse
Affiliation(s)
- Xiuxiu Chen
- Department of Anesthesiology , the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou 325000 , China
| | - Jiaying Mo
- Department of Anesthesiology , the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou 325000 , China
| | - Song Zhang
- Department of Anesthesiology , the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou 325000 , China
| | - Xiaoheng Li
- Department of Anesthesiology , the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou 325000 , China
| | - Tongliang Huang
- Department of Anesthesiology , the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou 325000 , China
| | - Qiqi Zhu
- Department of Anesthesiology , the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou 325000 , China
| | - Songxue Wang
- Department of Anesthesiology , the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou 325000 , China
| | - Xianwu Chen
- Department of Anesthesiology , the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou 325000 , China
| | - Ren-Shan Ge
- Department of Anesthesiology , the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou 325000 , China
| |
Collapse
|
42
|
Li H, Zhu Q, Wang S, Huang T, Li X, Ni C, Fang Y, Li L, Lian Q, Ge RS. Paraquat exposure delays stem/progenitor Leydig cell regeneration in the adult rat testis. CHEMOSPHERE 2019; 231:60-71. [PMID: 31128353 DOI: 10.1016/j.chemosphere.2019.05.104] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/15/2019] [Accepted: 05/13/2019] [Indexed: 06/09/2023]
Abstract
Paraquat, a widely used nonselective herbicide, is a serious hazard to human health. However, the effects of paraquat on the male reproductive system remain unclear. In this study, adult male Sprague Dawley rats were intraperitoneally injected ethane dimethane sulfonate (EDS, 75 mg/kg) to initiate a regeneration of Leydig cells. EDS-treated rats were orally exposed to paraquat (0.5, 2, 8 mg/kg/day) from post-EDS day 17 to day 28 and effects of paraquat on Leydig and Sertoli cell functions on post-EDS day 35 and day 56 were investigated. Paraquat significantly decreased serum testosterone levels at 2 and 8 mg/kg. Paraquat lowered Leydig cell Hsd17b3, Srd5a1, and Hsd11b1 mRNA levels but increased Hsd3b1 on post-EDS day 35. Paraquat lowered Cyp11a1, Cyp17a1, and Hsd11b1 but increased Srd5a1 on post-EDS day 56. However, paraquat did not alter Leydig cell number and PCNA labeling index. Epididymal staining showed that few sperms were observed in paraquat-treated rats. Primary culture of adult Leydig cells showed that paraquat diminished testosterone output and induced reactive oxygen species generation at 1 and 10 μM and apoptosis rate at 10 μM. In conclusion, a short-term exposure to paraquat delays Leydig cell regeneration from stem/progenitor Leydig cells, causing low production of testosterone and an arrest of spermatogenesis.
Collapse
Affiliation(s)
- Huitao Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Qiqi Zhu
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Songxue Wang
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Tongliang Huang
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Xiaoheng Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Chaobo Ni
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Yinghui Fang
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Linxi Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Qingquan Lian
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China.
| | - Ren-Shan Ge
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China.
| |
Collapse
|
43
|
Ma D, Luo N, Xue G. Trimethyltin (TMT) Reduces Testosterone Production in Adult Leydig Cells in Rats. Int J Toxicol 2019; 38:493-500. [PMID: 31451011 DOI: 10.1177/1091581819870719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Trimethyltin (TMT) is widely used as a plastic heat stabilizer and can cause severe toxicity. Here, the effects of TMT on testosterone production by adult Leydig cells and the related mechanisms of action were investigated. Eighteen adult male Sprague Dawley rats (56 days old) were randomly divided into 3 groups and given intraperitoneal injection of TMT for 21 consecutive days at the doses of 0 (vehicle control), 5, or 10 mg/kg/d. After treatment, trunk blood was collected for hormonal analysis. In addition, related gene and protein expression in testes was detected. At 10 mg/kg, TMT significantly reduced serum testosterone levels but increased serum luteinizing and follicle-stimulating hormone levels. The messenger RNA and protein levels of luteinizing hormone/chorionic gonadotropin receptor, steroidogenic acute regulatory protein, cytochrome P450 17-hydroxylase/17,20-lyase, follicle-stimulating hormone receptor, and SRY box 9 were significantly lower in the TMT-treated testes than in controls. Immunohistochemical study showed that TMT decreased adult Leydig cell number. In conclusion, these findings indicate that TMT reduced adult Leydig cell testosterone production in vivo by directly downregulating the expression of steroidogenic enzymes and decreasing adult Leydig cell number in the testis.
Collapse
Affiliation(s)
- Derong Ma
- Department of Urology, Gansu Provincial Hospital, Lanzhou, Gansu, China.,Both authors contributed equally to this study
| | - Nengqin Luo
- Department of Urology, Gansu Provincial Hospital, Lanzhou, Gansu, China.,Both authors contributed equally to this study
| | - Guoqiang Xue
- Department of Urology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| |
Collapse
|
44
|
Baken KA, Lambrechts N, Remy S, Mustieles V, Rodríguez-Carrillo A, Neophytou CM, Olea N, Schoeters G. A strategy to validate a selection of human effect biomarkers using adverse outcome pathways: Proof of concept for phthalates and reproductive effects. ENVIRONMENTAL RESEARCH 2019; 175:235-256. [PMID: 31146096 DOI: 10.1016/j.envres.2019.05.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 05/21/2023]
Abstract
Human biomonitoring measures the concentrations of environmental chemicals or their metabolites in body fluids or tissues. Complementing exposure biomarkers with mechanistically based effect biomarkers may further elucidate causal pathways between chemical exposure and adverse health outcomes. We combined information on effect biomarkers previously implemented in human observational studies with mechanisms of action reported in experimental studies and with information from published Adverse Outcome Pathways (AOPs), focusing on adverse reproductive effects of phthalate exposure. Phthalates constitute a group of chemicals that are ubiquitous in consumer products and have been related to a wide range of adverse health effects. As a result of a comprehensive literature search, we present an overview of effect biomarkers for reproductive toxicity that are substantiated by mechanistic information. The activation of several receptors, such as PPARα, PPARγ, and GR, may initiate events leading to impaired male and female fertility as well as other adverse effects of phthalate exposure. Therefore, these receptors appear as promising targets for the development of novel effect biomarkers. The proposed strategy connects the fields of epidemiology and toxicology and may strengthen the weight of evidence in observational studies that link chemical exposures to health outcomes.
Collapse
Affiliation(s)
- Kirsten A Baken
- Unit Health, Flemish Institute for Technological Research (VITO NV), Mol, Belgium.
| | - Nathalie Lambrechts
- Unit Health, Flemish Institute for Technological Research (VITO NV), Mol, Belgium
| | - Sylvie Remy
- Unit Health, Flemish Institute for Technological Research (VITO NV), Mol, Belgium; Department of Epidemiology and Social Medicine, University of Antwerp, Antwerp, Belgium
| | - Vicente Mustieles
- Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada, Granada, Spain; Center for Biomedical Research (CIBM), University of Granada, Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Spain
| | | | - Christiana M Neophytou
- Department of Biological Sciences, School of Pure and Applied Sciences, University of Cyprus, Nicosia, Cyprus
| | - Nicolas Olea
- Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada, Granada, Spain; Center for Biomedical Research (CIBM), University of Granada, Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Spain
| | - Greet Schoeters
- Unit Health, Flemish Institute for Technological Research (VITO NV), Mol, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium; Department of Environmental Medicine, Institute of Public Health, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
45
|
Li X, Mo J, Zhu Q, Ni C, Wang Y, Li H, Lin ZK, Ge RS. The structure-activity relationship (SAR) for phthalate-mediated developmental and reproductive toxicity in males. CHEMOSPHERE 2019; 223:504-513. [PMID: 30784757 DOI: 10.1016/j.chemosphere.2019.02.090] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 02/07/2019] [Accepted: 02/14/2019] [Indexed: 06/09/2023]
Abstract
Testicular dysgenesis syndrome includes the hypospadias, cryptorchidism and abnormal fetal testis in male neonate. This is possibly caused by the environmental phthalates, which down-regulate the expression of androgen synthetic genes and Insl3 or directly inhibits steroidogenic enzymes. There are distinct structure-activity relationships (SARs) for phthalate-mediated developmental and reproductive toxicity. Here, we review the SAR for phthalate-mediated testicular dysgenesis syndrome. Of phthalates of straight side chains, C5-C6 ones are the most potent, C4 or C7 are moderate, C3 is weakest, and C1-2 or C8-13 are ineffective. The branching and unsaturation of side chains increases the toxicity. The cycling of side chains does not increase the toxicity.
Collapse
Affiliation(s)
- Xiaoheng Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiaying Mo
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qiqi Zhu
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chaobo Ni
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yiyan Wang
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Huitao Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhen-Kun Lin
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ren-Shan Ge
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
46
|
Lv Y, Li L, Fang Y, Chen P, Wu S, Chen X, Ni C, Zhu Q, Huang T, Lian Q, Ge RS. In utero exposure to bisphenol A disrupts fetal testis development in rats. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 246:217-224. [PMID: 30557795 DOI: 10.1016/j.envpol.2018.12.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 12/01/2018] [Accepted: 12/02/2018] [Indexed: 06/09/2023]
Abstract
Bisphenol A (BPA) is widely used in consumer products and is a potential endocrine disruptor linked with abnormal development of male reproductive tract. However, its action and its effects on the pathways in the development of male gonad are still unclear. Here we report that effects of BPA exposure during gestation on male gonad development. Sprague-Dawley rats were gavaged daily with BPA (0, 4, 40, and 400 mg/kg body weight) from gestational day 12 to day 21. BPA dose-dependently decreased serum testosterone levels (0.45 ± 0.08 ng/ml and 0.32 ± 0.08 ng/ml for 40 and 400 mg/kg BPA, respectively) versus the control level (1.11 ± 0.22 ng/ml, Mean ± SE). BPA lowered Leydig cell Insl3 and Hsd17b3 mRNA and their protein levels at doses of 40 and 400 mg/kg. BPA also lowered Leydig cell (Lhcgr, Cyp11a1, and Cyp17a1) and Sertoli cell (Amh) mRNA and their protein levels at 400 mg/kg. BPA decreased fetal Leydig cell number via inhibiting their proliferation, but it did not affect fetal Sertoli cell number. In conclusion, the current study shows that in utero exposure to BPA inhibits fetal Leydig and Sertoli cell differentiation, possibly disrupting the development of male reproductive tract.
Collapse
Affiliation(s)
- Yao Lv
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Lili Li
- Department of Anesthesiology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China.
| | - Yinghui Fang
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Panpan Chen
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Siwen Wu
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Xiuxiu Chen
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Chaobo Ni
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Qiqi Zhu
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Tongliang Huang
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Qingquan Lian
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Ren-Shan Ge
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China.
| |
Collapse
|
47
|
Fang Y, Ni C, Dong Y, Li H, Wu S, Li X, Lv Y, Huang T, Lian Q, Ge RS. In utero Exposure to Atrazine Disrupts Rat Fetal Testis Development. Front Pharmacol 2018; 9:1391. [PMID: 30555326 PMCID: PMC6280720 DOI: 10.3389/fphar.2018.01391] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 11/12/2018] [Indexed: 12/20/2022] Open
Abstract
Atrazine (ATR) is a commonly used agricultural herbicide and a potential endocrine disruptor that may cause testicular dysgenesis. The objective of the present study was to investigate the effects of atrazine on fetal testis development after in utero exposure. Female Sprague-Dawley rats were gavaged daily with vehicle (corn oil, control) or atrazine (25, 50, and 100 mg/kg body weight/day) from gestational day 12 to 21. Atrazine dose-dependently decreased serum testosterone levels of male pups, with a significant difference from the control recorded at a dose of 100 mg/kg. In addition, atrazine significantly increased fetal Leydig cell aggregation at a dose of 100 mg/kg. Atrazine increased fetal Leydig cell number but not Sertoli cell number. However, atrazine down-regulated Scarb1 and Cyp17a1 in the fetal Leydig cell per se and Hsd17b3 and Dhh in the Sertoli cell per se. These results demonstrated that in utero exposure to atrazine disrupted rat fetal testis development.
Collapse
Affiliation(s)
- Yinghui Fang
- Department of Anesthesiology, Perioperative and Pain Medicine, Key Laboratory of Anesthesiology of Zhejiang Province, Zhejiang, China
| | - Chaobo Ni
- Department of Anesthesiology, Perioperative and Pain Medicine, Key Laboratory of Anesthesiology of Zhejiang Province, Zhejiang, China
| | - Yaoyao Dong
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Huitao Li
- Department of Anesthesiology, Perioperative and Pain Medicine, Key Laboratory of Anesthesiology of Zhejiang Province, Zhejiang, China
| | - Siwen Wu
- Department of Anesthesiology, Perioperative and Pain Medicine, Key Laboratory of Anesthesiology of Zhejiang Province, Zhejiang, China
| | - Xiaoheng Li
- Department of Anesthesiology, Perioperative and Pain Medicine, Key Laboratory of Anesthesiology of Zhejiang Province, Zhejiang, China
| | - Yao Lv
- Department of Anesthesiology, Perioperative and Pain Medicine, Key Laboratory of Anesthesiology of Zhejiang Province, Zhejiang, China
| | - Tongliang Huang
- Department of Anesthesiology, Perioperative and Pain Medicine, Key Laboratory of Anesthesiology of Zhejiang Province, Zhejiang, China
| | - Qingquan Lian
- Department of Anesthesiology, Perioperative and Pain Medicine, Key Laboratory of Anesthesiology of Zhejiang Province, Zhejiang, China
| | - Ren-Shan Ge
- Department of Anesthesiology, Perioperative and Pain Medicine, Key Laboratory of Anesthesiology of Zhejiang Province, Zhejiang, China
| |
Collapse
|
48
|
Chen X, Dong Y, Tian E, Xie L, Wang G, Li X, Chen X, Chen Y, Lv Y, Ni C, Fang Y, Zhong Y, Ge RS. 4-Bromodiphenyl ether delays pubertal Leydig cell development in rats. CHEMOSPHERE 2018; 211:986-997. [PMID: 30119030 DOI: 10.1016/j.chemosphere.2018.08.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 07/31/2018] [Accepted: 08/02/2018] [Indexed: 06/08/2023]
Abstract
Polybrominated diphenyl ethers are a class of brominated flame retardants that are potential endocrine disruptors. 4-Bromodiphenyl ether (BDE-3) is the most abundant photodegradation product of higher polybrominated diphenyl ethers. However, whether BDE-3 affects Leydig cell development during puberty is still unknown. The objective of this study was to explore effects of BDE-3 on the pubertal development of rat Leydig cells. Male Sprague Dawley rats (35 days of age) were gavaged daily with BDE-3 (0, 50, 100, and 200 mg/kg body weight/day) for 21 days. BDE-3 decreased serum testosterone levels (1.099 ± 0.412 ng/ml at a dose of 200 mg/kg BDE-3 when compared to the control level (2.402 ± 0.184 ng/ml, mean ± S.E.). BDE-3 decreased Leydig cell size and cytoplasmic size at a dose of 200 mg/kg, decreased Lhcgr, Star, Dhh, and Sox9 mRNA levels at ≥ 100 mg/kg and Scarb1, Cyp11a1, Hsd17b3, and Fshr at 200 mg/kg. BED-3 also decreased the phosphorylation of AKT1, AKT2, ERK1/2, and AMPK at 100 or 200 mg/kg. BDE-3 in vitro induced ROS generation, inhibited androgen production, down-regulated Lhcgr, Scarb1, Star, Cyp11a1, Hsd3b1, Srd5a1, and Akr1c14 expression in immature Leydig cells after 24-h treatment. In conclusion, the current study indicates that BDE-3 disrupts Leydig cell development via suppressing AKT, ERK1/2, and AMPK phosphorylation and inducing ROS generation.
Collapse
Affiliation(s)
- Xianwu Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yaoyao Dong
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Erpo Tian
- Jinjiang Maternity and Child Health Hospital, Chengdu, Sichuan 610000, China
| | - Lubin Xie
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Guimin Wang
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Xiaoheng Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Xiuxiu Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yong Chen
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yao Lv
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Chaobo Ni
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yinghui Fang
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Ying Zhong
- Jinjiang Maternity and Child Health Hospital, Chengdu, Sichuan 610000, China.
| | - Ren-Shan Ge
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| |
Collapse
|
49
|
Ge F, Zheng W, Bao S, Wu K, Xiang S, Chen W, Chen X, Mo J, Zhou S, Wang Y, Lian Q, Ge RS. In utero exposure to triphenyltin disrupts rat fetal testis development. CHEMOSPHERE 2018; 211:1043-1053. [PMID: 30223319 DOI: 10.1016/j.chemosphere.2018.08.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 07/06/2018] [Accepted: 08/04/2018] [Indexed: 06/08/2023]
Abstract
Triphenyltin is an organotin that is widely used as an anti-fouling agent and may have endocrine-disrupting effects. The objective of the current study was to investigate effects of triphenyltin on the development of rat fetal testis. Female pregnant Sprague Dawley dams were gavaged daily with triphenyltin (0, 0.5, 1, and 2 mg/kg body weight/day) from gestational day 12 to day 21. Triphenyltin dose-dependently decreased serum testosterone levels (0.971 ± 0.072 and 0.972 ± 0.231 ng/ml at 1 and 2 mg/kg, respectively) from control level (2.099 ± 0.351 ng/ml). Triphenyltin at 1 and 2 mg/kg doses also induced fetal Leydig cell aggregation, decreased fetal Leydig cell size and cytoplasmic size. Triphenyltin decreased the expression levels of Lhcgr, Scarb1, Star, Cyp11a1, Cyp17a1, Insl3, Fshr, Pdgfa, and Sox9 by 0.5 mg/kg dose and above. However, triphenyltin did not affect Leydig and Sertoli cell numbers. In conclusion, the current study indicated that in utero exposure of triphenyltin disrupted fetal Leydig and Sertoli cell development.
Collapse
Affiliation(s)
- Fei Ge
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Wenwen Zheng
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Suhao Bao
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Keyang Wu
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Saiqiong Xiang
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Wanwan Chen
- Department of Pathology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Xiuxiu Chen
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Jiaying Mo
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Songyi Zhou
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Yiyan Wang
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Qingquan Lian
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
| | - Ren-Shan Ge
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
| |
Collapse
|
50
|
Zheng W, Ge F, Wu K, Chen X, Li X, Chen Y, Lv Y, Lian Q, Ge RS. In utero exposure to hexavalent chromium disrupts rat fetal testis development. Toxicol Lett 2018; 299:201-209. [PMID: 30315952 DOI: 10.1016/j.toxlet.2018.10.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/30/2018] [Accepted: 10/08/2018] [Indexed: 12/23/2022]
Abstract
Hexavalent chromium (Cr6+) acts as an endocrine disruptor. Herein, we investigated effects of Cr6+ on the development of rat fetal Leydig and Sertoli cells, which support differentiation of the male reproductive tract in late gestation. Female pregnant Sprague Dawley rats were gavaged with potassium dichromate (0, 3, 6, and 12 mg/kg) from gestational days (GD) 12 to GD 21. Leydig and Sertoli cell function was evaluated by investigating serum testosterone levels, cell number and distribution, and the expression levels of Leydig and Sertoli cell genes and proteins. Cr6+ increased serum testosterone level at dose of 3 mg/kg (1.170 ± 0.121 ng/ml vs. 0.720 ± 0.082 ng/ml in the control), while lowered it at dose of 12 mg/kg (0.400 ± 0.098 ng/ml). In addition, it showed that Cr6+ dose-dependently reduced Leydig cell size and cytoplasmic size and decreased the percentage of medium fetal Leydig cell cluster at dose of 12 mg/kg. Further study demonstrated that the expression of Leydig cell (Lhcgr, Scarb1, and Hsd3b1) and Sertoli cell (Fshr, Pdgfa, and Lif) genes in the testis was upregulated at dose of 3 mg/kg while the expression of Lhcgr, Hsd17b3 and Igf1 was downregulated by Cr6+ at dose of 12 mg/kg. In conclusion, Cr6+ had biphasic effects on fetal Leydig cell development with low dose to stimulate testosterone production and high dose to inhibit it, possibly via biphasically regulating growth factor gene expression in fetal Sertoli cells.
Collapse
Affiliation(s)
- Wenwen Zheng
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Fei Ge
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Keyang Wu
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Xianwu Chen
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Xiaoheng Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Yong Chen
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Yao Lv
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Qingquan Lian
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
| | - Ren-Shan Ge
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
| |
Collapse
|