1
|
Hao Y, Zheng S, Wang P, Sun H, Matsiko J, Li W, Li Y, Zhang Q, Jiang G. Ecotoxicology of persistent organic pollutants in birds. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:400-416. [PMID: 33660728 DOI: 10.1039/d0em00451k] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Considering the explosive growth of the list of persistent organic pollutants (POPs), the scientific community is combatting increasing challenges to protect humans and wildlife from the potentially negative consequences of POPs. Herein, we characterize the main aspects and progress in the ecotoxicology of POPs in avian species since 2000. The majority of previous efforts has revealed the global occurrence of high levels of various POPs in birds. Laboratory research and epidemiological studies imply that POPs exert a broad-spectrum of side-effects on birds by interfering with their endocrine, immune and neural system, reproduction, and development, and growth. However, inconsistent results suggest that the potential effects of POP exposure on the physiological parameters in birds are multifactorial, involving a multitude of biological processes, species-specific differences, gender, age and types of compounds. Great progress has been achieved in identifying the species-specific sensitivity to dioxin-like compounds, which is attributed to different amino acid residues in the ligand-binding domain of the aryl hydrocarbon receptor. Besides the conventional concentration additivity, several studies have suggested that different classes of POPs possibly act synergistically or antagonistically based on their concentration. However, ecotoxicology information is still recorded in a scattered and inadequate manner, including lack of enough avian species, limited number of POPs investigated, and insufficient geographical representation, and thus our understanding of the effects of POPs on birds remains rudimentary, although mechanistic understanding of their mode of action is progressing. Particularly, research on what happens to wild bird populations and their ecosystems under POP stress is still unavailable. Thus, our aim is to predict and trace the effects POPs at different biological organization levels, especially from the molecular, cellular and individual levels to the population, community and ecosystem levels because of the limited and scattered information, as mentioned above.
Collapse
Affiliation(s)
- Yanfen Hao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Sechman A, Grzegorzewska AK, Grzesiak M, Kozubek A, Katarzyńska-Banasik D, Kowalik K, Hrabia A. Nitrophenols suppress steroidogenesis in prehierarchical chicken ovarian follicles by targeting STAR, HSD3B1, and CYP19A1 and downregulating LH and estrogen receptor expression. Domest Anim Endocrinol 2020; 70:106378. [PMID: 31514021 DOI: 10.1016/j.domaniend.2019.07.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 07/17/2019] [Accepted: 07/17/2019] [Indexed: 12/18/2022]
Abstract
To assess the effects of 4-nitrophenol (PNP) and 3-methyl-4-nitrophenol (PNMC) on steroidogenesis in the chicken ovary, white (WF, 1-4 mm) and yellowish (YF, 4-8 mm) prehierarchical follicles were incubated in a medium supplemented with PNP or PNMC (10-8-10-4 M), ovine LH (oLH; 10 ng/mL), and combinations of oLH with PNP or PNMC (10-6 M). Testosterone (T) and estradiol (E2) concentrations in media and mRNA expression for steroidogenic proteins (STAR, HSD3B1, and CYP19A1), and LH receptors (LHR), estrogen receptor α (ESR1) and β (ESR2) in follicles were determined by RIA and real-time qPCR, respectively. PNP and PNMC decreased T and E2 secretion by the WF and YF, and oLH-stimulated T secretion from these follicles. PNP decreased basal STAR and HSD3B1 mRNA levels both in the WF and YF, and CYP19A1 mRNAs in the WF. PNP reduced oLH-affected mRNA expression of these genes in the YF. PNMC inhibited basal STAR, HSD3B1, and CYP19A1 mRNA expression in the WF, but not in the YF. PNMC reduced oLH-stimulated STAR and CYP19A1 expression in the YF and WF, respectively. PNP decreased basal mRNA expression of LHR, ESR1, and ESR2 in the WF, but it increased ESR1 and ESR2 mRNA levels in the YF. PNMC reduced both basal and oLH-affected LHR, ESR1, and ESR2 mRNA expression in the WF; however, it did not influence expression of these genes in the YF. We suggest that nitrophenols by influencing sex steroid synthesis and transcription of LH and estrogen receptors in prehierarchical ovarian follicles may impair their development and selection to the preovulatory hierarchy.
Collapse
Affiliation(s)
- A Sechman
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, Al. Mickiewicza 24/28, 30-059 Krakow, Poland.
| | - A K Grzegorzewska
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, Al. Mickiewicza 24/28, 30-059 Krakow, Poland
| | - M Grzesiak
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, Al. Mickiewicza 24/28, 30-059 Krakow, Poland
| | - A Kozubek
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, Al. Mickiewicza 24/28, 30-059 Krakow, Poland
| | - D Katarzyńska-Banasik
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, Al. Mickiewicza 24/28, 30-059 Krakow, Poland
| | - K Kowalik
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, Al. Mickiewicza 24/28, 30-059 Krakow, Poland
| | - A Hrabia
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, Al. Mickiewicza 24/28, 30-059 Krakow, Poland
| |
Collapse
|
3
|
Sechman A, Batoryna M, Antos PA, Hrabia A. Effects of PCB 126 and PCB 153 on secretion of steroid hormones and mRNA expression of steroidogenic genes (STAR, HSD3B, CYP19A1) and estrogen receptors (ERα, ERβ) in prehierarchical chicken ovarian follicles. Toxicol Lett 2016; 264:29-37. [PMID: 27832956 DOI: 10.1016/j.toxlet.2016.11.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/26/2016] [Accepted: 11/05/2016] [Indexed: 11/25/2022]
Abstract
The objective of this study was to assess the in vitro effects of dioxin-like PCB 126 and non-dioxin-like PCB 153 on basal and ovine LH (oLH)-stimulated testosterone (T) and estradiol (E2) secretion and expression of steroidogenic genes (STAR, HSD3B and CYP19A1) and estrogen receptors α (ERα) and β (ERβ) in white (WF) and yellowish (YF) prehierarchical follicles of the hen ovary. Steroid concentrations in a medium and gene expression in follicles following 6h of exposition were determined by RIA and real-time qPCR, respectively. Both PCBs increased basal and oLH-stimulated T secretion by the WF follicles. PCB 126 reduced basal E2 secretion by the WF follicles. PCB 153 elevated but PCB 126 reduced oLH-stimulated E2 secretion by the prehierarchical follicles. PCB 126 increased basal STAR and HSD3B and reduced CYP19A1 mRNA expression in these follicles. PCB 153 increased basal expression of STAR and HSD3B in YF follicles, but diminished HSD3B mRNA levels in the WF. The studied PCBs had an opposite effect on basal and oLH-stimulated CYP19A1 mRNA expression in prehierarchical follicles. Both PCBs modulated basal and inhibited oLH-stimulated ERα and ERβ gene expression in the prehierarchical follicles. In conclusion, data of the current study demonstrate the congener-specific effects of PCBs on sex steroid secretion by prehierarchical follicles of the chicken ovary, which are at least partly related to STAR, HSD3B and CYP19A1 gene expression. It is suggested that PCBs, by influencing follicular steroidogenesis and expression of estrogen receptors, may impair development and selection of yellowish follicles to the preovulatory hierarchy.
Collapse
Affiliation(s)
- Andrzej Sechman
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, Al. Mickiewicza 24/28, 30-059 Krakow, Poland.
| | - Marta Batoryna
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, Al. Mickiewicza 24/28, 30-059 Krakow, Poland
| | - Piotr A Antos
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, Al. Mickiewicza 24/28, 30-059 Krakow, Poland
| | - Anna Hrabia
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, Al. Mickiewicza 24/28, 30-059 Krakow, Poland
| |
Collapse
|
4
|
Bak SM, Iida M, Soshilov AA, Denison MS, Iwata H, Kim EY. Auto-induction mechanism of aryl hydrocarbon receptor 2 (AHR2) gene by TCDD-activated AHR1 and AHR2 in the red seabream (Pagrus major). Arch Toxicol 2016; 91:301-312. [PMID: 27188387 DOI: 10.1007/s00204-016-1732-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 04/27/2016] [Indexed: 11/26/2022]
Abstract
The toxic effects of dioxins and related compounds (DRCs) are mediated by the aryl hydrocarbon receptor (AHR). Our previous study identified AHR1 and AHR2 genes from the red seabream (Pagrus major). Moreover, we found that AHR2 mRNA levels were notably elevated by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exposure in the early life stage of red seabream embryos, while AHR1 mRNA level was not altered. In this study, to investigate the regulatory mechanism of these AHR transcripts, we cloned and characterized 5'-flanking regions of AHR1 and AHR2 genes. Both of the 5'-flanking regions in these AHR genes contained three potential xenobiotic-responsive elements (XREs). To assess whether the 5'-flanking region is transactivated by rsAHR1 and rsAHR2 proteins, we measured the transactivation potency of the luciferase reporter plasmids containing the 5'-flanking regions by AHR1 and AHR2 proteins that were transiently co-expressed in COS-7. Only reporter plasmid (pGL4-rsAHR2-3XREs) that contained three putative XRE sites in the 5'-flanking region of AHR2 gene showed a clear TCDD dose-dependent transactivation by AHR1 and AHR2 proteins. TCDD-EC50 values for the rsAHR2-derived XRE transactivation were 1.3 and 1.4 nM for AHR1 and AHR2, respectively. These results suggest that the putative XREs of AHR2 gene have a function for AHR1- and AHR2-mediated transactivation, supporting our in ovo observation of an induction of AHR2 mRNA levels by TCDD exposure. Mutations in XREs of AHR2 gene led to a decrease in luciferase induction. Electrophoretic mobility shift assay showed that XRE1, the closest XRE from the start codon in AHR2 gene, is mainly responsible for the binding with TCDD-activated AHR. This suggests that TCDD-activated AHR1 and AHR2 up-regulate the AHR2 mRNA levels and this auto-induced AHR2 may amplify the signal transduction of its downstream targets including CYP1A in the red seabream.
Collapse
Affiliation(s)
- Su-Min Bak
- Department of Life and Nanopharmaceutical Science, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 130-701, Korea
- Department of Biology, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 130-701, Korea
| | - Midori Iida
- Laboratory of Environmental Toxicology, Center for Marine Environmental Studies, Ehime University, Bunkyo-cho 2-5, Matsuyama, 790-8577, Japan
| | - Anatoly A Soshilov
- Department of Environmental Toxicology, University of California, Davis, CA, 95616, USA
| | - Michael S Denison
- Department of Environmental Toxicology, University of California, Davis, CA, 95616, USA
| | - Hisato Iwata
- Laboratory of Environmental Toxicology, Center for Marine Environmental Studies, Ehime University, Bunkyo-cho 2-5, Matsuyama, 790-8577, Japan
| | - Eun-Young Kim
- Department of Life and Nanopharmaceutical Science, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 130-701, Korea.
- Department of Biology, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 130-701, Korea.
| |
Collapse
|