1
|
Ni KD, Fu X, Luo Y, He X, Yin HH, Mo DP, Wu JX, Wu MJ, Zheng X, Liu YN, Jiang Q, Zhang LT, Lin AZ, Huang L, Pan QJ, Yin XD, Zhang HY, Meng YW, Zhou X, Pan J, Guo Z, Liu JY. Epoxy metabolites of linoleic acid promote the development of breast cancer via orchestrating PLEC/NFκB1/CXCL9-mediated tumor growth and metastasis. Cell Death Dis 2024; 15:901. [PMID: 39695149 DOI: 10.1038/s41419-024-07300-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/02/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024]
Abstract
Breast cancer (BC) is a common malignant tumor in women and requires a comprehensive understanding of its pathogenesis for the development of new therapeutic strategies. Polyunsaturated fatty acids (PUFAs) metabolism-driven inflammation is a causative factor in cancer development. However, the function of PUFAs' metabolism in BC remains largely unknown. Here we report the role and underlying mechanism of epoxyoctadecenoic acids (EpOMEs), the metabolites of linoleic acid mediated by cytochrome P450 (CYP) monooxygenases, in promoting the development of BC, particularly triple-negative BC (TNBC). A metabolomics study identified that EpOMEs were significantly increased in the plasma of BC patients and MMTV-PyMT mice, which accounted for the upregulation of CYP2J2 in BC tumor tissues and tumor cells. Decreased EpOMEs by treatment of CYP monooxygenase inhibitors significantly alleviated tumor development in MMTV-PyMT mice. Treatment with EpOMEs and overexpression of CYP2J2 to increase EpOMEs in TNBC cells significantly promoted cellular proliferation, migration, tumor growth, and metastasis. Whereas knockdown of CYP2J2 to decrease EpOMEs inhibited tumorigenesis and lung metastasis of TNBC, which was reversed by EpOME administration. Transcriptomics and proteomics analyses revealed CXCL9 and PLEC were critical for EpOME-mediated promotion of TNBC. Knockdown of CXCL9 and PLEC inhibited TNBC progression and EpOME-mediated promotion of TNBC. Both overexpression of CYP2J2 and EpOME treatment upregulate PLEC, while PLEC upregulates NFκB1, which is a transcription regulator of CXCL9. This study extends the understanding of the function of PUFAs metabolism in BC development, providing potential therapeutic targets and dietary guidelines for patients with TNBC and other BCs. The illustration of the hypothetical mechanism CYP2J2/EpOMEs promotes the tumorigenesis and metastasis of TNBC via PLEC/NFKB1/CXCL9 signaling pathway.
Collapse
Affiliation(s)
- Kai-Di Ni
- CNTTI of College of Pharmacy and Department of Anesthesia of the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Chongqing, China
| | - Xian Fu
- CNTTI of College of Pharmacy and Department of Anesthesia of the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Chongqing, China
| | - Ying Luo
- Department of Clinical Laboratory, Shanghai Changning Maternity and Infant Health Hospital, East China Normal University, Shanghai, China
| | - Xin He
- CNTTI of College of Pharmacy and Department of Anesthesia of the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Chongqing, China
| | - Hou-Hua Yin
- CNTTI of College of Pharmacy and Department of Anesthesia of the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Chongqing, China
| | - Dong-Ping Mo
- Department of Clinical Laboratory, Jiangsu Cancer Hospital, the Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Jing-Xian Wu
- Department of Pathology, College of Basic Medicine of Chongqing Medical University, Chongqing, China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, China
- Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ming-Jun Wu
- Center for Science & technology Innovation, Chongqing Medical University, Chongqing, China
| | - Xiao Zheng
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Chongqing, China
- Center for Novel Target and Therapeutic Intervention (CNTTI), College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Ya-Nan Liu
- CNTTI of College of Pharmacy and Department of Anesthesia of the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Chongqing, China
| | - Qing Jiang
- CNTTI of College of Pharmacy and Department of Anesthesia of the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Chongqing, China
| | - Ling-Tong Zhang
- CNTTI of College of Pharmacy and Department of Anesthesia of the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Chongqing, China
| | - Ai-Zhi Lin
- CNTTI of College of Pharmacy and Department of Anesthesia of the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Chongqing, China
| | - Ling Huang
- CNTTI of College of Pharmacy and Department of Anesthesia of the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Chongqing, China
| | - Qing-Jin Pan
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Chongqing, China
- Center for Novel Target and Therapeutic Intervention (CNTTI), College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Xue-Dong Yin
- The Department of Breast and Thyroid surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Huan-Yu Zhang
- The Second Clinical College of Chongqing Medical University, Chongqing, China
| | - Yi-Wen Meng
- CNTTI of College of Pharmacy and Department of Anesthesia of the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Chongqing, China
| | - Xue Zhou
- CNTTI of College of Pharmacy and Department of Anesthesia of the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Chongqing, China
| | - Jianbo Pan
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Chongqing, China
- Center for Novel Target and Therapeutic Intervention (CNTTI), College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Zufeng Guo
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Chongqing, China
- Center for Novel Target and Therapeutic Intervention (CNTTI), College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Jun-Yan Liu
- CNTTI of College of Pharmacy and Department of Anesthesia of the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Chongqing, China.
- Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Chongqing Medical University, Chongqing, China.
| |
Collapse
|
2
|
Mrkvicová A, Peterová E, Nemec I, Křikavová R, Muthná D, Havelek R, Kazimírová P, Řezáčová M, Štarha P. Rh(III) and Ru(II) complexes with phosphanyl-alkylamines: inhibition of DNA synthesis induced by anticancer Rh complex. Future Med Chem 2023; 15:1583-1602. [PMID: 37750220 DOI: 10.4155/fmc-2023-0170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023] Open
Abstract
Aim: This investigation was designed to synthesize half-sandwich Rh(III) and Ru(II) complexes and study their antiproliferative activity in human cancer cell lines. Materials & methods: Nine compounds were prepared and tested by various assays for their anticancer activity and mechanism of action. Results: Hit Rh(III) complex 6 showed low-micromolar potency in cisplatin-sensitive (A2780) and -resistant (A2780cis) ovarian carcinoma cell lines, promising selectivity toward these cancer cells over normal lung fibroblasts and an unprecedented mechanism of action in the treated cells. DNA synthesis was decreased and CDKN1A expression was upregulated, but p21 expression was not induced. Conclusion: Rh complex 6 showed high antiproliferative activity, which is induced through a p21-independent mechanism of action.
Collapse
Affiliation(s)
- Alena Mrkvicová
- Department of Medical Biochemistry, Charles University, Šimkova 870, 500 03, Hradec Králové, Czech Republic
| | - Eva Peterová
- Department of Medical Biochemistry, Charles University, Šimkova 870, 500 03, Hradec Králové, Czech Republic
| | - Ivan Nemec
- Department of Inorganic Chemistry, Palacký University Olomouc, 17. listopadu 12, 771 46, Olomouc, Czech Republic
| | - Radka Křikavová
- Department of Inorganic Chemistry, Palacký University Olomouc, 17. listopadu 12, 771 46, Olomouc, Czech Republic
| | - Darina Muthná
- Department of Medical Biochemistry, Charles University, Šimkova 870, 500 03, Hradec Králové, Czech Republic
| | - Radim Havelek
- Department of Medical Biochemistry, Charles University, Šimkova 870, 500 03, Hradec Králové, Czech Republic
| | - Petra Kazimírová
- Department of Medical Biochemistry, Charles University, Šimkova 870, 500 03, Hradec Králové, Czech Republic
| | - Martina Řezáčová
- Department of Medical Biochemistry, Charles University, Šimkova 870, 500 03, Hradec Králové, Czech Republic
| | - Pavel Štarha
- Department of Inorganic Chemistry, Palacký University Olomouc, 17. listopadu 12, 771 46, Olomouc, Czech Republic
| |
Collapse
|
3
|
Chang YH, Wu KC, Ding DC. The natural compound n-butylidenephthalide kills high-grade serous ovarian cancer stem cells by activating intrinsic apoptosis signaling pathways. J Cancer 2021; 12:3126-3135. [PMID: 33976722 PMCID: PMC8100814 DOI: 10.7150/jca.51650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
High-grade serous ovarian cancer (HGSOC) constitutes 80% of ovarian cancer. Cancer stem cells (CSCs) are responsible for most of the tumor metastasis and chemoresistance. n-Butylidenephthalide (BP) is a potential anti-tumor agent for treating a variety of cancers. The aim of this study was to evaluate the effect of BP on CSCs of HGSOC. CSCs were isolated using the CSC marker (ALDH; aldehyde dehydrogenase) from KURAMOCHI and OVSAHO cells (HGSOC cell lines). The cell proliferation, IC50 (the half-maximal inhibitory concentration), cell migration and invasion, TUNEL (terminal deoxynucleotidyl transferase (TdT) dUTP nick end labeling) assay, western blot of ovarian CSC were evaluated. The animal xenograft studies were evaluated on an immunodeficient mouse model. The results showed the proliferation of ALDH+ cells was greater than that of ALDH- cells. The dosage of IC50 of BP was higher in ALDH+ cells than in mixed cancer cells (317.2 vs. 206.5 μg/ml) in KURAMOCHI cells, but not in OVSAHO cells (61.1 vs. 48.5 μg/ml). BP could inhibit the migration and invasion of both cancer stem cells. BP treatment could activate apoptosis signaling, as indicated by the TUNEL assay and the increased expression of cleaved caspase-3, -7, and -9 but not cleaved caspase-8. A low dose of BP (20 and 25 μg/mL) treatment could increase the toxicity of taxol and cisplatin. In the animal model, BP (200 mg/kg) treatment also decreased the KURAMOCHI and OVSAHO tumor growth rate and induced tumor apoptosis. In conclusion, BP could kill ALDH+ CSCs of HGSOC in vitro and in vivo by inducing apoptosis. BP may provide a new therapeutic approach for HGSOC.
Collapse
Affiliation(s)
- Yu-Hsun Chang
- Department of Pediatrics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Foundation, and Tzu Chi University, Hualien, Taiwan
| | - Kun-Chi Wu
- Department of Orthopedics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Foundation, and Tzu Chi University, Hualien, Taiwan
| | - Dah-Ching Ding
- Department of Obstetrics and Gynecology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Foundation, and Tzu Chi University, Hualien, Taiwan.,Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
4
|
Desensitization of metastatic melanoma cells to therapeutic treatment through repeated exposure to dacarbazine. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 211:111982. [PMID: 32866820 DOI: 10.1016/j.jphotobiol.2020.111982] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 06/21/2020] [Accepted: 07/25/2020] [Indexed: 12/18/2022]
Abstract
Aberrant anti-cancer drug efflux mediated by membrane protein ABC transporters (ABCB5 and ABCG2) is thought to characterize melanoma heterogeneous chemoresistant populations, presumed to have unlimited proliferative and self-renewal abilities. Therefore, this study primarily aimed to investigate whether continuous exposure of melanoma cells to dacarbazine (DTIC) chemotherapeutic drug enriches cultures with therapy resistant cells. Thereafter, we sought to determine whether combining the genotoxic activity of DTIC with the oxidative insults of hypericin activated photodynamic therapy (HYP-PDT) could synergized to kill heterogenous chemoresistant melanoma populations. This study revealed that DTIC resistant (UCT Mel-1DTICR2) melanoma cells were less sensitive to all therapies than parental melanoma cells (UCT Mel-1), yet combination therapy was the most efficient. At the exception of DTIC treatment, both HYP-PDT and the combination therapy were effective in significantly reducing the Hoechst non-effluxing dye melanoma main populations (MP) compared to their side population (SP) counterparts. Likewise, HYP-PDT and combination therapy significantly reduced self-renewal capacity, increased expression of ABCB5 and ABCG2 transporters and differentially induced cell cycle arrest and cell death (apoptosis or necrosis) depending on the melanoma MP cell type. Collectively, combination therapy could synergistically reduce melanoma proliferative and clonogenic potential. However, further research is needed to decipher the cellular mechanisms underlying this resistance which would enable combination therapy to reach therapeutic fruition.
Collapse
|
5
|
Identification of Human Ovarian Adenocarcinoma Cells with Cisplatin-resistance by Feature Extraction of Gray Level Co-occurrence Matrix Using Optical Images. Diagnostics (Basel) 2020; 10:diagnostics10060389. [PMID: 32527052 PMCID: PMC7345158 DOI: 10.3390/diagnostics10060389] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/05/2020] [Accepted: 06/07/2020] [Indexed: 12/13/2022] Open
Abstract
Ovarian cancer is the most malignant of all gynecological cancers. A challenge that deteriorates with ovarian adenocarcinoma in neoplastic disease patients has been associated with the chemoresistance of cancer cells. Cisplatin (CP) belongs to the first-line chemotherapeutic agents and it would be beneficial to identify chemoresistance for ovarian adenocarcinoma cells, especially CP-resistance. Gray level co-occurrence matrix (GLCM) was characterized imaging from a numeric matrix and find its texture features. Serous type (OVCAR-4 and A2780), and clear cell type (IGROV1) ovarian carcinoma cell lines with CP-resistance were used to demonstrate GLCM texture feature extraction of images. Cells were cultured with cell density of 6 × 105 in a glass-bottom dish to form a uniform coverage of the glass slide to get the optical images by microscope and DVC camera. CP-resistant cells included OVCAR-4, A2780 and IGROV and had the higher contrast and entropy, lower energy, and homogeneity. Signal to noise ratio was used to evaluate the degree for chemoresistance of cell images based on GLCM texture feature extraction. The difference between wile type and CP-resistant cells was statistically significant in every case (p < 0.001). It is a promising model to achieve a rapid method with a more reliable diagnostic performance for identification of ovarian adenocarcinoma cells with CP-resistance by feature extraction of GLCM in vitro or ex vivo.
Collapse
|
6
|
Majerník M, Jendželovský R, Babinčák M, Košuth J, Ševc J, Tonelli Gombalová Z, Jendželovská Z, Buríková M, Fedoročko P. Novel Insights into the Effect of Hyperforin and Photodynamic Therapy with Hypericin on Chosen Angiogenic Factors in Colorectal Micro-Tumors Created on Chorioallantoic Membrane. Int J Mol Sci 2019; 20:E3004. [PMID: 31248208 PMCID: PMC6627608 DOI: 10.3390/ijms20123004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/12/2019] [Accepted: 06/17/2019] [Indexed: 01/06/2023] Open
Abstract
Photodynamic therapy with hypericin (HY-PDT) and hyperforin (HP) could be treatment modalities for colorectal cancer (CRC), but evidence of their effect on angiogenic factors in CRC is missing. Convenient experimental model utilization is essential for angiogenesis research. Therefore, not only 2D cell models, but also 3D cell models and micro-tumors were used and compared. The micro-tumor extent and interconnection with the chorioallantoic membrane (CAM) was determined by histological analyses. The presence of proliferating cells and HY penetration into the tumor mass were detected by fluorescence microscopy. The metabolic activity status was assessed by an colorimetric assay for assessing cell metabolic activity (MTT assay) and HY accumulation was determined by flow cytometry. Pro-angiogenic factor expression was determined by Western blot and quantitative real-time polymerase chain reaction (RT-qPCR). We confirmed the cytotoxic effect of HY-PDT and HP and showed that their effect is influenced by structural characteristics of the experimental model. We have pioneered a method for analyzing the effect of HP and cellular targeted HY-PDT on pro-angiogenic factor expression in CRC micro-tumors. Despite the inhibitory effect of HY-PDT and HP on CRC, the increased expression of some pro-angiogenic factors was observed. We also showed that CRC experimental micro-tumors created on quail CAM could be utilized for analyses of gene and protein expression.
Collapse
Affiliation(s)
- Martin Majerník
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 041 54 Košice, Slovakia.
| | - Rastislav Jendželovský
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 041 54 Košice, Slovakia.
| | - Marián Babinčák
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 041 54 Košice, Slovakia.
| | - Ján Košuth
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 041 54 Košice, Slovakia.
| | - Juraj Ševc
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 041 54 Košice, Slovakia.
| | - Zuzana Tonelli Gombalová
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 041 54 Košice, Slovakia.
| | - Zuzana Jendželovská
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 041 54 Košice, Slovakia.
| | - Monika Buríková
- Cancer Research Institute BMC, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia
| | - Peter Fedoročko
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 041 54 Košice, Slovakia.
| |
Collapse
|
7
|
Janockova J, Korabecny J, Plsikova J, Babkova K, Konkolova E, Kucerova D, Vargova J, Koval J, Jendzelovsky R, Fedorocko P, Kasparkova J, Brabec V, Rosocha J, Soukup O, Hamulakova S, Kuca K, Kozurkova M. In vitro investigating of anticancer activity of new 7-MEOTA-tacrine heterodimers. J Enzyme Inhib Med Chem 2019; 34:877-897. [PMID: 30938202 PMCID: PMC6450562 DOI: 10.1080/14756366.2019.1593159] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
A combination of biochemical, biophysical and biological techniques was used to study calf thymus DNA interaction with newly synthesized 7-MEOTA-tacrine thiourea 12-17 and urea heterodimers 18-22, and to measure interference with type I and II topoisomerases. Their biological profile was also inspected in vitro on the HL-60 cell line using different flow cytometric techniques (cell cycle distribution, detection of mitochondrial membrane potential dissipation, and analysis of metabolic activity/viability). The compounds exhibited a profound inhibitory effect on topoisomerase activity (e.g. compound 22 inhibited type I topoisomerase at 1 µM concentration). The treatment of HL-60 cells with the studied compounds showed inhibition of cell growth especially with hybrids containing thiourea (14-17) and urea moieties (21 and 22). Moreover, treatment of human dermal fibroblasts with the studied compounds did not indicate significant cytotoxicity. The observed results suggest beneficial selectivity of the heterodimers as potential drugs to target cancer cells.
Collapse
Affiliation(s)
- Jana Janockova
- a Department of Biochemistry, Institute of Chemistry, Faculty of Science , P. J. Šafárik University , Kosice , Slovak Republic.,b Biomedical Research Center , University Hospital Hradec Kralove , Hradec Kralove , Czech Republic
| | - Jan Korabecny
- b Biomedical Research Center , University Hospital Hradec Kralove , Hradec Kralove , Czech Republic.,c Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences , University of Defence , Hradec Kralove , Czech Republic
| | - Jana Plsikova
- a Department of Biochemistry, Institute of Chemistry, Faculty of Science , P. J. Šafárik University , Kosice , Slovak Republic.,d Associated Tissue Bank, Faculty of Medicine , P.J. Šafárik University , Kosice , Slovak Republic
| | - Katerina Babkova
- b Biomedical Research Center , University Hospital Hradec Kralove , Hradec Kralove , Czech Republic.,c Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences , University of Defence , Hradec Kralove , Czech Republic
| | - Eva Konkolova
- a Department of Biochemistry, Institute of Chemistry, Faculty of Science , P. J. Šafárik University , Kosice , Slovak Republic
| | - Dana Kucerova
- e Department of Cellular Biology, Institute of Biology and Ecology, Faculty of Science , P. J. Šafárik University , Kosice , Slovak Republic
| | - Jana Vargova
- e Department of Cellular Biology, Institute of Biology and Ecology, Faculty of Science , P. J. Šafárik University , Kosice , Slovak Republic
| | - Jan Koval
- e Department of Cellular Biology, Institute of Biology and Ecology, Faculty of Science , P. J. Šafárik University , Kosice , Slovak Republic
| | - Rastislav Jendzelovsky
- e Department of Cellular Biology, Institute of Biology and Ecology, Faculty of Science , P. J. Šafárik University , Kosice , Slovak Republic
| | - Peter Fedorocko
- e Department of Cellular Biology, Institute of Biology and Ecology, Faculty of Science , P. J. Šafárik University , Kosice , Slovak Republic
| | - Jana Kasparkova
- f Department of Biophysics, Faculty of Science , Palacke University , Olomouc , Czech Republic
| | - Viktor Brabec
- f Department of Biophysics, Faculty of Science , Palacke University , Olomouc , Czech Republic
| | - Jan Rosocha
- d Associated Tissue Bank, Faculty of Medicine , P.J. Šafárik University , Kosice , Slovak Republic
| | - Ondrej Soukup
- b Biomedical Research Center , University Hospital Hradec Kralove , Hradec Kralove , Czech Republic.,c Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences , University of Defence , Hradec Kralove , Czech Republic
| | - Slavka Hamulakova
- g Department of Organic Chemistry, Institute of Chemistry, Faculty of Science , P. J. Šafárik University , Kosice , Slovak Republic
| | - Kamil Kuca
- b Biomedical Research Center , University Hospital Hradec Kralove , Hradec Kralove , Czech Republic
| | - Maria Kozurkova
- a Department of Biochemistry, Institute of Chemistry, Faculty of Science , P. J. Šafárik University , Kosice , Slovak Republic.,b Biomedical Research Center , University Hospital Hradec Kralove , Hradec Kralove , Czech Republic
| |
Collapse
|
8
|
Luo Q, Wu X, Zhang Y, Shu T, Ding F, Chen H, Zhao P, Chang W, Zhu X, Liu Z. ARID1A ablation leads to multiple drug resistance in ovarian cancer via transcriptional activation of MRP2. Cancer Lett 2018; 427:9-17. [PMID: 29660381 DOI: 10.1016/j.canlet.2018.04.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/10/2018] [Accepted: 04/11/2018] [Indexed: 01/01/2023]
Abstract
Multiple Drug Resistance (MDR) of ovarian cancer is a severe trouble for clinical treatment and always contributes to a bad prognosis. AT-rich interaction domain 1 A (ARID1A) has been recognized as a bona fide tumor suppressor gene in recent years, with the highest mutation rate in ovarian cancer. Previous study illustrated that ARID1A expression is negatively correlated with chemoresistance of ovarian cancer cases. However, the specific role of ARID1A in chemoresistance of ovarian cancer remains elusive. In this study, we showed that ARID1A knockdown in ovarian cancer cells significantly reduced their apoptosis rate and led to MDR, while ectopic expression of ARID1A showed opposite effects. ARID1A depletion transcriptionally activates the expression of multidrug resistance-associated protein 2 (MRP2) following chromatin remodeling. Furthermore, IHC analysis of ovarian cancer samples confirmed that ARID1A expression was strong negatively correlated with MRP2 expression. Both ARID1A and MRP2 expression levels are correlated with sensitivity to platinum. Collectively, our results illustrated that ARID1A loss in ovarian cancer leads to MDR through upregulation of MRP2, providing an opportunity to overcome the ARID1A loss induced chemoresistance of ovarian cancer by targeting MRP2.
Collapse
Affiliation(s)
- Qingyu Luo
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiaowei Wu
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yiping Zhang
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tong Shu
- Department of Gynecological Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Fang Ding
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Hongyan Chen
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Pengfei Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Wan Chang
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiaolin Zhu
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhihua Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
9
|
CXCR4 blockade with AMD3100 enhances Taxol chemotherapy to limit ovarian cancer cell growth. Anticancer Drugs 2017; 28:935-942. [PMID: 28817386 DOI: 10.1097/cad.0000000000000518] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The standard of care for ovarian cancer includes initial treatment with chemotherapy. Despite initial efficacy, over 70% of patients develop recurrence; thus, there is a need to identify novel approaches that can improve therapeutic outcomes. We evaluated AMD3100 (Plerixafor), an FDA-approved CXCR4 inhibitor, as a potential adjunctive therapy for low-dose Taxol (Paclitaxel) by assessing the impact on in-vitro ovarian cancer cell proliferation. Proliferation was a measure for both human TOV-112D and murine ID8 ovarian cancer cells incubated with AMD3100 and Taxol, either individually or in combination. Impact of treatment was first determined for the simultaneous administration of AMD3100 and Taxol. We next assessed a sequential application of AMD3100 pretreatment, followed by AMD3100, Taxol, or a combination to test for sensitization to Taxol. In addition, we measured the impact of AMD3100 and Taxol, individually and in combination, on colony formation, an in-vitro model assay of tumor growth. Expression data, as measured by flow cytometry, show that both ID8 and TOV-112D cells are positive for CXCR4, CXCR7, and CXCL12. Combination treatment with AMD3100 (≤10 μmol/l) sensitized both ID8 and TOV-112D cells to low concentrations of Taxol (≤5 nmol/l), limiting cell proliferation and colony formation in vitro. Pretreatment with AMD3100 significantly increased the sensitivity of human ovarian cancer to low-dose Taxol or the combination of AMD3100 and Taxol, although this effect was not evident in murine cells. Importantly, for both human and murine cells, incubation with a combination of AMD3100 and Taxol had the largest impact on limiting cell proliferation. AMD3100 in combination with low-dose Taxol offers improved efficacy and the potential of reduced toxicity for the treatment of ovarian cancer.
Collapse
|
10
|
Pereira PMR, Berisha N, Bhupathiraju NVSDK, Fernandes R, Tomé JPC, Drain CM. Cancer cell spheroids are a better screen for the photodynamic efficiency of glycosylated photosensitizers. PLoS One 2017; 12:e0177737. [PMID: 28545086 PMCID: PMC5435229 DOI: 10.1371/journal.pone.0177737] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 05/02/2017] [Indexed: 01/18/2023] Open
Abstract
Photodynamic Therapy (PDT) relies on the use of non-toxic photosensitizers that are locally and selectively activated by light to induce cell death or apoptosis through reactive oxygen species generation. The conjugation of porphyrinoids with sugars that target cancer is increasingly viewed as an effective way to increase the selectivity of PDT. To date, in vitro PDT efficacy is mostly screened using two-dimensional monolayer cultures. Compared to monolayer cultures, three-dimensional spheroid cultures have unique spatial distributions of nutrients, metabolites, oxygen and signalling molecules; therefore better mimic in vivo conditions. We obtained 0.05 mm3 spheroids with four different human tumor cell lines (HCT-116, MCF-7, UM-UC-3 and HeLa) with appropriate sizes for screening PDT agents. We observed that detachment from monolayer culture and growth as tumor spheroids was accompanied by changes in glucose metabolism, endogenous ROS levels, galectin-1 and glucose transporter GLUT1 protein levels. We compared the phototoxic responses of a porphyrin conjugated with four glucose molecules (PorGlu4) in monolayer and spheroid cultures. The uptake and phototoxicity of PorGlu4 is highly dependent on the monolayer versus spheroid model used and on the different levels of GLUT1 protein expressed by these in vitro platforms. This study demonstrates that HCT-116, MCF-7, UM-UC-3 and HeLa spheroids afford a more rational platform for the screening of new glycosylated-photosensitizers compared to monolayer cultures of these cancer cells.
Collapse
Affiliation(s)
- Patrícia M R Pereira
- QOPNA, Department of Chemistry, University of Aveiro, Aveiro, Portugal
- IBILI, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Department of Chemistry, Hunter College of the City University of New York, New York, New York, United States of America
| | - Naxhije Berisha
- Department of Chemistry, Hunter College of the City University of New York, New York, New York, United States of America
| | - N V S Dinesh K Bhupathiraju
- Department of Chemistry, Hunter College of the City University of New York, New York, New York, United States of America
| | - Rosa Fernandes
- IBILI, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- CNC.IBILI, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - João P C Tomé
- QOPNA, Department of Chemistry, University of Aveiro, Aveiro, Portugal
- CQE, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Charles Michael Drain
- Department of Chemistry, Hunter College of the City University of New York, New York, New York, United States of America
- Graduate Center of the City University of New York, New York, New York, United States of America
- The Rockefeller University, New York, New York, United States of America
| |
Collapse
|
11
|
Hyperforin Exhibits Antigenotoxic Activity on Human and Bacterial Cells. Molecules 2017; 22:molecules22010167. [PMID: 28117734 PMCID: PMC6155625 DOI: 10.3390/molecules22010167] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 12/22/2016] [Accepted: 01/12/2017] [Indexed: 11/17/2022] Open
Abstract
Hyperforin (HF), a substance that accumulates in the leaves and flowers of Hypericum perforatum L. (St. John’s wort), consists of a phloroglucinol skeleton with lipophilic isoprene chains. HF exhibits several medicinal properties and is mainly used as an antidepressant. So far, the antigenotoxicity of HF has not been investigated at the level of primary genetic damage, gene mutations, and chromosome aberrations, simultaneously. The present work is designed to investigate the potential antigenotoxic effects of HF using three different experimental test systems. The antigenotoxic effect of HF leading to the decrease of primary/transient promutagenic genetic changes was detected by the alkaline comet assay on human lymphocytes. The HF antimutagenic effect leading to the reduction of gene mutations was assessed using the Ames test on the standard Salmonella typhimurium (TA97, TA98, and TA100) bacterial strains, and the anticlastogenic effect of HF leading to the reduction of chromosome aberrations was evaluated by the in vitro mammalian chromosome aberration test on the human tumor cell line HepG2 and the non-carcinogenic cell line VH10. Our findings provided evidence that HF showed antigenotoxic effects towards oxidative mutagen zeocin in the comet assay and diagnostic mutagen (4-nitroquinoline-1-oxide) in the Ames test. Moreover, HF exhibited an anticlastogenic effect towards benzo(a)pyrene and cisplatin in the chromosome aberration test.
Collapse
|