1
|
Sanchez-Aceves LM, Pérez-Alvarez I, Onofre-Camarena DB, Gutiérrez-Noya VM, Rosales-Pérez KE, Orozco-Hernández JM, Hernández-Navarro MD, Flores HI, Gómez-Olivan LM. Prolonged exposure to the synthetic glucocorticoid dexamethasone induces brain damage via oxidative stress and apoptotic response in adult Daniorerio. CHEMOSPHERE 2024; 364:143012. [PMID: 39103101 DOI: 10.1016/j.chemosphere.2024.143012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/11/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
Due to its extensive use as a painkiller, anti-inflammatory, and immune modulatory agent, as well as its effectiveness in treating severe COVID-19, dexamethasone, a synthetic glucocorticoid, has gained attention not only for its impact on public health but also for its environmental implications. Various studies have reported its presence in aquatic environments, including urban waters, surface samples, sediments, drinking water, and wastewater effluents. However, limited information is available regarding its toxic effects on nontarget aquatic organisms. Therefore, this study aimed to investigate the mechanism of toxicity underlying dexamethasone-induced brain damage in the bioindicator Danio rerio following long-term exposure. Adult zebrafish were treated with environmentally relevant concentrations of dexamethasone (20, 40, and 60 ng L-1) for 28 days. To elucidate the possible mechanisms involved in the toxicity of the pharmaceutical compound, we conducted a behavioral test battery (Novel Tank and Light and Dark tests), oxidative stress biomarkers, acetylcholinesterase enzyme activity quantification, histopathological analysis, and gene expression analysis using qRT-PCR (p53, bcl-2, bax, caspase-3, nrf1, and nrf2).The results revealed that the pharmaceutical compound could produce anxiety-like symptoms, increase the oxidative-induced stress response, decrease the activity of acetylcholinesterase enzyme, and cause histopathological alterations, including perineuronal vacuolization, granular and molecular layers deterioration, cell swallowing and intracellular spaces. The expression of genes involved in the apoptotic process (p53, bax, and casp-3) and antioxidant defense (nrf1 and nrf2) was upregulated in response to oxidative damage, while the expression of the anti-apoptotic gene bcl-2 was down-regulated indicating that the environmental presence of dexamethasone may pose a threat to wildlife and human health.
Collapse
Affiliation(s)
- Livier M Sanchez-Aceves
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120, Toluca, Estado de México, Mexico
| | - Itzayana Pérez-Alvarez
- Facultad de Medicina, Universidad Autónoma del Estado de México. Paseo Tollocan /Jesús Carranza s/n. Toluca, 50120, Toluca, Estado de México, Mexico
| | - Diana Belén Onofre-Camarena
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120, Toluca, Estado de México, Mexico
| | - Verónica Margarita Gutiérrez-Noya
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120, Toluca, Estado de México, Mexico
| | - Karina Elisa Rosales-Pérez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120, Toluca, Estado de México, Mexico
| | - José Manuel Orozco-Hernández
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120, Toluca, Estado de México, Mexico
| | - María Dolores Hernández-Navarro
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120, Toluca, Estado de México, Mexico
| | - Hariz Islas Flores
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120, Toluca, Estado de México, Mexico
| | - Leobardo Manuel Gómez-Olivan
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120, Toluca, Estado de México, Mexico.
| |
Collapse
|
2
|
Jiang T, Xiao H, Li B, He H, Wang H, Chen L. LOX overexpression programming mediates the osteoclast mechanism of low peak bone mass in female offspring rats caused by pregnant dexamethasone exposure. Cell Commun Signal 2023; 21:84. [PMID: 37095518 PMCID: PMC10124047 DOI: 10.1186/s12964-023-01115-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/25/2023] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND Osteoporosis is a degenerative disease characterized by reduced bone mass, with low peak bone mass being the predominant manifestation during development and having an intrauterine origin. Pregnant women at risk of preterm delivery are commonly treated with dexamethasone to promote fetal lung development. However, pregnant dexamethasone exposure (PDE) can lead to reduced peak bone mass and susceptibility to osteoporosis in offspring. In this study, we aimed to investigate the mechanism of PDE-induced low peak bone mass in female offspring from the perspective of altered osteoclast developmental programming. METHODS 0.2 mg/kg.d dexamethasone was injected subcutaneously into rats on gestation days (GDs) 9-20. Some pregnant rats were killed at GD20 to remove fetal rat long bones, the rest were delivered naturally, and some adult offspring rats were given ice water swimming stimulation for two weeks. RESULTS The results showed that the fetal rat osteoclast development was inhibited in the PDE group compared with the control group. In contrast, the adult rat osteoclast function was hyperactivation with reduced peak bone mass. We further found that the promoter region methylation levels of lysyl oxidase (LOX) were decreased, the expression was increased, and the production of reactive oxygen species (ROS) was raised in PDE offspring rat long bone before and after birth. Combined in vivo and in vitro experiments, we confirmed that intrauterine dexamethasone promoted the expression and binding of the glucocorticoid receptor (GR) and estrogen receptor β (ERβ) in osteoclasts and mediated the decrease of LOX methylation level and increase of expression through upregulation of 10-11 translocator protein 3 (Tet3). CONCLUSIONS Taken together, we confirm that dexamethasone causes osteoclast LOX hypomethylation and high expression through the GR/ERβ/Tet3 pathway, leading to elevated ROS production and that this intrauterine epigenetic programming effect can be carried over to postnatal mediating hyperactivation in osteoclast and reduced peak bone mass in adult offspring. This study provides an experimental basis for elucidating the mechanism of osteoclast-mediated intrauterine programming of low peak bone mass in female offspring of PDE and for exploring its early targets for prevention and treatment. Video Abstract.
Collapse
Affiliation(s)
- Tao Jiang
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Hao Xiao
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Bin Li
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Hangyuan He
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China.
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| | - Liaobin Chen
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| |
Collapse
|
3
|
Wang J, Chen F, Zhu S, Li X, Shi W, Dai Z, Hao L, Wang X. Adverse effects of prenatal dexamethasone exposure on fetal development. J Reprod Immunol 2022; 151:103619. [DOI: 10.1016/j.jri.2022.103619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 02/20/2022] [Accepted: 03/24/2022] [Indexed: 12/15/2022]
|
4
|
Jiang T, Hu S, Dai S, Yi Y, Wang T, Li X, Luo M, Li K, Chen L, Wang H, Xu D. Programming changes of hippocampal miR-134-5p/SOX2 signal mediate the susceptibility to depression in prenatal dexamethasone-exposed female offspring. Cell Biol Toxicol 2021; 38:69-86. [PMID: 33619658 DOI: 10.1007/s10565-021-09590-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/09/2021] [Indexed: 12/21/2022]
Abstract
Depression is a neuropsychiatric disorder and has intrauterine developmental origins. This study aimed to confirm the depression susceptibility in offspring rats induced by prenatal dexamethasone exposure (PDE) and to further explore the intrauterine programming mechanism. Wistar rats were injected with dexamethasone (0.2 mg/kg·d) subcutaneously during the gestational days 9-20 and part of the offspring was given chronic stress at postnatal weeks 10-12. Behavioral results showed that the adult PDE female offspring was susceptible to depression, accompanied by increased hippocampal miR-134-5p expression and decreased sex-determining region Y-box 2 (SOX2) expression, as well as disorders of neural progenitor cells proliferation and hippocampal neurogenesis. The PDE female fetal rats presented consistent changes with the adult offspring, accompanied by the upregulation of glucocorticoid receptor (GR) expression and decreased sirtuin 1 (SIRT1) expression. We further found that the H3K9ac level of the miR-134-5p promoter was significantly increased in the PDE fetal hippocampus, as well as in adult offspring before and after chronic stress. In vitro, the changes of GR/SIRT1/miR-134-5p/SOX2 signal by dexamethasone were consistent with in vivo experiments, which could be reversed by GR receptor antagonist, SIRT1 agonist, and miR-134-5p inhibitor. This study confirmed that PDE led to an increased expression level as well as H3K9ac level of miR-134-5p by activating the GR/SIRT1 pathway in the fetal hippocampus and then inhibited the SOX2 expression. The programming effect mediated by the abnormal epigenetic modification could last from intrauterine to adulthood, which constitutes the intrauterine programming mechanism leading to hippocampal neurogenesis disorders and depression susceptibility in female offspring. Intrauterine programming mechanism for the increased depressive susceptibility in adult female offspring by prenatal dexamethasone exposure (PDE). GR, glucocorticoid receptor; SIRT1, sirtuin 1; SOX2, sex-determining region Y-box 2; NPCs, neuroprogenitor cells; H3K9ac, histone 3 lysine 9 acetylation; GRE, glucocorticoid response element.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China
| | - Shuwei Hu
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China
| | - Shiyun Dai
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China
| | - Yiwen Yi
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China
| | - Tingting Wang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China
| | - Xufeng Li
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China
| | - Mingcui Luo
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China
| | - Ke Li
- Demonstration Center for Experimental Basic Medicine Education, Wuhan University, Wuhan, 430071, China
| | - Liaobin Chen
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Hui Wang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Dan Xu
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China. .,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| |
Collapse
|
5
|
Zeng Y, Zhang W. Ameliorative effects of ceftriaxone sodium combined with dexamethasone on infantile purulent meningitis and associated effects on brain-derived neurotrophic factor levels. Exp Ther Med 2020; 20:945-951. [PMID: 32742338 PMCID: PMC7388254 DOI: 10.3892/etm.2020.8769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/09/2020] [Indexed: 11/30/2022] Open
Abstract
The aim of the present study was to evaluate the role of ceftriaxone sodium combined with dexamethasone on the treatment of infant purulent meningitis (PM) and to measure brain-derived neurotrophic factor (BDNF) levels in children with PM. Of the 177 patients enrolled into the present study, 92 patients received ceftriaxone sodium+dexamethasone (combination group) and 85 patients received ceftriaxone sodium alone (monotherapy group). The time taken for the body temperature, peripheral blood (PB) and cerebrospinal fluid (CSF) white blood cell (WBC) counts to recover back to normal levels were compared between the two groups. In addition, changes in the CSF WBC counts, CSF protein and sugar concentrations, BDNF levels, effective treatment rates and incidence of adverse reactions three days before treatment (T1), after one week of treatment (T2) and after two weeks of treatment (T3) were compared between the two groups. In the combination group, the recovery time of body temperature, WBC counts in both PB and CSF were significantly lower compared with those in the monotherapy group. The combination group also exhibited lower CSF protein concentrations and higher CSF sugar concentrations at T2 and T3 compared with those in the monotherapy group (P<0.05). The effective treatment rate of the combination group was significantly higher compared with that of the monotherapy group (P=0.006). CSF protein at T1, T2 T3, and CSF sugar concentrations and BDNF levels at T1 were significantly lower in the combination group than in the monotherapy group (P<0.05) while the CSF sugar concentrations at T2, T3 were higher in the combination group than in the monotherapy group (P<0.05). Taken together, these observations suggest that ceftriaxone combined with dexamethasone was superior compared with that of ceftriaxone alone for the treatment of infantile PM, and that this combination therapy may improve the effective treatment rate and accelerate patient rehabilitation.
Collapse
Affiliation(s)
- Yiwen Zeng
- Department of Pediatrics, Yongchuan Hospital of Chongqing Medical University, Yongchuan, Chongqing 402160, P.R. China
| | - Wei Zhang
- Department of Pediatrics, Yongchuan Hospital of Chongqing Medical University, Yongchuan, Chongqing 402160, P.R. China
| |
Collapse
|
6
|
Ahmed RG. Overdoses of Acetaminophen Disrupt the Thyroid-Liver Axis in Neonatal Rats. Endocr Metab Immune Disord Drug Targets 2020; 19:705-714. [PMID: 30760194 DOI: 10.2174/1871530319666190212165603] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 01/07/2019] [Accepted: 01/21/2019] [Indexed: 01/12/2023]
Abstract
OBJECTIVE The aim of the study was to examine the impact of neonatal acetaminophen (APAP; paracetamol) administrations on the thyroid-liver axis in male Wistar rats. METHODS APAP (100 or 350mg/kg) was orally administered to neonates from Postnatal Day (PND) 20 to 40. RESULTS Both APAP doses elicited a substantial increase in serum TSH, albumin, AST, ALT, and ALP values, and a profound decrease in serum FT4 and FT3 values at PND 40 relative to those in the control group. Additionally, the hypothyroid state in both APAP-treated groups may increase the histopathological variations in the neonatal liver, such as destructive degeneration, fibrosis, fatty degeneration, fibroblast proliferation, haemorrhage, oedema, and vacuolar degeneration, at PND 40. Moreover, in the APAP groups, a marked depression was recorded in the t-SH and GSH levels and GPx and CAT activities at PND 40 in the neonatal liver compared to those in the control group. However, the levels of hepatic LPO, H2O2, and NO were increased in both APAP-treated groups at PND 40. All previous alterations were dose- dependent. CONCLUSION Neonatal APAP caused a hypothyroidism and disturbed hepatic cellular components by increasing prooxidant markers and decreasing antioxidant markers, causing hepatotoxicity. Thus, neonatal administrations of APAP may act as a neonatal thyroid-liver disruptor.
Collapse
Affiliation(s)
- R G Ahmed
- Zoology Department, Division of Anatomy and Embryology, Faculty of Science; Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
7
|
Reynolds CM, Vickers MH. The role of adipokines in developmental programming: evidence from animal models. J Endocrinol 2019. [DOI: 10.1530/joe-18-0686] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Alterations in the environment during critical periods of development, including altered maternal nutrition, can increase the risk for the development of a range of metabolic, cardiovascular and reproductive disorders in offspring in adult life. Following the original epidemiological observations of David Barker that linked perturbed fetal growth to adult disease, a wide range of experimental animal models have provided empirical support for the developmental programming hypothesis. Although the mechanisms remain poorly defined, adipose tissue has been highlighted as playing a key role in the development of many disorders that manifest in later life. In particular, adipokines, including leptin and adiponectin, primarily secreted by adipose tissue, have now been shown to be important mediators of processes underpinning several phenotypic features associated with developmental programming including obesity, insulin sensitivity and reproductive disorders. Moreover, manipulation of adipokines in early life has provided for potential strategies to ameliorate or reverse the adverse sequalae that are associated with aberrant programming and provided insight into some of the mechanisms involved in the development of chronic disease across the lifecourse.
Collapse
Affiliation(s)
- Clare M Reynolds
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Mark H Vickers
- Liggins Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|
8
|
Ahmed RG, El-Gareib AW. Gestational Arsenic Trioxide Exposure Acts as a Developing Neuroendocrine-Disruptor by Downregulating Nrf2/PPARγ and Upregulating Caspase-3/NF-ĸB/Cox2/BAX/iNOS/ROS. Dose Response 2019; 17:1559325819858266. [PMID: 31258454 PMCID: PMC6589982 DOI: 10.1177/1559325819858266] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 05/15/2019] [Accepted: 05/28/2019] [Indexed: 12/13/2022] Open
Abstract
The goal of this investigation was to evaluate the effects of gestational administrations of arsenic trioxide (ATO; As2O3) on fetal neuroendocrine development (the thyroid-cerebrum axis). Pregnant Wistar rats were orally administered ATO (5 or 10 mg/kg) from gestation day (GD) 1 to 20. Both doses of ATO diminished free thyroxine and free triiodothyronine levels and augmented thyrotropin level in both dams and fetuses at GD 20. Also, the maternofetal hypothyroidism in both groups caused a dose-dependent reduction in the fetal serum growth hormone, insulin growth factor-I (IGF-I), and IGF-II levels at embryonic day (ED) 20. These disorders perturbed the maternofetal body weight, fetal brain weight, and survival of pregnant and their fetuses. In addition, destructive degeneration, vacuolation, hyperplasia, and edema were observed in the fetal thyroid and cerebrum of both ATO groups at ED 20. These disruptions appear to depend on intensification in the values of lipid peroxidation, nitric oxide, and H2O2, suppression of messenger RNA (mRNA) expression of nuclear factor erythroid 2-related factor 2 and peroxisome proliferator-activated receptor gamma, and activation of mRNA expression of caspase-3, nuclear factor kappa-light-chain-enhancer of activated B cells, cyclooxygenase-2, Bcl-2–associated X protein, and inducible nitric oxide synthase in the fetal cerebrum. These data suggest that gestational ATO may disturb thyroid-cerebrum axis generating fetal neurodevelopmental toxicity.
Collapse
Affiliation(s)
- R G Ahmed
- Division of Anatomy and Embryology, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - A W El-Gareib
- Division of Anatomy and Embryology, Zoology Department, Faculty of Science, Cairo University, Egypt
| |
Collapse
|
9
|
R G A. Gestational caffeine exposure acts as a fetal thyroid-cytokine disruptor by activating caspase-3/BAX/Bcl-2/Cox2/NF-κB at ED 20. Toxicol Res (Camb) 2019; 8:196-205. [PMID: 30997021 PMCID: PMC6415617 DOI: 10.1039/c8tx00227d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 11/15/2018] [Indexed: 12/26/2022] Open
Abstract
The objective of this examination was to explore the impact of gestational caffeine (1,3,7-trimethylxanthine) exposure on the maternofetal thyroid axis and fetal thyroid-cytokine communications during gestation. Pregnant rats (Rattus norvegicus) were intraperitoneally administered caffeine (120 or 150 mg kg-1) from gestation day (GD) 1 to 20. Both doses of caffeine resulted in maternal hyperthyroidism, whereas the elevation in the concentration of serum free triiodothyronine (FT3) and free thyroxine (FT4) was related to a depletion in the level of TSH at GD 20. Maternal body weight gain and food consumption were markedly increased, while fetal body weight was significantly reduced. These alterations caused fetal hypothyroidism and several pathological lesions in the fetal thyroid gland including a vacuolar colloid, destructive degeneration, atrophy and hyperplasia at embryonic day (ED) 20. The abnormalities in the fetal thyroid gland seemed to depend on the activation of caspase-3, Bcl-2, BAX, Cox2, and NF-κB mRNA expression. Both maternal caffeine doses caused a marked attenuation in the values of fetal serum GH, IGF-II, VEGF, TGF-β, TNF-α, IL-1β, IL-6, leptin and MCP-1, and a noticeable elevation in the value of fetal serum adiponectin at ED 20. Thus, gestational caffeine exposure might disrupt the fetal thyroid-cytokine axis.
Collapse
Affiliation(s)
- Ahmed R G
- Division of Anatomy and Embryology , Zoology Department , Faculty of Science , Beni-Suef University , Beni-Suef , Egypt . ;
| |
Collapse
|
10
|
R G A, El-Gareib AW. WITHDRAWN: Toxic effects of gestational arsenic trioxide on the neuroendocrine axis of developing rats. Food Chem Toxicol 2018:S0278-6915(18)30663-X. [PMID: 30218683 DOI: 10.1016/j.fct.2018.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 08/29/2018] [Accepted: 09/10/2018] [Indexed: 11/19/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Ahmed R G
- Division of Anatomy and Embryology, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - A W El-Gareib
- Division of Anatomy and Embryology, Zoology Department, Faculty of Science, Cairo University, Egypt
| |
Collapse
|
11
|
Ahmed R, El-Gareib A, Shaker H. Gestational 3,3′,4,4′,5-pentachlorobiphenyl (PCB 126) exposure disrupts fetoplacental unit: Fetal thyroid-cytokines dysfunction. Life Sci 2018; 192:213-220. [DOI: 10.1016/j.lfs.2017.11.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 11/09/2017] [Accepted: 11/20/2017] [Indexed: 02/06/2023]
|
12
|
Ahmed R. Endocrine Disruptors; Possible Mechanisms for Inducing Developmental Disorders. INTERNATIONAL JOURNAL OF BASIC SCIENCE IN MEDICINE 2017. [DOI: 10.15171/ijbsm.2017.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- R.G. Ahmed
- Division of Anatomy and Embryology, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
13
|
Ahmed RG, El-Gareib AW. Maternal carbamazepine alters fetal neuroendocrine-cytokines axis. Toxicology 2017; 382:59-66. [PMID: 28267586 DOI: 10.1016/j.tox.2017.03.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 02/14/2017] [Accepted: 03/02/2017] [Indexed: 12/15/2022]
Abstract
This study detected the impact of maternal carbamazepine (CBZ) on the fetal neuroendocrine-cytokines axis. 25 or 50mg/kg of CBZ was intraperitoneally administrated to pregnant albino rats from the gestation day (GD) 1 to 20. Both administrations of CBZ caused a hypothyroidism in dams and fetuses whereas the decreases in serum thyroxine (T4) and triiodothyronine (T3) and increases in serum thyrotropin (TSH) levels were highly significant (LSD; P <0.01) at GD 20 compared to untreated control dams. Also, both administrations had undesirable impacts on the maternofetal body weight, litter weight, survival of dams and fetuses, and their food consumption in comparison to the corresponding control. These administrations also elicited a reduction in fetal serum growth hormone (GH), interferon-γ (IFNγ), interleukins (IL-2 & 4) and prostaglandin E2 (PGE2) levels. Also, the elevation in fetal serum tumor necrosis factor-alpha (TNFα), transforming growth factor-beta (TGFβ), and interleukins (IL-1β & 17) levels was observed at embryonic day (ED) 20. Moreover, there were a cellular fragmentation, distortion, hyperemia, oedema and vacuolation in the fetal cerebellar cortex due to both maternal administrations. These developmental changes were dose-dependent. These novel results suggest that CBZ may act as a developmental immunoneuroendocrine disruptor.
Collapse
Affiliation(s)
- R G Ahmed
- Division of Anatomy and Embryology, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt.
| | - A W El-Gareib
- Division of Anatomy and Embryology, Zoology Department, Faculty of Science, Cairo University, Egypt
| |
Collapse
|
14
|
de Souza JS, Carromeu C, Torres LB, Araujo BHS, Cugola FR, Maciel RM, Muotri AR, Giannocco G. IGF1 neuronal response in the absence of MECP2 is dependent on TRalpha 3. Hum Mol Genet 2017; 26:270-281. [PMID: 28007906 PMCID: PMC6075524 DOI: 10.1093/hmg/ddw384] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/15/2016] [Accepted: 11/04/2016] [Indexed: 02/07/2023] Open
Abstract
Rett syndrome (RTT) is an X-linked neurodevelopmental disorder in which the MECP2 (methyl CpG-binding protein 2) gene is mutated. Recent studies showed that RTT-derived neurons have many cellular deficits when compared to control, such as: less synapses, lower dendritic arborization and reduced spine density. Interestingly, treatment of RTT-derived neurons with Insulin-like Growth Factor 1 (IGF1) could rescue some of these cellular phenotypes. Given the critical role of IGF1 during neurodevelopment, the present study used human induced pluripotent stem cells (iPSCs) from RTT and control individuals to investigate the gene expression profile of IGF1 and IGF1R on different developmental stages of differentiation. We found that the thyroid hormone receptor (TRalpha 3) has a differential expression profile. Thyroid hormone is critical for normal brain development. Our results showed that there is a possible link between IGF1/IGF1R and the TRalpha 3 and that over expression of IGF1R in RTT cells may be the cause of neurites improvement in neural RTT-derived neurons.
Collapse
Affiliation(s)
- Janaina S. de Souza
- Department of Medicine, Laboratory of Endocrinology and Translational Medicine, Universidade Federal de São Paulo, UNIFESP/EPM, São Paulo, SP, Brazil
- Department of Pediatrics/Rady Children's Hospital San Diego, Department of Cellular & Molecular Medicine, Stem Cell Program, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Cassiano Carromeu
- Department of Pediatrics/Rady Children's Hospital San Diego, Department of Cellular & Molecular Medicine, Stem Cell Program, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Laila B. Torres
- Department of Pediatrics/Rady Children's Hospital San Diego, Department of Cellular & Molecular Medicine, Stem Cell Program, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Bruno H. S. Araujo
- Department of Neurobiology and Neurosurgery, Laboratory of Neuroscience, Universidade Federal de São Paulo, UNIFESP/EPM, São Paulo, SP, Brazil
| | - Fernanda R. Cugola
- Department of Pediatrics/Rady Children's Hospital San Diego, Department of Cellular & Molecular Medicine, Stem Cell Program, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Rui M.B. Maciel
- Department of Medicine, Laboratory of Endocrinology and Translational Medicine, Universidade Federal de São Paulo, UNIFESP/EPM, São Paulo, SP, Brazil
| | - Alysson R. Muotri
- Department of Pediatrics/Rady Children's Hospital San Diego, Department of Cellular & Molecular Medicine, Stem Cell Program, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Gisele Giannocco
- Department of Medicine, Laboratory of Endocrinology and Translational Medicine, Universidade Federal de São Paulo, UNIFESP/EPM, São Paulo, SP, Brazil
- Departament of Biological Sciences, Universidade Federal de São Paulo, Diadema, SP, Brazil
| |
Collapse
|