1
|
Li Y, Zheng J, Liu F, Tan X, Jiang H, Wang Y. Discussion of the material basis for prevention and treatment of pulmonary fibrosis using naturally medicinal and edible homologous herbs based on the dynamic process of Nrf2, NF-κB and TGF-β in PF. Biomed Pharmacother 2025; 185:117911. [PMID: 40090283 DOI: 10.1016/j.biopha.2025.117911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 02/02/2025] [Accepted: 02/07/2025] [Indexed: 03/18/2025] Open
Abstract
Pulmonary fibrosis (PF) is a progressive chronic lung disease with a high incidence and poor prognosis. Despite extensive research into the mechanisms that initiate and drive the progression of pulmonary fibrosis, developing effective treatments remains challenging due to the multiple etiologies, pathogenic links, and signaling pathways involved in PF. Indeed, nuclear factor erythroid 2-related factor 2 (Nrf2), nuclear factor kappa-B (NF-κB), and transforming growth factor-beta (TGF-β) are central players in the pathogenesis of pulmonary fibrosis, and each of these factors influences distinct yet interconnected processes that collectively contribute to disease progression: Nrf2 upregulates antioxidants to mitigate oxidative stress, NF-κB modulates inflammatory responses, and TGF-β promotes fibroblast activation and extracellular matrix (ECM) deposition, leading to fibrosis. Targeting these pathways may offer therapeutic strategies, uncover new insights and provide potential therapeutic targets for PF. Absolutely, the interactions between Nrf2, NF-κB, and TGF-β pathways are complex and can significantly influence the progression of PF, which indicated that targeting a single pathway may show poor efficacy in managing the condition. Moreover, few therapies that effectively intervene in these pathways have been approved. This review focused on the molecular mechanisms of Nrf2, NF-κB, and TGF-β involving in PF and the material basis of the naturally medicinal and edible homologous herbs, which provides a solid foundation for understanding the disease's pathogenesis, and supports the development of therapeutic drugs or treatments for addressing the complex nature of PF.
Collapse
Affiliation(s)
- Yan Li
- Chongqing Academy of Chinese Materia Medica, Chongqing University of Chinese Medicine, Chongqing 400065, PR China; Chongqing Key Laboratory of Chinese Medicine & Health Science, Chongqing 400065, PR China.
| | - Jia Zheng
- Chongqing University of Chinese Medicine, Chongqing 402760, PR China.
| | - Fei Liu
- Chongqing Academy of Chinese Materia Medica, Chongqing University of Chinese Medicine, Chongqing 400065, PR China.
| | - Xianfeng Tan
- Chongqing Baijiahuan Health Technology Co., Ltd, Chongqing 400065, China.
| | - Huiping Jiang
- Chongqing Baijiahuan Health Technology Co., Ltd, Chongqing 400065, China.
| | - Yongde Wang
- Chongqing Academy of Chinese Materia Medica, Chongqing University of Chinese Medicine, Chongqing 400065, PR China; Chongqing Key Laboratory of Chinese Medicine & Health Science, Chongqing 400065, PR China.
| |
Collapse
|
2
|
Wan R, Liu Y, Yan J, Lin J. Cell therapy: A beacon of hope in the battle against pulmonary fibrosis. FASEB J 2025; 39:e70356. [PMID: 39873972 DOI: 10.1096/fj.202402790r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/28/2024] [Accepted: 01/15/2025] [Indexed: 01/30/2025]
Abstract
Pulmonary fibrosis (PF) is a chronic and progressive interstitial lung disease characterized by abnormal activation of myofibroblasts and pathological remodeling of the extracellular matrix, with a poor prognosis and limited treatment options. Lung transplantation is currently the only approach that can extend the life expectancy of patients; however, its applicability is severely restricted due to donor shortages and patient-specific limitations. Therefore, the search for novel therapeutic strategies is imperative. In recent years, stem cells have shown great promise in the field of regenerative medicine due to their self-renewal capacity and multidirectional differentiation potential, and a growing body of literature supports the efficacy of stem cell therapy in PF treatment. This paper systematically summarizes the research progress of various stem cell types in the treatment of PF. Furthermore, it discusses the primary methods and clinical outcomes of stem cell therapy in PF, based on both preclinical and clinical data. Finally, the current challenges and key factors to consider in stem cell therapy for PF are objectively analyzed, and future directions for improving this therapy are proposed, providing new insights and references for the clinical treatment of PF patients.
Collapse
Affiliation(s)
- Ruyan Wan
- Stem Cell and Biotherapy Technology Research Center, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Yanli Liu
- Stem Cell and Biotherapy Technology Research Center, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Jingwen Yan
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Juntang Lin
- Stem Cell and Biotherapy Technology Research Center, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
- Henan Joint International Research Laboratory of Stem Cell Medicine, School of Biomedical Engineering, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
3
|
Su W, Nong Q, Wu J, Fan R, Liang Y, Hu A, Gao Z, Liang W, Deng Q, Wang H, Xia L, Huang Y, Qin Y, Zhao N. Anti-inflammatory protein TSG-6 secreted by BMSCs attenuates silica-induced acute pulmonary inflammation by inhibiting NLRP3 inflammasome signaling in macrophages. Int J Biol Macromol 2023; 253:126651. [PMID: 37709227 DOI: 10.1016/j.ijbiomac.2023.126651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/16/2023]
Abstract
Silicosis is a severe occupational lung disease caused by inhalation of silica particles. Unfortunately, there are currently limited treatment options available for silicosis. Recent advances have indicated that bone marrow mesenchymal stem cells (BMSCs) have a therapeutic effect on silicosis, but their efficacy and underlying mechanisms remain largely unknown. In this study, we focused on the early phase of silica-induced lung injury to investigate the therapeutic effect of BMSCs. Our findings demonstrated that BMSCs attenuated silica-induced acute pulmonary inflammation by inhibiting NLRP3 inflammasome pathways in lung macrophages. To further understand the mechanisms involved, we utilized RNA sequencing to analyze the transcriptomes of BMSCs co-cultured with silica-stimulated bone marrow-derived macrophages (BMDMs). The results clued tumor necrosis factor-stimulated gene 6 (TSG-6) might be a potentially key paracrine secretion factor released from BMSCs, which exerts a protective effect. Furthermore, the anti-inflammatory and inflammasome pathway inhibition effects of BMSCs were attenuated when TSG-6 expression was silenced, both in vivo and in vitro. Additionally, treatment with exogenous recombinant mouse TSG-6 (rmTSG-6) demonstrated similar effects to BMSCs in attenuating silica-induced inflammation. Overall, our findings suggested that BMSCs can regulate the activation of inflammasome in macrophages by secreting TSG-6, thereby protecting against silica-induced acute pulmonary inflammation both in vivo and in vitro.
Collapse
Affiliation(s)
- Wenyao Su
- Guangdong Province Hospital for Occupational Diseases Prevention and Treatment, Guangzhou 510300, China; Shunde Women and Children's Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, Guangdong 528300, China; School of Public Health, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Qiying Nong
- Guangdong Province Hospital for Occupational Diseases Prevention and Treatment, Guangzhou 510300, China
| | - Jie Wu
- Emeishan Centerfor Disease Control and Prevention, Emeishan, Sichuan 614299, China
| | - Ruihong Fan
- Guangdong Province Hospital for Occupational Diseases Prevention and Treatment, Guangzhou 510300, China
| | - Yuanting Liang
- Guangdong Province Hospital for Occupational Diseases Prevention and Treatment, Guangzhou 510300, China; School of Public Health, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Anyi Hu
- Health Science Center of Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Zhongxiang Gao
- Guangdong Province Hospital for Occupational Diseases Prevention and Treatment, Guangzhou 510300, China
| | - Weihui Liang
- Guangdong Province Hospital for Occupational Diseases Prevention and Treatment, Guangzhou 510300, China
| | - Qifei Deng
- Guangdong Province Hospital for Occupational Diseases Prevention and Treatment, Guangzhou 510300, China
| | - Hailan Wang
- Guangdong Province Hospital for Occupational Diseases Prevention and Treatment, Guangzhou 510300, China
| | - Lihua Xia
- Guangdong Province Hospital for Occupational Diseases Prevention and Treatment, Guangzhou 510300, China
| | - Yongshun Huang
- Guangdong Province Hospital for Occupational Diseases Prevention and Treatment, Guangzhou 510300, China
| | - Yiru Qin
- Guangdong Province Hospital for Occupational Diseases Prevention and Treatment, Guangzhou 510300, China.
| | - Na Zhao
- Guangdong Province Hospital for Occupational Diseases Prevention and Treatment, Guangzhou 510300, China; School of Public Health, Guangzhou Medical University, Guangzhou, Guangdong 511436, China; School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
4
|
Martínez-López A, Candel S, Tyrkalska SD. Animal models of silicosis: fishing for new therapeutic targets and treatments. Eur Respir Rev 2023; 32:230078. [PMID: 37558264 PMCID: PMC10424253 DOI: 10.1183/16000617.0078-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/08/2023] [Indexed: 08/11/2023] Open
Abstract
Silicosis as an occupational lung disease has been present in our lives for centuries. Research studies have already developed and implemented many animal models to study the pathogenesis and molecular basis of the disease and enabled the search for treatments. As all experimental animal models used to date have their advantages and disadvantages, there is a continuous search for a better model, which will not only accelerate basic research, but also contribute to clinical aspects and drug development. We review here, for the first time, the main animal models developed to date to study silicosis and the unique advantages of the zebrafish model that make it an optimal complement to other models. Among the main advantages of zebrafish for modelling human diseases are its ease of husbandry, low maintenance cost, external fertilisation and development, its transparency from early life, and its amenability to chemical and genetic screening. We discuss the use of zebrafish as a model of silicosis, its similarities to other animal models and the characteristics of patients at molecular and clinical levels, and show the current state of the art of inflammatory and fibrotic zebrafish models that could be used in silicosis research.
Collapse
Affiliation(s)
- Alicia Martínez-López
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Pascual Parrilla, Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- These authors contributed equally to this work
| | - Sergio Candel
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Pascual Parrilla, Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
- These authors contributed equally to this work
| | - Sylwia D Tyrkalska
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Pascual Parrilla, Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
| |
Collapse
|
5
|
Yang J, Xue J, Hu W, Zhang L, Xu R, Wu S, Wang J, Ma J, Wei J, Wang Y, Wang S, Liu X. Human embryonic stem cell-derived mesenchymal stem cell secretome reverts silica-induced airway epithelial cell injury by regulating Bmi1 signaling. ENVIRONMENTAL TOXICOLOGY 2023; 38:2084-2099. [PMID: 37227716 DOI: 10.1002/tox.23833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/22/2023] [Accepted: 05/01/2023] [Indexed: 05/26/2023]
Abstract
Silicosis is an irreversible chronic pulmonary disease caused by long-term inhalation and deposition of silica particles, which is currently incurable. The exhaustion of airway epithelial stem cells plays a pathogenetic role in silicosis. In present study, we investigated therapeutic effects and potential mechanism of human embryonic stem cell (hESC)-derived MSC-likes immune and matrix regulatory cells (IMRCs) (hESC-MSC-IMRCs), a type of manufacturable MSCs for clinical application in silicosis mice. Our results showed that the transplantation of hESC-MSC-IMRCs led the alleviation of silica-induced silicosis in mice, accompanied by inhibiting epithelia-mesenchymal transition (EMT), activating B-cell-specific Moloney murine leukemia virus integration site 1 (Bmi1) signaling and airway epithelial cell regeneration. In consistence, the secretome of hESC-MSC-IMRC exhibited abilities to restore the potency and plasticity of primary human bronchial epithelial cells (HBECs) proliferation and differentiation following the SiO2 -induced HBECs injury. Mechanistically, the secretome resolved the SiO2 -induced HBECs injury through the activation of BMI1 signaling and restoration of airway basal cell proliferation and differentiation. Moreover, the activation of BMI1 significantly enhanced the capacity of HBEC proliferation and differentiation to multiple airway epithelial cell types in organoids. Cytokine array revealed that DKK1, VEGF, uPAR, IL-8, Serpin E1, MCP-1 and Tsp-1 were the main factors in the hESC-MSC-IMRC secretome. These results demonstrated a potential therapeutic effect of hESC-MSC-IMRCs and their secretome for silicosis, in part through a mechanism by activating Bmi1 signaling to revert the exhaustion of airway epithelial stem cells, subsequentially enhance the potency and plasticity of lung epithelial stem cells.
Collapse
Affiliation(s)
- Jiali Yang
- Ningxia Clinical Research Institute, Center Laboratory, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, College of Life Science, Ningxia University, Yinchuan, China
| | - Jing Xue
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, College of Life Science, Ningxia University, Yinchuan, China
- General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Wenfeng Hu
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, College of Life Science, Ningxia University, Yinchuan, China
- Zephyrm Biotechnologies Co., Ltd., Beijing, China
| | - Lifan Zhang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, College of Life Science, Ningxia University, Yinchuan, China
| | - Ranran Xu
- Zephyrm Biotechnologies Co., Ltd., Beijing, China
| | - Shuang Wu
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, College of Life Science, Ningxia University, Yinchuan, China
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Jing Wang
- Ningxia Clinical Research Institute, Center Laboratory, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, College of Life Science, Ningxia University, Yinchuan, China
| | - Jia Ma
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, College of Life Science, Ningxia University, Yinchuan, China
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Jun Wei
- Zephyrm Biotechnologies Co., Ltd., Beijing, China
| | - Yujiong Wang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, College of Life Science, Ningxia University, Yinchuan, China
| | - Shuyan Wang
- Zephyrm Biotechnologies Co., Ltd., Beijing, China
| | - Xiaoming Liu
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
6
|
Zhang Y, Yang Y, Gao X, Gao W, Zhang L. Research progress on mesenchymal stem cells and their exosomes in systemic sclerosis. Front Pharmacol 2023; 14:1263839. [PMID: 37693906 PMCID: PMC10485262 DOI: 10.3389/fphar.2023.1263839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/15/2023] [Indexed: 09/12/2023] Open
Abstract
Systemic sclerosis (SSc) is a connective tissue disease with an unknown etiology. Clinically, it is characterized by localized or diffuse skin thickening and fibrosis. The pathogenesis of SSc includes microvascular injury, autoimmune-mediated inflammation, and fibroblast activation. These processes interact and contribute to the diverse clinicopathology and presentation of SSc. Given the limited effectiveness and substantial side effects of traditional treatments, the treatment strategy for SSc has several disadvantages. Mesenchymal stem cells (MSCs) are expected to serve as effective treatment options owing to their significant immunomodulatory, antifibrotic, and pro-angiogenic effects. Exosomes, secreted by MSCs via paracrine signaling, mirror the effect of MSCs as well as offer the benefit of targeted delivery, minimal immunogenicity, robust reparability, good safety and stability, and easy storage and transport. This enables them to circumvent the limitations of the MSCs. When using exosomes, it is crucial to consider preparation methods, quality standards, and suitable drug delivery systems, among other technical issues. Therefore, this review aims to summarize the latest research progress on MSCs and exosomes in SSc, offering novel ideas for treating SSc.
Collapse
Affiliation(s)
| | | | | | | | - Liyun Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| |
Collapse
|
7
|
Yang Y, Chen Y, Liu Y, Ning Z, Zhang Z, Zhang Y, Xu K, Zhang L. Mesenchymal stem cells and pulmonary fibrosis: a bibliometric and visualization analysis of literature published between 2002 and 2021. Front Pharmacol 2023; 14:1136761. [PMID: 37469875 PMCID: PMC10352497 DOI: 10.3389/fphar.2023.1136761] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 06/22/2023] [Indexed: 07/21/2023] Open
Abstract
Introduction: Pulmonary fibrosis (PF) is a severe disease that can lead to respiratory failure and even death. However, currently there is no effective treatment available for patients with PF. Mesenchymal stem cells (MSCs) have been recently shown to have therapeutic potential for PF. We analyzed the literature focused of MSCs and PF to provide a comprehensive understanding of the relationship between MSCs and PF. Methods: We searched the Web of Science Core Collection database for literature from 2002 through 2021 that involved MSCs and PF. The included studies were then analyzed using CiteSpace and VOSviewers software. Results: A total of 1,457 studies were included for analysis. Our findings demonstrated the following: 1) an increasing trend of MSC and PF research; 2) among the 54 countries/regions of author affiliations, the United States was the most frequent, and the University of Michigan (n = 64, 2.8%) was the top institution; 3) Rojas Mauricio published the most articles and PLOS ONE had the most related studies; and 4) keywords, such as idiopathic pulmonary fibrosis, mesenchymal stem cells, and systemic sclerosis, were listed more than 100 times, indicating the research trend. Other common keywords, such as inflammation, myofibroblasts, fibroblasts, aging, telomerase or telomere, and extracellular matrix demonstrate research interests in the corresponding mechanisms.1) The number of publications focused on MSCs and PF research increased during the study period; 2) Among the 54 countries/regions of author affiliations, most articles were published in the United States of America, and the University of Michigan (n = 64, 2.8%) had the largest number of publications; 3) Rojas Mauricio published the most articles and PLOS ONE had the most related studies; 4) Keywords, such as idiopathic pulmonary fibrosis, MSCs, and systemic sclerosis, were listed more than 100 times, representing a research trend. Other common keywords included inflammation, myofibroblasts, fibroblasts, aging, telomerase or telomere, and extracellular matrix. Discussion: During the past 2 decades, MSCs have been proposed to play an important role in PF treatment. An increasing amount of literature focused on MSCs and PF research has been published. Our findings provide insight into the current status and research trends in the field of MSCs and PF research during the past 2 decades, which could help researchers understand necessary research directions. In the future, more preclinical and clinical studies should be conducted in this field to support the application of MSCs in the treatment of PF.
Collapse
Affiliation(s)
- Yanli Yang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Yu Chen
- Xinzhou People’s Hospital, Xinzhou, China
| | - Yang Liu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Zongdi Ning
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Zhaoliang Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Yan Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Ke Xu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Liyun Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| |
Collapse
|
8
|
Yudintceva N, Mikhailova N, Fedorov V, Samochernych K, Vinogradova T, Muraviov A, Shevtsov M. Mesenchymal Stem Cells and MSCs-Derived Extracellular Vesicles in Infectious Diseases: From Basic Research to Clinical Practice. Bioengineering (Basel) 2022; 9:662. [PMID: 36354573 PMCID: PMC9687734 DOI: 10.3390/bioengineering9110662] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/30/2022] [Accepted: 11/04/2022] [Indexed: 08/10/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are attractive in various fields of regenerative medicine due to their therapeutic potential and complex unique properties. Basic stem cell research and the global COVID-19 pandemic have given impetus to the development of cell therapy for infectious diseases. The aim of this review was to systematize scientific data on the applications of mesenchymal stem cells (MSCs) and MSC-derived extracellular vesicles (MSC-EVs) in the combined treatment of infectious diseases. Application of MSCs and MSC-EVs in the treatment of infectious diseases has immunomodulatory, anti-inflammatory, and antibacterial effects, and also promotes the restoration of the epithelium and stimulates tissue regeneration. The use of MSC-EVs is a promising cell-free treatment strategy that allows solving the problems associated with the safety of cell therapy and increasing its effectiveness. In this review, experimental data and clinical trials based on MSCs and MSC-EVs for the treatment of infectious diseases are presented. MSCs and MSC-EVs can be a promising tool for the treatment of various infectious diseases, particularly in combination with antiviral drugs. Employment of MSC-derived EVs represents a more promising strategy for cell-free treatment, demonstrating a high therapeutic potential in preclinical studies.
Collapse
Affiliation(s)
- Natalia Yudintceva
- Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg 194064, Russia
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg 197341, Russia
| | - Natalia Mikhailova
- Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg 194064, Russia
| | - Viacheslav Fedorov
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg 197341, Russia
| | - Konstantin Samochernych
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg 197341, Russia
| | - Tatiana Vinogradova
- Saint-Petersburg State Research Institute of Phthisiopulmonology of the Ministry of Health of the Russian Federation, St. Petersburg 191036, Russia
| | - Alexandr Muraviov
- Saint-Petersburg State Research Institute of Phthisiopulmonology of the Ministry of Health of the Russian Federation, St. Petersburg 191036, Russia
| | - Maxim Shevtsov
- Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg 194064, Russia
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg 197341, Russia
| |
Collapse
|
9
|
Liu C, Xiao K, Xie L. Advances in mesenchymal stromal cell therapy for acute lung injury/acute respiratory distress syndrome. Front Cell Dev Biol 2022; 10:951764. [PMID: 36036014 PMCID: PMC9399751 DOI: 10.3389/fcell.2022.951764] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/19/2022] [Indexed: 11/29/2022] Open
Abstract
Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) develops rapidly and has high mortality. ALI/ARDS is mainly manifested as acute or progressive hypoxic respiratory failure. At present, there is no effective clinical intervention for the treatment of ALI/ARDS. Mesenchymal stromal cells (MSCs) show promise for ALI/ARDS treatment due to their biological characteristics, easy cultivation, low immunogenicity, and abundant sources. The therapeutic mechanisms of MSCs in diseases are related to their homing capability, multidirectional differentiation, anti-inflammatory effect, paracrine signaling, macrophage polarization, the polarization of the MSCs themselves, and MSCs-derived exosomes. In this review, we discuss the pathogenesis of ALI/ARDS along with the biological characteristics and mechanisms of MSCs in the treatment of ALI/ARDS.
Collapse
Affiliation(s)
- Chang Liu
- School of Medicine, Nankai University, Tianjin, China
- Center of Pulmonary and Critical Care Medicine, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Medical School of Chinese People’s Liberation Army (PLA), Beijing, China
| | - Kun Xiao
- Center of Pulmonary and Critical Care Medicine, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Medical School of Chinese People’s Liberation Army (PLA), Beijing, China
- *Correspondence: Kun Xiao, ; Lixin Xie,
| | - Lixin Xie
- School of Medicine, Nankai University, Tianjin, China
- Center of Pulmonary and Critical Care Medicine, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Medical School of Chinese People’s Liberation Army (PLA), Beijing, China
- *Correspondence: Kun Xiao, ; Lixin Xie,
| |
Collapse
|
10
|
Bao H, Li Y, Yu C, Li X, Wang Y, Gao L, Huang J, Zhang Z. DNA-coated gold nanoparticles for tracking hepatocyte growth factor secreted by transplanted mesenchymal stem cells in pulmonary fibrosis therapy. Biomater Sci 2021; 10:368-375. [PMID: 34897301 DOI: 10.1039/d1bm01362a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The identification of paracrine factors secreted by transplanted mesenchymal stem cells (MSCs) during the treatment of idiopathic pulmonary fibrosis (IPF) is essential for understanding the role of MSCs in therapy. Herein, we report a facile and efficient strategy for in vivo tracking the secretion of hepatocyte growth factor (HGF) in MSCs during IPF therapy. In our strategy, a novel nanoflare tracer consisting of gold nanoparticles (AuNPs), complementary sequences and dye-labeled recognition sequences is developed. Briefly, the AuNPs are functionalized with oligonucleotide complementary sequences hybridized to the organic dye-labeled recognition sequences, where the organic fluorophores are in close proximity to the AuNPs. In the absence of targets, the dye and AuNPs are separated from each other, inducing the quenching of the fluorescence signal. However, in the presence of targets, the recognition sequences gradually fall off from the AuNPs, causing the fluorescence signal to rise. In brief, in vivo monitoring of the dynamic expression of HGF mRNA in transplanted MSCs during IPF therapy in the current work may provide new insight into the paracrine process of the transplanted MSCs, thereby advancing the MSC-based IPF therapy toward clinical applications.
Collapse
Affiliation(s)
- Hongying Bao
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China.,CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Yuxuan Li
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China.,CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Chenggong Yu
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Xiaodi Li
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China.,CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Yujie Wang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Li Gao
- School of Life Science, Jiangsu University, Zhenjiang 212013, China
| | - Jie Huang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China.,CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Zhijun Zhang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China.,CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| |
Collapse
|
11
|
The Mechanism and Effect of Autophagy, Apoptosis, and Pyroptosis on the Progression of Silicosis. Int J Mol Sci 2021; 22:ijms22158110. [PMID: 34360876 PMCID: PMC8348676 DOI: 10.3390/ijms22158110] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 07/27/2021] [Accepted: 07/27/2021] [Indexed: 12/13/2022] Open
Abstract
Silicosis remains one of the most severe pulmonary fibrotic diseases worldwide, caused by chronic exposure to silica dust. In this review, we have proposed that programmed cell death (PCD), including autophagy, apoptosis, and pyroptosis, is closely associated with silicosis progression. Furthermore, some autophagy, apoptosis, or pyroptosis-related signaling pathways or regulatory proteins have also been summarized to contribute greatly to the formation and development of silicosis. In addition, silicosis pathogenesis depends on the crosstalk among these three ways of PCD to a certain extent. In summary, more profound research on these mechanisms and effects may be expected to become promising targets for intervention or therapeutic methods of silicosis in the future.
Collapse
|
12
|
Zhang X, Xie Q, Ye Z, Li Y, Che Z, Huang M, Zeng J. Mesenchymal Stem Cells and Tuberculosis: Clinical Challenges and Opportunities. Front Immunol 2021; 12:695278. [PMID: 34367155 PMCID: PMC8340780 DOI: 10.3389/fimmu.2021.695278] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/30/2021] [Indexed: 12/22/2022] Open
Abstract
Tuberculosis (TB) is one of the communicable diseases caused by Mycobacterium tuberculosis (Mtb) infection, affecting nearly one-third of the world's population. However, because the pathogenesis of TB is still not fully understood and the development of anti-TB drug is slow, TB remains a global public health problem. In recent years, with the gradual discovery and confirmation of the immunomodulatory properties of mesenchymal stem cells (MSCs), more and more studies, including our team's research, have shown that MSCs seem to be closely related to the growth status of Mtb and the occurrence and development of TB, which is expected to bring new hope for the clinical treatment of TB. This article reviews the relationship between MSCs and the occurrence and development of TB and the potential application of MSCs in the treatment of TB.
Collapse
Affiliation(s)
- Xueying Zhang
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Qi Xie
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Ziyu Ye
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
| | - Yanyun Li
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Zhengping Che
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Mingyuan Huang
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Jincheng Zeng
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
- Key Laboratory of Medical Bioactive Molecular Research for Department of Education of Guangdong Province, School of Basic Medicine, Guangdong Medical University, Dongguan, China
- Collaborative Innovation Center for Antitumor Active Substance Research and Development, School of Basic Medicine, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
13
|
Babajani A, Hosseini-Monfared P, Abbaspour S, Jamshidi E, Niknejad H. Targeted Mitochondrial Therapy With Over-Expressed MAVS Protein From Mesenchymal Stem Cells: A New Therapeutic Approach for COVID-19. Front Cell Dev Biol 2021; 9:695362. [PMID: 34179022 PMCID: PMC8226075 DOI: 10.3389/fcell.2021.695362] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 05/17/2021] [Indexed: 12/19/2022] Open
Abstract
The SARS-CoV-2, the virus that causes COVID-19, has infected millions of people worldwide. The symptoms of this disease are primarily due to pulmonary involvement, uncontrolled tissue inflammation, and inadequate immune response against the invader virus. Impaired interferon (IFN) production is one of the leading causes of the immune system's inability to control the replication of the SARS-CoV-2. Mitochondria play an essential role in developing and maintaining innate cellular immunity and IFN production. Mitochondrial function is impaired during cellular stress, affecting cell bioenergy and innate immune responses. The mitochondrial antiviral-signaling protein (MAVS), located in the outer membrane of mitochondria, is one of the key elements in engaging the innate immune system and interferon production. Transferring healthy mitochondria to the damaged cells by mesenchymal stem cells (MSCs) is a proposed option for regenerative medicine and a viable treatment approach to many diseases. In addition to mitochondrial transport, these cells can regulate inflammation, repair the damaged tissue, and control the pathogenesis of COVID-19. The immune regulatory nature of MSCs dramatically reduces the probability of an immune rejection. In order to induce an appropriate immune response against the SARS-CoV-2, we hypothesize to donate mitochondria to the host cells of the virus. We consider MSCs as an appropriate biological carrier for mitochondria. Besides, enhancing the expression of MAVS protein in MSCs and promoting the expression of SARS-CoV-2 viral spike protein as a specific ligand for ACE2+ cells will improve IFN production and innate immune responses in a targeted manner.
Collapse
Affiliation(s)
- Amirhesam Babajani
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pooya Hosseini-Monfared
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samin Abbaspour
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Jamshidi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Pang J, Luo Y, Wei D, Cao Z, Qi X, Song M, Liu Y, Li Z, Zhang J, Li B, Chen J, Wang J, Wang C. Comparative Transcriptome Analyses Reveal a Transcriptional Landscape of Human Silicosis Lungs and Provide Potential Strategies for Silicosis Treatment. Front Genet 2021; 12:652901. [PMID: 34149803 PMCID: PMC8210851 DOI: 10.3389/fgene.2021.652901] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/19/2021] [Indexed: 12/15/2022] Open
Abstract
Silicosis is a fatal occupational lung disease which currently has no effective clinical cure. Recent studies examining the underlying mechanism of silicosis have primarily examined experimental models, which may not perfectly reflect the nature of human silicosis progression. A comprehensive profiling of the molecular changes in human silicosis lungs is urgently needed. Here, we conducted RNA sequencing (RNA-seq) on the lung tissues of 10 silicosis patients and 7 non-diseased donors. A total of 2,605 differentially expressed genes (DEGs) and critical pathway changes were identified in human silicosis lungs. Further, the DEGs in silicosis were compared with those in idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary diseases (COPD), to extend current knowledge about the disease mechanisms and develop potential drugs. This analysis revealed both common and specific regulations in silicosis, along with several critical genes (e.g., MUC5AC and FGF10), which are potential drug targets for silicosis treatment. Drugs including Plerixafor and Retinoic acid were predicted as potential candidates in treating silicosis. Overall, this study provides the first transcriptomic fingerprint of human silicosis lungs. The comparative transcriptome analyses comprehensively characterize pathological regulations resulting from silicosis, and provide valuable cues for silicosis treatment.
Collapse
Affiliation(s)
- Junling Pang
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Peking Union Medical College, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Ya Luo
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Peking Union Medical College, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Dong Wei
- Transplant Center, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Zhujie Cao
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Peking Union Medical College, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Xianmei Qi
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Peking Union Medical College, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Meiyue Song
- Department of Pulmonary and Critical Care Medicine/Others, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Ying Liu
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Peking Union Medical College, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhaoguo Li
- Department of Respiratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jin Zhang
- Department of Thoracic Surgery and Lung Transplantation, China-Japan Friendship Hospital, Beijing, China
| | - Baicun Li
- State Key Laboratory of Medical Molecular Biology, Department of Physiology, Peking Union Medical College, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Jingyu Chen
- Transplant Center, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China.,Department of Thoracic Surgery and Lung Transplantation, China-Japan Friendship Hospital, Beijing, China
| | - Jing Wang
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Peking Union Medical College, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Chen Wang
- State Key Laboratory of Medical Molecular Biology, Department of Physiology, Peking Union Medical College, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
15
|
Wei J, Zhao Q, Yang G, Huang R, Li C, Qi Y, Hao C, Yao W. Mesenchymal stem cells ameliorate silica-induced pulmonary fibrosis by inhibition of inflammation and epithelial-mesenchymal transition. J Cell Mol Med 2021; 25:6417-6428. [PMID: 34076355 PMCID: PMC8256359 DOI: 10.1111/jcmm.16621] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/10/2021] [Accepted: 04/28/2021] [Indexed: 12/19/2022] Open
Abstract
Silicosis is a devastating occupational disease caused by long-term inhalation of silica particles, inducing irreversible lung damage and affecting lung function, without effective treatment. Mesenchymal stem cells (MSCs) are a heterogeneous subset of adult stem cells that exhibit excellent self-renewal capacity, multi-lineage differentiation potential and immunomodulatory properties. The aim of this study was to explore the effect of bone marrow-derived mesenchymal stem cells (BMSCs) in a silica-induced rat model of pulmonary fibrosis. The rats were treated with BMSCs on days 14, 28 and 42 after perfusion with silica. Histological examination and hydroxyproline assays showed that BMSCs alleviated silica-induced pulmonary fibrosis in rats. Results from ELISA and qRT-PCR indicated that BMSCs inhibited the expression of inflammatory cytokines TNF-α, IL-1β and IL-6 in lung tissues and bronchoalveolar lavage fluid of rats exposed to silica particles. We also performed qRT-PCR, Western blot and immunohistochemistry to examine epithelial-mesenchymal transition (EMT)-related indicators and demonstrated that BMSCs up-regulate E-cadherin and down-regulate vimentin and extracellular matrix (ECM) components such as fibronectin and collagen Ⅰ. Additionally, BMSCs inhibited the silica-induced increase in TGF-β1, p-Smad2 and p-Smad3 and decrease in Smad7. These results suggested that BMSCs can inhibit inflammation and reverse EMT through the inhibition of the TGF-β/Smad signalling pathway to exhibit an anti-fibrotic effect in the rat silicosis model. Our study provides a new and meaningful perspective for silicosis treatment strategies.
Collapse
Affiliation(s)
- Jingjing Wei
- School of Public HealthZhengzhou UniversityZhengzhouChina
| | - Qiuyan Zhao
- School of Public HealthZhengzhou UniversityZhengzhouChina
| | - Guo Yang
- School of Public HealthZhengzhou UniversityZhengzhouChina
| | - Ruoxuan Huang
- School of Public HealthZhengzhou UniversityZhengzhouChina
| | - Chao Li
- School of Public HealthZhengzhou UniversityZhengzhouChina
| | - Yuanmeng Qi
- School of Public HealthZhengzhou UniversityZhengzhouChina
| | - Changfu Hao
- School of Public HealthZhengzhou UniversityZhengzhouChina
| | - Wu Yao
- School of Public HealthZhengzhou UniversityZhengzhouChina
| |
Collapse
|
16
|
Cai Q, Yin F, Hao L, Jiang W. Research Progress of Mesenchymal Stem Cell Therapy for Severe COVID-19. Stem Cells Dev 2021; 30:459-472. [PMID: 33715385 DOI: 10.1089/scd.2020.0198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Corona virus disease 2019 (COVID-19) refers to a type of pneumonia caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Sixty million confirmed cases have been reported worldwide until November 29, 2020. Unfortunately, the novel coronavirus is extremely contagious and the mortality rate of severe and critically ill patients is high. Thus, there is no definite and effective treatment in clinical practice except for antiviral therapy and supportive therapy. Mesenchymal stem cells (MSCs) are not only characterized by low immunogenicity and homing but also have anti-inflammatory and immunomodulation characteristics. Furthermore, they can inhibit the occurrence and development of a cytokine storm, inhibit lung injury, and exert antipulmonary fibrosis and antioxidative stress, therefore MSC therapy is expected to become one of the effective therapies to treat severe COVID-19. This article will review the possible mechanisms of MSCs in the treatment of severe COVID-19.
Collapse
Affiliation(s)
- Qiqi Cai
- Department of Histology and Embryology, Basic Medical College of Jilin University, Changchun, China
| | - Fei Yin
- Department of Histology and Embryology, Basic Medical College of Jilin University, Changchun, China
| | - Liming Hao
- Department of Histology and Embryology, Basic Medical College of Jilin University, Changchun, China
| | - Wenhua Jiang
- Department of Histology and Embryology, Basic Medical College of Jilin University, Changchun, China
| |
Collapse
|
17
|
Zhuang WZ, Lin YH, Su LJ, Wu MS, Jeng HY, Chang HC, Huang YH, Ling TY. Mesenchymal stem/stromal cell-based therapy: mechanism, systemic safety and biodistribution for precision clinical applications. J Biomed Sci 2021; 28:28. [PMID: 33849537 PMCID: PMC8043779 DOI: 10.1186/s12929-021-00725-7] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 04/07/2021] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are a promising resource for cell-based therapy because of their high immunomodulation ability, tropism towards inflamed and injured tissues, and their easy access and isolation. Currently, there are more than 1200 registered MSC clinical trials globally. However, a lack of standardized methods to characterize cell safety, efficacy, and biodistribution dramatically hinders the progress of MSC utility in clinical practice. In this review, we summarize the current state of MSC-based cell therapy, focusing on the systemic safety and biodistribution of MSCs. MSC-associated risks of tumor initiation and promotion and the underlying mechanisms of these risks are discussed. In addition, MSC biodistribution methodology and the pharmacokinetics and pharmacodynamics of cell therapies are addressed. Better understanding of the systemic safety and biodistribution of MSCs will facilitate future clinical applications of precision medicine using stem cells.
Collapse
Affiliation(s)
- Wei-Zhan Zhuang
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan.,TMU Research Center of Cell Therapy and Regeneration Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan
| | - Yi-Heng Lin
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan.,Department of Obstetrics and Gynecology, College of Medicine, National Taiwan University, Taipei, 10041, Taiwan.,Department of Obstetrics and Gynecology, National Taiwan University Hospital Yunlin Branch, Yunlin, 64041, Taiwan
| | - Long-Jyun Su
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 106, Taiwan
| | - Meng-Shiue Wu
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, 10617, Taiwan
| | - Han-Yin Jeng
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan.,TMU Research Center of Cell Therapy and Regeneration Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan
| | - Huan-Cheng Chang
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 106, Taiwan.,Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 106, Taiwan
| | - Yen-Hua Huang
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan. .,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan. .,TMU Research Center of Cell Therapy and Regeneration Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan. .,International PhD Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan. .,Center for Reproductive Medicine, Taipei Medical University Hospital, Taipei Medical University, Taipei, 11031, Taiwan. .,Comprehensive Cancer Center of Taipei Medical University, Taipei, 11031, Taiwan. .,The PhD Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan.
| | - Thai-Yen Ling
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, 10617, Taiwan. .,Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, 100, Taiwan.
| |
Collapse
|
18
|
Zhao Q, Hao C, Wei J, Huang R, Li C, Yao W. Bone marrow-derived mesenchymal stem cells attenuate silica-induced pulmonary fibrosis by inhibiting apoptosis and pyroptosis but not autophagy in rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 216:112181. [PMID: 33848736 DOI: 10.1016/j.ecoenv.2021.112181] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/17/2021] [Accepted: 03/21/2021] [Indexed: 06/12/2023]
Abstract
This study aimed to investigate the effect of bone marrow-derived mesenchymal stem cells (BMSCs) on silica-induced lung fibrosis in a rat model. Thirty SD rats were randomly divided into three groups: control group, silica group, and BMSC group (n = 10 rats per group). BMSCs were injected successively into rats on the 14th, 28th, and 42nd days after silica exposure. All rats were sacrificed 56 days after silica exposure. We detected the pathological and fibrotic changes, apoptosis, autophagy, and pyroptosis in their lung tissue by histopathological examination, hydroxyproline content assays, real-time quantitative polymerase chain reactions, western blot assays, immunohistochemistry staining, immunofluorescence staining, and enzyme-linked immunosorbent assays. We found that BMSCs significantly relieved lung inflammatory infiltrates, collagen deposition, hydroxyproline content, and the mRNA and protein levels of collagen 1 and fibronectin. Compared to the silica group, in the BMSC group, apoptosis-associated proteins, including cleaved caspase 3 and Bax, were significantly downregulated, and Bcl-2/Bax was significantly upregulated; pyroptosis-related proteins, including Nlrp3, cleaved caspase 1, IL-1β, and IL-18, were significantly reduced. However, the BMSCs had no significant impact on autophagy-related proteins, including Beclin 1, P62, and LC3. In summary, BMSCs protected lung tissue against severe fibrosis by inhibiting apoptosis and pyroptosis but not autophagy.
Collapse
Affiliation(s)
- Qiuyan Zhao
- Department of Occupational Health and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Changfu Hao
- Department of Occupational Health and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Jingjing Wei
- Department of Occupational Health and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Ruoxuan Huang
- Department of Occupational Health and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Chao Li
- Department of Occupational Health and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Wu Yao
- Department of Occupational Health and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China.
| |
Collapse
|
19
|
Yu C, Bao H, Chen Z, Li X, Liu X, Wang W, Huang J, Zhang Z. Enhanced and long-term CT imaging tracking of transplanted stem cells labeled with temperature-responsive gold nanoparticles. J Mater Chem B 2021; 9:2854-2865. [PMID: 33711088 DOI: 10.1039/d0tb02997a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Gold nanoparticles (AuNPs) have been extensively employed for computed tomography (CT) imaging in cell labeling and tracking because of their strong X-ray attenuation coefficient and excellent biocompatibility. However, the design and synthesis of stimuli-responsive AuNPs to modulate their endocytosis and exocytosis for optimal cell labeling and tracking are promising but challenging. Herein, we report an innovative labeling strategy based on temperature-responsive AuNPs (TRAuNPs) with high cell labeling efficiency and extended intracellular retention duration. We have manifested that the TRAuNP labeling imposes a negligible adverse effect on the function of human mesenchymal stem cells (hMSCs). Further experiment with idiopathic pulmonary fibrosis (IPF) model mice has demonstrated the feasibility of TRAuNP labeling for long time CT imaging tracking of transplanted hMSCs. What's more, the survival of transplanted hMSCs could also be monitored simultaneously using bioluminescence imaging after the expression of luciferase reporter genes. Therefore, we believe that this dual-modal labeling and tracking strategy enables visualization of the transplanted hMSCs in vivo, which may provide an important insight into the role of stem cells in the IPF therapy.
Collapse
Affiliation(s)
- Chenggong Yu
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Yang S, Liu P, Jiang Y, Wang Z, Dai H, Wang C. Therapeutic Applications of Mesenchymal Stem Cells in Idiopathic Pulmonary Fibrosis. Front Cell Dev Biol 2021; 9:639657. [PMID: 33768094 PMCID: PMC7985078 DOI: 10.3389/fcell.2021.639657] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/15/2021] [Indexed: 12/17/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is an interstitial disease of unknown etiology characterized by progressive pulmonary fibrosis. Pirfenidone and nintedanib are the only drugs that can prolong the time to disease progression, slow down the decline in lung function, and prolong survival. However, they do not offer a cure and are associated with tolerability issues. The pluripotency of mesenchymal stem cells (MSCs) and their ability to regulate immunity, inhibit inflammation, and promote epithelial tissue repair highlight the promise of MSC therapy for treating interstitial lung disease. However, optimal protocols are lacking for multi-parameter selection in MSC therapy. This review summarizes preclinical studies on MSC transplantation for the treatment of interstitial lung disease and clinical studies with known results. An analysis of relevant factors for the optimization of treatment plans is presented, including MSCs with different sources, administration routes and timing, dosages, frequencies, and pretreatments with MSCs. This review proposes an optimized plan for guiding the design of future clinical research to identify therapeutic options for this complex disease.
Collapse
Affiliation(s)
- Shengnan Yang
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China.,National Center for Respiratory Medicine, Beijing, China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China.,National Clinical Research Center for Respiratory Diseases, Beijing, China.,WHO Collaborating Centre for Tobacco Cessation and Respiratory Diseases Prevention, Beijing, China.,Harbin Medical University, Harbin, China
| | - Peipei Liu
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yale Jiang
- School of Medicine, Tsinghua University, Beijing, China
| | - Zai Wang
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Huaping Dai
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China.,National Center for Respiratory Medicine, Beijing, China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China.,National Clinical Research Center for Respiratory Diseases, Beijing, China.,WHO Collaborating Centre for Tobacco Cessation and Respiratory Diseases Prevention, Beijing, China
| | - Chen Wang
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China.,National Center for Respiratory Medicine, Beijing, China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China.,National Clinical Research Center for Respiratory Diseases, Beijing, China.,WHO Collaborating Centre for Tobacco Cessation and Respiratory Diseases Prevention, Beijing, China.,Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
21
|
Huang J, Huang J, Ning X, Luo W, Chen M, Wang Z, Zhang W, Zhang Z, Chao J. CT/NIRF dual-modal imaging tracking and therapeutic efficacy of transplanted mesenchymal stem cells labeled with Au nanoparticles in silica-induced pulmonary fibrosis. J Mater Chem B 2021; 8:1713-1727. [PMID: 32022096 DOI: 10.1039/c9tb02652e] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Mesenchymal stem cells (MSCs) have shown promising therapeutic effects in cell-based therapies and regenerative medicine. Efficient tracking of MSCs is an urgent clinical need that will help us to understand their behavior after transplantation and allow adjustment of therapeutic strategies. However, no clinically approved tracers are currently available, which limits the clinical translation of stem cell therapy. In this study, a nanoparticle (NP) for computed tomography (CT)/fluorescence dual-modal imaging, Au@Albumin@ICG@PLL (AA@ICG@PLL), was developed to track bone marrow-derived mesenchymal stem cells (BMSCs) that were administered intratracheally into mice with silica-induced pulmonary fibrosis, which facilitated understanding of the therapeutic effect and the possible molecular mechanism of stem cell therapy. The AuNPs were first formed in bovine serum albumin (BSA) solution and modified with indocyanine green (ICG), and subsequently coated with a poly-l-lysine (PLL) layer to enhance intracellular uptake and biocompatibility. BMSCs were labeled with AA@ICG@PLL NPs with high efficiency without an effect on biological function or therapeutic capacity. The injected AA@ICG@PLL-labeled BMSCs could be tracked via CT and near-infrared fluorescence (NIRF) imaging for up to 21 days after transplantation. Using these NPs, the molecular anti-inflammatory mechanism of transplanted BMSCs was revealed, which included the downregulation of proinflammatory cytokines, suppression of macrophage activation, and delay of the fibrosis process. This study suggests a promising role for imaging-guided MSC-based therapy for pulmonary fibrosis, such as idiopathic pulmonary fibrosis (IPF) and pneumoconiosis.
Collapse
Affiliation(s)
- Jie Huang
- Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China.
| | - Jie Huang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu 215123, China.
| | - Xinyu Ning
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu 215123, China.
| | - Wei Luo
- Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China. and Department of Respiration, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China and Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China
| | - Mengling Chen
- Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China. and Department of Respiration, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China and Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China
| | - Zhangyan Wang
- Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China. and Department of Respiration, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China and Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China
| | - Wei Zhang
- Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China. and Department of Respiration, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China and Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China
| | - Zhijun Zhang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu 215123, China.
| | - Jie Chao
- Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China. and Department of Respiration, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China and Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China and School of Medicine, Xizang Minzu University, Xianyang, Shanxi 712082, China
| |
Collapse
|
22
|
Jamshidi E, Babajani A, Soltani P, Niknejad H. Proposed Mechanisms of Targeting COVID-19 by Delivering Mesenchymal Stem Cells and Their Exosomes to Damaged Organs. Stem Cell Rev Rep 2021; 17:176-192. [PMID: 33432484 PMCID: PMC7799400 DOI: 10.1007/s12015-020-10109-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2020] [Indexed: 12/13/2022]
Abstract
With the outbreak of coronavirus disease (COVID-19) caused by novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the world has been facing an unprecedented challenge. Considering the lack of appropriate therapy for COVID-19, it is crucial to develop effective treatments instead of supportive approaches. Mesenchymal stem cells (MSCs) as multipotent stromal cells have been shown to possess treating potency through inhibiting or modulating the pathological events in COVID-19. MSCs and their exosomes participate in immunomodulation by controlling cell-mediated immunity and cytokine release. Furthermore, they repair the renin-angiotensin-aldosterone system (RAAS) malfunction, increase alveolar fluid clearance, and reduce the chance of hypercoagulation. Besides the lung, which is the primary target of SARS-CoV-2, the heart, kidney, nervous system, and gastrointestinal tract are also affected by COVID-19. Thus, the efficacy of targeting these organs via different delivery routes of MSCs and their exosomes should be evaluated to ensure safe and effective MSCs administration in COVID-19. This review focuses on the proposed therapeutic mechanisms and delivery routes of MSCs and their exosomes to the damaged organs. It also discusses the possible application of primed and genetically modified MSCs as a promising drug delivery system in COVID-19. Moreover, the recent advances in the clinical trials of MSCs and MSCs-derived exosomes as one of the promising therapeutic approaches in COVID-19 have been reviewed.
Collapse
Affiliation(s)
- Elham Jamshidi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirhesam Babajani
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pegah Soltani
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
23
|
Kadam R, Wiafe B, Metcalfe PD. Mesenchymal stem cells ameliorate partial bladder outlet obstruction-induced epithelial-mesenchymal transition type II independent of mast cell recruitment and degranulation. Can Urol Assoc J 2021; 15:E29-E35. [PMID: 32701447 PMCID: PMC7769523 DOI: 10.5489/cuaj.6501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Partial bladder outlet obstruction (pBOO) results in increased urinary storage pressure and significant morbidity. Increased pressure results in a sequence of programmed events: an initial inflammatory phase, smooth muscle hypertrophy, and fibrosis. Although epithelial-mesenchymal transition (EMT) and mast cell accumulation play intermediary roles in some fibrotic conditions, their role in pBOO has not yet been elucidated. Mesenchymal stem cell (MSC) therapy is emerging as a promising treatment for several conditions. It potently inhibits bladder deterioration after pBOO; however, its mechanism of action is insufficiently understood. Thus, we hypothesize that EMT type II pathway plays a significant role in pBOO, aided by the recruitment and activation of mast cells, and these are potently inhibited by MSCs. METHODS pBOO was surgically induced in female Sprague-Dawley rats and simultaneously treated with MSCs. Treatment effect was determined after two or four weeks and compared to untreated controls. Immunohistochemistry was used to measure markers characteristic of EMT (vimentin, collagenase, and collagen). Whole and degranulated mast cell counts were also performed. RESULTS pBOO resulted in an increased expression of collagenase, vimentin, and collagen. Mast cell recruitment increased proportionately to the length of bladder obstruction. MSC treatment significantly mitigated the EMT type II response, but mast cell recruitment and degranulation were unaffected. CONCLUSIONS Our results demonstrate the involvement of EMT type II in the pathophysiology of pBOO and confirm its mitigation with MSC treatment independent of mast cells response. The observations provide insight into the mechanism of action and have therapeutic ramifications.
Collapse
Affiliation(s)
- Rutuja Kadam
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Bridget Wiafe
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Peter D Metcalfe
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
24
|
Xie L, Zeng Y. Therapeutic Potential of Exosomes in Pulmonary Fibrosis. Front Pharmacol 2020; 11:590972. [PMID: 33343360 PMCID: PMC7746877 DOI: 10.3389/fphar.2020.590972] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/12/2020] [Indexed: 12/13/2022] Open
Abstract
Pulmonary fibrosis is closely associated with the recruitment of fibroblasts from capillary vessels with damaged endothelial cells, the epithelial mesenchymal transition (EMT) of type II alveolar epithelial cells, and the transformation of fibroblasts to myofibroblasts. Recent studies suggest that EMT is a key factor in the pathogenesis of pulmonary fibrosis, as the disruption of EMT-related effector molecules can inhibit the occurrence and development of PF. With the numerous advancements made in molecular biology in recent years, researchers have discovered that exosomes and their cargos, such as miRNAs, lncRNAs, and proteins, can promote or inhibit the EMT, modulate the transformation of fibroblasts into myofibroblasts, contribute to the proliferation of fibroblasts and promote immunoregulatory and mitochondrial damage during pulmonary fibrosis. Exosomes are key factors regulating the differentiation of bone marrow mesenchymal stem cells (BMSCs) into myofibroblasts. Interestingly, exosomes derived from BMSCs under pathological and physiological conditions may promote or inhibit the EMT of type II alveolar epithelial cells and the transformation of fibroblasts into myofibroblasts to regulate pulmonary fibrosis. Thus, exosomes may become a new direction in the study of drugs for the treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Linshen Xie
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Ye Zeng
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| |
Collapse
|
25
|
Xu C, Zhao J, Li Q, Hou L, Wang Y, Li S, Jiang F, Zhu Z, Tian L. Exosomes derived from three-dimensional cultured human umbilical cord mesenchymal stem cells ameliorate pulmonary fibrosis in a mouse silicosis model. Stem Cell Res Ther 2020; 11:503. [PMID: 33239075 PMCID: PMC7687745 DOI: 10.1186/s13287-020-02023-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023] Open
Abstract
Background Silicosis is an occupational respiratory disease caused by long-term excessive silica inhalation, which is most commonly encountered in industrial settings. Unfortunately, there is no effective therapy to delay and cure the progress of silicosis. In the recent years, stem cell therapy has emerged as an attractive tool against pulmonary fibrosis (PF) owing to its unique biological characteristics. However, the direct use of stem cells remains limitation by many risk factors for therapeutic purposes. The exclusive utility of exosomes secreted from stem cells, rather than cells, has been considered a promising alternative to overcome the limitations of cell-based therapy while maintaining its advantages. Methods and results In this study, we first employed a three-dimensional (3D) dynamic system to culture human umbilical cord mesenchymal stem cell (hucMSC) spheroids in a microcarrier suspension to yield exosomes from serum-free media. Experimental silicosis was induced in C57BL/6J mice by intratracheal instillation of a silica suspension, with/without exosomes derived from hucMSC (hucMSC-Exos), injection via the tail vein afterwards. The results showed that the gene expression of collagen I (COL1A1) and fibronectin (FN) was upregulated in the silica group as compared to that in the control group; however, this change decreased with hucMSC-Exo treatment. The value of FEV0.1 decreased in the silica group as compared to that in the control group, and this change diminished with hucMSC-Exo treatment. These findings suggested that hucMSC-Exos could inhibit silica-induced PF and regulate pulmonary function. We also performed in vitro experiments to confirm these findings; the results revealed that hucMSC-Exos decreased collagen deposition in NIH-3T3 cells exposed to silica. Conclusions Taken together, these studies support a potential role for hucMSC-Exos in ameliorating pulmonary fibrosis and provide new evidence for improving clinical treatment induced by silica. Supplementary information The online version contains supplementary material available at 10.1186/s13287-020-02023-9.
Collapse
Affiliation(s)
- Chunjie Xu
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, No. 10, Xitoutiao Youanmen Street, Beijing, 100069, China.,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Jing Zhao
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, No. 10, Xitoutiao Youanmen Street, Beijing, 100069, China.,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Qiuyue Li
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, No. 10, Xitoutiao Youanmen Street, Beijing, 100069, China.,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Lin Hou
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, No. 10, Xitoutiao Youanmen Street, Beijing, 100069, China.,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Yan Wang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, No. 10, Xitoutiao Youanmen Street, Beijing, 100069, China.,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Siling Li
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, No. 10, Xitoutiao Youanmen Street, Beijing, 100069, China.,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Fuyang Jiang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, No. 10, Xitoutiao Youanmen Street, Beijing, 100069, China.,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Zhonghui Zhu
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, No. 10, Xitoutiao Youanmen Street, Beijing, 100069, China. .,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
| | - Lin Tian
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, No. 10, Xitoutiao Youanmen Street, Beijing, 100069, China. .,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
26
|
Peng L, Wen L, Shi QF, Gao F, Huang B, Meng J, Hu CP, Wang CM. Scutellarin ameliorates pulmonary fibrosis through inhibiting NF-κB/NLRP3-mediated epithelial-mesenchymal transition and inflammation. Cell Death Dis 2020; 11:978. [PMID: 33188176 PMCID: PMC7666141 DOI: 10.1038/s41419-020-03178-2] [Citation(s) in RCA: 214] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 09/19/2020] [Accepted: 09/21/2020] [Indexed: 12/12/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is featured with inflammation and extensive lung remodeling caused by overloaded deposition of extracellular matrix. Scutellarin is the major effective ingredient of breviscapine and its anti-inflammation efficacy has been reported before. Nevertheless, the impact of scutellarin on IPF and the downstream molecular mechanism remain unclear. In this study, scutellarin suppressed BLM-induced inflammation via NF-κB/NLRP3 pathway both in vivo and in vitro. BLM significantly elevated p-p65/p65 ratio, IκBα degradation, and levels of NLRP3, caspase-1, caspase-11, ASC, GSDMDNterm, IL-1β, and IL-18, while scutellarin reversed the above alterations except for that of caspase-11. Scutellarin inhibited BLM-induced epithelial-mesenchymal transition (EMT) process in vivo and in vitro. The expression levels of EMT-related markers, including fibronectin, vimentin, N-cadherin, matrix metalloproteinase 2 (MMP-2) and MMP-9, were increased in BLM group, and suppressed by scutellarin. The expression level of E-cadherin showed the opposite changes. However, overexpression of NLRP3 eliminated the anti-inflammation and anti-EMT functions of scutellarin in vitro. In conclusion, scutellarin suppressed inflammation and EMT in BLM-induced pulmonary fibrosis through NF-κB/NLRP3 signaling.
Collapse
Affiliation(s)
- Ling Peng
- Department of Respiratory Medicine (Department of Respiratory and Critical Care Medicine), Key Site of the National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, 410008, P.R. China
| | - Li Wen
- Department of Respiratory Medicine, The Fifth Affiliated Hospital of Guilin Medical University, Guilin People's Hospital, Guilin, 541002, P.R. China
| | - Qing-Feng Shi
- Department of Respiratory Medicine, The Fifth Affiliated Hospital of Guilin Medical University, Guilin People's Hospital, Guilin, 541002, P.R. China
| | - Feng Gao
- Department of Respiratory Medicine, The Fifth Affiliated Hospital of Guilin Medical University, Guilin People's Hospital, Guilin, 541002, P.R. China
| | - Bin Huang
- Department of Respiratory Medicine, The Fifth Affiliated Hospital of Guilin Medical University, Guilin People's Hospital, Guilin, 541002, P.R. China
| | - Jie Meng
- Department of Respiratory Medicine (Department of Respiratory and Critical Care Medicine), Key Site of the National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, 410008, P.R. China
| | - Cheng-Ping Hu
- Department of Respiratory Medicine (Department of Respiratory and Critical Care Medicine), Key Site of the National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, 410008, P.R. China.
| | - Chang-Ming Wang
- Department of Respiratory Medicine, The Fifth Affiliated Hospital of Guilin Medical University, Guilin People's Hospital, Guilin, 541002, P.R. China.
| |
Collapse
|
27
|
Jia Y, Qiu S, Xu J, Kang Q, Chai Y. Exosomes Secreted by Young Mesenchymal Stem Cells Promote New Bone Formation During Distraction Osteogenesis in Older Rats. Calcif Tissue Int 2020; 106:509-517. [PMID: 32103287 DOI: 10.1007/s00223-019-00656-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 12/31/2019] [Indexed: 02/07/2023]
Abstract
Distraction osteogenesis (DO) is a clinically effective procedure to regenerate large bone defects. However, the treatment duration is undesirably lengthy, especially in elderly patients. Exosomes derived from mesenchymal stem cells (MSC-Exos) could exert the beneficial effects while avoiding the possible complications of stem cell transplantation. This study aimed to evaluate the effects of MSC-Exos on bone regeneration during DO in older rats. Exosomes were isolated from the supernatants of young bone marrow mesenchymal stem cells (BMSCs) through ultra-centrifugation, and characterized using transmission electron microscopy, western blot, and tunable resistive pulse sensing analysis. The effects of MSC-Exos on the proliferation and differentiation of older BMSCs were evaluated using CCK-8 assay, ALP and ARS staining, and qRT-PCR. Unilateral tibial DO model was established on older Sprague-Dawley rats and MSC-Exos or phosphate buffer saline was locally injected into the distraction gaps after distraction weekly. Bone regeneration were evaluated using X-ray, Micro-CT, mechanical test, and histological staining. The MSC-Exos were round or cup-shaped vesicles ranging from 60 to 130 nm in diameter and expressed markers including CD9, CD63, and TSG101. The in vitro results indicated that MSC-Exos could enhance the proliferation and osteogenic differentiation of older BMSCs. Bone regeneration was markedly accelerated in rats treated with MSC-Exos according to the results of X-ray, micro-CT, and histological analysis. The distracted tibias from the MSC-Exos group also demonstrated better mechanical properties. These results suggest that MSC-Exos promote DO-mediated bone regeneration in older rats through enhancing the proliferation and osteogenic capacity of BMSCs.
Collapse
Affiliation(s)
- Yachao Jia
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Yishan Rd 600, Shanghai, 200233, China
| | - Shuo Qiu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Yishan Rd 600, Shanghai, 200233, China
| | - Jia Xu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Yishan Rd 600, Shanghai, 200233, China
| | - Qinglin Kang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Yishan Rd 600, Shanghai, 200233, China.
| | - Yimin Chai
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Yishan Rd 600, Shanghai, 200233, China.
| |
Collapse
|
28
|
Yan J, Jin L, Lin D, Lai CH, Xu Z, Wang R, Chen YC, Hu B, Lin CH. PM 2.5 collecting in a tire manufacturing plant affects epithelial differentiation of human umbilical cord derived mesenchymal stem cells by Wnt/β-catenin pathway. CHEMOSPHERE 2020; 244:125441. [PMID: 31812768 DOI: 10.1016/j.chemosphere.2019.125441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/09/2019] [Accepted: 11/21/2019] [Indexed: 06/10/2023]
Abstract
Mesenchymal stem cells (MSCs) can differentiate into pulmonary epithelial cells by Wnt/β-catenin pathway and promote lung repair. However, whether fine particulate matter (PM2.5) could affect Wnt pathway and finally reduce the ability of MSCs to differentiate into epithelial cells is still unknown. This study aimed to investigate whether PM2.5 could inhibit the epithelial differentiation of human umbilical cord-derived MSCs cells (hUCMSCs) and the related underlying mechanism. hUCMSCs were incubated with different concentrations of PM2.5. Then, the cell viability, reactive oxygen species level, and single-cell sphere formation were assessed. The underlying mechanism of PM2.5 in epithelial differentiation of hUCMSCs was further evaluated by co-culturing hUCMSCs with A549 cells. Our results demonstrated that PM2.5 exposures could affect the expressions of β-catenin and lung epithelial markers (zonula occludens-1 (ZO-1); cytokeratins 5 and 19) in the co-cultured hUCMSCs. The Wnt/β-catenin pathway is involved in regulating the epithelial differentiation of MSCs. As expected, co-treatment with Wnt3a, which is the activator of the Wnt pathway, attenuated the downregulation of lung epithelial markers (ZO-1; cytokeratins 5 and 19) and paracrine factors (keratinocyte growth factor and hepatocyte growth factor) caused by PM2.5. Altogether, these results demonstrated that PM2.5 could affect the epithelial differentiation of hUCMSCs via the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Junyan Yan
- School of Life Science, Shaoxing University, Zhejiang, China
| | - Lifang Jin
- School of Life Science, Shaoxing University, Zhejiang, China
| | - Derong Lin
- Shaoxing Second Hospital, Zhejiang, China
| | - Chia-Hsiang Lai
- Department of Safety Health and Environmental Engineering, Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - Zhongjuan Xu
- Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Renjun Wang
- College of Life Science, Qufu Normal University, Qufu City, Shandong, China
| | - Yi-Chun Chen
- Department of Biotechnology, National Formosa University, Yunlin, Taiwan
| | - Baowei Hu
- School of Life Science, Shaoxing University, Zhejiang, China.
| | - Chia-Hua Lin
- Department of Biotechnology, National Formosa University, Yunlin, Taiwan.
| |
Collapse
|
29
|
miR-4739 mediates pleural fibrosis by targeting bone morphogenetic protein 7. EBioMedicine 2019; 41:670-682. [PMID: 30850350 PMCID: PMC6443597 DOI: 10.1016/j.ebiom.2019.02.057] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/20/2019] [Accepted: 02/26/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Pleural fibrosis is defined as excessive depositions of matrix components that result in pleural tissue architecture destruction and dysfunction. In severe cases, the progression of pleural fibrosis leads to lung entrapment, resulting in dyspnea and respiratory failure. However, the mechanism of pleural fibrosis is poorly understood. METHODS miR-4739 levels were detected by miRNA array and real-time PCR. Real-time PCR, western blotting and immunofluorescence were used to identify the expression profile of indicators related to fibrosis. Target gene of miR-4739 and promoter activity assay was measured by using dual-luciferase reporter assay system. In vivo, pleural fibrosis was evaluated by Masson staining and miR-4739 level was detected by In situ hybridization histochemistry. FINDINGS We found that bleomycin induced up-regulation of miR-4739 in pleural mesothelial cells (PMCs). Over-regulated miR-4739 mediated mesothelial-mesenchymal transition and increased collagen-I synthesis in PMCs. Investigation on the clinical specimens revealed that high levels of miR-4739 and low levels of bone morphogenetic protein 7 (BMP-7) associated with pleural fibrosis in patients. Then we next identified that miR-4739 targeted and down-regulated BMP-7 which further resulted in unbalance between Smad1/5/9 and Smad2/3 signaling. Lastly, in vivo studies revealed that miR-4739 over-expression induced pleural fibrosis, and exogenous BMP-7 prevented pleural fibrosis in mice. INTERPRETATION Our data indicated that miR-4739 targets BMP-7 which mediates pleural fibrosis. The miR-4739/BMP-7 axis is a promising therapeutic target for the disease. FUND: The National Natural Science Foundation of China.
Collapse
|
30
|
Zhang E, Yang Y, Zhang J, Ding G, Chen S, Peng C, Lavin MF, Yeo AJ, Du Z, Shao H. Efficacy of bone marrow mesenchymal stem cell transplantation in animal models of pulmonary fibrosis after exposure to bleomycin: A meta-analysis. Exp Ther Med 2019; 17:2247-2255. [PMID: 30867709 PMCID: PMC6395999 DOI: 10.3892/etm.2019.7205] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 12/13/2018] [Indexed: 12/13/2022] Open
Abstract
Previous studies have demonstrated that bone marrow mesenchymal stem cell (BMSC) transplantation is a promising treatment strategy for pulmonary fibrosis. Although encouraging results have been obtained using animal models of bleomycin (BLM)-induced pulmonary fibrosis, it is evident that transplantation of BMSCs at various time-points after BLM administration has produced different results in terms of treatment efficacy. To shed light on the potential utility of BMSCs for the treatment of lung disease, the present study performed a meta-analysis to estimate the efficacy of BMSCs in animal models of BLM-induced pulmonary fibrosis, and compare early transplantation (BMSCs injected on the same day after administration of BLM) with late transplantation (BMSCs injected on the 14th day after administration of BLM). Relevant studies were retrieved from the MEDLINE, PubMed, Chinese Knowledge Infrastructure and WanFang databases using a comprehensive search approach. A total of 6 studies involving 228 model rats were included. Meta-analysis indicated that early BMSC transplantation was able to prevent or reduce BLM-induced alveolitis and pulmonary fibrosis, while late BMSC transplantation was able to reduce alveolitis, but there was no significant evidence regarding improvement of pulmonary fibrosis. Although BMSC therapy was identified to be generally beneficial in rodent models of BLM-induced pulmonary fibrosis, the efficacy of early transplantation appears to be more satisfactory; overall, the efficacy of transplantation of BMSCs at the acute inflammatory phase was more effective compared with that at the chronic fibrosis stage. Of note, regarding alveolitis and pulmonary fibrosis scores after late transplantation of BMSCs, the sensitivity analysis revealed that the scores were less stable; thus, this result must be interpreted with caution. Furthermore, the quality and methodology of the included studies was comparatively low. Therefore, higher-quality and more rigorous studies are required to validate the results of the present meta-analysis in the future.
Collapse
Affiliation(s)
- Enguo Zhang
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China.,School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Ye Yang
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China.,School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Juan Zhang
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Guoyong Ding
- School of Public Health, Taishan Medical University, Taian, Shandong 271016, P.R. China
| | - Shangya Chen
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Cheng Peng
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China.,Queensland Alliance for Environmental Health Sciences, University of Queensland, Brisbane, Queensland 4102, Australia
| | - Martin F Lavin
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China.,University of Queensland Centre for Clinical Research, University of Queensland, Brisbane, Queensland 4029, Australia
| | - Abrey J Yeo
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China.,University of Queensland Centre for Clinical Research, University of Queensland, Brisbane, Queensland 4029, Australia
| | - Zhongjun Du
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Hua Shao
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| |
Collapse
|
31
|
Li X, An G, Wang Y, Liang D, Zhu Z, Tian L. Targeted migration of bone marrow mesenchymal stem cells inhibits silica-induced pulmonary fibrosis in rats. Stem Cell Res Ther 2018; 9:335. [PMID: 30514375 PMCID: PMC6280342 DOI: 10.1186/s13287-018-1083-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/24/2018] [Accepted: 11/19/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Silicosis is a common occupational disease, characterized by silicotic nodules and diffuse pulmonary fibrosis. We demonstrated an anti-fibrotic effect of bone marrow mesenchymal stem cells (BMSCs) in silica-induced lung fibrosis. In the present study, we sought to clarify the homing ability of BMSCs and the specific mechanisms for their effects. METHODS AND RESULTS The biodistribution of BMSCs was identified by near-infrared fluorescence (NIRF) imaging in vivo and in vitro. The results showed that BMSCs labeled with NIR-DiR dyes targeted silica-injured lung tissue, wherein they reached a peak at 6 h post-injection and declined dramatically by day 3. Based on these findings, a second injection of BMSCs was administered 3 days after the first injection. The injected BMSCs migrated to the injured lungs, but did not undergo transformation into specific lung cell types. Interestingly, the injection of BMSC-conditioned medium (BMSCs-CM) significantly attenuated silica-induced pulmonary fibrosis. The collagen deposition and number of nodules were decreased in lung tissues of BMSCs-CM-treated rats. In parallel with these findings, the mRNA levels of collagen I, collagen III, and fibronectin, and the content of transforming growth factor (TGF)-β1 and hydroxyproline were decreased in the BMSCs-CM-treated group compared with the silica group. In addition, alveolar epithelial markers were upregulated by BMSCs-CM treatment. CONCLUSIONS BMSCs migrated to injured areas of the lung after silica instillation and attenuated pulmonary fibrosis. The anti-fibrotic effects of BMSCs were mainly exerted in paracrine manner, rather than through their ability to undergo differentiation.
Collapse
Affiliation(s)
- Xiaoli Li
- Beijing Tropical Medicine Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, No. 10, Xi toutiao outside You anmen, Beijing, 100069, China
| | - Guoliang An
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, No. 10, Xi toutiao outside You anmen, Beijing, 100069, China
| | - Yan Wang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, No. 10, Xi toutiao outside You anmen, Beijing, 100069, China
| | - Di Liang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, No. 10, Xi toutiao outside You anmen, Beijing, 100069, China
| | - Zhonghui Zhu
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, No. 10, Xi toutiao outside You anmen, Beijing, 100069, China
| | - Lin Tian
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, No. 10, Xi toutiao outside You anmen, Beijing, 100069, China.
| |
Collapse
|
32
|
Zhang E, Yang Y, Chen S, Peng C, Lavin MF, Yeo AJ, Li C, Liu X, Guan Y, Du X, Du Z, Shao H. Bone marrow mesenchymal stromal cells attenuate silica-induced pulmonary fibrosis potentially by attenuating Wnt/β-catenin signaling in rats. Stem Cell Res Ther 2018; 9:311. [PMID: 30428918 PMCID: PMC6234553 DOI: 10.1186/s13287-018-1045-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/27/2018] [Accepted: 10/14/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pulmonary fibrosis induced by silica dust is an irreversible, chronic, and fibroproliferative lung disease with no effective treatment at present. Previous studies have shown that early intervention with bone marrow mesenchymal stem/stromal cells (BMSCs) has positive effect on anti-pulmonary fibrosis caused by silica dust. However, early intervention using BMSCs is not practical, and the therapeutic effects of BMSCs advanced intervention on pulmonary fibrosis have rarely been reported. In this study, we investigated the effects of advanced transplantation (on the 28th day after exposure to silica suspension) of BMSCs on an established rat model of pulmonary fibrosis. METHODS Sprague Dawley (SD) rats were randomly divided into four groups including (1) control group (n = 6) which were normally fed, (2) silica model group (n = 6) which were exposed to silica suspension (1 mL of 50 mg/mL/rat), (3) BMSC transplantation group (n = 6) which received 1 mL BMSC suspension (2 × 106 cells/mL) by tail vein injection on the 28th day after exposure to silica suspension, and (4) BMSC-CM (conditioned medium) transplantation group (n = 6) which received CM from the same cell number by tail vein injection on the 28th day after exposure to silica suspension. On the 56th day after exposure to silica suspension, we used computed tomography (CT), hematoxylin and eosin (H&E), and Masson's trichrome staining to evaluate the changes in lung tissue. We examined the expression of epithelial-mesenchymal transition (EMT) and Wnt/β-catenin pathway-related proteins in lung tissue using immunohistochemistry and western blotting. RESULTS Successful construction of a pulmonary fibrosis model was confirmed by H&E and Masson's trichrome staining on the 28th day after exposure to silica suspension. On the 56th day after exposure, pulmonary CT examination showed a relieving effect of BMSCs on silica-induced pulmonary fibrosis which was confirmed by H&E and Masson's trichrome staining. Treatment of BMSCs increased the expression of epithelial marker proteins including E-cadherin (E-cad) and cytokeratin19 (CK19) and reduced the expression of fibrosis marker proteins including Vimentin (Vim) and α-Smooth actin (α-SMA) after exposure to silica suspension. Furthermore, we found that Wnt/β-catenin signaling pathway is abnormally activated in silica-induced pulmonary fibrosis, and exogenous transplantation of BMSCs may attenuate their expression. CONCLUSIONS BMSC transplantation inhibits the EMT to alleviate silica-induced pulmonary fibrosis in rats and the anti-fibrotic effect potentially by attenuating Wnt/β-catenin signaling. ᅟ: ᅟ.
Collapse
Affiliation(s)
- Enguo Zhang
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong Academy of Medical Sciences, No 18877 Jingshi Road, Lixia District Jinan, Jinan, 250062, Shandong, People's Republic of China.,School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, Shandong, People's Republic of China
| | - Ye Yang
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong Academy of Medical Sciences, No 18877 Jingshi Road, Lixia District Jinan, Jinan, 250062, Shandong, People's Republic of China.,School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, Shandong, People's Republic of China
| | - Shangya Chen
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong Academy of Medical Sciences, No 18877 Jingshi Road, Lixia District Jinan, Jinan, 250062, Shandong, People's Republic of China
| | - Cheng Peng
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong Academy of Medical Sciences, No 18877 Jingshi Road, Lixia District Jinan, Jinan, 250062, Shandong, People's Republic of China.,Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Brisbane, Queensland, Australia
| | - Martin F Lavin
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong Academy of Medical Sciences, No 18877 Jingshi Road, Lixia District Jinan, Jinan, 250062, Shandong, People's Republic of China.,University of Queensland Centre for Clinical Research (UQCCR), The University of Queensland, Brisbane, Queensland, Australia
| | - Abrey J Yeo
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong Academy of Medical Sciences, No 18877 Jingshi Road, Lixia District Jinan, Jinan, 250062, Shandong, People's Republic of China.,University of Queensland Centre for Clinical Research (UQCCR), The University of Queensland, Brisbane, Queensland, Australia
| | - Chao Li
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong Academy of Medical Sciences, No 18877 Jingshi Road, Lixia District Jinan, Jinan, 250062, Shandong, People's Republic of China
| | - Xiaoshan Liu
- Department of Radiology, Shandong Tumor Hospital, Shandong Academy of Medical Sciences, Jinan, Shandong, People's Republic of China
| | - Yingjun Guan
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong Academy of Medical Sciences, No 18877 Jingshi Road, Lixia District Jinan, Jinan, 250062, Shandong, People's Republic of China
| | - Xinjing Du
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong Academy of Medical Sciences, No 18877 Jingshi Road, Lixia District Jinan, Jinan, 250062, Shandong, People's Republic of China
| | - Zhongjun Du
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong Academy of Medical Sciences, No 18877 Jingshi Road, Lixia District Jinan, Jinan, 250062, Shandong, People's Republic of China.
| | - Hua Shao
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong Academy of Medical Sciences, No 18877 Jingshi Road, Lixia District Jinan, Jinan, 250062, Shandong, People's Republic of China.
| |
Collapse
|
33
|
Tsuboi R, Sasaki JI, Kitagawa H, Yoshimoto I, Takeshige F, Imazato S. Development of a novel dental resin cement incorporating FGF-2-loaded polymer particles with the ability to promote tissue regeneration. Dent Mater 2018; 34:641-648. [DOI: 10.1016/j.dental.2018.01.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 01/10/2018] [Accepted: 01/10/2018] [Indexed: 11/16/2022]
|
34
|
Tan JL, Lau SN, Leaw B, Nguyen HPT, Salamonsen LA, Saad MI, Chan ST, Zhu D, Krause M, Kim C, Sievert W, Wallace EM, Lim R. Amnion Epithelial Cell-Derived Exosomes Restrict Lung Injury and Enhance Endogenous Lung Repair. Stem Cells Transl Med 2018; 7:180-196. [PMID: 29297621 PMCID: PMC5788876 DOI: 10.1002/sctm.17-0185] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 10/20/2017] [Indexed: 02/06/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is characterized by chronic inflammation, severe scarring, and stem cell senescence. Stem cell‐based therapies modulate inflammatory and fibrogenic pathways by release of soluble factors. Stem cell‐derived extracellular vesicles should be explored as a potential therapy for IPF. Human amnion epithelial cell‐derived exosomes (hAEC Exo) were isolated and compared against human lung fibroblasts exosomes. hAEC Exo were assessed as a potential therapy for lung fibrosis. Exosomes were isolated and evaluated for their protein and miRNA cargo. Direct effects of hAEC Exo on immune cell function, including macrophage polarization, phagocytosis, neutrophil myeloperoxidase activity and T cell proliferation and uptake, were measured. Their impact on immune response, histological outcomes, and bronchioalveolar stem cell (BASC) response was assessed in vivo following bleomycin challenge in young and aged mice. hAEC Exo carry protein cargo enriched for MAPK signaling pathways, apoptotic and developmental biology pathways and miRNA enriched for PI3K‐Akt, Ras, Hippo, TGFβ, and focal adhesion pathways. hAEC Exo polarized and increased macrophage phagocytosis, reduced neutrophil myeloperoxidases, and suppressed T cell proliferation directly. Intranasal instillation of 10 μg hAEC Exo 1 day following bleomycin challenge reduced lung inflammation, while treatment at day 7 improved tissue‐to‐airspace ratio and reduced fibrosis. Administration of hAEC Exo coincided with the proliferation of BASC. These effects were reproducible in bleomycin‐challenged aged mice. The paracrine effects of hAECs can be largely attributed to their exosomes and exploitation of hAEC Exo as a therapy for IPF should be explored further. Stem Cells Translational Medicine2018;7:180–196
Collapse
Affiliation(s)
- Jean L Tan
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Sin N Lau
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Bryan Leaw
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Hong P T Nguyen
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Lois A Salamonsen
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Mohamed I Saad
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Siow T Chan
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Dandan Zhu
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Mirja Krause
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Carla Kim
- Stem Cell Program, Children's Hospital Boston, Boston, Massachusetts, USA
| | - William Sievert
- Centre for Inflammatory Disease, Monash University, Clayton, Victoria, Australia
| | - Euan M Wallace
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Rebecca Lim
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
35
|
Li F, Han F, Li H, Zhang J, Qiao X, Shi J, Yang L, Dong J, Luo M, Wei J, Liu X. Human placental mesenchymal stem cells of fetal origins-alleviated inflammation and fibrosis by attenuating MyD88 signaling in bleomycin-induced pulmonary fibrosis mice. Mol Immunol 2017; 90:11-21. [PMID: 28662409 DOI: 10.1016/j.molimm.2017.06.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 05/16/2017] [Accepted: 06/18/2017] [Indexed: 01/20/2023]
Abstract
Pulmonary fibrosis is a progressive lung disease that its pathogenic mechanism currently is incompletely understood. Toll-like receptor (TLR) signaling has recently been identified as a regulator of inflammation and pulmonary fibrosis. In addition, mesenchymal stem cells (MSCs) of different origins offer a great promise in treatment of idiopathic pulmonary fibrosis (IPF). However mechanisms of pathogenic roles of TLR signaling and therapeutic effects of MSCs in the IPF remain elusive. In present study, the involvement of TLR signaling and the therapeutic role of MSCs were interrogated in MyD88-deficient mice using human placental MSCs of fetal origins (hfPMSCs). The results showed an alleviated pulmonary inflammation and fibrosis in myeloid differentiation primary response gene 88 (MyD88)-deficient mice treated with bleomycin (BLM), accompanied with a reduced TGF-β signaling and production of pro-fibrotic cytokines, including TNF-α, IL-1β. An exposure of HLF1 lung fibroblasts, A549 epithelial cells and RAW264.7 macrophages to BLM led an increased expression of key components of MyD88 and TGF-β signaling cascades. Of interest, enforced expression and inhibition of MyD88 protein resulted in an enhanced and a reduced TGF-β signaling in above cells in the presence of BLM, respectively. However, the addition of TGF-β1 showed a marginally inhibitory effect on MyD88 signaling in these cells in the absence of BLM. Importantly, the administration of hfPMSCs could significantly attenuate BLM-induced pulmonary fibrosis in mice, along with a reduced hydroxyproline (HYP) deposition, MyD88 and TGF-β signaling activation, and production of pro-fibrotic cytokines. These results may suggest an importance of MyD88/TGF-β signaling axis in the tissue homeostasis and functional integrity of lung in response to injury, which may offer a novel target for treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Feng Li
- Center of Laboratory Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China; Department of Laboratory Medicine, College of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Fei Han
- Department of Laboratory Medicine, College of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Hui Li
- Department of Laboratory Medicine, College of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Jia Zhang
- Department of Laboratory Medicine, College of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Xia Qiao
- Center of Laboratory Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Juan Shi
- Center of Laboratory Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Li Yang
- The Center of Experimental Animals, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Jianda Dong
- Department of Pathology, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Meihui Luo
- Center of Laboratory Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Jun Wei
- Center of Laboratory Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China; Department of Laboratory Medicine, College of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, China; Institute of Human Stem Cell Research, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Xiaoming Liu
- College of Life Science, Ningxia University, Yinchuan, Ningxia 750021, China.
| |
Collapse
|