1
|
Yan D, Fu Y, Mei J, Wang J, Jiamaliding A, Liu Y, Zhao Z, Ma Q. The Synthetic LXR Agonist GW3965 Attenuates Phosgene-Induced Acute Lung Injury Through the Modulation of PI3K/Akt and NF-κB Signalling Pathways. Basic Clin Pharmacol Toxicol 2025; 136:e70045. [PMID: 40312968 PMCID: PMC12046208 DOI: 10.1111/bcpt.70045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 05/03/2025]
Abstract
Phosgene, used in large-scale industrial production, is highly toxic and irritant. Accidental exposure can lead to varying degrees of injuries, with severe cases potentially resulting in acute lung injury or acute respiratory distress syndrome, resulting in a mortality rate of 40%-50%. The indirect damages of phosgene (inflammation and oxidative stress) are considered important factors in phosgene-induced acute lung injury (P-ALI). The expression of Liver X Receptor α (LXRα) significantly reduces during periods of inflammation. LXRs were initially discovered to be highly expressed in the liver, whereas LXRs are expressed in immune cells and vascular endothelial cells, playing a significant role in anti-inflammatory and antioxidant responses. LXRα may have pulmonary protection in P-ALI. However, evidence to verify this association is still lacking. In this study, rats were divided into six groups to explore the potential role of LXRα in P-ALI. This study found that GW3965 effectively activated LXRα, upregulated its expression and downregulated the levels of proinflammatory cytokines, inhibited malondialdehyde activity while enhancing superoxide dismutase activity, suppressed apoptosis and ameliorated the pathological processes of P-ALI, ultimately exerting pulmonary protection in P-ALI. Further validation revealed that the pulmonary protective effect of LXRα may be associated with the PI3K/Akt and NF-kB signalling pathways.
Collapse
Affiliation(s)
- Dong Yan
- Emergency DepartmentPeking University Third HospitalBeijingChina
- Key Laboratory of Molecular Cardiovascular SciencesMinistry of EducationBeijingChina
| | - Yuanwei Fu
- Emergency DepartmentPeking University Third HospitalBeijingChina
- Key Laboratory of Molecular Cardiovascular SciencesMinistry of EducationBeijingChina
| | - Jie Mei
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology of ChinaBeijingChina
| | - Junhong Wang
- Emergency DepartmentPeking University Third HospitalBeijingChina
- Key Laboratory of Molecular Cardiovascular SciencesMinistry of EducationBeijingChina
| | - Ayijiang Jiamaliding
- Emergency DepartmentPeking University Third HospitalBeijingChina
- Key Laboratory of Molecular Cardiovascular SciencesMinistry of EducationBeijingChina
| | - Ying Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology of ChinaBeijingChina
| | - Zanmei Zhao
- Department of Occupational DiseasePeking University Third HospitalBeijingChina
| | - Qingbian Ma
- Emergency DepartmentPeking University Third HospitalBeijingChina
- Key Laboratory of Molecular Cardiovascular SciencesMinistry of EducationBeijingChina
| |
Collapse
|
2
|
Mokra D, Porvaznik I, Mokry J. N-Acetylcysteine in the Treatment of Acute Lung Injury: Perspectives and Limitations. Int J Mol Sci 2025; 26:2657. [PMID: 40141299 PMCID: PMC11942046 DOI: 10.3390/ijms26062657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/03/2025] [Accepted: 03/13/2025] [Indexed: 03/28/2025] Open
Abstract
N-acetylcysteine (NAC) can take part in the treatment of chronic respiratory diseases because of the potent mucolytic, antioxidant, and anti-inflammatory effects of NAC. However, less is known about its use in the treatment of acute lung injury. Nowadays, an increasing number of studies indicates that early administration of NAC may reduce markers of oxidative stress and alleviate inflammation in animal models of acute lung injury (ALI) and in patients suffering from distinct forms of acute respiratory distress syndrome (ARDS) or pulmonary infections including community-acquired pneumonia or Coronavirus Disease (COVID)-19. Besides low costs, easy accessibility, low toxicity, and rare side effects, NAC can also be combined with other drugs. This article provides a review of knowledge on the mechanisms of inflammation and oxidative stress in various forms of ALI/ARDS and critically discusses experience with the use of NAC in these disorders. For preparing the review, articles published in the English language from the PubMed database were used.
Collapse
Affiliation(s)
- Daniela Mokra
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, SK-03601 Martin, Slovakia
| | - Igor Porvaznik
- Department of Laboratory Medicine, Faculty of Health Sciences, Catholic University in Ružomberok, SK-03401 Ružomberok, Slovakia;
| | - Juraj Mokry
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, SK-03601 Martin, Slovakia;
| |
Collapse
|
3
|
Zhang S, Gong Y, Cen J, Pei Z, Wei A, Luo Z, Zhao X, Mao G, Zhang X, Xu Q, Sun M, Meng WQ. Dichloroacetate protects against sulfur mustard-induced neurotoxicity via the PDK/PDH axis and Akt/Nrf2 pathway. Free Radic Biol Med 2025; 229:154-167. [PMID: 39827920 DOI: 10.1016/j.freeradbiomed.2025.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/08/2025] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
Sulfur mustard (SM) is a major toxic chemical threat to public health. Mitochondrial dysfunction is considered a critical contributing factor to mustard agent-induced damage. The brain is vulnerable to SM, which can lead to various types of acute and long-term psychiatric distress after exposure, but the neurotoxic mechanisms of SM, let alone drug candidates for antidotes, are seldom studied. In this study, we employed a library of mitochondrion-targeted compounds to screen for antidotes for SM-induced neurotoxicity. Our data revealed that dichloroacetate (DCA) noticeably reduced neuronal death and helped maintain the normal morphology and function of mitochondria both in vitro and in vivo. Further experiments revealed that DCA protected neurons by inhibiting pyruvate dehydrogenase kinase (PDK), thus upregulating pyruvate dehydrogenase (PDH) and activating the protein kinase B (Akt)/Nuclear factor-erythroid 2-related factor 2 (Nrf2) pathway. Overall, our results indicated that DCA could protect against SM-induced neurotoxicity through the PDK/PDH axis and the Akt/Nrf2 pathway, suggesting that DCA is a potentially novel antidote for SM poisoning.
Collapse
Affiliation(s)
- Shanshan Zhang
- Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Yin Gong
- Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China; College of Life Sciences, Jiangxi Normal University, Nanchang, 330022, China
| | - Jinfeng Cen
- Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Zhipeng Pei
- Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Anying Wei
- Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China; College of Life Sciences, Jiangxi Normal University, Nanchang, 330022, China
| | - Zimeng Luo
- Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Xuan Zhao
- Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Guanchao Mao
- Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Xinkang Zhang
- Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Qingqiang Xu
- Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Mingxue Sun
- Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Wen-Qi Meng
- Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
4
|
Sun M, Wei J, Su Y, He Y, Ge L, Shen Y, Xu B, Bi Y, Zheng C. Red Blood Cell-Hitchhiking Delivery of Simvastatin to Relieve Acute Respiratory Distress Syndrome. Int J Nanomedicine 2024; 19:5317-5333. [PMID: 38859953 PMCID: PMC11164090 DOI: 10.2147/ijn.s460890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/22/2024] [Indexed: 06/12/2024] Open
Abstract
Purpose The purpose of this study is to address the high mortality and poor prognosis associated with Acute Respiratory Distress Syndrome (ARDS), conditions characterized by acute and progressive respiratory failure. The primary goal was to prolong drug circulation time, increase drug accumulation in the lungs, and minimize drug-related side effects. Methods Simvastatin (SIM) was used as the model drug in this study. Employing a red blood cell surface-loaded nanoparticle drug delivery technique, pH-responsive cationic nanoparticles loaded with SIM were non-covalently adsorbed onto the surface of red blood cells (RBC), creating a novel drug delivery system (RBC@SIM-PEI-PPNPs). Results The RBC@SIM-PEI-PPNPs delivery system effectively extended the drug's circulation time, providing an extended therapeutic window. Additionally, this method substantially improved the targeted accumulation of SIM in lung tissues, thereby enhancing the drug's efficacy in treating ARDS and impeding its progression to ARDS. Crucially, the system showed a reduced risk of adverse drug reactions. Conclusion RBC@SIM-PEI-PPNPs demonstrates promise in ARDS and ARDS treatment. This innovative approach successfully overcomes the limitations associated with SIM's poor solubility and low bioavailability, resulting in improved therapeutic outcomes and fewer drug-related side effects. This research holds significant clinical implications and highlights its potential for broader application in drug delivery and lung disease treatment.
Collapse
Affiliation(s)
- Mengjuan Sun
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Jun Wei
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Yanhui Su
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Yangjingwan He
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Liang Ge
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Yan Shen
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Bohui Xu
- School of Pharmacy, Nantong University, Nantong, People’s Republic of China
| | - Yanlong Bi
- Pediatric Intensive Care Unit, Children’s Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Chunli Zheng
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, People’s Republic of China
| |
Collapse
|
5
|
Mistry S, Scott TE, Jugg B, Perrott R, Saffaran S, Bates DG. An in-silico porcine model of phosgene-induced lung injury predicts clinically relevant benefits from application of continuous positive airway pressure up to 8 h post exposure. Toxicol Lett 2024; 391:45-54. [PMID: 38092154 DOI: 10.1016/j.toxlet.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/28/2023] [Accepted: 12/08/2023] [Indexed: 01/14/2024]
Abstract
We present the first computational model of the pathophysiological consequences of phosgene-induced lung injury in porcine subjects. Data from experiments previously performed in several cohorts of large healthy juvenile female pigs (111 data points from 37 subjects), including individual arterial blood gas readings, respiratory rate and heart rate, were used to develop the computational model. Close matches are observed between model outputs (PaO2 and PaCO2) and the experimental data, for both terminally anaesthetised and conscious subjects. The model was applied to investigate the effectiveness of continuous positive airway pressure (CPAP) as a pre-hospital treatment method when treatment is initiated at different time points post exposure. The model predicts that clinically relevant benefits are obtained when 10 cmH2O CPAP is initiated within approximately 8 h after exposure. Supplying low-flow oxygen (40%) rather than medical air produced larger clinical benefits than applying higher CPAP pressure levels. This new model can be used as a tool for conducting investigations into ventilation strategies and pharmaceutical treatments for chemical lung injury of diverse aetiology, and for helping to refine and reduce the use of animals in future experimental studies.
Collapse
Affiliation(s)
- Sonal Mistry
- School of Engineering, University of Warwick, Coventry CV4 7AL, UK
| | - Timothy E Scott
- Royal Centre for Defence Medicine, ICT Centre, Birmingham B15 2SQ, UK
| | - Bronwen Jugg
- CBR Division, Dstl Porton Down, Salisbury SP4 OJQ, UK
| | - Rosi Perrott
- CBR Division, Dstl Porton Down, Salisbury SP4 OJQ, UK
| | - Sina Saffaran
- School of Engineering, University of Warwick, Coventry CV4 7AL, UK
| | - Declan G Bates
- School of Engineering, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|
6
|
Paleiron N, Karkowski L, Bronstein AR, Amabile JC, Delarbre D, Mullot JU, Cazoulat A, Entine F, le Floch Brocquevieille H, Dorandeu F. [The role of the pulmonologist in an armed conflict]. Rev Mal Respir 2023; 40:156-168. [PMID: 36690507 DOI: 10.1016/j.rmr.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/20/2022] [Indexed: 01/22/2023]
Abstract
INTRODUCTION Recent news points to the eventuality of an armed conflict on the national territory. STATE OF THE ART In this situation, pulmonologists will in all likelihood have a major role to assume in caring for the injured, especially insofar as chest damage is a major cause of patient death. PERSPECTIVES The main injuries that pulmonologists may be called upon to treat stem not only from explosions, but also from chemical, biological and nuclear hazards. In this article, relevant organizational and pedagogical aspects are addressed. Since exhaustiveness on this subject is unattainable, we are proposing training on specific subjects for interested practitioners. CONCLUSION The resilience of the French health system in a situation of armed conflict depends on the active participation of all concerned parties. With this in mind, it is of prime importance that the pneumological community be sensitized to the potential predictable severity of war-related injuries.
Collapse
Affiliation(s)
- N Paleiron
- HIA Sainte-Anne, service de pneumologie, Toulon, France.
| | - L Karkowski
- HIA Sainte-Anne, service de médecine interne-maladies infectieuses, Toulon, France
| | - A-R Bronstein
- HIA Sainte-Anne, service de pneumologie, Toulon, France
| | - J-C Amabile
- Service de protection radiologique des armées, Paris, France
| | - D Delarbre
- HIA Sainte-Anne, service de médecine interne-maladies infectieuses, Toulon, France
| | - J-U Mullot
- Service de santé des armées, Paris, France
| | - A Cazoulat
- Service de santé des armées, service médical de la base opérationnelle de l'Île Longue, Lanveoc Poulmic, France
| | - F Entine
- Service de santé des armées, service médical de la base opérationnelle de l'Île Longue, Lanveoc Poulmic, France
| | | | - F Dorandeu
- Service de santé des armées, Institut de recherche biomédicale des armées, Brétigny, France
| |
Collapse
|
7
|
Cao C, Zhang L, Shen J. Phosgene-Induced acute lung injury: Approaches for mechanism-based treatment strategies. Front Immunol 2022; 13:917395. [PMID: 35983054 PMCID: PMC9378823 DOI: 10.3389/fimmu.2022.917395] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
Phosgene (COCl2) gas is a chemical intermediate of high-volume production with numerous industrial applications worldwide. Due to its high toxicity, accidental exposure to phosgene leads to various chemical injuries, primarily resulting in chemical-induced lung injury due to inhalation. Initially, the illness is mild and presents as coughing, chest tightness, and wheezing; however, within a few hours, symptoms progress to chronic respiratory depression, refractory pulmonary edema, dyspnea, and hypoxemia, which may contribute to acute respiratory distress syndrome or even death in severe cases. Despite rapid advances in medicine, effective treatments for phosgene-inhaled poisoning are lacking. Elucidating the pathophysiology and pathogenesis of acute inhalation toxicity caused by phosgene is necessary for the development of appropriate therapeutics. In this review, we discuss extant literature on relevant mechanisms and therapeutic strategies to highlight novel ideas for the treatment of phosgene-induced acute lung injury.
Collapse
Affiliation(s)
- Chao Cao
- Research Center for Chemical Injury, Emergency and Critical Medicine of Fudan University, Shanghai, China
- Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health Commission, Shanghai, China
- Center of Emergency and Critical Medicine, Jinshan Hospital of Fudan University, Shanghai, China
- Training Center of Acute Poisoning Treatment Technology of Fudan University Shanghai Medical College, Shanghai, China
| | - Lin Zhang
- Research Center for Chemical Injury, Emergency and Critical Medicine of Fudan University, Shanghai, China
- Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health Commission, Shanghai, China
- Center of Emergency and Critical Medicine, Jinshan Hospital of Fudan University, Shanghai, China
| | - Jie Shen
- Research Center for Chemical Injury, Emergency and Critical Medicine of Fudan University, Shanghai, China
- Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health Commission, Shanghai, China
- Center of Emergency and Critical Medicine, Jinshan Hospital of Fudan University, Shanghai, China
- Training Center of Acute Poisoning Treatment Technology of Fudan University Shanghai Medical College, Shanghai, China
| |
Collapse
|
8
|
Wingfors H, Mörén L, Wiktelius D, Magnusson R. The potential of thermal desorption-GC/MS-based analytical methods for the unambiguous identification and quantification of perfluoroisobutene and carbonyl fluoride in air samples. J Sep Sci 2022; 45:2968-2976. [PMID: 35686932 PMCID: PMC9545249 DOI: 10.1002/jssc.202200251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/17/2022] [Accepted: 06/06/2022] [Indexed: 11/25/2022]
Abstract
The reactive gases perfluoroisobutene and carbonyl fluoride are highly toxic and difficult to analyze in air. For this paper, the available sampling and analysis methods involving gas chromatography/mass spectrometry were investigated for their potential to give unambiguous identification and quantification of perfluoroisobutene and carbonyl fluoride, for which no such methods exist. Although high concentrations of perfluoroisobutene could be analyzed directly by manual split injection, sorbent sampling followed by thermal desorption GC/MS allowed lower concentrations to be analyzed. However, a significant degradation of perfluoroisobutene observed after thermal desorption analysis inspired the use of derivatization of perfluoroisobutene with 3,4‐dimercaptotoluene. The use of Tenax TA sorbent tubes spiked with 3,4‐dimercaptotoluene and trimethylamine in a molar ratio of 1:8 proved successful for the quantification of a unique perfluoroisobutene derivative, and the method was validated for atmospheres in the range of 0.13–152 ppb with a relative standard deviation of less than 20% and an accuracy of 90%. Although carbonyl fluoride was less stable than perfluoroisobutene, direct analysis was possible at high concentrations but the response was not linear. The 3,4‐dimercaptotoluene derivatization method developed was also applicable for quantification of carbonyl fluoride atmospheres.
Collapse
Affiliation(s)
- Håkan Wingfors
- Swedish Defence Research Agency, FOI CBRN Defence and Security, Umeå, Sweden
| | - Lina Mörén
- Swedish Defence Research Agency, FOI CBRN Defence and Security, Umeå, Sweden
| | - Daniel Wiktelius
- Swedish Defence Research Agency, FOI CBRN Defence and Security, Umeå, Sweden
| | - Roger Magnusson
- Swedish Defence Research Agency, FOI CBRN Defence and Security, Umeå, Sweden
| |
Collapse
|
9
|
Kim S, Kim SY, Rho SJ, Kim SH, Song SH, Kim CH, Lee H, Kim SK. Biocompatible N-acetyl-nanoconstruct alleviates lipopolysaccharide-induced acute lung injury in vivo. Sci Rep 2021; 11:22662. [PMID: 34811378 PMCID: PMC8608841 DOI: 10.1038/s41598-021-01624-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 11/01/2021] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress plays important roles in inflammatory responses during acute lung injury (ALI). Recently, nanoconstruct (Nano)-based drug-delivery systems have shown promise in many models of inflammation. In this study, we evaluated the anti-inflammatory effects of N-acetylcysteine (NAC) loaded in a biocompatible Nano using a rat model of ALI. We synthesized a Nano with a good NAC-releasing capacity using porous silica Nano, which was used to produce Nano/NAC complexes. For in vivo experiments, Sprague–Dawley rats were intraperitoneally administered NAC or Nano/NAC 30 min after intratracheal instillation of lipopolysaccharide. After 6 h, bronchoalveolar lavage fluids and lung tissues were collected. The anti-oxidative effect of the Nano/NAC complex was confirmed by demonstrating reduced levels of reactive oxygen species after treatment with the Nano/NAC in vitro. In vivo experiments also showed that the Nano/NAC treatment may protect against LPS‐induced ALI thorough anti‐oxidative and anti‐inflammatory effects, which may be attributed to the inactivation of the NF‐κB and MAPK pathways. In addition, the effects of Nano/NAC treatment were shown to be superior to those of NAC alone. We suggest the therapeutic potential of Nano/NAC treatment as an anti‐inflammatory agent against ALI. Furthermore, our study can provide basic data for developing nanotechnology-based pharmacotherapeutics for ALI.
Collapse
Affiliation(s)
- Seongchan Kim
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Shin Young Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, 93 Jungbu-daero, Paldal-gu, Suwon, Republic of Korea
| | - Seung Joon Rho
- Research Institute of Medical Science, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Suwon, Republic of Korea
| | - Seung Hoon Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, 93 Jungbu-daero, Paldal-gu, Suwon, Republic of Korea
| | - So Hyang Song
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, 93 Jungbu-daero, Paldal-gu, Suwon, Republic of Korea
| | - Chi Hong Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, 93 Jungbu-daero, Paldal-gu, Suwon, Republic of Korea
| | - Hyojin Lee
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea.
| | - Sung Kyoung Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, 93 Jungbu-daero, Paldal-gu, Suwon, Republic of Korea.
| |
Collapse
|
10
|
Mechanism of Phosgene-Induced Acute Lung Injury and Treatment Strategy. Int J Mol Sci 2021; 22:ijms222010933. [PMID: 34681591 PMCID: PMC8535529 DOI: 10.3390/ijms222010933] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/24/2021] [Accepted: 09/29/2021] [Indexed: 12/29/2022] Open
Abstract
Phosgene (COCl2) was once used as a classic suffocation poison and currently plays an essential role in industrial production. Due to its high toxicity, the problem of poisoning caused by leakage during production, storage, and use cannot be ignored. Phosgene mainly acts on the lungs, causing long-lasting respiratory depression, refractory pulmonary edema, and other related lung injuries, which may cause acute respiratory distress syndrome or even death in severe cases. Due to the high mortality, poor prognosis, and frequent sequelae, targeted therapies for phosgene exposure are needed. However, there is currently no specific antidote for phosgene poisoning. This paper reviews the literature on the mechanism and treatment strategies to explore new ideas for the treatment of phosgene poisoning.
Collapse
|
11
|
Lott C, Truhlář A, Alfonzo A, Barelli A, González-Salvado V, Hinkelbein J, Nolan JP, Paal P, Perkins GD, Thies KC, Yeung J, Zideman DA, Soar J. [Cardiac arrest under special circumstances]. Notf Rett Med 2021; 24:447-523. [PMID: 34127910 PMCID: PMC8190767 DOI: 10.1007/s10049-021-00891-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2021] [Indexed: 01/10/2023]
Abstract
These guidelines of the European Resuscitation Council (ERC) Cardiac Arrest under Special Circumstances are based on the 2020 International Consensus on Cardiopulmonary Resuscitation Science with Treatment Recommendations. This section provides guidelines on the modifications required for basic and advanced life support for the prevention and treatment of cardiac arrest under special circumstances; in particular, specific causes (hypoxia, trauma, anaphylaxis, sepsis, hypo-/hyperkalaemia and other electrolyte disorders, hypothermia, avalanche, hyperthermia and malignant hyperthermia, pulmonary embolism, coronary thrombosis, cardiac tamponade, tension pneumothorax, toxic agents), specific settings (operating room, cardiac surgery, cardiac catheterization laboratory, dialysis unit, dental clinics, transportation [in-flight, cruise ships], sport, drowning, mass casualty incidents), and specific patient groups (asthma and chronic obstructive pulmonary disease, neurological disease, morbid obesity, pregnancy).
Collapse
Affiliation(s)
- Carsten Lott
- Department of Anesthesiology, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Deutschland
| | - Anatolij Truhlář
- Emergency Medical Services of the Hradec Králové Region, Hradec Králové, Tschechien
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Hradec Králové, Charles University in Prague, Hradec Králové, Tschechien
| | - Anette Alfonzo
- Departments of Renal and Internal Medicine, Victoria Hospital, Kirkcaldy, Fife Großbritannien
| | - Alessandro Barelli
- Anaesthesiology and Intensive Care, Teaching and research Unit, Emergency Territorial Agency ARES 118, Catholic University School of Medicine, Rom, Italien
| | - Violeta González-Salvado
- Cardiology Department, University Clinical Hospital of Santiago de Compostela, Institute of Health Research of Santiago de Compostela (IDIS), Biomedical Research Networking Centres on Cardiovascular Disease (CIBER-CV), A Coruña, Spanien
| | - Jochen Hinkelbein
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital of Cologne, Köln, Deutschland
| | - Jerry P. Nolan
- Resuscitation Medicine, Warwick Medical School, University of Warwick, CV4 7AL Coventry, Großbritannien
- Anaesthesia and Intensive Care Medicine, Royal United Hospital, BA1 3NG Bath, Großbritannien
| | - Peter Paal
- Department of Anaesthesiology and Intensive Care Medicine, Hospitallers Brothers Hospital, Paracelsus Medical University, Salzburg, Österreich
| | - Gavin D. Perkins
- Warwick Clinical Trials Unit, Warwick Medical School, University of Warwick, Coventry, Großbritannien
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, Großbritannien
| | - Karl-Christian Thies
- Dep. of Anesthesiology and Critical Care, Bethel Evangelical Hospital, University Medical Center OLW, Bielefeld University, Bielefeld, Deutschland
| | - Joyce Yeung
- Warwick Clinical Trials Unit, Warwick Medical School, University of Warwick, Coventry, Großbritannien
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, Großbritannien
| | | | - Jasmeet Soar
- Southmead Hospital, North Bristol NHS Trust, Bristol, Großbritannien
| |
Collapse
|
12
|
Neumeister SM, Gray JP. The Strategic National Stockpile: identification, support, and acquisition of medical countermeasures for CBRN incidents. Toxicol Mech Methods 2021; 31:308-321. [PMID: 33208007 PMCID: PMC10754051 DOI: 10.1080/15376516.2020.1853294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/14/2020] [Accepted: 11/15/2020] [Indexed: 01/09/2023]
Abstract
The Strategic National Stockpile (SNS) serves as a repository of materiel, including medical countermeasures (MCMs), that would be used to support the national health security response to a chemical, biological, radiological, or nuclear (CBRN) incident, either natural or terrorism-related. To support and advance the SNS, the National Institutes of Health (NIH) manages targeted investigatory research portfolios, such as Countermeasures Against Chemical Terrorism (CounterACT) for chemical agents, that coordinate projects covering basic research, drug discovery, and preclinical studies. Project BioShield, managed by the Biomedical Advanced Research and Development Agency (BARDA), guides and supports academia and industry with potential MCMs through the Food & Drug Administration's approval process and ultimately supports the acquisition of successful products into the SNS. Public health emergencies such as the COVID-19 pandemic and the ever-increasing number of MCMs in the SNS present logistical and financial challenges to its maintenance. While MCMs for biological agents have been readily adopted, those for chemical agents have required sustained investments. This paper reviews the methods by which MCMs are identified and supported for inclusion in the SNS, the current status of MCMs for CBRN threats, and challenges with SNS maintenance as well as identifies persistent obstacles for MCM development and acquisition, particularly for ones focused on chemical weapons.
Collapse
Affiliation(s)
- Shondra M. Neumeister
- Biotechnology Program, Information Technology Systems Department, University of Maryland Global Campus, Adelphi, MD, U.S
- Southeastern Technical Solutions, Inc., Port St. Lucie, FL, U.S
| | - Joshua P. Gray
- Biotechnology Program, Information Technology Systems Department, University of Maryland Global Campus, Adelphi, MD, U.S
- Department of Science, U.S. Coast Guard Academy, New London, CT, U.S
| |
Collapse
|
13
|
Watkins R, Perrott R, Bate S, Auton P, Watts S, Stoll A, Rutter S, Jugg B. Development of chlorine-induced lung injury in the anesthetized, spontaneously breathing pig. Toxicol Mech Methods 2021; 31:257-271. [PMID: 33929275 DOI: 10.1080/15376516.2021.1906808] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Chlorine is a toxic industrial chemical produced in vast quantities globally, being used in a range of applications such as water purification, sanitation and industrial processes. Its use and transport cannot be restricted; exposure may occur following accidental or deliberate releases. The OPCW recently verified the use of chlorine gas against civilians in both Syria and Iraq. Chlorine inhalation produces damage to the lungs, which may result in the development of an acute lung injury, respiratory failure and death. Treatment remains an intractable problem. Our objective was to develop a clinically relevant pre-clinical model of a moderate to severe lung injury in the pig. This would enable future assessment of therapeutic drugs or interventions to be implemented in the pre-hospital phase after exposure. Due to the irritant nature of chlorine, a number of strategies for exposing terminally anesthetized pigs needed to be investigated. A number of challenges (inconsistent acute changes in respiratory parameters; early deaths), resulted in a moderate to severe lung injury not being achieved. However, most pigs developed a mild lung injury by 12 h. Further investigation is required to optimize the model and enable the assessment of therapeutic candidates. In this paper we describe the exposure strategies used and discuss the challenges encountered in establishing a model of chlorine-induced lung injury. A key aim is to assist researchers navigating the challenges of producing a clinically relevant model of higher dose chlorine exposure where animal welfare is protected by use of terminal anesthesia.
Collapse
Affiliation(s)
| | | | - Simon Bate
- CBR Division, Dstl Porton Down, Salisbury, UK
| | | | - Sarah Watts
- CBR Division, Dstl Porton Down, Salisbury, UK
| | | | | | | |
Collapse
|
14
|
Lott C, Truhlář A, Alfonzo A, Barelli A, González-Salvado V, Hinkelbein J, Nolan JP, Paal P, Perkins GD, Thies KC, Yeung J, Zideman DA, Soar J. European Resuscitation Council Guidelines 2021: Cardiac arrest in special circumstances. Resuscitation 2021; 161:152-219. [PMID: 33773826 DOI: 10.1016/j.resuscitation.2021.02.011] [Citation(s) in RCA: 392] [Impact Index Per Article: 98.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
These European Resuscitation Council (ERC) Cardiac Arrest in Special Circumstances guidelines are based on the 2020 International Consensus on Cardiopulmonary Resuscitation Science with Treatment Recommendations. This section provides guidelines on the modifications required to basic and advanced life support for the prevention and treatment of cardiac arrest in special circumstances; specifically special causes (hypoxia, trauma, anaphylaxis, sepsis, hypo/hyperkalaemia and other electrolyte disorders, hypothermia, avalanche, hyperthermia and malignant hyperthermia, pulmonary embolism, coronary thrombosis, cardiac tamponade, tension pneumothorax, toxic agents), special settings (operating room, cardiac surgery, catheter laboratory, dialysis unit, dental clinics, transportation (in-flight, cruise ships), sport, drowning, mass casualty incidents), and special patient groups (asthma and COPD, neurological disease, obesity, pregnancy).
Collapse
Affiliation(s)
- Carsten Lott
- Department of Anesthesiology, University Medical Center, Johannes Gutenberg-University Mainz, Germany.
| | - Anatolij Truhlář
- Emergency Medical Services of the Hradec Králové Region, Hradec Králové, Czech Republic; Department of Anaesthesiology and Intensive Care Medicine, Charles University in Prague, University Hospital Hradec Králové, Hradec Králové, Czech Republic
| | - Annette Alfonzo
- Departments of Renal and Internal Medicine, Victoria Hospital, Kirkcaldy, Fife, UK
| | - Alessandro Barelli
- Anaesthesiology and Intensive Care, Catholic University School of Medicine, Teaching and Research Unit, Emergency Territorial Agency ARES 118, Rome, Italy
| | - Violeta González-Salvado
- Cardiology Department, University Clinical Hospital of Santiago de Compostela, Institute of Health Research of Santiago de Compostela (IDIS), Biomedical Research Networking Centres on Cardiovascular Disease (CIBER-CV), A Coruña, Spain
| | - Jochen Hinkelbein
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital of Cologne, Cologne, Germany
| | - Jerry P Nolan
- Resuscitation Medicine, University of Warwick, Warwick Medical School, Coventry, CV4 7AL, UK; Anaesthesia and Intensive Care Medicine, Royal United Hospital, Bath, BA1 3NG, UK
| | - Peter Paal
- Department of Anaesthesiology and Intensive Care Medicine, Hospitallers Brothers Hospital, Paracelsus Medical University, Salzburg, Austria
| | - Gavin D Perkins
- Warwick Clinical Trials Unit, Warwick Medical School, University of Warwick, Coventry, UK; University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Karl-Christian Thies
- Department of Anesthesiology, Critical Care and Emergency Medicine, Bethel Medical Centre, OWL University Hospitals, Bielefeld University, Germany
| | - Joyce Yeung
- Warwick Clinical Trials Unit, Warwick Medical School, University of Warwick, Coventry, UK; University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | | | - Jasmeet Soar
- Southmead Hospital, North Bristol NHS Trust, Bristol, UK
| | | |
Collapse
|
15
|
Pauluhn J. Phosgene inhalation toxicity: Update on mechanisms and mechanism-based treatment strategies. Toxicology 2021; 450:152682. [PMID: 33484734 DOI: 10.1016/j.tox.2021.152682] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 11/28/2022]
Abstract
Phosgene (carbonyl dichloride) gas is an indispensable high-production-volume chemical intermediate used worldwide in numerous industrial processes. Published evidence of human exposures due to accidents and warfare (World War I) has been reported; however, these reports often lack specificity because of the uncharacterized exposure intensities of phosgene and/or related irritants. These may include liquid or solid congeners of phosgene, including di- and triphosgene and/or the respiratory tract irritant chlorine which are often collectively reported under the umbrella of phosgene exposure without any appreciation of their differences in causing acute lung injury (ALI). Among these irritants, phosgene gas is somewhat unique because of its poor water solubility. This prevents any appreciable retention of the gas in the upper airways and related trigeminal sensations of irritation. By contrast, in the pulmonary compartment, amphiphilic surfactant might scavenge this lipophilic gas. The interaction of phosgene and the surfactant may affect basic physiological functions controlled by Starling's and Laplace's laws, which can be followed by cardiogenic pulmonary edema. The phenotypic manifestations are dependent on the concentration × exposure duration (C × t); the higher the C × t is, the less time that is required for edema to appear. It is hypothesized that this type of edema is caused by cardiovascular and colloid osmotic imbalances to initial neurogenic events but not because of the injury itself. Thus, hemodynamic etiologies appear to cause imbalances in extravasated fluids and solute accumulation in the pulmonary interstitium, which is not drained away by the lymphatic channels of the lung. The most salient associated findings are hemoconcentration and hypoproteinemia. The involved intertwined pathophysiological processes coordinating pulmonary ventilation and cardiopulmonary perfusion under such conditions are complex. Pulmonary arterial catheter measurements on phosgene-exposed dogs provided evidence of 'cor pulmonale', a form of acute right heart failure produced by a sudden increase in resistance to blood flow in the pulmonary circulation about 20 h postexposure. The objective of this review is to critically analyze evidence from experimental inhalation studies in rats and dogs, and evidence from accidental human exposures to better understand the primary and secondary events causing cardiopulmonary dysfunction and an ensuing life-threatening lung edema. Mechanism-based diagnostic and therapeutic approaches are also considered for this form of cardiogenic edema.
Collapse
Affiliation(s)
- Juergen Pauluhn
- Covestro Deutschland AG, Global Phosgene Steering Group, 51365, Leverkusen, Germany; Hanover Medical School, Hanover, Germany; Bayer HealthCare, Wuppertal, Germany(1).
| |
Collapse
|
16
|
Shahbaz M, Kamran SH, Anwar R. Amelioration of Bleomycin and Methotrexate-Induced Pulmonary Toxicity by Serratiopeptidase and Fisetin. Nutr Cancer 2020; 73:2774-2784. [PMID: 33353415 DOI: 10.1080/01635581.2020.1860242] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Pulmonary toxicity by anticancer drugs often leads to discontinuation of therapy or switching the therapy to alternative drugs. In the present study, serratiopeptidase (SPTD) and fisetin (FST) were evaluated as chemoprotectant to counteract the pulmonary toxicity induced by BLM and MTX. Single dose of MTX (20 mg/kg) by intraperitoneal and BLM (5 mg/kg) by intra-tracheal route was administered on 7th day of study. SPTD (20 mg/kg), FST (25 mg/kg), and NAC (250 mg/kg) and combinations of SPTD + NAC, SPTD + FST, and FST + NAC were administered through oral gavage for 14 days. SPTD and FST showed significant (p < 0.05) effect in MTX-induced lung toxicity by increasing reduced glutathione (GSH) and decreasing malondialdehyde (MDA), hydroxyproline (HXP), and collagen. SPTD and NAC showed significant (p < 0.05) effect in BLM-induced pulmonary toxicity by increasing GSH and decreasing MDA, HXP, and collagen whereas FST was not much effective. In combination study, SPTD + NAC combination showed significant (p < 0.05) effect in BLM- and MTX- induced lung injury whereas other combinations did not prove to be highly effective. SPTD can be recommended along with BLM and MTX in chemotherapy protocol alone and in combination with NAC.
Collapse
Affiliation(s)
- Muhammad Shahbaz
- Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan.,Department of Pharmacy, Shaukat Khanum Cancer and Research Center, Lahore, Pakistan
| | - Sairah Hafeez Kamran
- Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan.,Institute of Pharmacy, Faculty of Pharmaceutical and Allied Health Sciences, Lahore College for Women University, Lahore, Pakistan
| | - Rukhsana Anwar
- Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
17
|
He DK, Xu N, Shao YR, Shen J. NLRP3 gene silencing ameliorates phosgene-induced acute lung injury in rats by inhibiting NLRP3 inflammasome and proinflammatory factors, but not anti-inflammatory factors. J Toxicol Sci 2020; 45:625-637. [PMID: 33012731 DOI: 10.2131/jts.45.625] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
NOD-like receptor protein 3 (NLRP3) is involved in acute lung injury (ALI), but its exact role in phosgene-induced ALI is not clearly understood. The aim of the study is to explore the potential therapeutic effect of NLRP3 inflammasome modulation in the management of phosgene-induced ALI. ALI was induced in rats by phosgene exposure at 8.33 g/m3 for 5 min, 30 hr before intravenous injection of adenovirus-NLRP3 shRNA (Ad/NLRP3-shRNA). The histological changes in the lung were evaluated. Bronchoalveolar lavage fluid (BALF) neutrophils were counted (smear), and protein content was measured using the BCA assay. The wet/dry ratio of lung tissue (W/D) was measured. TUNEL staining for DNA damage was used to indirectly assess pyroptosis. NLRP3 inflammasome was assessed by immunohistochemistry, RT-PCR, western blotting. Cytokines were measured by ELISA. Histological analyses revealed reduced severity in phosgene-induced ALI with Ad/NLRP3-shRNA pretreatment. TUNEL staining indicated decreased pyroptosis in Psg-Ad/NLRP3-shRNA rats. Decreased mRNA and protein levels of NLRP3 and caspase-1 (all P < 0.05), but not ASC (P > 0.05), were found in Psg-Ad/NLRP3-shRNA rats. Immunohistochemistry revealed that Ad/NLRP3-shRNA pretreatment inhibited NLRP3 inflammasome activation. Reduced level of pro-inflammatory interleukin (IL)-1β, IL-18, IL-33, and tumor necrosis factor (TNF)-α (all P < 0.05), but not of anti-inflammatory IL-4 and IL-10 (all P > 0.05), were found in serum and BALF from Ad/NLRP3-shRNA rats. NLRP3 gene silencing exerts beneficial effects on phosgene-induced lung injury by inhibiting NLRP3 inflammasome activation and pro-inflammatory factors, but not anti-inflammatory factors. Disruption of NLRP3 inflammasome activation might be used as a therapeutic modality for the treatment of phosgene-induced ALI.
Collapse
Affiliation(s)
- Dai-Kun He
- Center of Emergency & Intensive Care Unit, Medical Center of Chemical Injury and Medical Research Centre for Chemical Injury, Emergency and Critical Care, Jinshan Hospital, Fudan University, China
| | - Ning Xu
- Center of Emergency & Intensive Care Unit, Medical Center of Chemical Injury and Medical Research Centre for Chemical Injury, Emergency and Critical Care, Jinshan Hospital, Fudan University, China
| | - Yi-Ru Shao
- Center of Emergency & Intensive Care Unit, Medical Center of Chemical Injury and Medical Research Centre for Chemical Injury, Emergency and Critical Care, Jinshan Hospital, Fudan University, China
| | - Jie Shen
- Center of Emergency & Intensive Care Unit, Medical Center of Chemical Injury and Medical Research Centre for Chemical Injury, Emergency and Critical Care, Jinshan Hospital, Fudan University, China
| |
Collapse
|
18
|
Pesonen M, Vähäkangas K. Chloropicrin-induced toxicity in the respiratory system. Toxicol Lett 2020; 323:10-18. [DOI: 10.1016/j.toxlet.2020.01.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/17/2020] [Accepted: 01/23/2020] [Indexed: 12/11/2022]
|
19
|
Song Q, Lin L, Chen L, Cheng L, Zhong W. Co-administration of N-acetylcysteine and dexmedetomidine plays a synergistic effect on protection of LPS-induced acute lung injury via correcting Th1/Th2/Th17 cytokines imbalance. Clin Exp Pharmacol Physiol 2019; 47:294-301. [PMID: 31631367 DOI: 10.1111/1440-1681.13196] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/12/2019] [Accepted: 10/17/2019] [Indexed: 01/10/2023]
Abstract
Recently both N-acetylcysteine (NAC) and Dexmedetomidine (DEX) have shown emerging roles in protection of acute lung injury (ALI). However, how their protective roles work and whether they can provide synergistic effects in ALI remain unknown. Here we explored it from the hot research viewpoint of Th1/Th2/Th17 cytokines balance. Lipopolysaccharide (LPS)-induced ALI was established and treated with NAC and/or DEX. Mice were divided into Sham group, ALI group, NAC group, DEX group and NAC+DEX group. Mice were sampled at 6, 12 and 24 hours after the model construction. Histopathology, wet to dry ratio and myeloperoxidase (MPO) activity were assessed in lung tissues. Protein concentration and cell count were assessed in bronchoalveolar lavage fluid (BALF). Th1/Th2/Th17 cytokines were assessed in plasma, BALF and lung homogenate. ALI-induced lung morphological damage, edema and aberrant MPO activity can be attenuated by NAC or DEX and mostly by NAC+DEX. NAC with DEX significantly reduced ALI-induced protein leakage and cell infiltration in BALF. Th1/Th2/Th17 cytokines imbalance aggravated with ALI progression. NAC, DEX and especially NAC+DEX can effectively correct these unbalanced cytokines. Galectin-9 and Tim-3 were transcriptionally up-regulated in ALI. Combination of NAC with DEX obtained a maximum effect on decreasing Galectin-9/Tim-3 expression. In summary, Th1/Th2/Th17 cytokines imbalance is newly found to participate in LPS-induced ALI. NAC or DEX administration can attenuate ALI by rebalancing Th1/Th2/Th17 cytokines. Their protective roles can be enhanced when co-administration, because DEX may relieve the Galectin-9/Tim-3 axis-mediated immune suppression.
Collapse
Affiliation(s)
- Qitai Song
- Department of Emergency, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Li Lin
- Department of Emergency, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lin Chen
- College of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Lingxia Cheng
- College of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Wu Zhong
- Department of Emergency, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
20
|
Mishra R, Geiling J. Chemical Agents in Disaster: Care and Management in the Intensive Care Unit. Crit Care Clin 2019; 35:633-645. [PMID: 31445610 DOI: 10.1016/j.ccc.2019.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Chemical agents of warfare are divided into lung agents, blood agents, vesicants, and nerve agents. Intensivists must familiarize themselves with the clinical presentation and management principles in the event of a chemical attack. Key principles in management include aggressive supportive care and early administration of specific antidotes, if available. Management includes proper personal protection for critical care providers. Patients may make complete recovery with aggressive supportive care, even if they appear to have a poor prognosis. Hospitals must have an emergency response disaster plan in place to deal with all potential causes of disasters, including illnesses resulting from chemical agents.
Collapse
Affiliation(s)
- Rashmi Mishra
- The Lung Center, Penn Highlands Healthcare, 100 Hospital Avenue, DuBois, PA 15801, USA.
| | - James Geiling
- Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA; Medical Service, VA Medical Center, White River Junction, VT 05009, USA
| |
Collapse
|
21
|
Qiao J, Chen L, Huang X, Guo F. Effects of nebulized
N
‐acetylcystein on the expression of HMGB1 and RAGE in rats with hyperoxia‐induced lung injury. J Cell Physiol 2018; 234:10547-10553. [PMID: 30480814 DOI: 10.1002/jcp.27724] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 10/18/2018] [Indexed: 01/08/2023]
Affiliation(s)
- Junying Qiao
- Department of Pediatrics Third Affiliated Hospital of Zhengzhou University Zhengzhou China
| | - Lixia Chen
- Department of Pediatrics Third Affiliated Hospital of Zhengzhou University Zhengzhou China
| | - Xianjie Huang
- Department of Pediatrics Third Affiliated Hospital of Zhengzhou University Zhengzhou China
| | - Feifei Guo
- Department of Pediatrics Third Affiliated Hospital of Zhengzhou University Zhengzhou China
| |
Collapse
|