1
|
Yahyazadeh A, Gur FM. Promising the potential of β-caryophyllene on mercury chloride-induced alteration in cerebellum and spinal cord of young Wistar albino rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:10175-10189. [PMID: 38995373 PMCID: PMC11582159 DOI: 10.1007/s00210-024-03268-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/29/2024] [Indexed: 07/13/2024]
Abstract
Mercury chloride (ME) is a chemical pollutant commonly found in the environment, which can contribute to undesirable health consequence worldwide. The current study investigated the detrimental impact of ME on the cerebellum and spinal cord tissues in 6-8-week-old female rats. We also evaluated the neuroprotective efficacy of β-caryophyllene (BC) against spinal and cerebellar changes caused by ME. Thirty-five young Wistar albino rats were randomly chosen and assigned into five groups: control (CO), olive oil (OI), ME, BC, ME + BC. All samples were analysed by means of unbiased stereological, biochemical, immunohistochemical, and histopathological methods. Our biochemical findings showed that SOD level was significantly increased in the ME group compared to the CO group (p < 0.05). We additionally detected a statistically significant decrease in the number of cerebellar Purkinje cells and granular cells, as well as spinal motor neuron in the ME group compared to the CO group (p < 0.05). In the ME + BC group, the number of Purkinje cells, granular cells, and spinal motor neurons was significantly higher compared to the ME group (p < 0.05). Decreased SOD activity in the ME + BC group was also detected than the ME group (p < 0.05). Immunohistochemical (the tumour necrosis factor-alpha (TNF-α)) and histopathological examinations also exhibited crucial information in each of the group. Taken together, ME exposure was associated with neurotoxicity in the cerebellum and spinal cord tissues. BC treatment also mitigated ME-induced neurological alteration, which may imply its potential therapeutic benefits.
Collapse
Affiliation(s)
- Ahmad Yahyazadeh
- Department of Histology and Embryology, Faculty of Medicine, Karabuk University, Karabuk, Turkey.
| | - Fatih Mehmet Gur
- Department of Histology and Embryology, Faculty of Medicine, Nigde Ömer Halisdemir University, Nigde, Turkey
| |
Collapse
|
2
|
Hazelhoff MH, Bulacio RP, Torres AM. Renal tubular response to titanium dioxide nanoparticles exposure. Drug Chem Toxicol 2023; 46:1130-1137. [PMID: 36254786 DOI: 10.1080/01480545.2022.2134889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 11/03/2022]
Abstract
Titatinum dioxide nanoparticles (TiO2-NPs) are frequently used in several areas. Titanium alloys are employed in orthopedic and odontological surgery (such as hip, knee, and teeth implants). To evaluate the potential acute toxic effects of titanium pieces implantations and in other sources that allow the systemic delivery of titanium, parenteral routes of TiO2-NPs administration should be taken into account. The present study evaluated the impact of subcutaneous administration of TiO2-NPs on renal function and structure in rats. Animals were exposed to a dose of 50 mg/kg b.w., s.c. and sacrificed after 48 h. Titanium levels were detected in urine (135 ± 6 ηg/mL) and in renal tissue (502 ± 40 ηg/g) employing inductively coupled plasma mass spectrometry. An increase in alkaline phosphatase activity, total protein levels, and glucose concentrations was observed in urine from treated rats suggesting injury in proximal tubule cells. In parallel, histopathological studies showed tubular dilatation and cellular desquamation in these nephron segments. In summary, this study demonstrates that subcutaneous administration of TiO2-NPs causes acute nephrotoxicity evidenced by functional and histological alterations in proximal tubule cells. This fact deserves to be mainly considered when humans are exposed directly or indirectly to TiO2-NPs sources that cause the systemic delivery of titanium.
Collapse
Affiliation(s)
- María H Hazelhoff
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, CONICET, Rosario, Argentina
| | - Romina P Bulacio
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, CONICET, Rosario, Argentina
| | - Adriana M Torres
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, CONICET, Rosario, Argentina
| |
Collapse
|
3
|
Chu JH, Li LX, Gao PC, Chen XW, Wang ZY, Fan RF. Mercuric chloride induces sequential activation of ferroptosis and necroptosis in chicken embryo kidney cells by triggering ferritinophagy. Free Radic Biol Med 2022; 188:35-44. [PMID: 35675856 DOI: 10.1016/j.freeradbiomed.2022.06.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/01/2022] [Accepted: 06/01/2022] [Indexed: 12/22/2022]
Abstract
Mercuric chloride (HgCl2) is an environmental pollutant with serious nephrotoxic effects, but the underlying mechanism of HgCl2 nephrotoxicity is not well understood. Ferroptosis and necroptosis are two programmed cell death (PCD) modalities that have been reported singly in heavy metal-induced kidney injury. However, the interaction between ferroptosis and necroptosis in HgCl2-induced kidney injury is unclear. Here, we established a model of HgCl2-exposed chicken embryo kidney (CEK) cells to dissect the progresses and mechanisms of these two PCDs. We found that ferroptosis was initially activated in CEK cells after HgCl2 exposure for 12 h, and necroptosis was activated subsequently at 24 h. Importantly, further study indicated that the shift from ferroptosis to necroptosis was driven by ROS, which was produced by iron-dependent Fenton reaction, and the iron chelation by DFO prevented the sequential activation of both ferroptosis and necroptosis. To investigate the source of intracellular iron, the regulation of iron homeostasis was first explored and demonstrated a tendency for intracellular iron overload in CEK cells. Interestingly, the cellular ferritin, a free iron depository, decreased in a time-dependent manner. Further studies revealed that the degradation of ferritin was attributed to the activation of selective cargo receptor nuclear receptor coactivator 4 (NCOA4)-mediated ferritinophagy, and the inhibition of ferritinophagy by CQ prevented the HgCl2-induced cell death. In conclusion, our study demonstrated that HgCl2 released excess free iron via ferritinophagy, led to a sustained accumulation of ROS and ultimately activated ferroptosis and necroptosis sequentially. These findings provide a new understanding for the nephrotoxic mechanism of HgCl2.
Collapse
Affiliation(s)
- Jia-Hong Chu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China
| | - Lan-Xin Li
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China
| | - Pei-Chao Gao
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China
| | - Xue-Wei Chen
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China
| | - Zhen-Yong Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China
| | - Rui-Feng Fan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China.
| |
Collapse
|
4
|
Ma K, Bai Y, Li J, Ren Z, Li J, Zhang J, Shan A. Lactobacillus rhamnosus GG ameliorates deoxynivalenol-induced kidney oxidative damage and mitochondrial injury in weaned piglets. Food Funct 2022; 13:3905-3916. [PMID: 35285834 DOI: 10.1039/d2fo00185c] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Deoxynivalenol (DON) is a common mycotoxin that pollutes food crops and adversely affects the health of animals, even humans. Lactobacillus rhamnosus GG (LGG) can alleviate intestinal injury, and anti-inflammatory and antioxidant effects. However, the potential of LGG in alleviating kidney injury induced by DON in piglets remains to be studied. The objective of this study was to investigate the adverse effect of DON on kidney injury and the protective ability of LGG. A total of twenty-seven weaned piglets were divided into three groups: CON group, DON group (3.11 mg kg-1 feed) and LGG + DON group (LGG powder 1 g kg-1 + DON 3.15 mg kg-1 feed). DON increased the MDA content, and decreased antioxidant enzyme activity (GSH-Px) and total antioxidant capacity (P < 0.05). Meanwhile, DON activated the Nrf2 antioxidant pathway. However, LGG supplementation alleviated the damage of DON to the kidney antioxidant system of piglets. Notably, DON significantly reduced the Sirt3 expression (P < 0.05), which was alleviated by LGG addition. The expression of mitochondrial biogenesis related factors such as VDAC1 and Cyt C was up-regulated by DON (P < 0.05), and LGG could improve mitochondrial ultrastructural abnormalities and mitochondrial dysfunction. In addition, LGG mitigated DON-induced mitochondrial fusion inhibition, and prevented DON-mediated mitochondrial autophagy. In conclusion, LGG play a protective role in DON-induced kidney toxicity, and dietary intervention may be a strategy to reduce mycotoxins.
Collapse
Affiliation(s)
- Kaidi Ma
- Institute of Animal Nutrition, Northeast Agricultural University, No. 600, Changjiang Road, Harbin 150030, P. R. China.
| | - Yongsong Bai
- Institute of Animal Nutrition, Northeast Agricultural University, No. 600, Changjiang Road, Harbin 150030, P. R. China.
| | - Jibo Li
- Institute of Animal Nutrition, Northeast Agricultural University, No. 600, Changjiang Road, Harbin 150030, P. R. China.
| | - Zhongshuai Ren
- College of Animal Science, Jilin University, Changchun 130062, P. R. China.
| | - Jianping Li
- Institute of Animal Nutrition, Northeast Agricultural University, No. 600, Changjiang Road, Harbin 150030, P. R. China.
| | - Jing Zhang
- College of Animal Science, Jilin University, Changchun 130062, P. R. China.
| | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, No. 600, Changjiang Road, Harbin 150030, P. R. China.
| |
Collapse
|
5
|
Tartu S, Blévin P, Bustamante P, Angelier F, Bech C, Bustnes JO, Chierici M, Fransson A, Gabrielsen GW, Goutte A, Moe B, Sauser C, Sire J, Barbraud C, Chastel O. A U-Turn for Mercury Concentrations over 20 Years: How Do Environmental Conditions Affect Exposure in Arctic Seabirds? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:2443-2454. [PMID: 35112833 DOI: 10.1021/acs.est.1c07633] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Mercury (Hg) is highly toxic in its methylated form (MeHg), and global change is likely to modify its bioavailability in the environment. However, it is unclear how top predators will be impacted. We studied blood Hg concentrations of chick-rearing black-legged kittiwakes Rissa tridactyla (2000-2019) in Svalbard (Norway). From 2000 to 2019, Hg concentrations followed a U-shaped trend. The trophic level, inferred from nitrogen stable isotopes, and chlorophyll a (Chl a) concentrations better predicted Hg concentrations, with positive and U-shaped associations, respectively. As strong indicators of primary productivity, Chl a concentrations can influence production of upper trophic levels and, thus, fish community assemblage. In the early 2000s, the high Hg concentrations were likely related to a higher proportion of Arctic prey in kittiwake's diet. The gradual input of Atlantic prey in kittiwake diet could have resulted in a decrease in Hg concentrations until 2013. Then, a new shift in the prey community, added to the shrinking sea ice-associated release of MeHg in the ocean, could explain the increasing trend of Hg observed since 2014. The present monitoring provides critical insights about the exposure of a toxic contaminant in Arctic wildlife, and the reported increase since 2014 raises concern for Arctic seabirds.
Collapse
Affiliation(s)
- Sabrina Tartu
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS, La Rochelle Université, Villiers-en-Bois 79360, France
| | - Pierre Blévin
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS, La Rochelle Université, Villiers-en-Bois 79360, France
- Fram Centre, Akvaplan-niva AS, Tromsø 9296, Norway
| | - Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS, La Rochelle Université, La Rochelle 17000, France
- Institut Universitaire de France (IUF), Paris 75005, France
| | - Frédéric Angelier
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS, La Rochelle Université, Villiers-en-Bois 79360, France
| | - Claus Bech
- Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway
| | - Jan Ove Bustnes
- Fram Centre, Norwegian Institute for Nature Research (NINA), Tromsø 9296, Norway
| | - Melissa Chierici
- Fram Centre, Institute of Marine Research (IMR), Tromsø 9296, Norway
| | | | | | - Aurélie Goutte
- EPHE, PSL Research University, UMR 7619 METIS, Paris F-75005, France
| | - Børge Moe
- Norwegian Institute for Nature Research (NINA), Trondheim 7034, Norway
| | - Christophe Sauser
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS, La Rochelle Université, Villiers-en-Bois 79360, France
| | - Julien Sire
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS, La Rochelle Université, Villiers-en-Bois 79360, France
| | - Christophe Barbraud
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS, La Rochelle Université, Villiers-en-Bois 79360, France
| | - Olivier Chastel
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS, La Rochelle Université, Villiers-en-Bois 79360, France
| |
Collapse
|
6
|
Geraniol Averts Methotrexate-Induced Acute Kidney Injury via Keap1/Nrf2/HO-1 and MAPK/NF-κB Pathways. Curr Issues Mol Biol 2021; 43:1741-1755. [PMID: 34889889 PMCID: PMC8929074 DOI: 10.3390/cimb43030123] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 01/05/2023] Open
Abstract
Objectives: Geraniol, a natural monoterpene, is an essential oil component of many plants. Methotrexate is an anti-metabolite drug, used for cancer and autoimmune conditions; however, clinical uses of methotrexate are limited by its concomitant renal injury. This study investigated the efficacy of geraniol to prevent methotrexate-induced acute kidney injury and via scrutinizing the Keap1/Nrf2/HO-1, P38MAPK/NF-κB and Bax/Bcl2/caspase-3 and -9 pathways. Methods: Male Wister rats were allocated into five groups: control, geraniol (orally), methotrexate (IP), methotrexate and geraniol (100 and 200 mg/kg). Results: Geraniol effectively reduced the serum levels of creatinine, urea and Kim-1 with an increase in the serum level of albumin when compared to the methotrexate-treated group. Geraniol reduced Keap1, escalated Nrf2 and HO-1, enhanced the antioxidant parameters GSH, SOD, CAT and GSHPx and reduced MDA and NO. Geraniol decreased renal P38 MAPK and NF-κB and ameliorated the inflammatory mediators TNF-α, IL-1β, IL-6 and IL-10. Geraniol negatively regulated the apoptotic mediators Bax and caspase-3 and -9 and increased Bcl2. All the biochemical findings were supported by the alleviation of histopathological changes in kidney tissues. Conclusion: The current findings support that co-administration of geraniol with methotrexate may attenuate methotrexate-induced acute kidney injury.
Collapse
|
7
|
Schereider IRG, Vassallo DV, Simões MR. Chronic mercury exposure induces oxidative stress in female rats by endothelial nitric oxide synthase uncoupling and cyclooxygenase-2 activation, without affecting oestrogen receptor function. Basic Clin Pharmacol Toxicol 2021; 129:470-485. [PMID: 34491608 DOI: 10.1111/bcpt.13655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 08/04/2021] [Accepted: 09/02/2021] [Indexed: 11/29/2022]
Abstract
Mercury has been shown to be a significant health risk factor and is positively associated with cardiovascular diseases. Evidence reveals that men are more likely to develop cardiovascular diseases than women during reproductive age. However, the effects of mercury in females remain poorly investigated, despite the finding that female hormones demonstrate a cardioprotective role. In the present study, we evaluated whether chronic mercury chloride exposure could alter blood pressure and vascular function of the female rat aorta. Ten-week-old female Wistar rats were divided into two groups: control (vehicle) and mercury treated (first dose of 4.6 μg/kg, subsequent daily doses of 0.07 μg/kg), im. Mercury treatment did not modify systolic blood pressure (SBP) but increased vascular reactivity due to the reduction of nitric oxide bioavailability associated with the increase in reactive oxygen species from endothelial nitric oxide synthase (eNOS) uncoupling. Furthermore, increased participation of the cyclooxygenase-2 pathway occurred through an imbalance in thromboxane 2 and prostacyclin 2. However, the oestrogen signalling pathway was not altered in either group. These results demonstrated that chronic exposure to mercury in females induced endothelial dysfunction and, consequently, increased aortic vascular reactivity, causing vascular damage to the female rat aorta and representing a risk of cardiovascular diseases.
Collapse
Affiliation(s)
| | - Dalton Valentim Vassallo
- Department of Physiological Sciences, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil.,Health Science Center of Vitória, School of Sciences of Santa Casa de Misericórdia de Vitória - EMESCAM, Vitória, Espírito Santo, Brazil
| | - Maylla Ronacher Simões
- Department of Physiological Sciences, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| |
Collapse
|
8
|
Ismail OI, El-Meligy MMS. Could Vitamin C Protect Against Mercuric Chloride Induced Lung Toxicity In The Offspring Rat: A Histological And Immunohistochemical Study. Ultrastruct Pathol 2021; 45:197-211. [PMID: 34315326 DOI: 10.1080/01913123.2021.1954118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Mercury (Hg) is one of the most toxic heavy metals and widely utilized in various industries. Hg exposure causes serious health impacts through unfavorable pathological and biochemical effects. We aimed to assess the effect of mercuric chloride (HgCl2) prenatal exposure on the lung development and probable prophylactic effect of vitamin C. The 30 pregnant rats were used in this work and divided randomly into 3 equal groups: Group Ӏ given distilled water, Group ӀӀ given HgCl2 at dose of 4 mg/ BW/day and Group ӀӀӀ given HgCl2 and Vitamin C at dose of 200 mg/kg BW/day. The pups of each group at birth were collected, counted and weighted then lung specimens were extracted, weighted, anaesthetized and processed for the light, electron microscopic and immunohistochemical studies. Also, morphometric studies were performed. We found that prenatal HgCl2 exposure caused collapse of alveoli, thick interalveolar septa, degenerated type Ӏ and type Ӏ pneumocytes, extensive extravasation of RBCs, extensive collagen fibers deposition, positive iNOS immunoreaction and significant decrease in the body and lung weights. Vitamin C concomitant administration partially reversed HgCl2 induced lung degeneration. We concluded that prenatal HgCl2 exposure caused lung damage and vitamin C had protective effects against HgCl2 indued pulmonary toxicity.
Collapse
Affiliation(s)
- Omnia I Ismail
- Lecturer of Human Anatomy and Embryology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Manal M S El-Meligy
- Human Anatomy and Embryology, Faculty of Medicine, Suez University, Suez, Egypt
| |
Collapse
|
9
|
Campagno RV, Nosetto EC, Brandoni A, Torres AM. Hepatic and renal expression of Oatp1 in obstructive uropathy. First detection of Oatp1 in urine, a potential biomarker. Clin Exp Pharmacol Physiol 2021; 48:987-995. [PMID: 33738813 DOI: 10.1111/1440-1681.13499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 11/29/2022]
Abstract
Obstructive renal diseases affect renal function and kidney integrity. Nevertheless, little is known about its systemic or extra-renal effects. The organic anion transporting polypeptide 1 (Oatp1) is a carrier expressed in liver and kidneys. In this study, the hepatic and renal expression of Oatp1 was evaluated in rats with obstructive nephropathy. Moreover, the urinary excretion of Oatp1 (Oatp1u ) was evaluated as a potential biomarker for this pathology. Male Wistar rats with bilateral ureteral obstruction for 5 hours (BUO5), 24 hours (BUO24) or sham operated were used. After 24 hours of ureteral releasing, liver and kidney functional parameters, histopathology, Oatp1 tissular expression and Oatp1u were evaluated. For Oatp1u evaluation two groups were added; BUO1 and BUO2 (1 and 2 hours of ureteral obstruction, respectively). Both liver and kidney functional parameters and histopathological studies showed alterations in BUO5 and BUO24. In hepatic homogenates, Oatp1 significantly decreased in BUO groups and in total liver membranes no modifications were observed. In renal homogenates, Oatp1 significantly decreased in BUO groups, but in apical kidney membranes, its expression was increased. Oatp1u was only detected in BUO groups, even in those (BUO1, BUO2) in which no alterations in the traditional parameters of renal function were observed. Modulations in liver and renal expression of Oatp1 could be an organism strategy to attenuate the effects of the disease and an attempt to maintain the complex organ cross-talk between liver and kidneys. Oatp1u could be a new, early and specific biomarker of obstructive nephropathy.
Collapse
Affiliation(s)
- Romina V Campagno
- Área Farmacología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, CONICET, Rosario, Argentina
| | - Evangelina C Nosetto
- Área Farmacología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, CONICET, Rosario, Argentina
| | - Anabel Brandoni
- Área Farmacología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, CONICET, Rosario, Argentina
| | - Adriana M Torres
- Área Farmacología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, CONICET, Rosario, Argentina
| |
Collapse
|
10
|
Hazelhoff MH, Bulacio RP, Torres AM. Trimetazidine Protects from Mercury-Induced Kidney Injury. Pharmacology 2021; 106:332-340. [PMID: 33849026 DOI: 10.1159/000514843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 01/27/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION The presence of mercury in the environment is a worldwide concern. Inorganic mercury is present in industrial materials, is employed in medical devices, is widely used in batteries, is a component of fluorescent light bulbs, and it has been associated with human poisoning in gold mining areas. The nephrotoxicity induced by inorganic mercury is a relevant health problem mainly in developing countries. The primary mechanism of mercury toxicity is oxidative stress. Trimetazidine (TMZ) is an anti-ischemic drug, which inhibits cellular oxidative stress, eliminates oxygen-free radicals, and improves lipid metabolism. The aim of this study was to evaluate whether the administration of TMZ protects against mercuric chloride (HgCl2) kidney damage. METHODS Adult male Wistar rats received only HgCl2 (4 mg/kg bw, sc) (Hg group, n = 5) or TMZ (3 mg/kg bw, ip) 30 min before HgCl2 administration (4 mg/kg bw, sc) (TMZHg group, n = 7). Simultaneously, a control group of rats (n = 4) was studied. After 4 days of HgCl2 injection, urinary flow, urea and creatinine (Cr) plasma levels, Cr clearance, urinary glucose, and sodium-dicarboxylate cotransporter 1 (NaDC1) in urine were determined. Lipid peroxidation (MDA) and glutathione (GSH) levels were measured in kidney homogenates. RESULTS Rats only treated with HgCl2 showed an increase in urea and Cr plasma levels, urinary flow, fractional excretion of water, glucosuria, and NaDC1 urinary excretion as compared with the control group and a decrease in Cr clearance. TMZHg group showed a decrease in urea and Cr plasma levels, urinary flow, fractional excretion of water, glucosuria, NaDC1 urinary excretion, and an increase in Cr clearance when compared to the Hg group. Moreover, MDA and GSH levels observed in Hg groups were decreased and increased, respectively, by TMZ pretreatment. CONCLUSION TMZ exerted a renoprotective action against HgCl2-induced renal injury, which might be mediated by the reduction of oxidative stress. Considering the absence of toxicity of TMZ, its clinical application against oxidative damage due to HgCl2-induced renal injury should be considered. The fact that TMZ is commercially available should simplify and accelerate the translation of the present data "from bench to bedside." In this context, TMZ become an interesting new example of drug repurposing.
Collapse
Affiliation(s)
- María Herminia Hazelhoff
- Pharmacology, Faculty of Biochemical and Pharmaceutical Sciences. National University of Rosario, CONICET, Rosario, Argentina
| | - Romina Paula Bulacio
- Pharmacology, Faculty of Biochemical and Pharmaceutical Sciences. National University of Rosario, CONICET, Rosario, Argentina
| | - Adriana Monica Torres
- Pharmacology, Faculty of Biochemical and Pharmaceutical Sciences. National University of Rosario, CONICET, Rosario, Argentina
| |
Collapse
|
11
|
Hazelhoff MH, Torres AM. Effect of erythropoietin on mercury-induced nephrotoxicity: Role of membrane transporters. Hum Exp Toxicol 2021; 40:515-525. [PMID: 32909846 DOI: 10.1177/0960327120958109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Mercury is a widespread pollutant. Mercuric ions uptake into tubular cells is supported by the Organic anion transporter 1 (Oat1) and 3 (Oat3) and its elimination into urine is through the Multidrug resistance-associated protein 2 (Mrp2). We investigated the effect of recombinant human erythropoietin (Epo) on renal function and on renal expression of Oat1, Oat3, and Mrp2 in a model of mercuric chloride (HgCl2)-induced renal damage. Four experimental groups of adult male Wistar rats were used: Control, Epo, HgCl2, and Epo + HgCl2. Epo (3000 IU/kg, b.w., i.p.) was administered 24 h before HgCl2 (4 mg/kg, b.w., i.p.). Experiments were performed 18 h after the HgCl2 dose. Parameters of renal function and structure were evaluated. The protein expression of Oat1, Oat3 and Mrp2 in renal tissue was assessed by immunoblotting techniques. Mercury levels were determined by cold vapor atomic absorption spectrometry. Pretreatment with Epo ameliorated the HgCl2-induced tubular injury as assessed by histopathology and urinary biomarkers. Immunoblotting showed that pretreatment with Epo regulated the renal expression of mercury transporters in a way to decrease mercury content in the kidney. Epo pretreatment ameliorates HgCl2-induced renal tubular injury by modulation of mercury transporters expression in the kidneys.
Collapse
Affiliation(s)
- M H Hazelhoff
- Área Farmacología, Facultad de Ciencias Bioquímicas y Farmacéuticas, 63029Universidad Nacional de Rosario, CONICET, Rosario, Argentina
| | - A M Torres
- Área Farmacología, Facultad de Ciencias Bioquímicas y Farmacéuticas, 63029Universidad Nacional de Rosario, CONICET, Rosario, Argentina
| |
Collapse
|
12
|
Ma HY, Chen S, Du Y. Estrogen and estrogen receptors in kidney diseases. Ren Fail 2021; 43:619-642. [PMID: 33784950 PMCID: PMC8018493 DOI: 10.1080/0886022x.2021.1901739] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/03/2021] [Accepted: 03/06/2021] [Indexed: 02/08/2023] Open
Abstract
Acute kidney injury (AKI) and chronic kidney disease (CKD) are posing great threats to global health within this century. Studies have suggested that estrogen and estrogen receptors (ERs) play important roles in many physiological processes in the kidney. For instance, they are crucial in maintaining mitochondrial homeostasis and modulating endothelin-1 (ET-1) system in the kidney. Estrogen takes part in the kidney repair and regeneration via its receptors. Estrogen also participates in the regulation of phosphorus homeostasis via its receptors in the proximal tubule. The ERα polymorphisms have been associated with the susceptibilities and outcomes of several renal diseases. As a consequence, the altered or dysregulated estrogen/ERs signaling pathways may contribute to a variety of kidney diseases, including various causes-induced AKI, diabetic kidney disease (DKD), lupus nephritis (LN), IgA nephropathy (IgAN), CKD complications, etc. Experimental and clinical studies have shown that targeting estrogen/ERs signaling pathways might have protective effects against certain renal disorders. However, many unsolved problems still exist in knowledge regarding the roles of estrogen and ERs in distinct kidney diseases. Further research is needed to shed light on this area and to enable the discovery of pathway-specific therapies for kidney diseases.
Collapse
Affiliation(s)
- Hao-Yang Ma
- Department of Geriatrics, Second Affiliated Hospital of Zhejiang University, Hangzhou, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Shuang Chen
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Yang Du
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
13
|
Campagno RV, Nosetto EC, Brandoni A, Torres AM. Utility of urinary organic anion transporter 5 as an early biomarker of obstructive nephropathy. Clin Exp Pharmacol Physiol 2020; 47:1674-1681. [PMID: 32497308 DOI: 10.1111/1440-1681.13360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/19/2020] [Accepted: 05/26/2020] [Indexed: 12/11/2022]
Abstract
Ureteral obstruction is a relevant cause of kidney damage. The traditional parameters used in clinical practice for the detection of renal injury are insensitive and non-specific for the diagnosis of obstructive renal disease. The organic anion transporter 5 (Oat5) is a carrier expressed exclusively in the kidney. In this study, the Oat5 urinary excretion (Oat5u ) was evaluated as a potential biomarker of obstructive nephropathy, comparing it with traditional markers of renal function and with neutrophil gelatinase-associated lipocalin in urine (NGALu ), a more recent biomarker of renal pathology. Bilateral ureteral obstruction (BUO) was induced in male Wistar rats, by complete ligation of ureters for 1 hour (BUO1), 2 hours (BUO2), 5 hours (BUO5), or 24 hours (BUO24). After 24 hours of ureteral releasing, urea and creatinine plasma concentrations, creatinine clearance, urinary total proteins, urinary glucose, and alkaline phosphatase activities in urine were evaluated. Oat5 and NGAL levels were assessed in urine samples by immunoblotting. All parameters of renal function were altered in the BUO24 and some also in BUO5, while the Oat5u increased in all of the experimental groups analyzed. After a long time of ureteral obstruction (BUO24), the urinary excretion of Oat5 markedly increased, in parallel with the alteration in the other parameters evaluated. Nevertheless, in BUO1 and BUO2, Oat5u appeared as the only parameter modified. Therefore, Oat5u could be proposed as a novel early biomarker of ureteral obstruction, with the additional potential to inform about the severity of the obstructive injury suffered by the kidney.
Collapse
Affiliation(s)
- Romina V Campagno
- Pharmacology Area, Faculty of Biochemistry and Pharmaceutical Sciences, National University of Rosario, CONICET, Rosario, Argentina
| | - Evangelina C Nosetto
- Pharmacology Area, Faculty of Biochemistry and Pharmaceutical Sciences, National University of Rosario, CONICET, Rosario, Argentina
| | - Anabel Brandoni
- Pharmacology Area, Faculty of Biochemistry and Pharmaceutical Sciences, National University of Rosario, CONICET, Rosario, Argentina
| | - Adriana M Torres
- Pharmacology Area, Faculty of Biochemistry and Pharmaceutical Sciences, National University of Rosario, CONICET, Rosario, Argentina
| |
Collapse
|
14
|
Pittman EH, D'Souza N, Mathis TN, Joshee L, Barkin JL, Bridges CC. Sex differences in renal handling of inorganic mercury in aged rats. Curr Res Toxicol 2020; 1:1-4. [PMID: 34345831 PMCID: PMC8320637 DOI: 10.1016/j.crtox.2020.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/25/2020] [Accepted: 02/27/2020] [Indexed: 12/02/2022] Open
Abstract
The sex of an individual/animal has been shown to play an important role in many biological processes. Furthermore, sex may also be a factor in the way environmental toxicants, such as heavy metals, are handled by organisms. However, the effect of sex on the handling and disposition of heavy metals, such as mercury (Hg), has not been shown. Aging has also been shown to be a factor in the accumulation of heavy metals in that older individuals tend to have higher burdens of these metals. Therefore, the purpose of the current study was to evaluate the effect of sex on the accumulation of mercury in aged animals. Aged male and female rats were injected intravenously with 0.5 μmol or 2.0 μmol·kg−1 HgCl2 (containing radioactive Hg) and organs were harvested after 24 h. In general, the renal accumulation of Hg was significantly greater in males than in females. Similarly, urinary excretion of Hg was greater in males than in females. There were no significant differences between males and females in the burden of Hg in other organs. Sex differences in the renal accumulation of Hg may be related to differences in the expression of membrane transporters involved in the uptake of mercuric species into tubular epithelial cells. The results of the current study illustrate the need to evaluate both sexes when assessing the renal effects of environmental toxicants. Renal accumulation of mercury is greater in aged male rats than aged female rats. Mercury accumulation differed among zones of the kidney. Sex did not appear to alter accumulation of mercury in other organs studied.
Collapse
Affiliation(s)
- Elizabeth H Pittman
- Department of Basic Medical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Nigel D'Souza
- Department of Basic Medical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Taylor N Mathis
- Department of Basic Medical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Lucy Joshee
- Department of Basic Medical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Jennifer L Barkin
- Department of Community Medicine, Mercer University School of Medicine, Macon, GA, USA
| | - Christy C Bridges
- Department of Basic Medical Sciences, Mercer University School of Medicine, Macon, GA, USA
| |
Collapse
|
15
|
Guo L, Song Y, Cai K, Wang L. "On-off" ratiometric fluorescent detection of Hg 2+ based on N-doped carbon dots-rhodamine B@TAPT-DHTA-COF. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 227:117703. [PMID: 31685421 DOI: 10.1016/j.saa.2019.117703] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 10/19/2019] [Accepted: 10/24/2019] [Indexed: 06/10/2023]
Abstract
Covalent-organic frameworks (COFs) are new porous crystalline materials owning outstanding stability, adsorbability and hypotoxicity. The assembly of fluorescence probes into porous COF provides a good method for ratiometric fluorescence detection avoiding the toxic effects of fluorescence probes to the samples. Herein, a two-dimensional COF (TAPT-DHTA-COF) was employed as a host to encapsulate N-doped carbon dots (NCDs) and Rhodamine B (RhB) (NCDs-RhB@COF). NCDs and RhB were uniformly assembled into the pores of TAPT-DHTA- COF based on the hydrogen bond. The as-prepared NCDs-RhB@COF nanocomposites exhibited blue emission of NCDs at 440 nm and red emission of RhB at 570 nm at excitation of 340 nm. After the addition of Hg2+, the blue emission became weaker while the red emission was enhanced due to the strong coordination between NCDs-RhB@COF and Hg2+. This "on-off" fluorescence probe was applied in detection of trace Hg2+ with linear range of 0.048-10 μM and detection limit of 15.9 nM together with appropriate selectivity, acceptable sensitivity and stability. The work shreds some light for COF as platform to construct ratiometric fluorescent sensor for industrial and biological application.
Collapse
Affiliation(s)
- Lulu Guo
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Key Laboratory of Chemical Biology, Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang, 330022, China
| | - Yonghai Song
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Key Laboratory of Chemical Biology, Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang, 330022, China
| | - Keying Cai
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Key Laboratory of Chemical Biology, Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang, 330022, China
| | - Li Wang
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Key Laboratory of Chemical Biology, Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang, 330022, China.
| |
Collapse
|
16
|
Almeer RS, Albasher G, Kassab RB, Ibrahim SR, Alotibi F, Alarifi S, Ali D, Alkahtani S, Abdel Moneim AE. Ziziphus spina-christi leaf extract attenuates mercury chloride-induced testicular dysfunction in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:3401-3412. [PMID: 31840221 DOI: 10.1007/s11356-019-07237-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 12/02/2019] [Indexed: 06/10/2023]
Abstract
Mercury (Hg) is a heavy metal toxicant, causing several adverse reactions to animals and humans including reproductive dysfunction. The potential protective role of Ziziphus spina-christi leaf extract (ZSCLE) against testicular impairments associated with mercury chloride (HgCl2) exposure in rats was investigated in the current study. Four experimental groups were employed as follows (n = 7): group I served as control, group II was gavaged with ZSCLE (300 mg/kg), group III was administered with HgCl2 (0.4 mg/kg), and group IV was preadministered with ZSCLE 1 h before HgCl2. All groups were treated daily for 28 days. The exposure to HgCl2 caused a marked increase in Hg concentration in the testicular tissue, which was accompanied with a decrease in testis index. A reproductive impairment was recorded following HgCl2 exposure as verified through the decrease in levels of testosterone, luteinizing, and follicle-stimulating hormones. HgCl2 was found to enhance the development of oxidative damage in the testicular tissue as presented by the imbalance between pro-oxidants and antioxidant molecules. In addition, excessive release of tumor necrosis factor-α and interleukin-1β was recorded in response to HgCl2 intoxication. Furthermore, a disturbance in the apoptotic proteins in favor of the pro-apoptotic proteins was also observed following HgCl2 intoxication. However, ZSCLE administration along with HgCl2 abolished significantly the molecular, biochemical, and histopathological alterations induced by HgCl2 intoxication. Our findings suggest that ZSCLE could be used to mitigate reproductive dysfunction associated with HgCl2 exposure.
Collapse
Affiliation(s)
- Rafa S Almeer
- College of Science, Department of Zoology, King Saud University, Riyadh, Saudi Arabia.
| | - Gadah Albasher
- College of Science, Department of Zoology, King Saud University, Riyadh, Saudi Arabia
| | - Rami B Kassab
- Faculty of Science, Department of Zoology and Entomology, Helwan University, Cairo, Egypt
| | - Shaimaa R Ibrahim
- Molecular Drug Evaluation Department, National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Fatimah Alotibi
- College of Science, Department of Botany and Microbiology, King Saud University, Riyadh, Saudi Arabia
| | - Saud Alarifi
- College of Science, Department of Zoology, King Saud University, Riyadh, Saudi Arabia
| | - Daoud Ali
- College of Science, Department of Zoology, King Saud University, Riyadh, Saudi Arabia
| | - Saad Alkahtani
- College of Science, Department of Zoology, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed E Abdel Moneim
- Faculty of Science, Department of Zoology and Entomology, Helwan University, Cairo, Egypt
| |
Collapse
|
17
|
Zhang C, Li H, Qin L, Ge J, Qi Z, Talukder M, Li YH, Li JL. Nuclear receptor AHR-mediated xenobiotic detoxification pathway involves in atrazine-induced nephrotoxicity in quail (Coturnix C. coturnix). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 253:889-898. [PMID: 31349198 DOI: 10.1016/j.envpol.2019.07.058] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 07/08/2019] [Accepted: 07/11/2019] [Indexed: 06/10/2023]
Abstract
Atrazine (ATR), one of the most widely used pesticides in agricultural production, are gradually concerned due to potential ecosystem and health risks. Further, the induction of ATR nephrotoxicity and detoxification response is still unknown. To evaluate ATR-induced nephrotoxicity, quails were treated with 0, 50, 250 or 500 mg/kg ATR by gavage administration for 45 days. Histopathology indicated that ATR exposure caused renal tubular epithelial cell swelling and endoplasmic reticulum degeneration, suggesting that ATR exposure causes renal impairment even renal diseases. Notably, ATR interfered cytochrome P450 system (CYP450s) homeostasis by enhancing contents or activities of CYP450s (total CYP450, Cyt b5, AH, APND, NCR and ERND) and the expression of CYP450 isoforms (CYP1A, CYP1B, CYP2C and CYP3A). ATR triggered phase II detoxifying reaction, reflected by the elevated GSH level, GST activity and the up-regulation of GST isoforms (GSTa, GSTa3 and GSTt1) and GSH synthetase (GCLC). Moreover, ABC transporters were activated to expel ATR from the body by increasing expression of MRP1 and P-GP gene. Accompanying these alterations, the nuclear receptors (AHR, CAR and PXR) were activated by ATR in a dose-dependent manner. Analysis results of present study demonstrated that the induction of phase II detoxifying enzyme system and ABC transporters could be modulated by nuclear receptors response and CYP450s disturbance in low-dose ATR-treated quail. In conclusion, all data suggested that nuclear receptors AHR-mediated detoxification pathway was involved in ATR-induced nephrotoxicity. These results provided new evidence about the nephrotoxic effects of ATR on the response of biotransformation and detoxification system.
Collapse
Affiliation(s)
- Cong Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Huixin Li
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150086, PR China
| | - Lei Qin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Laboratory Animal Centre, Qiqihar Medical University, Qiqihar, 161006, PR China
| | - Jing Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Zhang Qi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Milton Talukder
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Department of Physiology and Pharmacology, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal, 8210, Bangladesh
| | - Yan-Hua Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
18
|
Evaluation of protective efficacy of flaxseed lignan-Secoisolariciresinol diglucoside against mercuric chloride-induced nephrotoxicity in rats. Mol Biol Rep 2019; 46:6171-6179. [DOI: 10.1007/s11033-019-05052-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 08/28/2019] [Indexed: 11/25/2022]
|
19
|
Severin MJ, Campagno RV, Brandoni A, Torres AM. Time evolution of methotrexate‐induced kidney injury: A comparative study between different biomarkers of renal damage in rats. Clin Exp Pharmacol Physiol 2019; 46:828-836. [PMID: 31187885 DOI: 10.1111/1440-1681.13122] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 05/31/2019] [Accepted: 06/05/2019] [Indexed: 12/29/2022]
Affiliation(s)
- María Julia Severin
- Pharmacology Area Faculty of Biochemical and Pharmaceutical Sciences National University of Rosario CONICET Rosario Argentina
| | - Romina Valeria Campagno
- Pharmacology Area Faculty of Biochemical and Pharmaceutical Sciences National University of Rosario CONICET Rosario Argentina
| | - Anabel Brandoni
- Pharmacology Area Faculty of Biochemical and Pharmaceutical Sciences National University of Rosario CONICET Rosario Argentina
| | - Adriana Mónica Torres
- Pharmacology Area Faculty of Biochemical and Pharmaceutical Sciences National University of Rosario CONICET Rosario Argentina
| |
Collapse
|
20
|
Wang Y, Zhou S, Ma H, Shi JS, Lu YF. Investigation of the differential transport mechanism of cinnabar and mercury containing compounds. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2019; 66:83-90. [PMID: 30639899 DOI: 10.1016/j.etap.2018.12.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 12/01/2018] [Accepted: 12/24/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Cinnabar has a long history of uses in Chinese traditional medicines as an ingredient in various remedies. However, the detailed mechanism of cinnabar in medication remains unclear, and the toxicity of cinnabar has been a debate due to its containing mercury sulfide. This study was designed to investigate the differential transport mechanism of cinnabar and other Hg-containing compounds HgCl2, MeHg and HgS, and to determine if organic anion transporters OAT1 and OAT3 were involved in the differential transport mechanism. MATERIALS AND METHODS The 293T cells were employed to investigate and compare the differential transport mechanism of cinnabar and HgCl2, MeHg and HgS. Cells were incubated with a low dose (5 μM HgCl2 and MeHg, 200 μM HgS and cinnabar), medium dose (10 μM HgCl2 and MeHg, 400 μM HgS and cinnabar), and high dose (20 μM HgCl2 and MeHg, 800 μM HgS and cinnabar) of HgCl2, MeHg, HgS and cinnabar for 24 h. Following treatment, the cells were collected and the cell viability was determined by MTT assay. The intracellular mercury content was measured at 1, 4, and 24 h after treatment with 10 μM of the tested agents by an atomic fluorescence spectrophotometer. The effect of these tested agents on mitochondrial respiration was determined in a high-resolution oxygraphyat 24 h following treatment. Furthermore, the effect of modulation of expression of transporters OAT1 and OAT3 on the transport and cytotoxicity of the tested agents was evaluated. The up and down regulation of OAT1 and OAT3 were achieved by overexpression and siRNA transfection, respectively. RESULTS Compared with HgCl2 and MeHg, the cytotoxicity of cinnabar and HgS was lower, with cell viability at the high dose cinnabar and HgS being about 65%, while MeHg and HgCl2 were 40% and 20%, respectively. The intracellular mercury accumulation was time-dependent. At 24 h the intracellular concentrations of HgCl2 and MeHg were about 7 and 5 times higher, respectively, than that of cinnabar. No significant difference was found in the intracellular mercury content in cells treated with cinnabar compared to HgS. The knockdown and overexpression of the transporter OAT1 resulted in significant reduction and increase, respectively, in mercury accumulation in HgCl2 -treated cells in relative to control cells, while no significant changes were observed in cells treated with cinnabar, MeHg, and HgS. In addition, the knockdown and overexpression of the transporter OAT3 caused significant reduction and increase, respectively, in mercury accumulation in both HgCl2 and MeHg-treated cells in relative to control cells, while no significant changes were observed in cells treated with cinnabar and HgS. Furthermore, it was found that cells transfected with siOAT1 caused significant resistance to the cytotoxicity induced by HgCl2, while no noticeable changes in cell viability were observed in cells treated with other tested agents. Additionally, cells transfected with OAT3 did not change cell sensitivity to cytotoxicity induced by all of the four tested agents. CONCLUSION This study demonstrates that differential transport and accumulation of mercury in 293T cells exists among cinnabar and the three mercury-containing compounds HgCl2, MeHg and HgS, leading to distinct sensitivity to mercury induced cytotoxicity. The kidney organic anion transporters OAT1 and OAT3 are partially involved in the regulation of the transport of HgCl2 and MeHg, but not in the regulation of the transport of cinnabar.
Collapse
Affiliation(s)
- Yang Wang
- Joint International Research Laboratory of Ethnomedicine, Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical College, Guizhou, China
| | - Shaoyu Zhou
- Joint International Research Laboratory of Ethnomedicine, Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical College, Guizhou, China; Department of Environmental Health, School of Public Health, Indiana University, Bloomington, IN, USA
| | - Honghong Ma
- Joint International Research Laboratory of Ethnomedicine, Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical College, Guizhou, China
| | - Jing-Shan Shi
- Joint International Research Laboratory of Ethnomedicine, Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical College, Guizhou, China
| | - Yuan-Fu Lu
- Joint International Research Laboratory of Ethnomedicine, Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical College, Guizhou, China.
| |
Collapse
|
21
|
Bulacio RP, Nosetto EC, Brandoni A, Torres AM. Novel finding of caveolin-2 in apical membranes of proximal tubule and first detection of caveolin-2 in urine: A promising biomarker of renal disease. J Cell Biochem 2018; 120:4966-4974. [PMID: 30269377 DOI: 10.1002/jcb.27772] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 09/06/2018] [Indexed: 12/14/2022]
Abstract
Caveolin-2 (Cav-2) is expressed in a variety of cell tissue, and it has also been found in renal tissue. The expression of Cav-2 in proximal tubules is still unclear. The aim of this study was to carry out a complete evaluation of the expression pattern of Cav-2 in rat renal cortex to clarify and deepen the knowledge about the localization of Cav-2 in the proximal tubules and also to evaluate its presence in urine. Male Wistar rats were used to assess Cav-2 expression by Western blot analysis in homogenates, apical, and basolateral membranes from kidney cortex, in lysates and total plasma membranes from renal cortical cell suspensions, in urine, and in urinary exosomes. Cav-2 was clearly expressed in renal cortex homogenates and in both apical and basolateral membranes isolated from kidney cortex, with a greater expression on the former membranes. It was also observed in lysates and in plasma membranes from cortical cell suspensions. Moreover, Cav-2 was found in urine and in its exosomal fraction. These results confirmed the presence of Cav-2 in proximal tubule cells in the kidney of healthy rats, and showed for the first time its expression at the apical membrane of these cells and in urine. Besides, urinary exosomal pathway could be involved in Cav-2 urinary excretion under normal conditions. We observed an increase in the urinary abundance of Cav-2 in two models of acute kidney injury, and thus we proposed the urinary excretion of Cav-2 as a potential biomarker of kidney injury.
Collapse
Affiliation(s)
- Romina Paula Bulacio
- Área Farmacología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Evangelina Cecilia Nosetto
- Área Farmacología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Anabel Brandoni
- Área Farmacología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Adriana Mónica Torres
- Área Farmacología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|