1
|
Fang P, Wang Y, Chen N, Gao K, Gong W, Yang L, Sun Q, Wang X, Cai T, Li T, Yang J. Association of blood trace metals with anemia in children aged 6-17 years old. J Trace Elem Med Biol 2025; 89:127655. [PMID: 40245650 DOI: 10.1016/j.jtemb.2025.127655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 04/01/2025] [Accepted: 04/10/2025] [Indexed: 04/19/2025]
Abstract
BACKGROUND Anemia significantly impacts children's health and quality of life, and may be influenced by the levels of various trace metals in the body. Current research on trace metals and anemia is mostly limited to single metals, and the association of multiple trace metals and their mixtures with anemia among children remains unclear. METHODS This study utilized cross-sectional data from the 2017-2020 National Health and Nutrition Examination Survey (NHANES), including 2208 children aged 6-17 years in the United States, who were tested for five trace metals: lead(Pb), mercury(Hg), cadmium(Cd), selenium(Se), and manganese(Mn). The study used logistic regression, quantile g-computation, and Bayesian kernel machine regression models to examine how these metals individually and collectively affect anemia and to identify significant influencing factors. Age-stratified analysis was also conducted to analyze the association of trace metals with anemia in different age groups. RESULTS Children with anemia had significantly higher blood Cd levels and significantly lower Se and Mn levels. In the univariate metal model, increasing Se levels was associated with decreased anemia risk. Mn was the main protective factor for anemia in school-age children, while Se was the main protective factor in adolescents. Both qgComp and BKMR models showed a negative association between mixed trace metal exposure and anemia. The age-specific analysis showed that the protective effect of trace metals was not as apparent in adolescents. CONCLUSION This research discovered that mixed trace metal exposure was associated with a reduced risk of anemia in children, with Se acting as a protective factor across all populations. Mn played a protective role in school-age children but may become a risk factor in adolescents.
Collapse
Affiliation(s)
- Panpan Fang
- Department of Clinical Laboratory, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou Key Laboratory of Children's Infection and Immunity, Zhengzhou 450018, China
| | - Yingyuan Wang
- Department of Neonatal Intensive Care Unit, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, People's Republic of China, Zhengzhou 450018, China
| | - Nan Chen
- Department of Clinical Laboratory, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou Key Laboratory of Children's Infection and Immunity, Zhengzhou 450018, China
| | - Kaijie Gao
- Department of Clinical Laboratory, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou Key Laboratory of Children's Infection and Immunity, Zhengzhou 450018, China
| | - Weihua Gong
- Department of Clinical Laboratory, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou Key Laboratory of Children's Infection and Immunity, Zhengzhou 450018, China
| | - Liu Yang
- Department of Clinical Laboratory, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou Key Laboratory of Children's Infection and Immunity, Zhengzhou 450018, China
| | - Qianqian Sun
- Department of Clinical Laboratory, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou Key Laboratory of Children's Infection and Immunity, Zhengzhou 450018, China
| | - Xuchen Wang
- Department of Clinical Laboratory, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou Key Laboratory of Children's Infection and Immunity, Zhengzhou 450018, China
| | - Tong Cai
- Department of Medical Laboratory, North China Medical & Health Group Xingtai General Hospital, Orthopedic Hospital of Xingtai, Xingtai 054000, China
| | - Tiewei Li
- Department of Clinical Laboratory, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou Key Laboratory of Children's Infection and Immunity, Zhengzhou 450018, China.
| | - Junmei Yang
- Department of Clinical Laboratory, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou Key Laboratory of Children's Infection and Immunity, Zhengzhou 450018, China.
| |
Collapse
|
2
|
Rolić T, Yazdani M, Mandić S, Distante S. Iron Metabolism, Calcium, Magnesium and Trace Elements: A Review. Biol Trace Elem Res 2025; 203:2216-2225. [PMID: 38969940 PMCID: PMC11920315 DOI: 10.1007/s12011-024-04289-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/22/2024] [Indexed: 07/07/2024]
Abstract
Iron (Fe) is fundamental to life on earth. In the human body, it is both essential and harmful if above threshold. A similar balance applies to other elements: calcium (Ca), magnesium (Mg), and trace elements including copper (Cu), zinc (Zn), lead (Pb), cadmium (Cd), mercury (Hg), and nickel (Ni). These elements share some proteins involved in the absorption and transport of Fe. Cu and Cd can inhibit Fe absorption, while excess of Fe may antagonize Cu metabolism and reduce ceruloplasmin (Cp). Excessive Fe can hinder Zn absorption and transferrin (Trf) can bind to both Zn and Ni. Ca is able to inhibit the divalent metal transporter 1 (DMT1) in a dose-dependent manner to reduce Fe absorption and low Mg concentrations can exacerbate Fe deficiency. Pb competitively inhibits Fe distribution and elevated Cd absorption reduces Fe uptake. Exposure to Hg is associated with higher ferritin concentrations and Ni alters intracellular Fe metabolism. Fe removal by phlebotomy in hemochromatosis patients has shown to increase the levels of Cd and Pb and alter the concentrations of trace elements in some types of anemia. Yet, the effects of chronic exposure of most trace elements remain poorly understood.
Collapse
Affiliation(s)
- Tara Rolić
- Faculty of Medicine, University of Osijek, Osijek, Croatia
- Osijek University Hospital Centre (Klinički bolnički centar Osijek), Osijek, Croatia
| | | | - Sanja Mandić
- Faculty of Medicine, University of Osijek, Osijek, Croatia
| | | |
Collapse
|
3
|
Johnson H, Longden J, Cameron G, Waiter GD, Waldron FM, Gregory JM, Spence H. Machine learning identifies routine blood tests as accurate predictive measures of pollution-dependent poor cognitive function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.10.632396. [PMID: 39868217 PMCID: PMC11761678 DOI: 10.1101/2025.01.10.632396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Background Several modifiable risk factors for dementia and related neurodegenerative diseases have been identified including education level, socio-economic status, and environmental exposures - however, how these population-level risks relate to individual risk remains elusive. To address this, we assess over 450 potential risk factors in one deeply clinically and demographically phenotyped cohort using random forest classifiers to determine predictive markers of poor cognitive function. This study aims to understand early risk factors for dementia by identifying predictors of poor cognitive performance amongst a comprehensive battery of imaging, blood, atmospheric pollutant and socio-economic measures. Methods Random forest modelling was used to determine significant predictors of poor cognitive performance in a cohort of 324 individuals (age 61.6 ± 4.8 years; 150 males, 174 females) without extant neurological disease. 457 features were assessed including brain imaging measures of volume and iron deposition, blood measures of anaemia, inflammation, and heavy metal levels, social deprivation indicators and atmospheric pollution exposure. Results Routinely assessed markers of anaemia including mean corpuscular haemoglobin concentration were identified as robust predictors of poor general cognition, where both extremes (low and high) were associated with poor cognitive performance. The strongest, most consistent predictors of poor cognitive performance were environmental measures of atmospheric pollution, in particular, lead, carbon monoxide, and particulate matter. Feature analysis demonstrated a significant negative relationship between low mean corpuscular haemoglobin concentration and high levels of atmospheric pollutants highlighting the potential of routinely assessed blood tests as a predictive measure of pollution-dependent cognitive functioning, at an individual level. Conclusions Taken together, these data demonstrate how routine, inexpensive medical testing and local authority initiatives could help to identify and protect at-risk individuals. These findings highlight the potential to identify individuals for targeted, cost effective medical and social interventions to improve population cognitive health.
Collapse
Affiliation(s)
| | - James Longden
- Theoretical Biophysics, Institute for Biology, Humboldt University of Berlin, Germany
| | - Gary Cameron
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, UK
| | - Gordon D. Waiter
- Aberdeen Biomedical Imaging Centre, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, UK
| | - Fergal M. Waldron
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, UK
| | - Jenna M. Gregory
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, UK
| | - Holly Spence
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, UK
| |
Collapse
|
4
|
Xu Q, Qin W, Qin Y, Hu G, Xing Z, Liu Y. A Ratiometric Fluorescence Probe for Visualized Detection of Heavy Metal Cadmium and Application in Water Samples and Living Cells. Molecules 2024; 29:5331. [PMID: 39598720 PMCID: PMC11596035 DOI: 10.3390/molecules29225331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/10/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024] Open
Abstract
Heavy metal cadmium (II) residuals have inflicted severe damage to human health and ecosystems. It has become imperative to devise straightforward and highly selective sensing methods for the detection of Cd2+. In this work, a ratiometric benzothiazole-based fluorescence probe (BQFA) was effortlessly synthesized and characterized using standard optical techniques for the visual detection of Cd2+ with a change in color from blue to green, exhibiting a significant Stokes shift. Moreover, the binding ratio of BQFA to Cd2+ was established as 1:1 by the Job's plot and was further confirmed by FT-IR and 1HNMR titrations. The ratiometric fluorescence response via the ICT mechanism was confirmed by DFT calculations. Furthermore, the limit of detection for detecting Cd2+ was determined to be 68 nM. Furthermore, it is noteworthy that BQFA showed good performance in real water samples, paper strips, smartphone colorimetric identification, and cell imaging.
Collapse
Affiliation(s)
- Qijiang Xu
- School of Laboratory Medicine, Youjiang Medical University for Nationalities, Baise 533000, China; (Q.X.); (W.Q.); (Y.Q.); (G.H.)
- Modern Industrial College of Biomedicine and Great Health, Youjiang Medical University for Nationalities, Baise 533000, China
| | - Wen Qin
- School of Laboratory Medicine, Youjiang Medical University for Nationalities, Baise 533000, China; (Q.X.); (W.Q.); (Y.Q.); (G.H.)
| | - Yanfei Qin
- School of Laboratory Medicine, Youjiang Medical University for Nationalities, Baise 533000, China; (Q.X.); (W.Q.); (Y.Q.); (G.H.)
- Modern Industrial College of Biomedicine and Great Health, Youjiang Medical University for Nationalities, Baise 533000, China
| | - Guiying Hu
- School of Laboratory Medicine, Youjiang Medical University for Nationalities, Baise 533000, China; (Q.X.); (W.Q.); (Y.Q.); (G.H.)
| | - Zhiyong Xing
- School of Laboratory Medicine, Youjiang Medical University for Nationalities, Baise 533000, China; (Q.X.); (W.Q.); (Y.Q.); (G.H.)
- Modern Industrial College of Biomedicine and Great Health, Youjiang Medical University for Nationalities, Baise 533000, China
| | - Yatong Liu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
5
|
Ezim OE, Kidi L, Ndufeiya-Kumasi LC, Abarikwu SO. Iron Administration Partially Ameliorates Cadmium-Induced Oxidative Damage in the Liver and Kidney of Rats. J Toxicol 2024; 2024:6197553. [PMID: 39564542 PMCID: PMC11576088 DOI: 10.1155/2024/6197553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 09/18/2024] [Accepted: 10/21/2024] [Indexed: 11/21/2024] Open
Abstract
The protective effect of Fe against Cd-induced toxicity in the liver and kidney of rats during concurrent administration of both metals was investigated in this study. Fifty female rats (130-150 g) were distributed into five groups of 10 rats each (n = 10): Group I (control), received normal saline solution; Group II (1.2 mg CdCl2/kg b.w.); Group III (1.2 mg CdCl2 + 0.25 mg FeCl2/kg b.w.); Group IV (1.2 mg CdCl2 + 0.75 mg FeCl2/kg b.w.); and Group V (1.2 mg CdCl2 + 1.5 mg FeCl2/kg b.w.). Administration of both tested substances lasted for 47 days. Cd was injected intraperitoneally once a week, while Fe was administered to the Cd-exposed animals by oral gavage thrice weekly. The animals were killed at the end of the study, their blood was collected, and their liver and kidneys were harvested for biochemical and histological analysis. Following Cd administration, the kidney and liver showed a significant increase in Cd concentration, while Fe concentration in the kidney decreased. However, cotreatment with Fe decreased Cd concentration in the kidney and liver and increased Fe concentration in the kidney but not the liver, and the effect was more pronounced in the higher than lower doses. In the kidney, cotreatment with Fe especially at higher doses inhibited Cd-induced lipid peroxidation and plasma uric acid concentration. In the liver, lipid peroxidation which Cd did not alter was found to be elevated after cotreatment with the highest dose Fe. Inflammatory cell infiltrations of the central vein and renal tubular and glomeruli injury induced by Cd were not obviated by Fe cotreatment. It seems that both tissues respond differently to the concurrent administration of these metals and that Fe protected the kidney against oxidative injury-induced by Cd but not histopathological changes in both tissues.
Collapse
Affiliation(s)
- Ogechukwu E Ezim
- Department of Biochemistry, University of Port Harcourt, Choba, Nigeria
| | - Lilian Kidi
- Department of Biochemistry, University of Port Harcourt, Choba, Nigeria
| | | | - Sunny O Abarikwu
- Department of Biochemistry, University of Port Harcourt, Choba, Nigeria
| |
Collapse
|
6
|
Andric A, Niederwanger M, Albertini E, Jansen-Dürr P, Stürzenbaum SR, Dallinger R, Pedrini-Martha V, Weiss AKH. A multi-domain snail metallothionein increases cadmium resistance and fitness in Caenorhabditis elegans. Sci Rep 2024; 14:25589. [PMID: 39462019 PMCID: PMC11513058 DOI: 10.1038/s41598-024-76268-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Metallothioneins (MTs) are a family of mostly low-molecular weight, cysteine-rich proteins capable of specific metal-ion binding that are involved in metal detoxification and homeostasis, as well as in stress response. In contrast to most other animal species which possess two-domain (bidominial) MTs, some gastropod species have evolved Cd2+-selective multidomain MTs (md-MTs) consisting of several concatenated β3 domains and a single C-terminal β1 domain. Each domain contains three-metal ion clusters and binds three metal ions. The terrestrial snail Alinda biplicata possesses, among other MT isoforms, an md-MT with nine β3 domains and a C-terminal β1 domain (termed 10md-MT), capable of binding up to 30 Cd2+ ions per protein molecule. In the present study, the Alinda biplicata 10md-MT gene and a truncated version consisting of one β3 domain and a single C-terminal β1 domain (2d-MT) were introduced into a Caenorhabditis elegans knock-out strain lacking a native MT gene (mtl-1). The two snail MT constructs consistently increased Cd2+ resistance, and partially improved morphological, life history and physiological fitness traits in the nematode model host Caenorhabditis elegans. This highlights how the engineering of transgenic Caenorhabditis elegans strains expressing snail MTs provides an enhancement of the innate metal detoxification mechanism and in doing so provides a platform for enhanced mechanistic toxicology.
Collapse
Affiliation(s)
- Andreas Andric
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | | | - Eva Albertini
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Pidder Jansen-Dürr
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
- Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Stephen R Stürzenbaum
- Department of Analytical, Environmental and Forensic Sciences, King's College London, London, UK
| | - Reinhard Dallinger
- Department of Zoology, University of Innsbruck, Innsbruck, Austria.
- Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria.
| | | | - Alexander K H Weiss
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
7
|
Djulejic V, Ivanovski A, Cirovic A, Cirovic A. Increased Cadmium Load, Vitamin D Deficiency, and Elevated FGF23 Levels as Pathophysiological Factors Potentially Linked to the Onset of Acute Lymphoblastic Leukemia: A Review. J Pers Med 2024; 14:1036. [PMID: 39452542 PMCID: PMC11508935 DOI: 10.3390/jpm14101036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024] Open
Abstract
The preventability of acute lymphocytic leukemia during childhood is currently receiving great attention, as it is one of the most common cancers in children. Among the known risk factors so far are those affecting the development of gut microbiota, such as a short duration or absence of breastfeeding, cesarean section, a diet lacking in short-chain fatty acids (SCFAs), the use of antibiotics, absence of infection during infancy, and lack of pets, among other factors. Namely, it has been shown that iron deficiency anemia (IDA) and lack of vitamin D may cause intestinal dysbiosis, while at the same time, both increase the risk of hematological malignancies. The presence of IDA and vitamin D deficiency have been shown to lead to a decreased proportion of Firmicutes in stool, which could, as a consequence, lead to a deficit of butyrate. Moreover, children with IDA have increased blood concentrations of cadmium, which induces systemic inflammation and is linked to the onset of an inflammatory microenvironment in the bone marrow. Finally, IDA and Cd exposure increase fibroblast growth factor 23 (FGF23) blood levels, which in turn suppresses vitamin D synthesis. A lack of vitamin D has been associated with a higher risk of ALL onset. In brief, as presented in this review, there are three independent ways in which IDA increases the risk of acute lymphocytic leukemia (ALL) appearance. These are: intestinal dysbiosis, disruption of vitamin D synthesis, and an increased Cd load, which has been linked to systemic inflammation. All of the aforementioned factors could generate the appearance of a second mutation, such as ETV6/RUNX1 (TEL-AML), leading to mutation homozygosity and the onset of disease. ALL has been observed in both IDA and thalassemia. However, as IDA is the most common type of anemia and the majority of published data pertains to it, we will focus on IDA in this review.
Collapse
Affiliation(s)
- Vuk Djulejic
- Faculty of Medicine, Institute of Anatomy, University of Belgrade, Dr Subotica 4/2, 11000 Belgrade, Serbia; (V.D.); (A.C.)
| | - Ana Ivanovski
- Faculty of Medicine, University of Belgrade, Dr Subotica 4/2, 11000 Belgrade, Serbia;
| | - Ana Cirovic
- Faculty of Medicine, Institute of Anatomy, University of Belgrade, Dr Subotica 4/2, 11000 Belgrade, Serbia; (V.D.); (A.C.)
| | - Aleksandar Cirovic
- Faculty of Medicine, Institute of Anatomy, University of Belgrade, Dr Subotica 4/2, 11000 Belgrade, Serbia; (V.D.); (A.C.)
| |
Collapse
|
8
|
Sendh J, Baruah JB. Bi-component sensing platform for the detection of Cd 2+, Fe 2+and Fe 3+ ions. RSC Adv 2024; 14:27153-27161. [PMID: 39193302 PMCID: PMC11348839 DOI: 10.1039/d4ra04655b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024] Open
Abstract
The ability of N-(1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl)isonicotinamide (naphydrazide) or 2,6-pyridinedicarboxylic acid (2,6-H2pdc) individually or as a bi-component system in distinguishing and detecting Fe3+ or Fe2+ and Cd2+ ions was investigated. The use of these molecules as single or bi-component analytes in absorption or emission spectroscopy studies showed that under specific conditions each had their own merits for specific purposes. UV-visible spectroscopic studies of 2,6-H2pdc for assessing the interactions with ferrous and ferric ions showed characteristic distinctions. The detection limit for Fe3+ analysed through UV-visible spectroscopy using naphydrazide was 0.46 μM, whereas it was 1.28 μM using 2,6-H2pdc. Naphydrazide together with Fe3+ allowed distinguishing Cd2+ ions from Zn2+ and Fe2+ ions. The bi-component system was useful for the selective detection of Cd2+ ions using fluorescence spectroscopy, with a detection limit for Cd2+ ions of 18.31 μM. The presence of Fe2+ and Cd2+ ions in a solution of the bi-component had resulted white-light emission. An analogous compound N,N'-(1,3,6,8-tetraoxobenzo[lmn][3,8]phenanthroline-2,7(1H,3H,6H,8H)-diyl)diisonicotinamide (binaphydrazide) was found unsuitable for such detections. Two 2,6-pyridinedicarboxylate Fe3+ complexes possessing protonated naphydrazide or binaphydrazide were prepared and characterised. These complexes were also found unsuitable for the detection of the said ions in solution. Electrochemical studies with the bi-component system showed that cyclic voltammograms could distinguish Fe3+ or Fe2+ from Cd2+ ions.
Collapse
Affiliation(s)
- Jagajiban Sendh
- Department of Chemistry, Indian Institute of Technology Guwahati Guwahati-781 039 Assam India +91-361-2582311
| | - Jubaraj B Baruah
- Department of Chemistry, Indian Institute of Technology Guwahati Guwahati-781 039 Assam India +91-361-2582311
| |
Collapse
|
9
|
Mallamaci R, Barbarossa A, Carrieri A, Meleleo D, Carocci A. Evaluation of the Potential Cytoprotective Effect of Melatonin in Comparison with Vitamin E and Trolox against Cd 2+-Induced Toxicity in SH-SY5Y, HCT 116, and HepG2 Cell Lines. Int J Mol Sci 2024; 25:8055. [PMID: 39125623 PMCID: PMC11312335 DOI: 10.3390/ijms25158055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/18/2024] [Accepted: 07/20/2024] [Indexed: 08/12/2024] Open
Abstract
Cadmium (Cd) toxicity poses a significant threat to cellular health, leading to oxidative stress and cell damage. Antioxidant agents, particularly those of natural origin, have been studied as a potential alternative for mitigating heavy metal toxicity. This study aimed to evaluate the cytoprotective effects of the antioxidant melatonin (MLT) in comparison with Vitamin E (VitE) and Trolox against Cd2+-induced cellular toxicity. The MTT assay was employed to assess cell viability in neuronal SH-SY5Y, colorectal HCT 116, and hepatic HepG2 cell lines. The results showed that all three antioxidants offered some level of protection against Cd toxicity, with Vitamin E proving to be the most effective. MLT also demonstrated a substantial cytoprotective effect, especially at the highest Cd concentration of 30 µM. These findings suggest that MLT, alongside Vit E and Trolox, could be valuable in mitigating the detrimental effects of Cd exposure by reducing the oxidative stress in these cellular models.
Collapse
Affiliation(s)
- Rosanna Mallamaci
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, 70125 Bari, Italy;
| | - Alexia Barbarossa
- Department of Pharmacy–Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (A.B.); (A.C.)
| | - Antonio Carrieri
- Department of Pharmacy–Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (A.B.); (A.C.)
| | - Daniela Meleleo
- Department of Science of Agriculture, Food, Natural Resources and Engineering, University of Foggia, 71122 Foggia, Italy
| | - Alessia Carocci
- Department of Pharmacy–Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (A.B.); (A.C.)
| |
Collapse
|
10
|
Collado-López S, Burns KF, Smith SN, Kordas K, Desai G. Association between breakfast skipping and blood levels of lead and cadmium in children and adolescents aged 6-17 years: Results from the National Health and Nutrition Examination Survey 2013-2018. J Trace Elem Med Biol 2024; 84:127468. [PMID: 38728997 DOI: 10.1016/j.jtemb.2024.127468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/27/2024] [Accepted: 04/30/2024] [Indexed: 05/12/2024]
Abstract
INTRODUCTION Previous research suggests that fasting increases lead absorption in the gastrointestinal tract, and that regularly eating meals may reduce blood lead. However, there is insufficient evidence linking breakfast status and blood-metal levels in children. We assessed the cross-sectional association between breakfast consumption status and children and adolescent's blood levels of lead and cadmium. We also explored blood hemoglobin, serum ferritin, and age group as potential effect modifiers of these associations. METHODS This analysis included children and adolescents aged 6-17 years who participated in the National Health and Nutrition Examination Survey (NHANES) cycles 2013-2018 with complete data on breakfast consumption status (consumers vs. skippers), blood metals, and covariates (N=3722). Blood metal variables were log-transformed. Crude and covariate-adjusted, survey-weighted linear regression models were conducted for each blood metal outcome. Potential effect modification was explored using stratification. RESULTS Overall fewer participants reported skipping breakfast (n=719) than eating breakfast (n=3003). Mean (SE) concentrations of blood lead and cadmium (µg/L) were 0.63 (0.01) µg/dL and 0.13 (0.00) µg/L, respectively. Children and adolescents who skipped breakfast were more likely to be female (51.2%), older (mean 12.2 years, SE = 0.1), have a higher body mass index (mean 22.8 kg/m2, SE = 0.2), and a lower income-poverty ratio (mean 1.7, SE = 0.1) than breakfast consumers. No associations between breakfast consumption and any of the blood metals were found. When stratified by age (≤ 10, 11-13, and 14-17 years), children aged 11-13 years who consumed breakfast had lower log-transformed blood lead levels [β = -0.14 µg/L; 95% CI: (-0.25, -0.03)] compared to children of the same age who skipped breakfast. CONCLUSION Children 11-13 years-old who were breakfast consumers had lower blood lead levels compared to children of the same age who skipped breakfast. Our results support that encouraging breakfast consumption among school-age children may contribute to lower blood lead levels.
Collapse
Affiliation(s)
- Sonia Collado-López
- Center for Nutrition and Health Research, Instituto Nacional de Salud Pública, Cuernavaca, Morelos 62100, Mexico
| | - Kaelyn F Burns
- Department of Epidemiology and Environmental Health, University at Buffalo, Buffalo, NY 14214, USA.
| | - Samantha N Smith
- Department of Epidemiology and Environmental Health, University at Buffalo, Buffalo, NY 14214, USA
| | - Katarzyna Kordas
- Department of Epidemiology and Environmental Health, University at Buffalo, Buffalo, NY 14214, USA
| | - Gauri Desai
- Department of Epidemiology and Environmental Health, University at Buffalo, Buffalo, NY 14214, USA
| |
Collapse
|
11
|
Li Y, Pan Y, Yin Y, Huang R. Integrating Transcriptomics and Proteomics to Characterize the Intestinal Responses to Cadmium Exposure Using a Piglet Model. Int J Mol Sci 2024; 25:6474. [PMID: 38928180 PMCID: PMC11203886 DOI: 10.3390/ijms25126474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/18/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Cadmium (Cd) is a heavy metal element with a wide range of hazards and severe biotoxicity. Since Cd can be easily accumulated in the edible parts of plants, the exposure of humans to Cd is mainly through the intake of Cd-contaminated food. However, the intestinal responses to Cd exposure are not completely characterized. Herein, we simulated laboratory and environmental Cd exposure by feeding the piglets with CdCl2-added rice and Cd-contaminated rice (Cdcr) contained diet, as piglets show anatomical and physiological similarities to humans. Subsequent analysis of the metal element concentrations showed that exposure to the two types of Cd significantly increased Cd levels in piglets. After verifying the expression of major Cd transporters by Western blots, multi-omics further expanded the possible transporters of Cd and found Cd exposure causes wide alterations in the metabolism of piglets. Of significance, CdCl2 and Cdcr exhibited different body distribution and metabolic rewiring, and Cdcr had stronger carcinogenic and diabetes-inducing potential. Together, our results indicate that CdCl2 had a significant difference compared with Cdcr, which has important implications for a more intense study of Cd toxicity.
Collapse
Affiliation(s)
- Yikun Li
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China;
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Yiling Pan
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Yulong Yin
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Ruilin Huang
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| |
Collapse
|
12
|
Zbieralski K, Staszewski J, Konczak J, Lazarewicz N, Nowicka-Kazmierczak M, Wawrzycka D, Maciaszczyk-Dziubinska E. Multilevel Regulation of Membrane Proteins in Response to Metal and Metalloid Stress: A Lesson from Yeast. Int J Mol Sci 2024; 25:4450. [PMID: 38674035 PMCID: PMC11050377 DOI: 10.3390/ijms25084450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/06/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
In the face of flourishing industrialization and global trade, heavy metal and metalloid contamination of the environment is a growing concern throughout the world. The widespread presence of highly toxic compounds of arsenic, antimony, and cadmium in nature poses a particular threat to human health. Prolonged exposure to these toxins has been associated with severe human diseases, including cancer, diabetes, and neurodegenerative disorders. These toxins are known to induce analogous cellular stresses, such as DNA damage, disturbance of redox homeostasis, and proteotoxicity. To overcome these threats and improve or devise treatment methods, it is crucial to understand the mechanisms of cellular detoxification in metal and metalloid stress. Membrane proteins are key cellular components involved in the uptake, vacuolar/lysosomal sequestration, and efflux of these compounds; thus, deciphering the multilevel regulation of these proteins is of the utmost importance. In this review, we summarize data on the mechanisms of arsenic, antimony, and cadmium detoxification in the context of membrane proteome. We used yeast Saccharomyces cerevisiae as a eukaryotic model to elucidate the complex mechanisms of the production, regulation, and degradation of selected membrane transporters under metal(loid)-induced stress conditions. Additionally, we present data on orthologues membrane proteins involved in metal(loid)-associated diseases in humans.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ewa Maciaszczyk-Dziubinska
- Department of Genetics and Cell Physiology, Faculty of Biological Sciences, University of Wroclaw, 50-328 Wroclaw, Poland; (K.Z.); (J.S.); (J.K.); (N.L.); (M.N.-K.); (D.W.)
| |
Collapse
|
13
|
Guo W, Zhang J, Zhang X, Ren Q, Zheng G, Zhang J, Nie G. Environmental cadmium exposure perturbs systemic iron homeostasis via hemolysis and inflammation, leading to hepatic ferroptosis in common carp (Cyprinus carpio L.). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 275:116246. [PMID: 38537478 DOI: 10.1016/j.ecoenv.2024.116246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/01/2024] [Accepted: 03/20/2024] [Indexed: 04/12/2024]
Abstract
Cadmium (Cd) pollution is considered a pressing challenge to eco-environment and public health worldwide. Although it has been well-documented that Cd exhibits various adverse effects on aquatic animals, it is still largely unknown whether and how Cd at environmentally relevant concentrations affects iron metabolism. Here, we studied the effects of environmental Cd exposure (5 and 50 μg/L) on iron homeostasis and possible mechanisms in common carp. The data revealed that Cd elevated serum iron, transferrin saturation and iron deposition in livers and spleens, leading to the disruption of systemic iron homeostasis. Mechanistic investigations substantiated that Cd drove hemolysis by compromising the osmotic fragility and inducing defective morphology of erythrocytes. Cd concurrently exacerbated hepatic inflammatory responses, resulting in the activation of IL6-Stat3 signaling and subsequent hepcidin transcription. Notably, Cd elicited ferroptosis through increased iron burden and oxidative stress in livers. Taken together, our findings provide evidence and mechanistic insight that environmental Cd exposure could undermine iron homeostasis via erythrotoxicity and hepatotoxicity. Further investigation and ecological risk assessment of Cd and other pollutants on metabolism-related effects is warranted, especially under the realistic exposure scenarios.
Collapse
Affiliation(s)
- Wenli Guo
- College of Fisheries, Henan Normal University, Xinxiang 453007, China; Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, China
| | - Jinjin Zhang
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Xiaoqian Zhang
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Quanzhong Ren
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guangzhe Zheng
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Jianxin Zhang
- College of Fisheries, Henan Normal University, Xinxiang 453007, China; Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, China
| | - Guoxing Nie
- College of Fisheries, Henan Normal University, Xinxiang 453007, China; Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
14
|
McCalla G, Brown PD, Nwokocha C. Cadmium induces microcytosis and anisocytosis without anaemia in hypertensive rats. Biometals 2024; 37:519-526. [PMID: 38184813 DOI: 10.1007/s10534-023-00567-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/28/2023] [Indexed: 01/08/2024]
Abstract
Dietary cadmium (Cd2+) intake is implicated in the pathogenesis of hypertension and anaemia, but there is a paucity of information on the haematological changes in hypertensive conditions. This study, therefore, aims to evaluate the effects of Cd2+ on blood pressure (BP) and haematological indices in the Sprague-Dawley rat model. Three cohorts (n = 10 each) of control and Cd2+-fed male Sprague-Dawley rats were selected. Cd2+-exposed rats received 2.5 or 5 mg/kg b.w. cadmium chloride via gavage thrice-weekly for eight weeks, while control animals received tap water. BP and flow were measured non-invasively from rat tails twice-weekly using a CODA machine, while weights were measured thrice-weekly. Haematological indices were assessed using the Cell-Dyn Emerald Haematology Analyzer. Data were reported as mean ± SEM, and statistically analyzed using One-Way Analysis of Variance. Bonferroni post hoc test was used for multiple comparisons. Cd2+-exposure induced hypertension by significantly (p < 0.05) elevating systolic, diastolic, and mean arterial BPs, pulse pressure, and heart rate (HR), and increased (p < 0.05) blood flow. Mean cell volume (MCV) and haemoglobin (MCH) were significantly (p < 0.05) reduced, and red cell distribution width (RDW) significantly (p < 0.01) increased by exposure to 5 mg/kg b.w. Cd2+. Haemoglobin concentration (MCHC), haematocrit, haemoglobin, red blood cell, platelet, mean platelet volume, and white blood cell counts were unaffected by Cd2+-exposure. Cd2+ induced hypertension, microcytosis, hypochromicity, and anisocytosis without anaemia, which may be precursor to microcytic anaemia and coronary artery disease. This study is important in Cd2+-exposed environments and warrants further investigations.
Collapse
Affiliation(s)
- Garsha McCalla
- Department of Basic Medical Sciences, Faculty of Medical Sciences, The University of the West Indies, Mona, Kingston 7, Jamaica.
| | - Paul D Brown
- Department of Basic Medical Sciences, Faculty of Medical Sciences, The University of the West Indies, Mona, Kingston 7, Jamaica
| | - Chukwuemeka Nwokocha
- Department of Basic Medical Sciences, Faculty of Medical Sciences, The University of the West Indies, Mona, Kingston 7, Jamaica
| |
Collapse
|
15
|
Zhang K, Long M, Dong W, Li J, Wang X, Liu W, Huang Q, Ping Y, Zou H, Song R, Liu G, Ran D, Liu Z. Cadmium Induces Kidney Iron Deficiency and Chronic Kidney Injury by Interfering with the Iron Metabolism in Rats. Int J Mol Sci 2024; 25:763. [PMID: 38255838 PMCID: PMC10815742 DOI: 10.3390/ijms25020763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Cadmium (Cd) is a common environmental pollutant and occupational toxicant that seriously affects various mammalian organs, especially the kidney. Iron ion is an essential trace element in the body, and the disorder of iron metabolism is involved in the development of multiple pathological processes. An iron overload can induce a new type of cell death, defined as ferroptosis. However, whether iron metabolism is abnormal in Cd-induced nephrotoxicity and the role of ferroptosis in Cd-induced nephrotoxicity need to be further elucidated. Sprague Dawley male rats were randomly assigned into three groups: a control group, a 50 mg/L CdCl2-treated group, and a 75 mg/L CdCl2-treated group by drinking water for 1 month and 6 months, respectively. The results showed that Cd could induce renal histopathological abnormalities and dysfunction, disrupt the mitochondria's ultrastructure, and increase the ROS and MDA content. Next, Cd exposure caused GSH/GPX4 axis blockade, increased FTH1 and COX2 expression, decreased ACSL4 expression, and significantly decreased the iron content in proximal tubular cells or kidney tissues. Further study showed that the expression of iron absorption-related genes SLC11A2, CUBN, LRP2, SLC39A14, and SLC39A8 decreased in proximal tubular cells or kidneys after Cd exposure, while TFRC and iron export-related gene SLC40A1 did not change significantly. Moreover, Cd exposure increased SLC11A2 gene expression and decreased SLC40A1 gene expression in the duodenum. Finally, NAC or Fer-1 partially alleviated Cd-induced proximal tubular cell damage, while DFO and Erastin further aggravated Cd-induced cell damage. In conclusion, our results indicated that Cd could cause iron deficiency and chronic kidney injury by interfering with the iron metabolism rather than typical ferroptosis. Our findings suggest that an abnormal iron metabolism may contribute to Cd-induced nephrotoxicity, providing a novel approach to preventing kidney disease in clinical practice.
Collapse
Affiliation(s)
- Kanglei Zhang
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou 225009, China; (K.Z.); (M.L.); (W.D.); (J.L.); (X.W.); (W.L.); (Q.H.); (Y.P.); (H.Z.); (R.S.); (G.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Mengfei Long
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou 225009, China; (K.Z.); (M.L.); (W.D.); (J.L.); (X.W.); (W.L.); (Q.H.); (Y.P.); (H.Z.); (R.S.); (G.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Wenxuan Dong
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou 225009, China; (K.Z.); (M.L.); (W.D.); (J.L.); (X.W.); (W.L.); (Q.H.); (Y.P.); (H.Z.); (R.S.); (G.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Jiahui Li
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou 225009, China; (K.Z.); (M.L.); (W.D.); (J.L.); (X.W.); (W.L.); (Q.H.); (Y.P.); (H.Z.); (R.S.); (G.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Xueru Wang
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou 225009, China; (K.Z.); (M.L.); (W.D.); (J.L.); (X.W.); (W.L.); (Q.H.); (Y.P.); (H.Z.); (R.S.); (G.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Wenjing Liu
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou 225009, China; (K.Z.); (M.L.); (W.D.); (J.L.); (X.W.); (W.L.); (Q.H.); (Y.P.); (H.Z.); (R.S.); (G.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Qing Huang
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou 225009, China; (K.Z.); (M.L.); (W.D.); (J.L.); (X.W.); (W.L.); (Q.H.); (Y.P.); (H.Z.); (R.S.); (G.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Yuyu Ping
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou 225009, China; (K.Z.); (M.L.); (W.D.); (J.L.); (X.W.); (W.L.); (Q.H.); (Y.P.); (H.Z.); (R.S.); (G.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou 225009, China; (K.Z.); (M.L.); (W.D.); (J.L.); (X.W.); (W.L.); (Q.H.); (Y.P.); (H.Z.); (R.S.); (G.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Ruilong Song
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou 225009, China; (K.Z.); (M.L.); (W.D.); (J.L.); (X.W.); (W.L.); (Q.H.); (Y.P.); (H.Z.); (R.S.); (G.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Gang Liu
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou 225009, China; (K.Z.); (M.L.); (W.D.); (J.L.); (X.W.); (W.L.); (Q.H.); (Y.P.); (H.Z.); (R.S.); (G.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- College of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Di Ran
- College of Veterinary Medicine, Southwest University, Chongqing 400715, China;
- College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou 225009, China; (K.Z.); (M.L.); (W.D.); (J.L.); (X.W.); (W.L.); (Q.H.); (Y.P.); (H.Z.); (R.S.); (G.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
16
|
Brix KV, Baken S, Poland CA, Blust R, Pope LJ, Tyler CR. Challenges and Recommendations in Assessing Potential Endocrine-Disrupting Properties of Metals in Aquatic Organisms. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:2564-2579. [PMID: 37671843 DOI: 10.1002/etc.5741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/25/2023] [Accepted: 08/29/2023] [Indexed: 09/07/2023]
Abstract
New tools and refined frameworks for identifying and regulating endocrine-disrupting chemicals (EDCs) are being developed as our scientific understanding of how they work advances. Although focus has largely been on organic chemicals, the potential for metals to act as EDCs in aquatic systems is receiving increasing attention. Metal interactions with the endocrine system are complicated because some metals are essential to physiological systems, including the endocrine system, and nonessential metals can have similar physiochemical attributes that allow substitution into or interference with these systems. Consequently, elevated metal exposure could potentially cause endocrine disruption (ED) but can also cause indirect effects on the endocrine system via multiple pathways or elicit physiologically appropriate compensatory endocrine-mediated responses (endocrine modulation). These latter two effects can be confused with, but are clearly not, ED. In the present study, we provide several case studies that exemplify the challenges encountered in evaluating the endocrine-disrupting (ED) potential of metals, followed by recommendations on how to meet them. Given that metals have multiple modes of action (MOAs), we recommend that assessments use metal-specific adverse outcome pathway networks to ensure that accurate causal links are made between MOAs and effects on the endocrine system. We recommend more focus on establishing molecular initiating events for chronic metal toxicity because these are poorly understood and would reduce uncertainty regarding the potential for metals to be EDCs. Finally, more generalized MOAs such as oxidative stress could be involved in metal interactions with the endocrine system, and we suggest it may be experimentally efficient to evaluate these MOAs when ED is inferred. These experiments, however, must provide explicit linkage to the ED endpoints of interest. Environ Toxicol Chem 2023;42:2564-2579. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Kevin V Brix
- EcoTox, Miami, Florida, USA
- Rosenstiel School of Marine, Atmospheric & Earth Science, University of Miami, Miami, Florida, USA
| | - Stijn Baken
- International Copper Association, Brussels, Belgium
| | - Craig A Poland
- Regulatory Compliance Limited, Loanhead, United Kingdom
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Ronny Blust
- Department of Biology, University of Antwerp, Antwerp, Belgium
| | | | - Charles R Tyler
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
17
|
Tokumoto M, Lee JY, Fujiwara Y, Satoh M. Long-Term Exposure to Cadmium Causes Hepatic Iron Deficiency through the Suppression of Iron-Transport-Related Gene Expression in the Proximal Duodenum. TOXICS 2023; 11:641. [PMID: 37505606 PMCID: PMC10386400 DOI: 10.3390/toxics11070641] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 07/29/2023]
Abstract
Cadmium (Cd) is an environmental pollutant that damages various tissues. Cd may cause a depletion of iron stores and subsequently an iron deficiency state in the liver. However, the molecular mechanism of decreased iron accumulation in the liver induced by long-term exposure to Cd is unknown. In this study, we investigated the hepatic accumulation of iron and the proximal duodenal expression of the genes involved in iron transport using mice chronically exposed to Cd. Five-week-old female C57BL/6J mice were fed a diet containing 300 ppm Cd for 12, 15, 19 and 21 months. The iron concentration in the liver was markedly decreased by Cd. Among iron-transport-related genes in the proximal duodenum, the gene expression of HCP1 and Cybrd1 was significantly decreased by Cd. HCP1 is an influx transporter of heme iron. Cybrd1 is a reductase that allows non-heme iron to enter cells. The expression of iron-transport-related genes on the duodenal basolateral membrane side was hardly altered by Cd. These results suggest that long-term exposure to Cd suppresses the expression of HCP1 and Cybrd1 in the proximal duodenum, resulting in reduced iron absorption and iron accumulation in the liver.
Collapse
Affiliation(s)
- Maki Tokumoto
- Laboratory of Pharmaceutical Health Sciences, School of Pharmacy, Aichi Gakuin University, Nagoya 464-8650, Japan
| | - Jin-Yong Lee
- Laboratory of Pharmaceutical Health Sciences, School of Pharmacy, Aichi Gakuin University, Nagoya 464-8650, Japan
| | - Yasuyuki Fujiwara
- Department of Environmental Health, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji 192-0392, Japan
| | - Masahiko Satoh
- Laboratory of Pharmaceutical Health Sciences, School of Pharmacy, Aichi Gakuin University, Nagoya 464-8650, Japan
| |
Collapse
|
18
|
Combined Protective Effects of Quercetin, Rutin, and Gallic Acid against Cadmium-Induced Testicular Damages in Young-Adult Rats. Andrologia 2023. [DOI: 10.1155/2023/9787664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Cadmium (Cd) is a toxic metal that damages several tissues of animals and humans including the testis. The ameliorative effects of quercetin (QUE), rutin (RUT), and gallic acid (GAL) at 20 mg kg-1 body weight alone or in combination against testicular injury induced by Cd (24 mg kg-1 body weight) in male Wistar rats were evaluated in this study. Forty-two (42) rats were randomly grouped into six (6) groups: (1) vehicle control group, (2) Cd group, (3) RUT+Cd group, (4) GAL+Cd group, (5) QUE+Cd group, and (6) RUT+GAL+QUE+Cd group. At the end of the oral gavage of the tested chemicals, the rats were sacrificed, blood samples were collected, and testes were harvested and processed for biochemical assays. Cd exposure damaged the testis (smaller epithelium thickness and spermatogenesis index and sloughing of the epithelium); increased lipid peroxidation, glutathione S-transferase activity, and DNA fragmentation; and diminished glutathione reductase activity and serum testosterone level 40 days posttreatment. Treatment with the phenolics separately or in combination attenuated the effect of Cd on serum testosterone, glutathione reductase and glutathione S-transferase activities, lipid peroxidation, and percent fragmented DNA. The increased nitric oxide concentration in the QUE+Cd group was attenuated to control values in the combined (RUT+GAL+QUE+Cd) exposure group. Coadministration of the phenolics appears to have more substantial protective effects than their single effects against Cd-induced testicular DNA damage, glutathione S-transferase activity, and the recovery of testosterone levels and spermatogenesis index. Overall, the tested phenolics can reduce testicular damage more efficiently in their combined form than individual administration.
Collapse
|
19
|
Peana M, Pelucelli A, Chasapis CT, Perlepes SP, Bekiari V, Medici S, Zoroddu MA. Biological Effects of Human Exposure to Environmental Cadmium. Biomolecules 2022; 13:biom13010036. [PMID: 36671421 PMCID: PMC9855641 DOI: 10.3390/biom13010036] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Cadmium (Cd) is a toxic metal for the human organism and for all ecosystems. Cd is naturally found at low levels; however, higher amounts of Cd in the environment result from human activities as it spreads into the air and water in the form of micropollutants as a consequence of industrial processes, pollution, waste incineration, and electronic waste recycling. The human body has a limited ability to respond to Cd exposure since the metal does not undergo metabolic degradation into less toxic species and is only poorly excreted. The extremely long biological half-life of Cd essentially makes it a cumulative toxin; chronic exposure causes harmful effects from the metal stored in the organs. The present paper considers exposure and potential health concerns due to environmental cadmium. Exposure to Cd compounds is primarily associated with an elevated risk of lung, kidney, prostate, and pancreatic cancer. Cd has also been linked to cancers of the breast, urinary system, and bladder. The multiple mechanisms of Cd-induced carcinogenesis include oxidative stress with the inhibition of antioxidant enzymes, the promotion of lipid peroxidation, and interference with DNA repair systems. Cd2+ can also replace essential metal ions, including redox-active ones. A total of 12 cancer types associated with specific genes coding for the Cd-metalloproteome were identified in this work. In addition, we summarize the proper treatments of Cd poisoning, based on the use of selected Cd detoxifying agents and chelators, and the potential for preventive approaches to counteract its chronic exposure.
Collapse
Affiliation(s)
- Massimiliano Peana
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, 07100 Sassari, Italy
- Correspondence: (M.P.); (A.P.)
| | - Alessio Pelucelli
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, 07100 Sassari, Italy
- Correspondence: (M.P.); (A.P.)
| | - Christos T. Chasapis
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | | | - Vlasoula Bekiari
- School of Agricultural Science, University of Patras, 30200 Messolonghi, Greece
| | - Serenella Medici
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, 07100 Sassari, Italy
| | - Maria Antonietta Zoroddu
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, 07100 Sassari, Italy
| |
Collapse
|
20
|
Ferroptosis as a mechanism of non-ferrous metal toxicity. Arch Toxicol 2022; 96:2391-2417. [PMID: 35727353 DOI: 10.1007/s00204-022-03317-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/11/2022] [Indexed: 11/02/2022]
Abstract
Ferroptosis is a recently discovered form of regulated cell death, implicated in multiple pathologies. Given that the toxicity elicited by some metals is linked to alterations in iron metabolism and induction of oxidative stress and lipid peroxidation, ferroptosis might be involved in such toxicity. Although direct evidence is insufficient, certain pioneering studies have demonstrated a crosstalk between metal toxicity and ferroptosis. Specifically, the mechanisms underlying metal-induced ferroptosis include induction of ferritinophagy, increased DMT-1 and TfR cellular iron uptake, mitochondrial dysfunction and mitochondrial reactive oxygen species (mitoROS) generation, inhibition of Xc-system and glutathione peroxidase 4 (GPX4) activity, altogether resulting in oxidative stress and lipid peroxidation. In addition, there is direct evidence of the role of ferroptosis in the toxicity of arsenic, cadmium, zinc, manganese, copper, and aluminum exposure. In contrast, findings on the impact of cobalt and nickel on ferroptosis are scant and nearly lacking altogether for mercury and especially lead. Other gaps in the field include limited studies on the role of metal speciation in ferroptosis and the critical cellular targets. Although further detailed studies are required, it seems reasonable to propose even at this early stage that ferroptosis may play a significant role in metal toxicity, and its modulation may be considered as a potential therapeutic tool for the amelioration of metal toxicity.
Collapse
|
21
|
Marini HR, Micali A, Squadrito G, Puzzolo D, Freni J, Antonuccio P, Minutoli L. Nutraceuticals: A New Challenge against Cadmium-Induced Testicular Injury. Nutrients 2022; 14:663. [PMID: 35277022 PMCID: PMC8838120 DOI: 10.3390/nu14030663] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/27/2022] [Accepted: 02/01/2022] [Indexed: 12/04/2022] Open
Abstract
Cadmium (Cd) is a widespread heavy metal and a ubiquitous environmental toxicant. For the general population, the principal causes of Cd exposure are cigarette smoking, air pollution and contaminated water and food consumption, whereas occupational exposure usually involves humans working in mines or manufacturing batteries and pigments that utilize Cd. The aim of the present review is to evaluate recent data regarding the mechanisms of Cd-induced testicular structural and functional damages and the state of the art of the therapeutic approaches. Additionally, as the current literature demonstrates convincing associations between diet, food components and men's sexual health, a coherent nutraceutical supplementation may be a new valid therapeutic strategy for both the prevention and alleviation of Cd-induced testicular injury. The toxic effects on testes induced by Cd include many specific mechanisms, such as oxidative stress, inflammation and apoptosis. As no specific therapy for the prevention or treatment of the morbidity and mortality associated with Cd exposure is available, the development of new therapeutic agents is requested. Dietary strategies and the use of nutraceuticals, particularly abundant in fresh fruits, beans, vegetables and grains, typical of the Mediterranean diet, are recommended against Cd-induced testicular injury.
Collapse
Affiliation(s)
- Herbert Ryan Marini
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (H.R.M.); (G.S.); (L.M.)
| | - Antonio Micali
- Department of Human Pathology of Adult and Childhood, University of Messina, 98125 Messina, Italy; (A.M.); (P.A.)
| | - Giovanni Squadrito
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (H.R.M.); (G.S.); (L.M.)
| | - Domenico Puzzolo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy;
| | - José Freni
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy;
| | - Pietro Antonuccio
- Department of Human Pathology of Adult and Childhood, University of Messina, 98125 Messina, Italy; (A.M.); (P.A.)
| | - Letteria Minutoli
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (H.R.M.); (G.S.); (L.M.)
| |
Collapse
|
22
|
Huang CH, Wang CW, Chen HC, Tu HP, Chen SC, Hung CH, Kuo CH. Gender Difference in the Associations among Heavy Metals with Red Blood Cell Hemogram. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 19:ijerph19010189. [PMID: 35010453 PMCID: PMC8750598 DOI: 10.3390/ijerph19010189] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 05/17/2023]
Abstract
This study aimed to investigate gender differences in the association between heavy metals and hemograms including hemoglobin (Hgb), mean corpuscular volume (MCV) and mean corpuscular hemoglobin concentration (MCHC). A health survey of 2447 participants was conducted in southern Taiwan between June 2016 and September 2018. Seven heavy metals were measured: blood lead (Pb), urine nickel (Ni), urine chromium (Cr), urine manganese, urine arsenic (As), urine copper and urine cadmium (Cd). The results show that in females, Pb and Ni were significantly negatively associated with Hgb. In addition, As and Cd were significantly positively, and Pb and Ni were significantly negatively, associated with MCV, in males and females, respectively. The interactions between gender and Ni and gender and Cd in MCV were statistically significant. Further, Pb, in males, and Pb, Ni and Cr, in females, were significantly negatively associated with MCHC. In conclusion, in females, associations of red blood cell (RBC) hemograms with heavy metals such as Pb and Ni were found. In males, heavy metals such as Pb, As and Cd were found to associate with RBC hemograms. Further research is warranted to discuss the mechanism behind these associations.
Collapse
Affiliation(s)
- Chao-Hsin Huang
- Department of Post Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Chih-Wen Wang
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung 812, Taiwan; (C.-W.W.); (H.-C.C.); (C.-H.K.)
- Department of Internal Medicine, Division of Hepatobiliary, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Huang-Chi Chen
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung 812, Taiwan; (C.-W.W.); (H.-C.C.); (C.-H.K.)
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Hung-Pin Tu
- Department of Public Health and Environmental Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Szu-Chia Chen
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung 812, Taiwan; (C.-W.W.); (H.-C.C.); (C.-H.K.)
- Department of Internal Medicine, Division of Nephrology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: (S.-C.C.); (C.-H.H.)
| | - Chih-Hsing Hung
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Pediatrics, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung 812, Taiwan
- Correspondence: (S.-C.C.); (C.-H.H.)
| | - Chao-Hung Kuo
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung 812, Taiwan; (C.-W.W.); (H.-C.C.); (C.-H.K.)
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Internal Medicine, Division of Gastroenterology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
23
|
Nazarenko A, Zaiko O, Korotkevich O, Konovalova T, Osintseva L. Correlation of the iron level in the bristles of Kemerovo pigs with macro- and essential microelements. BIO WEB OF CONFERENCES 2021. [DOI: 10.1051/bioconf/20213606032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Correlation data analysis of the iron content with macro- and essential microelements, as well as on the group of chemical elements interrelated with the Fe level in pig bristles are presented. The studies were carried out of the Kemerovo region on six-month-old pigs of the Kemerovo breed. Chemical analysis of swine bristle samples was carried out using atomic absorption spectrometry. The data were processed using of the program R. Only positive relationships were established between the iron content and the chemical elements of the bristle, as well as the group of chemical elements associated with the Fe level in the bristle. Most of the connections are explained by comparing the data obtained with the research of other scientists on the topic.
Collapse
|
24
|
Kang KK, Kim YI, Seo MS, Sung SE, Choi JH, Lee S, Jung YS, Cho JY, Hwang DY, Park SJ, Kim KS. A comparative study of the phenotype with kainic acid-induced seizure in DBA/2 mice from three different sources. Lab Anim Res 2020; 36:39. [PMID: 33134158 PMCID: PMC7594308 DOI: 10.1186/s42826-020-00072-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/13/2020] [Indexed: 11/10/2022] Open
Abstract
The kainic acid-induced seizure mouse model is widely used in epilepsy research. In this study, we applied kainic acid to the subcutaneous injections of three different sources of DBA/2 mice to compare and evaluate the seizure response. The three mouse sources consisted of DBA/2Kor1 (Korea FDA source), DBA/2A (USA source), and DBA/2 (Japan source), and were purchased from different vendors. To compare the responses of DBA/2 mice to kainic acid injections, we examined the survival rate, seizure phenotype scoring, and behavioral changes. We also evaluated brain lesions using histopathological analysis. Following the administration of kainic acid, almost half of the cohort survived, and the seizure phenotype displayed a moderate level of sensitivity (2 ~ 4 out of 6). In the histopathologic analysis, there was no change in morphological features, and levels of glial fibrillary acidic protein (GFAP) and ionized calcium binding adaptor molecule 1 (Iba-1) increased in the kainic acid-treated groups. However, there was no difference in the neuronal nuclei (NeuN) expression level. All the data showed that the responses in the kainic acid-treated group were similar across the three strains. In conclusion, our results suggest that the three sources of DBA/2 mice (DBA/2Kor1, DBA/2A, and DBA/2B) have similar pathological responses to kainic acid-induced seizures.
Collapse
Affiliation(s)
- Kyung-Ku Kang
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Republic of Korea
| | | | - Min-Soo Seo
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Republic of Korea
| | - Soo-Eun Sung
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Republic of Korea
| | - Joo-Hee Choi
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Republic of Korea
| | - Sijoon Lee
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Republic of Korea
| | - Young-Suk Jung
- College of Pharmacy, Pusan National University, Busan, 46241 Korea
| | - Joon Young Cho
- Exercise Biochemistry Laboratory, Korea National Sport University, 88-15 Oryung-dong, Songpa-gu, Seoul, 138-763 Korea
| | - Dae Youn Hwang
- Department of Biomaterials Science, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, 50463 Korea
| | - Sang-Joon Park
- Department of Histology, College of Veterinary Medicine, Kyungpook National University, Daegu, 702-701 Korea
| | - Kil Soo Kim
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Republic of Korea.,College of Veterinary Medicine, Kyungpook National University, 80 Daehakro, Buk-gu, Daegu, 41566 Korea
| |
Collapse
|