1
|
Wang G, Wu W, Keller NP, Guo X, Li E, Ma J, Xing F. Metarhizium spp. encode an ochratoxin cluster and a high efficiency ochratoxin-degrading amidohydrolase revealed by genomic analysis. J Adv Res 2025; 72:85-95. [PMID: 39089618 DOI: 10.1016/j.jare.2024.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 07/02/2024] [Accepted: 07/25/2024] [Indexed: 08/04/2024] Open
Abstract
INTRODUCTION Ochratoxins (OTs) are worldwide regulated mycotoxins contaminating a variety of food-environment and agro-environment. Several Aspergillus and Pencillium species synthesize OTs from a six-gene biosynthetic gene cluster (BGC) to produce the highly toxic final product OTA. Although many studies on OTA-degrading enzymes were performed, high efficiency enzymes with strong stability are extremely needed, and the OTA degrading mechanism is poorly understood. OBJECTIVES The study aimed to explore the OT-degradation enzyme and investigate its degradation mechanisms in Metarhizium, which contain an OT biosynthetic gene cluster. METHODS Phylogenomic relationship combined with RNA expression analysis were used to explore the distribution of OT BGC in fungi. Bioactivity-guided isolation and protein mass spectrometry were conducted to trace the degrading enzymes in Metarhizium spp., and the enzymes were heterologously expressed in E. coli and verified by in vitro assays. Structure prediction and point mutation were performed to reveal the catalytic mechanism of MbAmh1. RESULTS Beyond Aspergillus and Pencillium species, three species of the distant phylogenetic taxon Metarhizium contain an expressed OT-like BGC but lack an otaD gene. Unexpectedly, no OT BGC products were found in some Metarhizium species. Instead, Metarhizium metabolized both OTA and OTB to their non-toxic degradation products. This activity of M. brunneum was attributed to an intracellular hydrolase MbAmh1, which was tracked by bioactivity-guided proteomic analysis combined with in vitro reaction. Recombinant MbAmh1 (5 μg/mL) completely degraded 1 μg/mL OTA within 3 min, demonstrating a strong degrading ability towards OTA. Additionally, MbAmh1 showed considerable temperature adaptability ranging from 30 to 70 °C and acidic pH stability ranging from 4.0 to 7.0. Identification of active sites supported the crucial role of metal iron for this enzymatic reaction. CONCLUSION These findings reveal different patterns of OT synthesis in fungi and provide a potential OTA degrading enzyme for industrial applications.
Collapse
Affiliation(s)
- Gang Wang
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| | - Wenqing Wu
- Horticulture and Landscape College, Tianjin Agricultural University, Tianjin 300392, PR China.
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Xu Guo
- Horticulture and Landscape College, Tianjin Agricultural University, Tianjin 300392, PR China.
| | - Erfeng Li
- Horticulture and Landscape College, Tianjin Agricultural University, Tianjin 300392, PR China.
| | - Junning Ma
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| | - Fuguo Xing
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| |
Collapse
|
2
|
Shen Y, Eades W, Liu W, Yan B. The COVID-19 Oral Drug Molnupiravir Is a CES2 Substrate: Potential Drug-Drug Interactions and Impact of CES2 Genetic Polymorphism In Vitro. Drug Metab Dispos 2022; 50:1151-1160. [PMID: 35790245 PMCID: PMC9450960 DOI: 10.1124/dmd.122.000918] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/06/2022] [Indexed: 01/20/2023] Open
Abstract
Molnupiravir is one of the two coronavirus disease 2019 (COVID-19) oral drugs that were recently granted the emergency use authorization by the Food and Drug Administration (FDA). Molnupiravir is an ester and requires hydrolysis to exert antiviral activity. Carboxylesterases constitute a class of hydrolases with high catalytic efficiency. Humans express two major carboxylesterases (CES1 and CES2) that differ in substrate specificity. Based on the structural characteristics of molnupiravir, this study was performed to test the hypothesis that molnupiravir is preferably hydrolyzed by CES2. Several complementary approaches were used to test this hypothesis. As many as 24 individual human liver samples were tested and the hydrolysis of molnupiravir was significantly correlated with the level of CES2 but not CES1. Microsomes from the intestine, kidney, and liver, but not lung, all rapidly hydrolyzed molnupiravir and the magnitude of hydrolysis was related closely to the level of CES2 expression among these organs. Importantly, recombinant CES2 but not CES1 hydrolyzed molnupiravir, collectively establishing that molnupiravir is a CES2-selective substrate. In addition, several CES2 polymorphic variants (e.g., R180H) differed from the wild-type CES2 in the hydrolysis of molnupiravir. Molecular docking revealed that wild-type CES2 and its variant R180H used different sets of amino acids to interact with molnupiravir. Furthermore, molnupiravir hydrolysis was significantly inhibited by remdesivir, the first COVID-19 drug granted the full approval by the FDA. The results presented raise the possibility that CES2 expression and genetic variation may impact therapeutic efficacy in clinical situations and warrants further investigation. SIGNIFICANCE STATEMENT: COVID-19 remains a global health crisis, and molnupiravir is one of the two recently approved oral COVID-19 therapeutics. In this study, we have shown that molnupiravir is hydrolytically activated by CES2, a major hydrolase whose activity is impacted by genetic polymorphic variants, disease mediators, and many potentially coadministered medicines. These results presented raise the possibility that CES2 expression and genetic variation may impact therapeutic efficacy in clinical situations and warrants further investigation.
Collapse
Affiliation(s)
- Yue Shen
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio
| | - William Eades
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio
| | - William Liu
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio
| | - Bingfang Yan
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio
| |
Collapse
|
3
|
Wang J, Fu J, Sun W, Yin X, Lv K, Zhang J. Functionalized PEG-PLA nanoparticles for brain targeted delivery of ketoconazole contribute to pregnane X receptor overexpressing in drug-resistant epilepsy. Epilepsy Res 2022; 186:107000. [PMID: 36037622 DOI: 10.1016/j.eplepsyres.2022.107000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 07/24/2022] [Accepted: 08/11/2022] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To develop a functionalized PEG-PLA nanoparticle system containing ketoconazole (KCZ) to overcome the overactivity of pregnane X receptor (PXR) for the treatment of drug-resistant epilepsy (DRE). SIGNIFICANCE KCZ was developed as a therapy strategy for DRE limited by its lethal hepatotoxicity and minute brain concentration. KCZ-incorporated nanoparticles modified with angiopep-2 (NPs/KCZ) could reduce adverse effects of KCZ and achieve epileptic foci-targeted drug delivery. METHODS NPs/KCZ was prepared by thin-film hydration method and characterized in vitro and in vivo. The efficacy evaluation of NPs/KCZ was evaluated in a kainic acid (KA)-induced mice model of epilepsy with carbamazepine (CBZ) treatment. RESULTS The mean particle size and Zeta potential of NPs/KCZ were 17.84 ± 0.33 nm and - 2.28 ± 0.12 mV, respectively. The drug-loading (DL%) of KCZ in nanoparticles was 8.96 ± 0.12 % and the entrapment efficiency (EE%) was 98.56 ± 0.02 %. The critical value of critical micelle concentration was 10-3.3 mg/ml. No obvious cytotoxicity was found in vitro. The behavioral and electrographic seizure activities were obviously attenuated in NPs/KCZ+CBZ group. The CBZ concentration of brain tissues in mice treated with NPs/KCZ+CBZ was significantly increased than those treated with CBZ alone (P = 0.0028). A significantly decreased expression level of PXR and its downstream proteins was observed in NPs/KCZ+CBZ group compared with that in the control and CBZ group (All P < 0.05). CONCLUSION Our results showed that NPs/KCZ achieved the epileptic foci-targeted delivery of KCZ and ameliorated the efficacy of CBZ on DRE by attenuating the overactivity of PXR.
Collapse
Affiliation(s)
- Jianhong Wang
- Department of Neurology, Huashan Hospital, Fudan University, No.12 Wulumuqi Road (Middle), Shanghai 200040, China
| | - Junyan Fu
- Department of Radiology, Huashan Hospital, Fudan University, No.12 Wulumuqi Road (Middle), Shanghai 200040, China
| | - Wanbing Sun
- Department of Neurology, Huashan Hospital, Fudan University, No.12 Wulumuqi Road (Middle), Shanghai 200040, China
| | - Xuyang Yin
- Department of Radiology, Huashan Hospital, Fudan University, No.12 Wulumuqi Road (Middle), Shanghai 200040, China
| | - Kun Lv
- Department of Radiology, Huashan Hospital, Fudan University, No.12 Wulumuqi Road (Middle), Shanghai 200040, China
| | - Jun Zhang
- Department of Radiology, Huashan Hospital, Fudan University, No.12 Wulumuqi Road (Middle), Shanghai 200040, China; National Center for Neurological Disorders, No.12 Wulumuqi Road (Middle), Shanghai 200040, China.
| |
Collapse
|
4
|
Corrêa ANR, Ferreira CD. Mycotoxins in Grains and Cereals Intended for Human Consumption: Brazilian Legislation, Occurrence Above Maximum Levels and Co-Occurrence. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2098318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
5
|
Dutta M, Lim JJ, Cui JY. Pregnane X Receptor and the Gut-Liver Axis: A Recent Update. Drug Metab Dispos 2022; 50:478-491. [PMID: 34862253 PMCID: PMC11022899 DOI: 10.1124/dmd.121.000415] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 12/02/2021] [Indexed: 02/04/2023] Open
Abstract
It is well-known that the pregnane X receptor (PXR)/Nr1i2 is a critical xenobiotic-sensing nuclear receptor enriched in liver and intestine and is responsible for drug-drug interactions, due to its versatile ligand binding domain (LBD) and target genes involved in xenobiotic biotransformation. PXR can be modulated by various xenobiotics including pharmaceuticals, nutraceuticals, dietary factors, and environmental chemicals. Microbial metabolites such as certain secondary bile acids (BAs) and the tryptophan metabolite indole-3-propionic acid (IPA) are endogenous PXR activators. Gut microbiome is increasingly recognized as an important regulator for host xenobiotic biotransformation and intermediary metabolism. PXR regulates and is regulated by the gut-liver axis. This review summarizes recent research advancements leveraging pharmaco- and toxico-metagenomic approaches that have redefined the previous understanding of PXR. Key topics covered in this review include: (1) genome-wide investigations on novel PXR-target genes, novel PXR-DNA interaction patterns, and novel PXR-targeted intestinal bacteria; (2) key PXR-modulating activators and suppressors of exogenous and endogenous sources; (3) novel bidirectional interactions between PXR and gut microbiome under physiologic, pathophysiological, pharmacological, and toxicological conditions; and (4) modifying factors of PXR-signaling including species and sex differences and time (age, critical windows of exposure, and circadian rhythm). The review also discusses critical knowledge gaps and important future research topics centering around PXR. SIGNIFICANCE STATEMENT: This review summarizes recent research advancements leveraging O'mics approaches that have redefined the previous understanding of the xenobiotic-sensing nuclear receptor pregnane X receptor (PXR). Key topics include: (1) genome-wide investigations on novel PXR-targeted host genes and intestinal bacteria as well as novel PXR-DNA interaction patterns; (2) key PXR modulators including microbial metabolites under physiological, pathophysiological, pharmacological, and toxicological conditions; and (3) modifying factors including species, sex, and time.
Collapse
Affiliation(s)
- Moumita Dutta
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| | - Joe Jongpyo Lim
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| |
Collapse
|
6
|
In vitro and in vivo evaluation of AFB1 and OTA-toxicity through immunofluorescence and flow cytometry techniques: A systematic review. Food Chem Toxicol 2021; 160:112798. [PMID: 34973406 DOI: 10.1016/j.fct.2021.112798] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/03/2021] [Accepted: 12/24/2021] [Indexed: 01/20/2023]
Abstract
Due to the globalization, mycotoxins have been considered a major risk to human health being the main contaminants of foodstuffs. Among them, AFB1 and OTA are the most toxic and studied. Therefore, the goal of this review is to deepen the knowledge about the toxicological effects that AFB1 and OTA can induce on human health by using flow cytometry and immunofluorescence techniques in vitro and in vivo models. The examination of the selected reports shows that the majority of them are focused on immunotoxicity while the rest are concerned about nephrotoxicity, hepatotoxicity, gastrointestinal toxicity, neurotoxicity, embryotoxicity, reproductive system, breast, esophageal and lung toxicity. In relation to immunofluorescence analysis, biological processes related to AFB1- and OTA-toxicity were evaluated such as inflammation, neuronal differentiation, DNA damage, oxidative stress and cell death. In flow cytometry analysis, a wide range of assays have been performed across the reviewed studies being apoptosis assay, cell cycle analysis and intracellular ROS measurement the most employed. Although, the toxic effects of AFB1 and OTA have been reported, further research is needed to clarify AFB1 and OTA-mechanism of action on human health.
Collapse
|
7
|
A synergism of in silico and statistical approaches to discover new potential endocrine disruptor mycotoxins. Toxicol Appl Pharmacol 2021; 435:115832. [PMID: 34933055 DOI: 10.1016/j.taap.2021.115832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 01/14/2023]
Abstract
Mycotoxins are secondary metabolites produced by pathogenic fungi. They are found in a variety of different products, such as spices, cocoa, and cereals, and they can contaminate fields before and/or after harvest and during storage. Mycotoxins negatively impact human and animal health, causing a variety of adverse effects, ranging from acute poisoning to long-term effects. Given a large number of mycotoxins (currently more than 300 are known), it is impossible to use in vitro/in vivo methods to detect the potentially harmful effects to human health of all of these. To overcome this problem, this work aims to present a new robust computational approach, based on a combination of in silico and statistical methods, in order to screen a large number of molecules against the nuclear receptor family in a cost and time-effective manner and to discover the potential endocrine disruptor activity of mycotoxins. The results show that a high number of mycotoxins is predicted as a potential binder of nuclear receptors. In particular, ochratoxin A, zearalenone, α- and β-zearalenol, aflatoxin B1, and alternariol have been shown to be putative endocrine disruptors chemicals for nuclear receptors.
Collapse
|
8
|
Skandalaki A, Sarantis P, Theocharis S. Pregnane X Receptor (PXR) Polymorphisms and Cancer Treatment. Biomolecules 2021; 11:1142. [PMID: 34439808 PMCID: PMC8394562 DOI: 10.3390/biom11081142] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/20/2022] Open
Abstract
Pregnane X Receptor (PXR) belongs to the nuclear receptors' superfamily and mainly functions as a xenobiotic sensor activated by a variety of ligands. PXR is widely expressed in normal and malignant tissues. Drug metabolizing enzymes and transporters are also under PXR's regulation. Antineoplastic agents are of particular interest since cancer patients are characterized by significant intra-variability to treatment response and severe toxicities. Various PXR polymorphisms may alter the function of the protein and are linked with significant effects on the pharmacokinetics of chemotherapeutic agents and clinical outcome variability. The purpose of this review is to summarize the roles of PXR polymorphisms in the metabolism and pharmacokinetics of chemotherapeutic drugs. It is also expected that this review will highlight the importance of PXR polymorphisms in selection of chemotherapy, prediction of adverse effects and personalized medicine.
Collapse
Affiliation(s)
| | | | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.S.); (P.S.)
| |
Collapse
|
9
|
Yu H, Song M, Hu K, Wang Y, Fan R, Yang Z, Glatt H, Braeuning A, Liu Y. Influence of Bisphenol Compounds at Nanomolar Concentrations on Chromosome Damage Induced by Metabolically Activated Carcinogens in HepG2 Cells. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:10001-10011. [PMID: 34241998 DOI: 10.1021/acs.est.1c02189] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Bisphenol (BP) compounds are endocrine-disrupting organic pollutants. BPs may increase the messenger RNA (mRNA) transcripts of nuclear receptors (NRs) regulating the expression of xenobiotic-metabolizing cytochrome P450 (CYP) enzymes. Their impact on the genotoxicity of metabolically activated carcinogens, however, remains unknown. In this study, effects of the bisphenols A, F, S, and AF on the expression of the aryl hydrocarbon receptor (AhR), the pregnane X receptor (PXR), the constitutive androstane receptor, and individual xenobiotic-metabolizing CYP enzymes in a human hepatoma (HepG2) cell line were investigated, along with in silico binding studies of BPs to each receptor. The results indicated that each BP at 1 to 100 nM concentrations increased the mRNA transcripts and protein levels of AhR, PXR, CYP1A1, 1A2, 1B1, 2E1, and 3A4. The predicted affinities of the BPs for binding AhR were comparable to those of potent agonists. Pretreatment of HepG2 cells with each BP potentiated the induction of micronuclei by benzo[a]pyrene, aflatoxin B1, benzene, and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone; this effect was abolished/reduced by inhibitors of NRs and/or CYPs. Our study suggests that BPs at human exposure levels may aggravate chromosome damage by several impactful carcinogens in human cells by inducing relevant CYP enzymes, mostly via NR modulation.
Collapse
Affiliation(s)
- Hang Yu
- Department of Toxicology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, 1023 S. Shatai Road, Guangzhou 510515, China
| | - Meiqi Song
- Department of Toxicology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, 1023 S. Shatai Road, Guangzhou 510515, China
| | - Keqi Hu
- Department of Toxicology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, 1023 S. Shatai Road, Guangzhou 510515, China
| | - Yujian Wang
- Department of Toxicology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, 1023 S. Shatai Road, Guangzhou 510515, China
| | - Ruifang Fan
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Zongying Yang
- Department of Toxicology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, 1023 S. Shatai Road, Guangzhou 510515, China
| | - Hansruedi Glatt
- Department of Nutritional Toxicology, German Institute of Human Nutrition (DIfE), Arthur-Scheunert-Allee 114-116, Nuthetal D-14558, Germany
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, Berlin D-10589, Germany
| | - Albert Braeuning
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, Berlin D-10589, Germany
| | - Yungang Liu
- Department of Toxicology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, 1023 S. Shatai Road, Guangzhou 510515, China
| |
Collapse
|
10
|
Shablykina OV, Shilin SV, Moskvina VS, Ishchenko VV, Khilya VP. Progress in the Chemistry of Amino-Acid Derivatives of Isocoumarins and 3,4-Dihydroisocoumarins. Chem Nat Compd 2021. [DOI: 10.1007/s10600-021-03323-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Daujat-Chavanieu M, Gerbal-Chaloin S. Regulation of CAR and PXR Expression in Health and Disease. Cells 2020; 9:E2395. [PMID: 33142929 PMCID: PMC7692647 DOI: 10.3390/cells9112395] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/22/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Pregnane X receptor (PXR, NR1I2) and constitutive androstane receptor (CAR, NR1I3) are members of the nuclear receptor superfamily that mainly act as ligand-activated transcription factors. Their functions have long been associated with the regulation of drug metabolism and disposition, and it is now well established that they are implicated in physiological and pathological conditions. Considerable efforts have been made to understand the regulation of their activity by their cognate ligand; however, additional regulatory mechanisms, among which the regulation of their expression, modulate their pleiotropic effects. This review summarizes the current knowledge on CAR and PXR expression during development and adult life; tissue distribution; spatial, temporal, and metabolic regulations; as well as in pathological situations, including chronic diseases and cancers. The expression of CAR and PXR is modulated by complex regulatory mechanisms that involve the interplay of transcription factors and also post-transcriptional and epigenetic modifications. Moreover, many environmental stimuli affect CAR and PXR expression through mechanisms that have not been elucidated.
Collapse
Affiliation(s)
| | - Sabine Gerbal-Chaloin
- IRMB, University of Montpellier, INSERM, CHU Montpellier, 34295 Montpellier, France;
| |
Collapse
|