1
|
Wang Y, Wei W, Zhang Y, Miao J, Bao X, Lu C. MLKL as an emerging machinery for modulating organelle dynamics: regulatory mechanisms, pathophysiological significance, and targeted therapeutics. Front Pharmacol 2025; 16:1512968. [PMID: 40070567 PMCID: PMC11893596 DOI: 10.3389/fphar.2025.1512968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 02/04/2025] [Indexed: 03/14/2025] Open
Abstract
Mixed lineage kinase domain-like protein (MLKL) is a pseudokinase featured by a protein kinase-like domain without catalytic activity. MLKL was originally discovered to be phosphorylated by receptor-interacting protein kinase 1/3, typically increase plasma membrane permeabilization, and disrupt the membrane integrity, ultimately executing necroptosis. Recent evidence uncovers the association of MLKL with diverse cellular organelles, including the mitochondrion, lysosome, endosome, endoplasmic reticulum, and nucleus. Thus, this review mainly focuses on the regulatory functions, mechanisms, and targets of MLKL in organelles rather than necroptosis and summarize the medical significance in multiple diseases. On this basis, we conclude and analyze the current progress and prospect for the development of MLKL-related drugs, from natural products, small-molecule chemical compounds, to proteolysis-targeting chimera. This review is aimed to propel the development of MLKL as a valid drug target and the discovery of novel MLKL-related drugs, and promote their further applications.
Collapse
Affiliation(s)
| | | | | | | | - Xiaofeng Bao
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Chunfeng Lu
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
2
|
Chen F, Luo AF, Pan KX, Gu H, Zhou CF, Zeng W, Liu S, Molenaar A, Ren HY, Huo LJ, Bi YZ. 3-methyl-4-nitrophenol disturbs the maternal-to-zygotic transition of early embryos by damaging mitochondrial function and histone modification. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117595. [PMID: 39798444 DOI: 10.1016/j.ecoenv.2024.117595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/05/2024] [Accepted: 12/19/2024] [Indexed: 01/15/2025]
Abstract
3-methyl-4-nitrophenol (PNMC), a chemical prevalent in various industries for drug, dye, and leather production, also serves as a primary byproduct of organophosphate insecticides. Despite its global recognition as an endocrine disruptor with documented reproductive toxicity, its detrimental impact on preimplantation embryonic development has yet to be thoroughly investigated. In this study, through the in vitro culture of mice embryos, it was initially observed that even low concentrations of PNMC exposure led to a significant reduction in blastocyst formation and a sharp decline in the ratio of inner cell mass within the blastocysts. SMART-seq2 transcriptome sequencing further confirmed that PNMC treatment disrupted global gene expression in 2-cell embryos, with differentially expressed genes enriched in multiple signaling pathways, including those related to autophagy, apoptosis, fertilization, embryonic development, transcription, and mRNA processing. Integration of transcriptome data with open databases revealed that both zygotic genome activation genes and maternal factors experienced significant transcript-level disruptions. Moreover, the study demonstrated that these gene expression changes were closely associated with mitochondrial dysfunction, evidenced by diminished mitochondrial membrane potential, reduced ATP production, aberrant expression of mitochondria-related genes, increased ROS accumulation, and heightened DNA damage in PNMC-treated embryos. Additionally, PNMC exposure induced defects in histone modification, as shown by altered levels of H3K9me3 and H3K27me3, H3K9ac and H3K27ac. Lastly, the findings indicated that PNMC triggered apoptosis in embryos, validated by elevated BAX and CASPASE3 expression, alongside positive TUNEL staining. In summary, PNMC exposure impairs the maternal-to-zygotic transition, likely through mitochondrial dysfunction and histone modification, culminating in developmental arrest and apoptosis in mouse preimplantation embryos.
Collapse
Affiliation(s)
- Fan Chen
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Sciences and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430070, China
| | - An-Feng Luo
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Sciences and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430070, China
| | - Kai-Xin Pan
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Sciences and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430070, China
| | - Hao Gu
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Sciences and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430070, China
| | - Chang-Fan Zhou
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Sciences and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430070, China
| | - Wei Zeng
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Sciences and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430070, China
| | - Song Liu
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Sciences and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430070, China
| | - Adrian Molenaar
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Sciences and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; Rumen Microbiology and Animal Nutrition and Physiology AgResearch, Grasslands Campus, Fitzherbert Research Centre, Palmerston North 4410, New Zealand
| | - Hong-Yan Ren
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Sciences and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430070, China
| | - Li-Jun Huo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yan-Zhen Bi
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Sciences and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China.
| |
Collapse
|
3
|
Ji L, Huang Q, Qi Y, Wang Z, Kong X, Zhu X, Yang B, Li J, He X, Deng X, Cheng X, Yu H, Shi Y, Lin Z, Zhao X, Wang X, Yu J. Quercetin and Astragaloside IV Mitigate the Developmental Abnormalities Induced by Gestational Exposure to Zinc Oxide Nanoparticles. ACS OMEGA 2024; 9:47802-47810. [PMID: 39651075 PMCID: PMC11618501 DOI: 10.1021/acsomega.4c08235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/07/2024] [Accepted: 11/13/2024] [Indexed: 12/11/2024]
Abstract
Zinc oxide (ZnO) nanoparticles (NPs) are extensively utilized in the commercial and biomedical sectors, posing heightened risks of potential cytotoxicity through various mechanisms. Nonetheless, the regulatory framework governing the gestational toxicity of ZnO NPs and the corresponding intervention strategies remain largely obscure. In this study, using the Drosophila model, we observed that gestational exposure to ZnO NPs led to growth and developmental anomalies in a dose-dependent manner when compared with the control (no ZnO NP exposure). Subsequent dietary administration of Quercetin and Astragaloside IV resulted in effective mitigation of the developmental toxicity induced by exposure to ZnO NPs. Moreover, the latter also triggered activation of the ferroptosis pathway. The associated parameters were successfully ameliorated by the administration of Quercetin and Astragaloside IV. Notably, treatment with Ferrostatin-1 also alleviated developmental disorders arising from exposure to ZnO NPs. In conclusion, our investigation demonstrated that exposure to ZnO NPs during gestation interfered with growth and development via the ferroptosis pathway, underscoring the significance of dietary supplementation with Quercetin and Astragaloside IV for protection against developmental toxicity.
Collapse
Affiliation(s)
- Li Ji
- Institute
of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Qiuru Huang
- Institute
of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Yujuan Qi
- Clinical
Center of Reproductive Medicine, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou 221000, China
| | - Zihan Wang
- Institute
of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Xiuwen Kong
- Institute
of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Xiaoqi Zhu
- Institute
of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Binbin Yang
- Institute
of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Jiaxin Li
- Institute
of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Xuxin He
- Institute
of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Xiaonan Deng
- Institute
of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Xinmeng Cheng
- Institute
of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Hao Yu
- Institute
of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Yi Shi
- Institute
of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Ziwen Lin
- Institute
of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Xinyuan Zhao
- Department
of Occupational Medicine and Environmental Toxicology, Nantong Key
Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Xiaorong Wang
- Center
for Reproductive Medicine, Affiliated Maternity
and Child Health Care Hospital of Nantong University, Nantong 226018, China
- Nantong
Institute of Genetics and Reproductive Medicine, Affiliated Maternity and Child Healthcare Hospital of Nantong University, Nantong 226018, China
- Nantong
Key Laboratory of Genetics and Reproductive Medicine, Nantong 226018, China
| | - Jun Yu
- Institute
of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| |
Collapse
|
4
|
Wang Y, Lv J, Liu G, Yao Q, Wang Z, Liu N, He Y, Il D, Tusupovich JI, Jiang Z. ZnO NPs Impair the Viability and Function of Porcine Granulosa Cells Through Autophagy Regulated by ROS Production. Antioxidants (Basel) 2024; 13:1295. [PMID: 39594437 PMCID: PMC11591140 DOI: 10.3390/antiox13111295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024] Open
Abstract
The zinc oxide nanoparticles (ZnO NPs) is one of the most extensively utilized metal oxide nanoparticles in biomedicine, human food, cosmetics and livestock farming. However, growing evidence suggests that there is a potential risk for humans and animals because of the accumulation of ZnO NPs in cells, which leads to cell death through several different pathways. Nevertheless, the effects of ZnO NPs on porcine granulosa cells (PGCs) and how ZnO NPs regulate the follicular cells are unknown. In this study, we aimed to elucidate the role of ZnO NPs in the porcine ovary by using PGCs. Firstly, we identified the characterization of ZnO NPs used in this study and the results showed that the size of ZnO NPs was 29.0 nm. The results also demonstrated that ZnO NPs impaired cell viability and decreased steroid hormone secretion in PGCs. In addition, ZnO NPs induced reactive oxygen species (ROS) production, leading to oxidative stress of PGCs. Meanwhile, ZnO NPs also triggered autophagy in PGCs by increasing the ratio of LC3-II/LC3-I, along with the expression of SQSTM1 and ATG7. Finally, the results from N-acetylcysteine (NAC) addition suggested that ZnO NPs promoted autophagy through the enhancement of ROS production. In summary, this study demonstrates that ZnO NPs impair the viability and function of PGCs through autophagy, which is regulated by ROS production.
Collapse
Affiliation(s)
- Yifan Wang
- Key Laboratory of Animal Genetic, Breeding and Reproduction in Shaanxi Province, College of Animal Science and Technology, Northwest Agriculture and Forestry University, Xianyang 712100, China
| | - Jing Lv
- Key Laboratory of Animal Genetic, Breeding and Reproduction in Shaanxi Province, College of Animal Science and Technology, Northwest Agriculture and Forestry University, Xianyang 712100, China
| | - Guangyu Liu
- Key Laboratory of Animal Genetic, Breeding and Reproduction in Shaanxi Province, College of Animal Science and Technology, Northwest Agriculture and Forestry University, Xianyang 712100, China
| | - Qichun Yao
- Animal Husbandry and Veterinary Station of Zhenba County, Hanzhong 723600, China
| | - Ziqi Wang
- Key Laboratory of Animal Genetic, Breeding and Reproduction in Shaanxi Province, College of Animal Science and Technology, Northwest Agriculture and Forestry University, Xianyang 712100, China
| | - Ning Liu
- Key Laboratory of Animal Genetic, Breeding and Reproduction in Shaanxi Province, College of Animal Science and Technology, Northwest Agriculture and Forestry University, Xianyang 712100, China
| | - Yutao He
- Key Laboratory of Animal Genetic, Breeding and Reproduction in Shaanxi Province, College of Animal Science and Technology, Northwest Agriculture and Forestry University, Xianyang 712100, China
| | - Dmitry Il
- Department of Food Security, Agrotechnological Faculty, Kozybayev University, 86, Pushkin Street, Petropavlovsk 150000, Kazakhstan
| | - Jakupov Isatay Tusupovich
- Department of Veterinary Medicine, Seifullin Kazakh Agro Technical Research University, 62, Zhenis Avenue, Astana 010011, Kazakhstan
| | - Zhongliang Jiang
- Key Laboratory of Animal Genetic, Breeding and Reproduction in Shaanxi Province, College of Animal Science and Technology, Northwest Agriculture and Forestry University, Xianyang 712100, China
| |
Collapse
|
5
|
Cheng X, Jiang T, Huang Q, Ji L, Li J, Kong X, Zhu X, He X, Deng X, Wu T, Yu H, Shi Y, Liu L, Zhao X, Wang X, Chen H, Yu J. Exposure to Titanium Dioxide Nanoparticles Leads to Specific Disorders of Spermatid Elongation via Multiple Metabolic Pathways in Drosophila Testes. ACS OMEGA 2024; 9:23613-23623. [PMID: 38854533 PMCID: PMC11154731 DOI: 10.1021/acsomega.4c01140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 06/11/2024]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) have been extensively utilized in various applications. However, the regulatory mechanism behind the reproductive toxicity induced by TiO2 NP exposure remains largely elusive. In this study, we employed a Drosophila model to assess potential testicular injuries during spermatogenesis and conducted bulk RNA-Seq analysis to elucidate the underlying mechanisms. Our results reveal that while prolonged exposure to lower concentrations of TiO2 NPs (0.45 mg/mL) for 30 days did not manifest reproductive toxicity, exposure at concentrations of 0.9 and 1.8 mg/mL significantly impaired spermatid elongation in Drosophila testes. Notably, bulk RNA-seq analysis revealed that TiO2 NP exposure affected multiple metabolic pathways including carbohydrate metabolism and cytochrome P450. Importantly, the intervention of glutathione (GSH) significantly protected against reproductive toxicity induced by TiO2 NP exposure, as it restored the number of Orb-positive spermatid clusters in Drosophila testes. Our study provides novel insights into the specific detrimental effects of TiO2 NP exposure on spermatid elongation through multiple metabolic alterations in Drosophila testes and highlights the protective role of GSH in countering this toxicity.
Collapse
Affiliation(s)
- Xinmeng Cheng
- Institute
of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Ting Jiang
- Institute
of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Qiuru Huang
- Institute
of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Li Ji
- Institute
of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Jiaxin Li
- Institute
of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Xiuwen Kong
- Institute
of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Xiaoqi Zhu
- Institute
of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Xuxin He
- Institute
of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Xiaonan Deng
- Institute
of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Tong Wu
- Institute
of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Hao Yu
- Institute
of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Yi Shi
- Institute
of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Lin Liu
- Institute
of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Xinyuan Zhao
- Department
of Occupational Medicine and Environmental Toxicology, Nantong Key
Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Xiaorong Wang
- Center
for Reproductive Medicine, Affiliated Maternity
and Child Health Care Hospital of Nantong University, Nantong 226018, China
- Nantong
Institute of Genetics and Reproductive Medicine, Affiliated Maternity and Child Healthcare Hospital of Nantong University, Nantong 226018, China
- Nantong
Key Laboratory of Genetics and Reproductive Medicine, Nantong 226018, China
| | - Hao Chen
- Institute
of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Jun Yu
- Institute
of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| |
Collapse
|
6
|
Khadanga V, Mishra PC. A review on toxicity mechanism and risk factors of nanoparticles in respiratory tract. Toxicology 2024; 504:153781. [PMID: 38493948 DOI: 10.1016/j.tox.2024.153781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 03/19/2024]
Abstract
This comprehensive review focuses on various dimensions of nanoparticle toxicity, emphasizing toxicological characteristics, assessment techniques, and examinations of relevant studies on the effects on biological systems. The primary objective is to comprehend the potential risks associated with nanoparticles and to provide efficient strategies for mitigating them by consolidating current research discoveries. For in-depth insights, the discussions extend to crucial aspects such as toxicity associated with different nanoparticles, human exposure, and nanoparticle deposition in the human respiratory tract. The analysis utilizes the multiple-path particle dosimetry (MPPD) modeling for computational simulation. The SiO2 nanoparticles with a volume concentration of 1% and a particle size of 50 nm are used to depict the MPPD modeling of the Left upper (LU), left lower (LL), right upper (RU), right middle (RM), and right lower (RL) lobes in the respiratory tract. The analysis revealed a substantial 67.5% decrease in the deposition fraction as the particle size increased from 10 nm to 100 nm. Graphical representation emphasizes the significant impact of exposure path selection on nanoparticle deposition, with distinct deposition values observed for nasal, oral, oronasal-mouth breather, oronasal - normal augmenter, and endotracheal paths (0.00291 μg, 0.00332 μg, 0.00297 μg, 0.00291 μg, and 0.00383 μg, respectively). Consistent with the focus of the review, the article also addresses crucial mitigation strategies for managing nanoparticle toxicity.
Collapse
Affiliation(s)
- Vidyasri Khadanga
- Thermal Research Laboratory (TRL), School of Mechanical Engineering, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Purna Chandra Mishra
- Thermal Research Laboratory (TRL), School of Mechanical Engineering, KIIT University, Bhubaneswar, Odisha 751024, India.
| |
Collapse
|
7
|
Wang YS, Yang SJ, Wan ZX, Shen A, Ahmad MJ, Chen MY, Huo LJ, Pan JH. Chlorothalonil exposure compromised mouse oocyte in vitro maturation through inducing oxidative stress and activating MAPK pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 273:116100. [PMID: 38367607 DOI: 10.1016/j.ecoenv.2024.116100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/02/2024] [Accepted: 02/08/2024] [Indexed: 02/19/2024]
Abstract
Chlorothalonil (CTL) is widely used in agricultural production and antifoulant additive globally due to its broad spectrum and non-systemic properties, resulting in its widespread existence in foods, soil and water. Extensive evidence demonstrated that exposure to CTL induced adverse effects on organisms and in particular its reproductive toxicity has been attracted public concern. However, the influences of CTL on oocyte maturation is mysterious so far. In this study, we documented the toxic effects of CTL on oocyte in vitro maturation and the related underlying mechanisms. Exposure to CTL caused continuous activation of spindle assembly checkpoints (SAC) which in turn compromised meiotic maturation in mouse oocyte, featured by the attenuation of polar body extrusion (PBE). Detection of cytoskeletal dynamics demonstrated that CTL exposure weakened the acetylation level of α-tubulin and impaired meiotic spindle apparatus, which was responsible for the aberrant state of SAC. Meanwhile, exposure to CTL damaged the function of mitochondria, inducing the decline of ATP content and the elevation of reactive oxygen species (ROS), which thereby induced early apoptosis and DNA damage in mouse oocytes. In addition, exposure to CTL caused the alteration of the level of histone H3 methylation, indicative of the harmful effects of CTL on epigenetic modifications in oocytes. Further, the CTL-induced oxidative stress activated mitogen-activated protein kinase (MAPK) pathway and injured the maturation of oocytes. In summary, exposure to CTL damaged mouse oocyte in vitro maturation via destroying spindle assembly, inducing oxidative stress and triggering MAPK pathway activation.
Collapse
Affiliation(s)
- Yong-Sheng Wang
- National 111 Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering, Hubei University of Technology, Wuhan, Hubei 430068, China; Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Sheng-Ji Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zi-Xuan Wan
- National 111 Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Ao Shen
- National 111 Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Muhammad Jamil Ahmad
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ming-Yue Chen
- National 111 Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering, Hubei University of Technology, Wuhan, Hubei 430068, China.
| | - Li-Jun Huo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jun-Hua Pan
- National 111 Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering, Hubei University of Technology, Wuhan, Hubei 430068, China.
| |
Collapse
|
8
|
Saxena P, Harish, Shah D, Rani K, Miglani R, Singh AK, Sangela V, Rajput VD, Minkina T, Mandzhieva S, Sushkova S. A critical review on fate, behavior, and ecotoxicological impact of zinc oxide nanoparticles on algae. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:19105-19122. [PMID: 38376781 DOI: 10.1007/s11356-024-32439-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 02/03/2024] [Indexed: 02/21/2024]
Abstract
The rapid inclusion of zinc oxide nanoparticles (ZnO NPs) in nanotechnology-based products over the last decade has generated a new threat in the apprehension of the environment. The massive use of zinc nanosized products will certainly be disposed of and be released, eventually entering the aquatic ecosystem, posing severe environmental hazards. Moreover, nanosized ZnO particles owing the larger surface area per volume exhibit different chemical interactions within the aquatic ecosystem. They undergo diverse potential transformations because of their unique physiochemical properties and the feature of receiving medium. Therefore, assessment of their impact is critical not only for scavenging the present situation but also for preventing unintended environmental hazards. Algae being a primary producer of the aquatic ecosystem help assess the risk of massive NPs usage in environmental health. Because of their nutritional needs and position at the base of aquatic food webs, algal indicators exhibit relatively unique information concerning ecosystem conditions. Moreover, algae are presently the most vital part of the circular economy. Hence, it is imperative to understand the physiologic, metabolic, and morphologic changes brought by the ZnO NPs to the algal cells along with the development of the mechanism imparting toxicity mechanism. We also need to develop an appropriate scientific strategy in the innovation process to restrain the exposure of NPs at safer levels. This review provides the details of ZnO NP interaction with algae. Moreover, their impact, mechanism, and factors affecting toxicity to the algae are discussed.
Collapse
Affiliation(s)
- Pallavi Saxena
- Soil Health Laboratory, Academy of Biology and Biotechnology, Southern Federal University, Rostov-On-Don, 44090, Russia.
| | - Harish
- Plant Biotechnology Laboratory, Department of Botany, Mohanlal Sukhadia University, Udaipur, 313001, Rajasthan, India
| | - Diksha Shah
- Department of Environmental Sciences, G.B. Pant University of Agriculture & Technology: Govind, Ballabh Pant University of Agriculture & Technology, Uttarakhand, 263145, India
| | - Kanika Rani
- Centre for Bio-Nanotechnology, Department of Molecular Biology and Biotechnology, CCS HAU, Hisar, Haryana, 125004, India
| | - Rashi Miglani
- Department of Environmental Sciences, G.B. Pant University of Agriculture & Technology: Govind, Ballabh Pant University of Agriculture & Technology, Uttarakhand, 263145, India
| | - Amit Kumar Singh
- Laboratory of Alternative Protocols in Zoology & Biotechnology Research Laboratory, Department of Zoology, D.S.B Campus, Kumaun University, Nainital, 263002, India
- Plant Ecology Laboratory, Department of Botany, BMK Govt. Girls College, Balod, Chhattisgarh, 491226, India
| | - Vishambhar Sangela
- Plant Biotechnology Laboratory, Department of Botany, Mohanlal Sukhadia University, Udaipur, 313001, Rajasthan, India
| | - Vishnu Dayal Rajput
- Soil Health Laboratory, Academy of Biology and Biotechnology, Southern Federal University, Rostov-On-Don, 44090, Russia
| | - Tatiana Minkina
- Soil Health Laboratory, Academy of Biology and Biotechnology, Southern Federal University, Rostov-On-Don, 44090, Russia
| | - Saglara Mandzhieva
- Soil Health Laboratory, Academy of Biology and Biotechnology, Southern Federal University, Rostov-On-Don, 44090, Russia
| | - Svetlana Sushkova
- Soil Health Laboratory, Academy of Biology and Biotechnology, Southern Federal University, Rostov-On-Don, 44090, Russia
| |
Collapse
|
9
|
Zhang M, Wang W, Zhang D, Zhang Y, Yang Z, Li Y, Fang F, Xue Y, Zhang Y. Copper oxide nanoparticles impairs oocyte meiosis maturation by inducing mitochondrial dysfunction and oxidative stress. Food Chem Toxicol 2024; 185:114441. [PMID: 38218586 DOI: 10.1016/j.fct.2024.114441] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/06/2024] [Accepted: 01/07/2024] [Indexed: 01/15/2024]
Abstract
Copper oxides nanoparticles (CuO NPs) are widely used for a variety of industrial and life science applications. In addition to cause neurotoxicity, hepatotoxicity, immunotoxicity, CuO NPs have also been reported to adversely affect the reproductive system in animals; However, little is known about the effects and potential mechanism of CuO NPs exposure on oocyte quality, especially oocyte maturation. In the present study, we reported that CuO NPs exposure impairs the oocyte maturation by disrupting meiotic spindle assembly and chromosome alignment, as well as kinetochore-microtubule attachment. In addition, CuO NPs exposure also affects the acetylation level of α-tubulin in mice oocyte, which hence impairs microtubule dynamics and organization. Besides, CuO NPs exposure would result in the mis-localization of Juno and Ovastacin, which might be one of the critical factors leading to the failure of oocyte maturation. Finally, CuO NPs exposure impairs the mitochondrial distribution and induced high levels of ROS, which led to the accumulation of DNA damage and occurrence of apoptosis. In summary, our results indicated that CuO NPs exposure had potential toxic effects on female fertility and led to the poor oocyte quality in female mice.
Collapse
Affiliation(s)
- Mianqun Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Key Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding of Anhui Province, Hefei, 230036, China
| | - Wei Wang
- College of Animal Science and Technology, Anhui Agricultural University, Key Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding of Anhui Province, Hefei, 230036, China
| | - Dandan Zhang
- Department of Reproductive Medicine, General Hospital of WanBei Coal Group, Suzhou, 234000, China
| | - Yiwen Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Key Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding of Anhui Province, Hefei, 230036, China
| | - Zaishan Yang
- College of Animal Science and Technology, Anhui Agricultural University, Key Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding of Anhui Province, Hefei, 230036, China
| | - Yunsheng Li
- College of Animal Science and Technology, Anhui Agricultural University, Key Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding of Anhui Province, Hefei, 230036, China
| | - Fugui Fang
- College of Animal Science and Technology, Anhui Agricultural University, Key Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding of Anhui Province, Hefei, 230036, China
| | - Yanfeng Xue
- College of Animal Science and Technology, Anhui Agricultural University, Key Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding of Anhui Province, Hefei, 230036, China.
| | - Yunhai Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Key Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding of Anhui Province, Hefei, 230036, China.
| |
Collapse
|
10
|
Yao Y, Zhang T, Tang M. Toxicity mechanism of engineered nanomaterials: Focus on mitochondria. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123231. [PMID: 38154775 DOI: 10.1016/j.envpol.2023.123231] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/22/2023] [Accepted: 12/24/2023] [Indexed: 12/30/2023]
Abstract
With the rapid development of nanotechnology, engineered nanomaterials (ENMs) are widely used in various fields. This has exacerbated the environmental pollution and human exposure of ENMs. The study of toxicity of ENMs and its mechanism has become a hot research topic in recent years. Mitochondrial damage plays an important role in the toxicity of ENMs. This paper reviews the structural damage, dysfunction, and molecular level perturbations caused by different ENMs to mitochondria, including ZnO NPs, Ag NPs, TiO2 NPs, iron oxide NPs, cadmium-based quantum dots, CuO NPs, silica NPs, carbon-based nanomaterials. Among them, mitochondrial quality control plays an important role in mitochondrial damage. We further summarize the cellular level outcomes caused by mitochondrial damage, mainly including, apoptosis, ferroptosis, pyroptosis and inflammation response. In addition, we concluded that reducing mitochondrial damage at source as well as accelerating recovery from mitochondrial damage through ENMs modification and pharmacological intervention are two feasible strategies. This review further provides new insights into the mitochondrial toxicity mechanisms of ENMs and provides a new foothold for predicting human health and environmental risks of ENMs.
Collapse
Affiliation(s)
- Yongshuai Yao
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, PR China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, PR China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, PR China.
| |
Collapse
|
11
|
Guo QC, Yao W, Liu C, Deng TR, Li J, Liao HM, Tian WQ, Wang Y, Du YY, Li YF. Associations of personal care products use with reproductive outcomes of IVF/ICSI treatment. Front Endocrinol (Lausanne) 2024; 14:1320893. [PMID: 38327901 PMCID: PMC10847553 DOI: 10.3389/fendo.2023.1320893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/28/2023] [Indexed: 02/09/2024] Open
Abstract
Introduction Personal care products (PCPs) contain a number of endocrine-disrupting chemicals (EDCs) that could potentially affect the reproductive function in women of childbearing age. However, studies focused on the effects of PCPs use on reproductive outcomes are very limited. The current study aimed to explore the relationships between PCPs use patterns and reproductive outcomes in women undergoing in vitro fertilization/intracytoplasmic sperm injection (IVF/ICSI) treatment. Methods A total of 1500 women from the Tongji Reproductive and Environmental (TREE) study between December 2018 and January 2020 were included in this study. Participants provided characteristics of PCPs use within the previous three months. Retrieved oocyte number, mature oocyte number, two distinct pronuclei (2PN) zygote number, fertilization rate, cleavage rate, blastocyst formation rate, implantation, clinical pregnancy, miscarriage, and live birth were followed up as reproductive endpoints. Generalized linear regression model was utilized to assess the associations between various categories of PCPs use and reproductive endpoints of IVF/ICSI. Results After adjusting for relevant covariates, women who used skin care products ≥14 times per week had a reduction of 22.4% in the maturation rate (95% CI: -39.2%, -1.6%) compared to participants who did not use skin care products. After transferring fresh embryos, women who used cosmetics 1-2 times per week (adjusted OR = 2.2, 95% CI: 1.0, 4.8) or 3-7 times per week (adjusted OR = 2.5, 95% CI: 1.2, 5.2) had a higher possibility of miscarriage than those who did not use cosmetics. There was negative association between the use of gel or soap and the cleavage rate among women aged < 30 years old (P for interaction = 0.01). Among women with BMI ≥ 24 kg/m2, the use of gel or soap was negatively associated with the blastocyst formation rate (P for interaction = 0.04), while cosmetics use was negatively associated with the maturation rate (P for interaction = 0.001). Conclusion Our findings suggest that the use of PCPs in women of reproductive age have a potential adverse impact on IVF/ICSI outcomes, particularly skin care and cosmetic products.
Collapse
Affiliation(s)
- Qing-Chun Guo
- Department of Reproductive Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wen Yao
- Department of Reproductive Medicine, General Hospital of Central Theater Command, Wuhan, Hubei, China
| | - Chong Liu
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao-Ran Deng
- Department of Reproductive Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Juan Li
- Department of Reproductive Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hong-Mei Liao
- Department of Reproductive Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wen-Qu Tian
- Department of Reproductive Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yi Wang
- Department of Reproductive Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yao-Yao Du
- Department of Reproductive Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yu-Feng Li
- Department of Reproductive Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
12
|
Wu D, Khan FA, Zhang K, Pandupuspitasari NS, Negara W, Guan K, Sun F, Huang C. Retinoic acid signaling in development and differentiation commitment and its regulatory topology. Chem Biol Interact 2024; 387:110773. [PMID: 37977248 DOI: 10.1016/j.cbi.2023.110773] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/11/2023] [Accepted: 10/20/2023] [Indexed: 11/19/2023]
Abstract
Retinoic acid (RA), the derivative of vitamin A/retinol, is a signaling molecule with important implications in health and disease. It is a well-known developmental morphogen that functions mainly through the transcriptional activity of nuclear RA receptors (RARs) and, uncommonly, through other nuclear receptors, including peroxisome proliferator-activated receptors. Intracellular RA is under spatiotemporally fine-tuned regulation by synthesis and degradation processes catalyzed by retinaldehyde dehydrogenases and P450 family enzymes, respectively. In addition to dictating the transcription architecture, RA also impinges on cell functioning through non-genomic mechanisms independent of RAR transcriptional activity. Although RA-based differentiation therapy has achieved impressive success in the treatment of hematologic malignancies, RA also has pro-tumor activity. Here, we highlight the relevance of RA signaling in cell-fate determination, neurogenesis, visual function, inflammatory responses and gametogenesis commitment. Genetic and post-translational modifications of RAR are also discussed. A better understanding of RA signaling will foster the development of precision medicine to improve the defects caused by deregulated RA signaling.
Collapse
Affiliation(s)
- Di Wu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Faheem Ahmed Khan
- Research Center for Animal Husbandry, National Research and Innovation Agency, Jakarta Pusat, 10340, Indonesia
| | - Kejia Zhang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | | | - Windu Negara
- Research Center for Animal Husbandry, National Research and Innovation Agency, Jakarta Pusat, 10340, Indonesia
| | - Kaifeng Guan
- School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China.
| | - Fei Sun
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China.
| | - Chunjie Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China.
| |
Collapse
|
13
|
Santos ATD, Kumar S, Albuquerque JVDS, Arcce IML, Chaves OA, Cruz GS, Carretero VJ, Melo LM, Chaves MS, Guijo JMH, Freitas VJDF, Rádis-Baptista G. The anti-infective crotalicidin peptide analog RhoB-Ctn[1-9] is harmless to bovine oocytes and able to induce parthenogenesis in vitro. Toxicon 2023; 234:107274. [PMID: 37657514 DOI: 10.1016/j.toxicon.2023.107274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/04/2023] [Accepted: 08/28/2023] [Indexed: 09/03/2023]
Abstract
Crotalicidin is a cathelicidin-related anti-infective (antimicrobial) peptide expressed in the venom glands of the South American rattlesnake Crotalus durissus terrificus. Congener peptides of crotalicidin, named vipericidins, are found in other pit vipers inhabiting South America. Crotalicidin is active against bacteria and pathogenic yeasts and has anti-proliferative activity for some cancer cells. The structural dissection of crotalicidin produced fragments (e.g., Ctn [15-34]) with multiple biological functionalities that mimic the native peptide. Another structural characteristic of crotalidicin and congeners is a unique repetitive stretch of amino acid sequences in tandem embedded in their primary structures. One of the encrypted vipericidn peptides (Ctn [1-9]) was synthesized, and the analog covalently conjugated with rhodamine B (RhoB-Ctn [1-9]) displayed considerable antimicrobial activity and selective cytotoxicity. Methods to evaluate antimicrobial peptides' toxicity include lysis of red blood cells (hemolysis) in vitro and cytotoxicity of healthy cultured cells (e.g., fibroblasts). Here, as a non-conventional model of toxicity, the bovine oocytes were exposed to two standardized concentrations of RhoB-Ctn [1-9], and embryo viability and development at its first stage of cleavage (division of cells) and blastocyst formation were evaluated. Oocytes treated with peptide at 10 and 40 μM induced cleavage rates of 44.94% and 51.53%, resulting in the formation of blastocysts of 7.07% and 11.73%, respectively. Light sheet microscopy and in silico prediction analysis indicated that RhoB-Ctn [1-9] peptide interacts with zona pellucida and internalizes into bovine oocytes and developing embryos. The ADMET prediction estimated good bioavailability of RhoB-Ctn [1-9]. In conclusion, the peptide appeared harmless to bovine oocytes and, remarkably, activated the parthenogenesis in vitro.
Collapse
Affiliation(s)
- Ariane Teixeira Dos Santos
- Graduate Program in Pharmaceutical Sciences, School of Pharmacy, Dentistry, And Nursing, Federal University of Ceará (UFC), Fortaleza, CE, Brazil; Department of Pharmacology and Therapy, Faculty of Medicine, Instituto Teófilo Hernando, Universidad Autónoma de Madrid, Spain
| | - Satish Kumar
- Laboratory of Physiology and Control of Reproduction, Faculty of Veterinary, State University of Ceará (UECE), Fortaleza, CE, Brazil
| | - João Victor da Silva Albuquerque
- Laboratory of Physiology and Control of Reproduction, Faculty of Veterinary, State University of Ceará (UECE), Fortaleza, CE, Brazil
| | - Irving Mitchell Laines Arcce
- Laboratory of Physiology and Control of Reproduction, Faculty of Veterinary, State University of Ceará (UECE), Fortaleza, CE, Brazil
| | - Otávio Augusto Chaves
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, 21040-360, RJ, Brazil; CQC-IMS, Departament of Chemistry, University of Coimbra, Rua Larga S/n, Coimbra, Portugal
| | - Gabriela Silva Cruz
- Graduate Program in Pharmaceutical Sciences, School of Pharmacy, Dentistry, And Nursing, Federal University of Ceará (UFC), Fortaleza, CE, Brazil
| | - Victoria Jimenez Carretero
- Department of Pharmacology and Therapy, Faculty of Medicine, Instituto Teófilo Hernando, Universidad Autónoma de Madrid, Spain
| | - Luciana Magalhães Melo
- Molecular Genetics Research Unit, University Center Fametro (UNIFAMETRO), Fortaleza, CE, Brazil
| | - Maiana Silva Chaves
- Laboratory of Physiology and Control of Reproduction, Faculty of Veterinary, State University of Ceará (UECE), Fortaleza, CE, Brazil
| | - Jesus Miguel Hernandez Guijo
- Department of Pharmacology and Therapy, Faculty of Medicine, Instituto Teófilo Hernando, Universidad Autónoma de Madrid, Spain
| | | | - Gandhi Rádis-Baptista
- Laboratory of Biochemistry and Biotechnology, Institute for Marine Sciences, Federal University of Ceará (UFC), Fortaleza, CE, Brazil.
| |
Collapse
|
14
|
Yao X, Liu W, Xie Y, Xi M, Xiao L. Fertility loss: negative effects of environmental toxicants on oogenesis. Front Physiol 2023; 14:1219045. [PMID: 37601637 PMCID: PMC10436557 DOI: 10.3389/fphys.2023.1219045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/27/2023] [Indexed: 08/22/2023] Open
Abstract
There has been a global decline in fertility rates, with ovulatory disorders emerging as the leading cause, contributing to a global lifetime infertility prevalence of 17.5%. Formation of the primordial follicle pool during early and further development of oocytes after puberty is crucial in determining female fertility and reproductive quality. However, the increasing exposure to environmental toxins (through occupational exposure and ubiquitous chemicals) in daily life is a growing concern; these toxins have been identified as significant risk factors for oogenesis in women. In light of this concern, this review aims to enhance our understanding of female reproductive system diseases and their implications. Specifically, we summarized and categorized the environmental toxins that can affect oogenesis. Here, we provide an overview of oogenesis, highlighting specific stages that may be susceptible to the influence of environmental toxins. Furthermore, we discuss the genetic and molecular mechanisms by which various environmental toxins, including metals, cigarette smoke, and agricultural and industrial toxins, affect female oogenesis. Raising awareness about the potential risks associated with toxin exposure is crucial. However, further research is needed to fully comprehend the mechanisms underlying these effects, including the identification of biomarkers to assess exposure levels and predict reproductive outcomes. By providing a comprehensive overview, this review aims to contribute to a better understanding of the impact of environmental toxins on female oogenesis and guide future research in this field.
Collapse
Affiliation(s)
- Xiaoxi Yao
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Weijing Liu
- Breast Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yidong Xie
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Mingrong Xi
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Li Xiao
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| |
Collapse
|
15
|
Lee PC, Stewart S, Amelkina O, Sylvester H, He X, Comizzoli P. Trehalose delivered by cold-responsive nanoparticles improves tolerance of cumulus-oocyte complexes to microwave drying. J Assist Reprod Genet 2023; 40:1817-1828. [PMID: 37261586 PMCID: PMC10371938 DOI: 10.1007/s10815-023-02831-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/18/2023] [Indexed: 06/02/2023] Open
Abstract
PURPOSE Trehalose is a non-permeable protectant that is the key to preserve live cells in a dry state for potential storage at ambient temperatures. After intracellular trehalose delivery via cold-responsive nanoparticles (CRNPs), the objective was to characterize the tolerance of cat cumulus-oocyte complexes (COCs) to different levels of microwave-assisted dehydration. METHODS Trehalose was first encapsulated in CRNPs. After exposure to trehalose-laden CRNPs, different water amounts were removed from cat COCs by microwave drying. After each dehydration level, meiotic and developmental competences were evaluated via in vitro maturation, fertilization, and embryo culture. In addition, expressions of critical genes were assessed by quantitative RT-PCR. RESULTS CRNPs effectively transported trehalose into COCs within 4 h of co-incubation at 38.5 °C followed by a cold-triggered release at 4 °C for 15 min. Intracellular presence of trehalose enabled the maintenance of developmental competence (formation of blastocysts) as well as normal gene expression levels of HSP70 and DNMT1 at dehydration levels reaching up to 63% of water loss. CONCLUSION Intracellular trehalose delivery through CRNPs improves dehydration tolerance of COCs, which opens new options for oocyte storage and fertility preservation at ambient temperatures.
Collapse
Affiliation(s)
- Pei-Chih Lee
- Smithsonian's National Zoo and Conservation Biology Institute, Washington, D.C., USA
| | - Samantha Stewart
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Olga Amelkina
- Smithsonian's National Zoo and Conservation Biology Institute, Washington, D.C., USA
| | - Hannah Sylvester
- Smithsonian's National Zoo and Conservation Biology Institute, Washington, D.C., USA
| | - Xiaoming He
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Pierre Comizzoli
- Smithsonian's National Zoo and Conservation Biology Institute, Washington, D.C., USA.
| |
Collapse
|
16
|
Gomes AR, de Matos LP, Guimarães ATB, Freitas ÍN, Luz TMD, Silva AM, Silva Matos SGD, Rodrigues ASDL, Ferreira RDO, Islam ARMT, Rahman MM, Ragavendran C, Kamaraj C, Mubarak NM, Arias AH, Gomes PCS, Silva FG, Malafaia G. Plant-ZnO nanoparticles interaction: An approach to improve guinea grass (Panicum maximum) productivity and evaluation of the impacts of its ingestion by freshwater teleost fish. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131173. [PMID: 36924744 DOI: 10.1016/j.jhazmat.2023.131173] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/22/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
We aimed to evaluate the possible effects of the application of zinc oxide nanoparticles [ZnO NPs; 68.96 ± 33.71 nm; at 100 and 500 mg/kg in a soil mixture of the Typic Dystrophic Red Latosol type and sand (2:1 ratio)] in the cultivation of Panicum maximum (until 125 days), using different biomarkers in addition to evaluating the uptake of Zn by the plants. Furthermore, we assessed the possible transfer of ZnO NPs from P. maximum leaves to zebrafish and their potential. Plants cultivated in substrates with ZnO NPs at 500 mg/kg showed reduced germination rate and growth. However, at 100 mg/kg, plants showed higher biomass and productivity, associated with higher Zn uptake, without inducing oxidative and nitrosative stress. Zinc content in zebrafish was not associated with ingesting leaves of P. maximum cultivated in substrate containing ZnCl2 or ZnO NPs or with genotoxic, mutagenic, and biochemical effects. In conclusion, ZnO NPs (at 100 mg/kg) are promising in the cultivation of P. maximum, and their ingestion by zebrafish did not cause changes in the evaluated biomarkers. However, we recommend that studies with other animal models be conducted to comprehensively assess the ecotoxicological hazard associated with applying ZnO NPs in soil.
Collapse
Affiliation(s)
- Alex Rodrigues Gomes
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Agronomy, Goiano Federal Institute - Campus Rio Verde, GO, Brazil
| | - Letícia Paiva de Matos
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil
| | | | - Ítalo Nascimento Freitas
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Thiarlen Marinho da Luz
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil
| | - Abner Marcelino Silva
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil
| | | | | | - Raíssa de Oliveira Ferreira
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil
| | | | - Md Mostafizur Rahman
- Laboratory of Environmental Health and Ecotoxicology, Department of Environmental Sciences, Jahangirnagar University, Dhaka 1342, Bangladesh
| | - Chinnasamy Ragavendran
- Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | - Chinnaperumal Kamaraj
- Interdisciplinary Institute of Indian System of Medicine (IIISM), Directorate of Research and Virtual Education, SRM Institute of Science and Technology (SRMIST), Kattankulathur 603203, Tamil Nadu, India
| | - Nabisab Mujawar Mubarak
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan BE1410, Brunei Darussalam
| | - Andrés Hugo Arias
- National University of the South Bahía Blanca, CONICET Instituto Argentino de Oceanografía (IADO), Argentina
| | - Paula Cristine Silva Gomes
- Post-Graduation Program in Environmental Engineering, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
| | - Fabiano Guimarães Silva
- Post-Graduation Program in Agronomy, Goiano Federal Institute - Campus Rio Verde, GO, Brazil
| | - Guilherme Malafaia
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil; Brazilian Academy of Young Scientists (ABJC), Brazil.
| |
Collapse
|
17
|
Gomes AR, Guimarães ATB, Matos LPD, Silva AM, Rodrigues ASDL, de Oliveira Ferreira R, Islam ARMT, Rahman MM, Ragavendran C, Kamaraj C, Silva FG, Malafaia G. Potential ecotoxicity of substrate-enriched zinc oxide nanoparticles to Physalaemus cuvieri tadpoles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162382. [PMID: 36828072 DOI: 10.1016/j.scitotenv.2023.162382] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/17/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Although the ecotoxicological effects of ZnO nanoparticles (ZnO NPs) have already been reported in different taxa, little is known about their impacts on amphibians. Thus, we aimed to evaluate the potential effects of exposure of Physalaemus cuvieri tadpoles to substrates enriched with ZnO NPs (and with its ionic counterpart, Zn+2, ZnCl2 - both at 100 mg/kg) previously used in the cultivation of Panicum maximum (Guinea grass). We showed that although exposure for 21 days did not impact the survival, growth, and development of tadpoles, we noted an increase in the frequency of erythrocyte nuclear abnormalities in the "ZnCl2" and "ZnONP" groups, which was associated with suppression of antioxidant activity in the animals (inferred by SOD and CAT activity and DPPH free radical scavenging capacity). In the tadpoles of the "ZnONP" group, we also noticed a reduction in creatinine and bilirubin levels, alpha-amylase activity, and an increase in alkaline phosphatase activity. But the treatments did not alter the activity of the enzymes lactate dehydrogenase and gamma-glutamyl-transferase and total protein and carbohydrate levels. On the other hand, we report a cholinesterase and hypotriglyceridemic effect in the "ZnCl2" and "ZnONP" groups. Zn bioaccumulation in animals, from ZnO NPs, from Zn+2 released from them, or both, has been associated with causing these changes. Finally, principal component analysis (PCA) and the values of the "Integrated Biomarker Response" index revealed that the exposure of animals to substrates enriched with ZnO NPs caused more pronounced effects than those attributed to its ionic counterpart. Therefore, our study reinforces the need to consider the environmental risks of using these nanomaterials for agricultural purposes for amphibians.
Collapse
Affiliation(s)
- Alex Rodrigues Gomes
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Agronomy, Goiano Federal Institute - Campus Rio Verde, GO, Brazil
| | | | - Letícia Paiva de Matos
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil
| | - Abner Marcelino Silva
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil
| | | | - Raíssa de Oliveira Ferreira
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil
| | | | - Md Mostafizur Rahman
- Laboratory of Environmental Health and Ecotoxicology, Department of Environmental Sciences, Jahangirnagar University, Dhaka 1342, Bangladesh
| | - Chinnasamy Ragavendran
- Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | - Chinnaperumal Kamaraj
- Interdisciplinary Institute of Indian System of Medicine (IIISM), Directorate of Research and Virtual Education, SRM Institute of Science and Technology (SRMIST), Kattankulathur 603203, Tamil Nadu, India
| | - Fabiano Guimarães Silva
- Post-Graduation Program in Agronomy, Goiano Federal Institute - Campus Rio Verde, GO, Brazil
| | - Guilherme Malafaia
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil; Brazilian Academy of Young Scientists (ABJC), Brazil.
| |
Collapse
|
18
|
Yang SJ, Wang YS, Zhang LD, Ding ZM, Zhou X, Duan ZQ, Liu M, Liang AX, Huo LJ. High-dose synthetic phenolic antioxidant propyl gallate impairs mouse oocyte meiotic maturation through inducing mitochondrial dysfunction and DNA damage. ENVIRONMENTAL TOXICOLOGY 2023. [PMID: 37052413 DOI: 10.1002/tox.23807] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/20/2023] [Accepted: 03/27/2023] [Indexed: 06/19/2023]
Abstract
Propyl gallate (PG) is one of the most widely used antioxidants in food products, cosmetics and pharmaceutical industries. Increased research has suggested that exposure to PG influences reproductive health in humans and animals. However, until now, it has not yet been confirmed whether PG would impact oocyte quality. In this study, the hazardous effects of PG on oocyte meiotic maturation were investigated in mice. The findings showed that PG exposure compromises oocyte meiosis by inducing mitochondrial stress which activates apoptosis to trigger oocyte demise. Moreover, DNA damage was significantly induced in PG-treated oocytes, which might be another cause of oocyte developmental arrest and degeneration. Besides, the level of histone methylation (H3K27me2 and H3K27me3) in oocyte was also significantly increased by PG exposure. Furthermore, PG-induced oxidative stress was validated by the increased level of reactive oxygen species (ROS), which might be the underlying reason for these abnormities. In conclusion, the foregoing findings suggested that PG exposure impaired oocyte meiotic maturation by yielding mitochondrial stress to activate apoptosis, inducing DNA damage and oxidative stress, and altering histone methylation level.
Collapse
Affiliation(s)
- Sheng-Ji Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Yong-Sheng Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Li-Dan Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Zhi-Ming Ding
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Xu Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Ze-Qun Duan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Ming Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Ai-Xin Liang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Li-Jun Huo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan, People's Republic of China
| |
Collapse
|
19
|
Wang M, Feng Y, Cao Z, Yu N, Wang J, Wang X, Kang D, Su M, Hu J, Du H. Multiple generation exposure to ZnO nanoparticles induces loss of genomic integrity in Caenorhabditis elegans. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114383. [PMID: 36508841 DOI: 10.1016/j.ecoenv.2022.114383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/27/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Zinc oxide nanoparticles (ZnO NPs) are commonly used in industrial and household applications, prompting the assessment of their associated health risks. Previous studies indicated that ZnO NPs can induce somatic cell mutations, while the aging process appears to increase the mutagenicity of ZnO NPs. However, little is known about the influence of ZnO NPs on genome stability of germ cells, and non-exposed progeny. Here we show that 20 nm ZnO NPs exposure disrupts germ cell development, and elevates the overall mutation frequency of germ cells in Caenorhabditis elegans (C. elegans). We observed that pristine ZnO NPs elicit germ cell apoptosis to a greater extent than the 60-day aged ZnO NPs. By treating parental worms with ZnO NPs for seven successive generations, whole-genome sequencing data revealed that, although the frequency of point mutations is kept unchanged, large deletions are significantly increased in F8 worms. Furthermore, we found that the mutagenicity of ZnO NPs might be partially attributed to the release of Zn2+ ions. Together, our results demonstrate the genotoxic effects of ZnO NPs on germ cells, and the possible underlying mechanism. These findings suggest that germ cell mutagenicity is worthy of consideration for the health risk assessment of engineered NPs.
Collapse
Affiliation(s)
- Meimei Wang
- Department of Pathophysiology, School of Basic Medical Science, Anhui Medical University, No. 81, Mei-Shan Road, Hefei 230032, Anhui, PR China.
| | - Yu Feng
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, PR China
| | - Zhenxiao Cao
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, PR China; School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, PR China
| | - Na Yu
- Department of Pathophysiology, School of Basic Medical Science, Anhui Medical University, No. 81, Mei-Shan Road, Hefei 230032, Anhui, PR China
| | - Juan Wang
- Department of Public Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, PR China
| | - Xiaowei Wang
- Department of Pathophysiology, School of Basic Medical Science, Anhui Medical University, No. 81, Mei-Shan Road, Hefei 230032, Anhui, PR China
| | - Dixiang Kang
- Department of Pathophysiology, School of Basic Medical Science, Anhui Medical University, No. 81, Mei-Shan Road, Hefei 230032, Anhui, PR China
| | - Mingqin Su
- Department of Pathophysiology, School of Basic Medical Science, Anhui Medical University, No. 81, Mei-Shan Road, Hefei 230032, Anhui, PR China
| | - Jian Hu
- Department of Pathophysiology, School of Basic Medical Science, Anhui Medical University, No. 81, Mei-Shan Road, Hefei 230032, Anhui, PR China
| | - Hua Du
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, PR China.
| |
Collapse
|
20
|
Huang C, Wu D, Zhang K, Khan FA, Pandupuspitasari NS, Wang Y, Huo L, Sun F. Perfluorooctanoic acid alters the developmental trajectory of female germ cells and embryos in rodents and its potential mechanism. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 236:113467. [PMID: 35390687 DOI: 10.1016/j.ecoenv.2022.113467] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/24/2022] [Accepted: 03/26/2022] [Indexed: 06/14/2023]
Abstract
The epidemiological studies regarding perfluorooctanoic acid (PFOA) suggests that its exposure causes reproductive health issues, the underlying mechanisms of which are still in its infancy. Here, we report that PFOA deteriorates female reproduction at multiple development stages. Oocyte meiosis and preimplantation development are severely impaired by PFOA with oxidative stress being a contributor. Supplementing with antioxidant melatonin partially rescues oocyte meiotic maturation and non-apoptotic demise. The attenuation in ovarian follicle development however can be improved by metformin but not melatonin. Importantly, metformin blunts PFOA-induced fetal growth retardation (FGR) and such protective effect could be recapitulated by transplantation of fecal material and pharmacological activation of AMPK. Mechanistically, PFOA causes gut microbiota dysbiosis, which might thereby rewire host metabolism of L-phenylalanine, histamine and L-palmitoylcarnitine that triggers hyperphenylalaninaemia, inflammation and ferroptosis to initiate FGR. Deregulated serine metabolism by the gut microbe constitutes an alternative mechanism underlying PFOA-induced FGR in that modulation of serine in dam's diet phenocopied the FGR. Our study expands the understanding of risk factors that impair human reproductive health, and proposes restoration of gut microbiota diversity and intervention of metabolism as therapeutics mitigating health risks predisposed by environmental perturbation.
Collapse
Affiliation(s)
- Chunjie Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China.
| | - Di Wu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Kejia Zhang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Faheem Ahmed Khan
- Department of Zoology, Faculty of Science and Technology, University of Central Punjab, Lahore 54782, Pakistan; Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | | | - Yongsheng Wang
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lijun Huo
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Fei Sun
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China.
| |
Collapse
|
21
|
Wang YS, Yang SJ, Ahmad MJ, Ding ZM, Duan ZQ, Chen YW, Liu M, Liang AX, Hua GH, Huo LJ. Zinc pyrithione exposure compromises oocyte maturation through involving in spindle assembly and zinc accumulation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 234:113393. [PMID: 35278989 DOI: 10.1016/j.ecoenv.2022.113393] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Zinc Pyrithione (ZPT), a Food and Drug Administration (FDA) approved chemical, is widely used for topical antimicrobials and cosmetic consumer products, including anti-dandruff shampoos. ZPT and its degraded byproducts have detected in large quantities in the environment, and identified to pose healthy risks on aquatic organisms and human. However, so far, knowledge about ZPT effects on female reproduction, particularly oocyte maturation and quality, is limited. Herein, we investigated the adverse impact of ZPT on mouse oocyte maturation and quality in vitro and found exposure to ZPT significantly compromises oocyte maturation. The results revealed that ZPT disturbed the meiotic cell cycle by impairing cytoskeletal dynamics, kinetochore-microtubule attachment (K-MT), and causing spindle assembly checkpoints (SAC) continuous activation. Further, we observed the microtubule-organizing centers (MTOCs) associated proteins p-MAPK and Aurora-A were disrupted in ZPT-treated oocytes, signified by decreased expression and abnormal localization, responsible for the severe cytoskeletal defects. In addition, ZPT exposure induced a significant increase in the levels of H3K9me2, H3K9me3, H3K27me1, and H3K27me3, suggesting the alterations of epigenetic modifications. Moreover, the accumulation of zinc ions (Zn2+) was observed in ZPT-treated oocytes, which was detrimental because overmuch intracellular Zn2+ disrupted oocyte meiosis. Finally, these above alterations impaired spindle organization and chromosome alignment in metaphase-II (MII) oocytes, indicative of damaged oocytes quality. In conclusion, ZPT exposure influenced oocyte maturation and quality via involvement in MTOCs-associated proteins mediated spindle defects, altered epigenetic modifications and zinc accumulation.
Collapse
Affiliation(s)
- Yong-Sheng Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China; National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Sheng-Ji Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China; National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Muhammad Jamil Ahmad
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China; National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Zhi-Ming Ding
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China; National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Ze-Qun Duan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China; National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Yang-Wu Chen
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China; National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Ming Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China; National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Ai-Xin Liang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China; National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Guo-Hua Hua
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China; National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| | - Li-Jun Huo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China; National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| |
Collapse
|