1
|
EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP), Lambré C, Barat Baviera JM, Bolognesi C, Chesson A, Cocconcelli PS, Crebelli R, Gott DM, Grob K, Lampi E, Mengelers M, Mortensen A, Rivière G, Silano (until 21 December 2020†) V, Steffensen I, Tlustos C, Vernis L, Zorn H, Batke M, Bignami M, Corsini E, FitzGerald R, Gundert‐Remy U, Halldorsson T, Hart A, Ntzani E, Scanziani E, Schroeder H, Ulbrich B, Waalkens‐Berendsen D, Woelfle D, Al Harraq Z, Baert K, Carfì M, Castoldi AF, Croera C, Van Loveren H. Re-evaluation of the risks to public health related to the presence of bisphenol A (BPA) in foodstuffs. EFSA J 2023; 21:e06857. [PMID: 37089179 PMCID: PMC10113887 DOI: 10.2903/j.efsa.2023.6857] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
In 2015, EFSA established a temporary tolerable daily intake (t-TDI) for BPA of 4 μg/kg body weight (bw) per day. In 2016, the European Commission mandated EFSA to re-evaluate the risks to public health from the presence of BPA in foodstuffs and to establish a tolerable daily intake (TDI). For this re-evaluation, a pre-established protocol was used that had undergone public consultation. The CEP Panel concluded that it is Unlikely to Very Unlikely that BPA presents a genotoxic hazard through a direct mechanism. Taking into consideration the evidence from animal data and support from human observational studies, the immune system was identified as most sensitive to BPA exposure. An effect on Th17 cells in mice was identified as the critical effect; these cells are pivotal in cellular immune mechanisms and involved in the development of inflammatory conditions, including autoimmunity and lung inflammation. A reference point (RP) of 8.2 ng/kg bw per day, expressed as human equivalent dose, was identified for the critical effect. Uncertainty analysis assessed a probability of 57-73% that the lowest estimated Benchmark Dose (BMD) for other health effects was below the RP based on Th17 cells. In view of this, the CEP Panel judged that an additional uncertainty factor (UF) of 2 was needed for establishing the TDI. Applying an overall UF of 50 to the RP, a TDI of 0.2 ng BPA/kg bw per day was established. Comparison of this TDI with the dietary exposure estimates from the 2015 EFSA opinion showed that both the mean and the 95th percentile dietary exposures in all age groups exceeded the TDI by two to three orders of magnitude. Even considering the uncertainty in the exposure assessment, the exceedance being so large, the CEP Panel concluded that there is a health concern from dietary BPA exposure.
Collapse
|
2
|
Morimoto S, Solís‐Lemus E, Jiménez‐Vivanco J, Castellanos‐Ruiz D, Díaz‐Díaz E, Mendoza‐Rodríguez CA. Maternal perinatal exposure to bisphenol S induces an estrogenic like effect in glucose homeostasis in male offspring. ENVIRONMENTAL TOXICOLOGY 2022; 37:2189-2200. [PMID: 35596937 PMCID: PMC9543293 DOI: 10.1002/tox.23585] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/28/2022] [Accepted: 05/06/2022] [Indexed: 05/27/2023]
Abstract
Bisphenol S (BPS) has been introduced into the industry as a safer alternative to bisphenol A (BPA). However, the recent studies have reported a possible association between BPS and disturbed glucose homeostasis, indicating that it may be a risk factor for type 1 and type 2 diabetes mellitus, obesity, and gestational diabetes mellitus. Nevertheless, the role of BPS in glucose metabolism remains controversial. In this study, we investigated the glucose metabolism of male Wistar rats born from dams that were BPS-exposed (groups: BPS-L (0.05 mg/kg/day), BPS-H (20 mg/kg/day)) during pregnancy and lactation. We observed that both BPS treated groups of animals presented a significant decrease in anogenital distance/weight1/3 , as compared to control animals, although no alterations in testosterone levels were observed. Furthermore, the BPS-L group presented a significant decrease in body weight from postnatal day (PND) 21 to adult stage. In addition, a significant increase in glucose tolerance, pancreatic β-cell proliferation, the frequency of small islets, and the average β-cell size at PND 36 was observed in this group. However, no changes in insulin serum levels and percentage of β-cells were recorded. Furthermore, these changes were not preserved at the adult stage (PND 120). The results suggest that the administration of low doses of BPS during the perinatal period induced an estrogenic like effect, with males apparently becoming more female-like in their responses to a glucose challenge.
Collapse
Affiliation(s)
- Sumiko Morimoto
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador ZubiránCiudad de MéxicoMexico
| | - Edgar Solís‐Lemus
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| | - Jesica Jiménez‐Vivanco
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| | - Dafne Castellanos‐Ruiz
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| | - Eulises Díaz‐Díaz
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador ZubiránCiudad de MéxicoMexico
| | | |
Collapse
|
3
|
Martyniuk CJ, Martínez R, Navarro-Martín L, Kamstra JH, Schwendt A, Reynaud S, Chalifour L. Emerging concepts and opportunities for endocrine disruptor screening of the non-EATS modalities. ENVIRONMENTAL RESEARCH 2022; 204:111904. [PMID: 34418449 PMCID: PMC8669078 DOI: 10.1016/j.envres.2021.111904] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/22/2021] [Accepted: 08/16/2021] [Indexed: 05/15/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are ubiquitous in the environment and involve diverse chemical-receptor interactions that can perturb hormone signaling. The Organization for Economic Co-operation and Development has validated several EDC-receptor bioassays to detect endocrine active chemicals and has established guidelines for regulatory testing of EDCs. Focus on testing over the past decade has been initially directed to EATS modalities (estrogen, androgen, thyroid, and steroidogenesis) and validated tests for chemicals that exert effects through non-EATS modalities are less established. Due to recognition that EDCs are vast in their mechanisms of action, novel bioassays are needed to capture the full scope of activity. Here, we highlight the need for validated assays that detect non-EATS modalities and discuss major international efforts underway to develop such tools for regulatory purposes, focusing on non-EATS modalities of high concern (i.e., retinoic acid, aryl hydrocarbon receptor, peroxisome proliferator-activated receptor, and glucocorticoid signaling). Two case studies are presented with strong evidence amongst animals and human studies for non-EATS disruption and associations with wildlife and human disease. This includes metabolic syndrome and insulin signaling (case study 1) and chemicals that impact the cardiovascular system (case study 2). This is relevant as obesity and cardiovascular disease represent two of the most significant health-related crises of our time. Lastly, emerging topics related to EDCs are discussed, including recognition of crosstalk between the EATS and non-EATS axis, complex mixtures containing a variety of EDCs, adverse outcome pathways for chemicals acting through non-EATS mechanisms, and novel models for testing chemicals. Recommendations and considerations for evaluating non-EATS modalities are proposed. Moving forward, improved understanding of the non-EATS modalities will lead to integrated testing strategies that can be used in regulatory bodies to protect environmental, animal, and human health from harmful environmental chemicals.
Collapse
Affiliation(s)
- Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA.
| | - Rubén Martínez
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, 08034, Spain
| | - Laia Navarro-Martín
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, 08034, Spain
| | - Jorke H Kamstra
- Institute for Risk Assessment Sciences, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, the Netherlands
| | - Adam Schwendt
- Division of Experimental Medicine, School of Medicine, Faculty of Medicine and Biomedical Sciences, McGill University, 850 Sherbrooke Street, Montréal, Québec, H3A 1A2, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin Cote Ste Catherine, Montréal, Québec, H3T 1E2, Canada
| | - Stéphane Reynaud
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000, Grenoble, France
| | - Lorraine Chalifour
- Division of Experimental Medicine, School of Medicine, Faculty of Medicine and Biomedical Sciences, McGill University, 850 Sherbrooke Street, Montréal, Québec, H3A 1A2, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin Cote Ste Catherine, Montréal, Québec, H3T 1E2, Canada
| |
Collapse
|
4
|
Yahia D, Hamdy H, Salem DA, Afifi S. Effects of bisphenol A on pancreas and thyroid gland of young and adult female Sprague Dawlеy rats. BULGARIAN JOURNAL OF VETERINARY MEDICINE 2022. [DOI: 10.15547/bjvm.2020-0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Bisphenol A (BPA), a chemical involved in formation of plastic vessels, is one of the most widespread endocrine disrupting chemicals. The study was designed to investigate the effect of BPA on pancreas and thyroid gland of young and adult female Sprague Dawley rats. The rats were exposed to 330 mg/kg BPA orally every other day for 12 weeks; control rats were exposed orally to ethyl alcohol and corn oil. Samples were collected at 4, 8 and 12 weeks for hormonal, biochemical assays and histopathological examination. The insulin hormone in exposed young rats was decreased, but its level in adult ones was increased; the biochemical assay for blood sugar level showed a significant increase in young rats and decrease in adult ones. T3 hormone was increased in treated young and adult rats; T4 hormone was increased in treated adults, while calcium level was decreased in treated adult rats. The histopathological findings of pancreas revealed vacuolation in its endocrine parts in young rats, while in adult ones there was intralobular fatty infiltration - a typical picture of diabetes. The thyroid gland in treated young female rats showed increased cellularity of parafollicular cells; moreover there was parafollicular haemorrhage, and in adult ones - desquamation in lining epithelium of follicular cells. In conclusion, exposure of young and adult female rats to BPA resulted in changes in the pancreatic and thyroid gland cells manifested by morphological, hormonal and biochemical parameters.
Collapse
Affiliation(s)
- D. Yahia
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - H. Hamdy
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, New Valley University, New Valley, Egypt
| | - D. A. Salem
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - S. Afifi
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
5
|
Rahman MA, Uddin MN, Babteen NA, Alnajeebi AM, Zakaria ZA, Aboelenin SM. Natural Compounds from Hatikana Extract Potentiate Antidiabetic Actions as Displayed by In Vivo Assays and Verified by Network Pharmacological Tools. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6978450. [PMID: 34725640 PMCID: PMC8557063 DOI: 10.1155/2021/6978450] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/29/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND Hatikana is a traditional medicinal plant used to treat inflammation, urolithiasis, goiter, cancer, wounds and sores, gastrointestinal, tumor, tetanus, arthritis, hepatic damage, neurodegeneration, and other ailments. The goal of this study is to investigate the antidiabetic properties of Hatikana extract (HKEx) and to construct the effects of its natural constituents on the genes and biochemical indices that are connected with them. METHODS HKEx was evaluated using GC-MS and undertaken for a three-week intervention in fructose-fed STZ-induced Wistar albino rats at the doses of HKEx50, HKEx100, and HKEx200 mg/kg bw. Following intervention, blood serum was examined for biochemical markers, and liver tissue was investigated for the mRNA expression of catalase (CAT), glutathione peroxidase (GPx), and superoxide dismutase (SOD1) by RTPCR analysis. Most abundant compounds (oleanolic acid, 7α, 28-olean diol, and stigmasterol) from GC-MS were chosen for the network pharmacological assay to verify function-specific gene-compound interactions using STITCH, STRING, GSEA, and Cytoscape plugin cytoHubba. RESULTS In vivo results showed a significant (P < 0.05) decrease of blood sugar, aspartate aminotransferase (AST), alanine aminotransferase (ALT), creatinine kinase (CK-MB), and lactate dehydrogenase (LDH) and increase of liver glycogen, glucose load, and serum insulin. Out of three antioxidative genes, catalase (CAT) and superoxide dismutase (SOD1) were found to be few fold increased. Oleanolic acid and stigmasterol were noticed to strongly interact with 27 target proteins. Oleanolic acid interacted with the proteins AKR1B10, CASP3, CASP8, CYP1A2, CYP1A2, HMGB1, NAMPT, NFE2L2, NQO1, PPARA, PTGIR, TOP1, TOP2A, UGT2B10, and UGT2B11 and stigmasterol with ABCA1, ABCG5, ABCG8, CTSE, HMGCR, IL10, CXCL8, NR1H2, NR1H3, SLCO1B1, SREBF2, and TNF. Protein-protein interaction (PPI) analysis revealed the involvement of 25 target proteins out of twenty seven. Cytoscape plugin cytoHubba identified TNF, CXCL8, CASP3, PPARA, SREBF2, and IL10 as top hub genes. Pathway analysis identified 31 KEGG metabolic, signaling, and immunogenic pathways associated with diabetes. Notable degree of PPI enrichment showed that SOD1 and CAT are responsible for controlling signaling networks and enriched pathways. CONCLUSION The findings show that antioxidative genes have regulatory potential, allowing the HKEx to be employed as a possible antidiabetic source pending further validation.
Collapse
Affiliation(s)
- Md. Atiar Rahman
- Department of Biochemistry & Molecular Biology, University of Chittagong, Chittagong4331, Bangladesh
| | - Md. Nazim Uddin
- Institute of Food Science and Technology, Bangladesh Council of Scientific and Industrial Research, Dhaka 1205, Bangladesh
| | - Nouf Abubakr Babteen
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah 80203, Saudi Arabia
| | - Afnan M. Alnajeebi
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah 80203, Saudi Arabia
| | - Zainul Amiruddin Zakaria
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, (Jalan UMS), 88400 Kota Kinabalu, Sabah, Malaysia
- Halal Product Development Unit, Halal Product Research Institute, Universiti Putra Malaysia, (UPM), 43400 Serdang, Selangor, Malaysia
| | | |
Collapse
|
6
|
Fadishei M, Ghasemzadeh Rahbardar M, Imenshahidi M, Mohajeri A, Razavi BM, Hosseinzadeh H. Effects of Nigella sativa oil and thymoquinone against bisphenol A-induced metabolic disorder in rats. Phytother Res 2020; 35:2005-2024. [PMID: 33315269 DOI: 10.1002/ptr.6944] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/21/2020] [Accepted: 10/27/2020] [Indexed: 02/06/2023]
Abstract
The underlying mechanisms of bisphenol A (BPA)-induced metabolic disorder and the protective impact of Nigella sativa oil (NSO) and thymoquinone (TQ) against BPA-induced metabolic disorder were investigated. Rats were treated as follows: Control, BPA (10 mg/kg), TQ (2 mg/kg), NSO (84 μL/kg), BPA + TQ (0.5, 1, 2 mg/kg), and BPA + NSO (21, 42, 84 μL/kg). BPA was administered by gavage, while, TQ and NSO were injected intraperitoneally (daily, 54 days). The weight, blood pressure, serum parameters [glucose, lipid profile, hepatic enzymes, insulin, interlukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), leptin, adiponectin], malondialdehyde (MDA), glutathione (GSH) and insulin signaling pathways [insulin receptor substrate (p-IRS,IRS); kinase (p-Akt,Akt); glycogen synthase kinase (p-GS3K,GS3K)] were measured. BPA increased the blood pressure, MDA, lipid profile, hepatic enzymes, insulin, IL-6, TNF-α, and leptin, and decreased the GSH and phosphorylated forms of IRS, Akt, GS3K but did not alter weight, glucose, IRS, AKT, and GS3K in the liver. Administration of NSO or TQ with BPA reduced the blood pressure, liver level of MDA, lipid profile, hepatic enzymes, insulin, IL-6, TNF-α, leptin, and increased the liver level of GSH and p-IRS, p-AKT, p-GS3K. TQ and NSO are thought to be effective in controlling metabolic disorders induced by BPA.
Collapse
Affiliation(s)
- Masoumeh Fadishei
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Mohsen Imenshahidi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ahmad Mohajeri
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Targeted Drug Delivery Research Center, Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bibi Marjan Razavi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Targeted Drug Delivery Research Center, Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
7
|
Reventun P, Sanchez-Esteban S, Cook A, Cuadrado I, Roza C, Moreno-Gomez-Toledano R, Muñoz C, Zaragoza C, Bosch RJ, Saura M. Bisphenol A induces coronary endothelial cell necroptosis by activating RIP3/CamKII dependent pathway. Sci Rep 2020; 10:4190. [PMID: 32144343 PMCID: PMC7060177 DOI: 10.1038/s41598-020-61014-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 02/20/2020] [Indexed: 02/07/2023] Open
Abstract
Epidemiological studies link long term exposure to xenoestrogen Bisphenol-A to adverse cardiovascular effects. Our previous results show that BPA induces hypertension by a mechanism involving CamKII activation and increased redox stress caused by eNOS uncoupling. Recently, CamKII sustained activation has been recognized as a central mediator of programmed cell death in cardiovascular diseases, including necroptosis. However, the role of necroptosis in cardiac response to BPA had not yet been explored. Mice exposed to BPA for 16 weeks showed altered heart function, electrical conduction, and increased blood pressure. Besides, a stress test showed ST-segment depression, indicative of cardiac ischemia. The hearts exhibited cardiac hypertrophy and reduced vascularization, interstitial edema, and large hemorrhagic foci accompanied by fibrinogen deposits. BPA initiated a cardiac inflammatory response, up-regulation of M1 macrophage polarization, and increased oxidative stress, coinciding with the increased expression of CamKII and the necroptotic effector RIP3. In addition, cell death was especially evident in coronary endothelial cells within hemorrhagic areas, and Evans blue extravasation indicated a vascular leak in response to Bisphenol-A. Consistent with the in vivo findings, BPA increased the necroptosis/apoptosis ratio, the expression of RIP3, and CamKII activation in endothelial cells. Necrostatin-1, an inhibitor of necroptosis, alleviated BPA induced cardiac dysfunction and prevented the inflammatory and hemorrhagic response in mice. Mechanistically, silencing of RIP3 reversed BPA-induced necroptosis and CamKII activation in endothelial cells, while inhibition of CamKII activation by KN-93 had no effect on RIP3 expression but decreased necroptotic cell death suggesting that BPA induced necroptosis is mediated by a RIP 3/CamKII dependent pathway. Our results reveal a novel pathogenic role of BPA on the coronary circulation. BPA induces endothelial cell necroptosis, promotes the weakening of coronary vascular wall, which caused internal ventricular hemorrhages, delaying the reparative process and ultimately leading to cardiac dysfunction.
Collapse
Affiliation(s)
- P Reventun
- Biology systems Dpt, University Alcalá (UAH), Madrid, Spain
| | | | - A Cook
- Biology systems Dpt, University Alcalá (UAH), Madrid, Spain
| | - I Cuadrado
- Pharmacology, Pharmacognosy and Botanics Dpt, Complutense University (UCM), Madrid, Spain
| | - C Roza
- Biology systems Dpt, University Alcalá (UAH), Madrid, Spain
| | | | - C Muñoz
- Biology systems Dpt, University Alcalá (UAH), Madrid, Spain
| | - C Zaragoza
- Joint Unit of Cardiovascular Research University Francisco de Vitoria and Hospital Ramon y Cajal, Madrid, Spain
| | - R J Bosch
- Biology systems Dpt, University Alcalá (UAH), Madrid, Spain
| | - M Saura
- Biology systems Dpt, University Alcalá (UAH), Madrid, Spain.
| |
Collapse
|
8
|
Gao P, Wang L, Yang N, Wen J, Zhao M, Su G, Zhang J, Weng D. Peroxisome proliferator-activated receptor gamma (PPARγ) activation and metabolism disturbance induced by bisphenol A and its replacement analog bisphenol S using in vitro macrophages and in vivo mouse models. ENVIRONMENT INTERNATIONAL 2020; 134:105328. [PMID: 31778932 DOI: 10.1016/j.envint.2019.105328] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 11/06/2019] [Accepted: 11/12/2019] [Indexed: 06/10/2023]
Abstract
Bisphenol A (BPA) and its replacement analog, bisphenol S (BPS), have been proposed as environmental obesogen to disrupt the lipid metabolism through regulating peroxisome proliferator-activated receptor gamma (PPARγ) receptor. However, there is a dearth of information on whether this biological effect can occur in human macrophage, a cell type which closely interacts with adipocytes and hepatocytes to control lipid metabolism. Here, we for the first time investigate the activity of BPA and BPS on PPARγ pathway in human macrophages. The results demonstrated that BPA and BPS served as activators of PPARγ in human macrophage cell line, and significantly induced the expression of lipid metabolism-related genes, including fatty acid binding protein 4 (FABP4), cluster of differentiation 36 (CD36) and nuclear receptor subfamily 1 group H member 3 (NR1H3). In PPARγ knockout cells, expression of these genes was down-regulated, suggesting that these genes are dependent on PPARγ. The underlying mechanisms were further investigated using an in vivo mouse model, and the results confirmed the induction of PPARγ and its respective target genes in mice following exposure to BPA or BPS. Moreover, the observed alteration of PPARγ expression highly correlated with the disturbance of metabolism profiles in liver tissues as detected by 1H Nuclear Magnetic Resonance (NMR)-based metabonomics. Overall, this study provided the first evidence that BPA and BPS activated PPARγ and its target genes in human macrophages, and provided comprehensive information to confirm that BPA and BPS disturb the metabolism through targeting PPARγ via both in vitro assays and in vivo animal models.
Collapse
Affiliation(s)
- Pingshi Gao
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, 200 Xiaolingwei Street, Nanjing 210094, China
| | - Lei Wang
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, 200 Xiaolingwei Street, Nanjing 210094, China
| | - Nanfei Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Rheumatology and Immunology, The Affiliated Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, School of Sciences, Nanjing University, Nanjing 210023, China
| | - Jingjing Wen
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, 200 Xiaolingwei Street, Nanjing 210094, China
| | - Mengshu Zhao
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, 200 Xiaolingwei Street, Nanjing 210094, China
| | - Guanyong Su
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, 200 Xiaolingwei Street, Nanjing 210094, China
| | - Jianfa Zhang
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, 200 Xiaolingwei Street, Nanjing 210094, China.
| | - Dan Weng
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, 200 Xiaolingwei Street, Nanjing 210094, China.
| |
Collapse
|
9
|
Yanagisawa R, Koike E, Win-Shwe TT, Takano H. Oral exposure to low dose bisphenol A aggravates allergic airway inflammation in mice. Toxicol Rep 2019; 6:1253-1262. [PMID: 31788436 PMCID: PMC6880024 DOI: 10.1016/j.toxrep.2019.11.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/11/2019] [Accepted: 11/13/2019] [Indexed: 01/20/2023] Open
Abstract
Oral exposure to BPA relevant to human exposure aggravated allergic asthma. Low dose BPA with allergen reduced lung mRNA levels of hormone receptors. Low dose BPA with allergen altered lymph node and bone marrow microenvironments.
Bisphenol A (BPA) is widely used in many consumer products and has adverse effects on human health including allergic diseases. We investigated the effects of low dose BPA, comparable to actual human oral exposure, on allergic asthma in mice. C3H/HeJ male mice were fed a chow diet containing BPA (equivalent to 0.09, 0.90, or 9.01 μg/kg/day) and were intratracheally administered ovalbumin (OVA, 1 μg/animal) every two weeks from 5–11 weeks of age. All doses of BPA plus OVA enhanced pulmonary inflammation and airway hyperresponsiveness, and increased lung mRNA levels of Th2 cytokine/chemokine, and serum OVA-specific IgE and IgG1 compared to OVA alone, with greater effects observed in the middle- and high-dose BPA plus OVA groups. Furthermore, high-dose BPA with OVA decreased lung mRNA levels of ERβ and AR compared with OVA. Furthermore, BPA enhanced OVA-restimulated cell proliferation and protein levels of IL-4 and IL-5 in mediastinal lymph node (MLN) cells in OVA-sensitized mice. In bone marrow (BM) cells, middle-dose BPA with OVA increased Gr-1 expression. In conclusion, oral exposure to low-dose BPA at levels equivalent to human exposure can aggravate allergic asthmatic responses through enhancement of Th2-skewed responses, lung hormone receptor downregulation, and MLN and BM microenvironment change.
Collapse
Key Words
- AhR, aryl hydrocarbon receptor
- Allergic asthma
- Ar, androgen receptor
- BM, bone marrow
- BPA, bisphenol a
- Bisphenol A
- ER, estrogen receptor
- Endocrine disruptor
- FACS, fluorescence-activated cell-sorting
- GR, glucocorticoid receptor
- Gr-1, granulocyte-differentiation antigen
- Hormone receptor
- Hprt1, hypoxanthine phosphoribosyltransferase 1
- IFN-γ, interferon-gamma
- IL, interleukin
- Ig, immunoglobulin
- Low dose effects
- MCP-1, monocyte chemoattractant protein-1
- MIP-1α, macrophage inflammatory protein 1-alpha
- MLN, mediastinal lymph node
- OVA, ovalbumin
- RANTES, normal T cell expressed and secreted
- SDF-1α, stromal cell derived factor 1 alpha
- Th, T helper
- Th2 response
Collapse
Affiliation(s)
- Rie Yanagisawa
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, Japan
| | - Eiko Koike
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, Japan
| | - Tin-Tin Win-Shwe
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, Japan
| | - Hirohisa Takano
- Graduate School of Global Environmental Studies, Kyoto University, Kyoto, Japan
| |
Collapse
|
10
|
Bisphenol S rapidly depresses heart function through estrogen receptor-β and decreases phospholamban phosphorylation in a sex-dependent manner. Sci Rep 2019; 9:15948. [PMID: 31685870 PMCID: PMC6828810 DOI: 10.1038/s41598-019-52350-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 10/15/2019] [Indexed: 11/08/2022] Open
Abstract
The health effects of the endocrine disruptor Bisphenol A (BPA) led to its partial replacement with Bisphenol S (BPS) in several products including food containers, toys, and thermal paper receipts. The acute effects of BPS on myocardial contractility are unknown. We perfused mouse hearts from both sexes for 15 min with physiologically relevant doses of BPS or BPA. In females BPS (1 nM) decreased left ventricular systolic pressure by 5 min, whereas BPA (1 nM) effects were delayed to 10 min. BPS effects in male mice were attenuated. In both sexes ER-β antagonism abolished the effects of BPS. Cardiac myofilament function was not impacted by BPS or BPA in either sex, although there were sex-dependent differences in troponin I phosphorylation. BPS increased phospholamban phosphorylation at S16 only in female hearts, whereas BPA reduced phosphorylation in both sexes. BPA decreased phospholamban phosphorylation at T17 in both sexes while BPS caused dephosphorylation only in females. This is the first study to compare sex differences in the acute myocardial response to physiologically relevant levels of BPS and BPA, and demonstrates a rapid ability of both to depress heart function. This study raises concerns about the safety of BPS as a replacement for BPA.
Collapse
|
11
|
Sargis RM, Heindel JJ, Padmanabhan V. Interventions to Address Environmental Metabolism-Disrupting Chemicals: Changing the Narrative to Empower Action to Restore Metabolic Health. Front Endocrinol (Lausanne) 2019; 10:33. [PMID: 30778334 PMCID: PMC6369180 DOI: 10.3389/fendo.2019.00033] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 01/16/2019] [Indexed: 12/17/2022] Open
Abstract
Metabolic disease rates have increased dramatically over the last four decades. Classic understanding of metabolic physiology has attributed these global trends to decreased physical activity and caloric excess; however, these traditional risk factors insufficiently explain the magnitude and rapidity of metabolic health deterioration. Recently, the novel contribution of environmental metabolism-disrupting chemicals (MDCs) to various metabolic diseases (including obesity, diabetes, and non-alcoholic fatty liver disease) is becoming recognized. As this burgeoning body of evidence has matured, various organic and inorganic pollutants of human and natural origin have emerged as metabolic disease risk factors based on population-level and experimental data. Recognition of these heretofore underappreciated metabolic stressors now mandates that efforts to mitigate the devastating consequences of metabolic disease include dedicated efforts to address environmental drivers of disease risk; however, there have not been adequate recommendations to reduce exposures or to mitigate the effects of exposures on disease outcomes. To address this knowledge gap and advance the clinical translation of MDC science, herein discussed are behaviors that increase exposures to MDCs, interventional studies to reduce those exposures, and small-scale clinical trials to reduce the body burden of MDCs. Also, we discuss evidence from cell-based and animal studies that provide insights into MDC mechanisms of action, the influence of modifiable dietary factors on MDC toxicity, and factors that modulate MDC transplacental carriage as well as their impact on metabolic homeostasis. A particular emphasis of this discussion is on critical developmental windows during which short-term MDC exposure can elicit long-term disruptions in metabolic health with potential inter- and transgenerational effects. While data gaps remain and further studies are needed, the current state of evidence regarding interventions to address MDC exposures illuminates approaches to address environmental drivers of metabolic disease risk. It is now incumbent on clinicians and public health agencies to incorporate this knowledge into comprehensive strategies to address the metabolic disease pandemic.
Collapse
Affiliation(s)
- Robert M. Sargis
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Jerrold J. Heindel
- Program on Endocrine Disruption Strategies, Commonweal, Bolinas, CA, United States
| | | |
Collapse
|
12
|
Rahmani S, Pour Khalili N, Khan F, Hassani S, Ghafour-Boroujerdi E, Abdollahi M. Bisphenol A: What lies beneath its induced diabetes and the epigenetic modulation? Life Sci 2018; 214:136-144. [PMID: 30359670 DOI: 10.1016/j.lfs.2018.10.044] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 10/12/2018] [Accepted: 10/21/2018] [Indexed: 12/11/2022]
Abstract
Nowadays, endocrine disrupting chemical pollution has become one of the major concerns due to the potential role of these chemicals in provoking endocrine disorders especially type 2 diabetes. As a widespread endocrine disrupting chemical, Bisphenol A, with modest estrogenic activity can exert its detrimental effects in the different organs involved in type 2 diabetes such as pancreas, liver, adipocyte and skeletal muscles. Obesity, hepatic steatosis, impaired insulin signaling and pancreatic islet function could be the main results of Bisphenol A exposure. Epigenetic dysregulations can be suggested as an important underlying mechanism for Bisphenol A toxicity in the endocrine system. The most studied genes in this respect, which are responsible for glucose homeostasis include Pdx1, Gck, Igf2, Srebf1 and Srebf2. Aberrant DNA methylation, histone demethylation and deacetylation and impaired miRNAs result in epigenetically dysfunctional genes that finally distract the normal glucose regulation. The present study aimed to summarize the general effects of prenatal and postnatal Bisphenol A exposure on glucose metabolism focusing on animal studies and review the recent investigations on Bisphenol A -induced epigenetic perturbations that affect the normal glucose and lipid homeostasis and lead to type 2 diabetes.
Collapse
Affiliation(s)
- Soheila Rahmani
- Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Nazila Pour Khalili
- Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran; Center for Cell Pathology Research, Department of Biological Sciences, Khazar University, Baku, Azerbaijan
| | - Fazlullah Khan
- Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Shokoufeh Hassani
- Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Elmira Ghafour-Boroujerdi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran; Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| |
Collapse
|
13
|
Mawa J, Rahman MA, Hashem MA, Juwel Hosen M. Leea macrophylla root extract upregulates the mRNA expression for antioxidative enzymes and repairs the necrosis of pancreatic β-cell and kidney tissues in fructose-fed Type 2 diabetic rats. Biomed Pharmacother 2018; 110:74-84. [PMID: 30466005 DOI: 10.1016/j.biopha.2018.11.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 11/07/2018] [Accepted: 11/07/2018] [Indexed: 01/12/2023] Open
Abstract
This research investigated the functional food effect of Leea macrophylla (Roxb.) ex Hornem root extract on pancreatic necrosis in Streptozotocin-induced type-2 diabetes. Prior to animal intervention, Leea macrophylla root extract (LMR) was subjected to GC-MS analysis. Across a three-week intervention of fructose-fed albino model with LMR50, LMR100 and LMR200, the fluid & food intake, body weight changes, weekly blood glucose concentrations and oral glucose tolerance (OGT) were recorded. The animals were sacrificed after intervention and serum was analyzed for insulin, ALT, AST, LDH, CK-MB, creatinine, uric acid and lipid profile and liver section was used for glycogen estimation. Changes of pancreas and kidney architecture were evaluated by histopathology. Relative mRNA for superoxide dismutase 1 (SOD1), glutathione peroxidase (GPx) and catalase (CAT) were quantitated using assay kits. Results showed that fluid and food intake, weekly blood glucose level, ALT, AST, LDH, CK-MB level were significantly (p < 0.05) decreased in LMR50 group. Conversely, the glucose tolerance ability, liver glycogen level, serum insulin, organ weight and pancreatic morphology were improved significantly in this group. Diameter of islet of Langerhans (μm), area occupied by β-cell/ islet of Langerhans (μm2) and number of β-cells/islet of Langerhans were amazingly improved to the NC animals. Expressions of mRNA for SOD1 and CAT from liver tissue have been found to be increased multifold while GPx was remained unchanged. The data suggests that L. macrophylla root extract could be very potential as functional food to modulate pancreatic action.
Collapse
Affiliation(s)
- Jannatul Mawa
- Department of Biochemistry & Molecular Biology, University of Chittagong, Chittagong 4331, Bangladesh
| | - Md Atiar Rahman
- Department of Biochemistry & Molecular Biology, University of Chittagong, Chittagong 4331, Bangladesh.
| | - M A Hashem
- Department of Biochemistry and Biotechnology, University of Science and Technology, Chittagong, Bangladesh
| | - Md Juwel Hosen
- Designated Reference Institute for Chemical Measurements (DRiCM), Bangladesh Council of Scientific & Industrial Research (BCSIR), Dr. Qudrat-i-Khuda Road, Dhanmondi, Dhaka, 1205, Bangladesh
| |
Collapse
|
14
|
Gestational and lactational exposure to dichlorinated bisphenol A induces early alterations of hepatic lipid composition in mice. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2018; 31:565-576. [DOI: 10.1007/s10334-018-0679-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 02/09/2018] [Accepted: 02/09/2018] [Indexed: 12/16/2022]
|
15
|
Pal S, Sarkar K, Nath PP, Mondal M, Khatun A, Paul G. Bisphenol S impairs blood functions and induces cardiovascular risks in rats. Toxicol Rep 2017; 4:560-565. [PMID: 29152460 PMCID: PMC5671619 DOI: 10.1016/j.toxrep.2017.10.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 10/16/2017] [Accepted: 10/19/2017] [Indexed: 11/17/2022] Open
Abstract
Bisphenol S alters blood homeostasis. Bisphenol S is probably a cardiac risk augmenting chemical. Bisphenol S is a haemolysis promoting chemical.
Bisphenol S (BPS) is an industrial chemical which is recently used to replace the potentially toxic Bisphenol A (BPA) in making polycarbonate plastics, epoxy resins and thermal receipt papers. The probable toxic effects of BPS on the functions of haemopoietic and cardiovascular systems have not been reported till to date. We report here that BPS depresses haematological functions and induces cardiovascular risks in rat. Adult male albino rats of Sprague-Dawley strain were given BPS at a dose level of 30, 60 and 120 mg/kg BW/day respectively for 30 days. Red blood cell (RBC) count, white blood cell (WBC) count, Hb concentration, and clotting time have been shown to be significantly (*P < 0.05) reduced in a dose dependent manner in all exposed groups of rats comparing to the control. It has also been shown that BPS increases total serum glucose and protein concentration in the exposed groups of rats. We have observed that BPS increases serum total cholesterol, triglyceride, glycerol free triglyceride, low density lipoprotein (LDL) and very low density lipoprotein (VLDL) concentration, whereas high density lipoprotein (HDL) concentration has been found to be reduced in the exposed groups. BPS significantly increases serum aspartate aminotransferase (AST), alanine aminotransferase (ALT) and alkaline phosphatase (ALP) activities dose dependently. Moreover, serum calcium, bilirubin and urea concentration have been observed to be increased in all exposed groups. In conclusion, BPS probably impairs the functions of blood and promotes cardiovascular risks in rats.
Collapse
Key Words
- ALT, alanine aminotransferase
- AST, aspartate aminotransferase
- BPA, bisphenol A
- BPS, bisphenol S
- Bisphenol S
- Cardiovascular risks
- Clotting time
- DMSO, dimethyl sulphoxide
- HDL cholesterol
- HDL, high density lipoprotein
- Hb, hemoglobin
- LDL cholesterol
- LDL, low density lipoprotein
- MCH, mean corpuscular hemoglobin
- RBC, red blood cells
- Red blood cell count
- VLDL, very low density lipoprotein
- WBC, white blood cells
- White blood cell count
Collapse
Affiliation(s)
- Sanghamitra Pal
- Molecular Neurotoxicology Laboratory, Department of Physiology, University of Kalyani, Kalyani, West Bengal- 741235, India
| | - Kaushik Sarkar
- Molecular Neurotoxicology Laboratory, Department of Physiology, University of Kalyani, Kalyani, West Bengal- 741235, India
| | - Partha Pratim Nath
- Molecular Neurotoxicology Laboratory, Department of Physiology, University of Kalyani, Kalyani, West Bengal- 741235, India
| | - Mukti Mondal
- Molecular Neurotoxicology Laboratory, Department of Physiology, University of Kalyani, Kalyani, West Bengal- 741235, India
| | - Ashma Khatun
- Molecular Neurotoxicology Laboratory, Department of Physiology, University of Kalyani, Kalyani, West Bengal- 741235, India
| | - Goutam Paul
- Molecular Neurotoxicology Laboratory, Department of Physiology, University of Kalyani, Kalyani, West Bengal- 741235, India
| |
Collapse
|
16
|
Bisphenol A and Metabolic Diseases: Challenges for Occupational Medicine. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14090959. [PMID: 28841159 PMCID: PMC5615496 DOI: 10.3390/ijerph14090959] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 08/21/2017] [Accepted: 08/21/2017] [Indexed: 02/08/2023]
Abstract
The prevalence of metabolic diseases has markedly increased worldwide during the last few decades. Lifestyle factors (physical activity, energy-dense diets), together with a genetic predisposition, are well known factors in the pathophysiology of health problems. Bisphenol A (BPA) is a chemical compound used for polycarbonate plastics, food containers, epoxy resins coating metallic cans for food and beverage conservation. The ability of BPA to act as an endocrine disruptor-xenoestrogen in particular-is largely documented in literature, with numerous publications of in vivo and in vitro studies as well as epidemiological data on humans. Recently, different researchers studied the involvement of BPA in the development of insulin resistance; evidences in this way showed a potential role in etiology of metabolic disease, both for children and for adults. We review the epidemiological literature in the relation between BPA exposure and the risk of metabolic diseases in adults, with a focus on occupational exposure. Considering published data and the role of occupational physicians in promoting Workers' Health, specific situations of exposure to BPA in workplace are described, and proposals for action to be taken are suggested. The comparison of the studies showed that exposure levels were higher in workers than in the general population, even if, sometimes, the measurement units used did not permit rapid comprehension. Nevertheless, occupational medicine focus on reproductive effects and not metabolic ones.
Collapse
|
17
|
Patel BB, Raad M, Sebag IA, Chalifour LE. Sex-specific cardiovascular responses to control or high fat diet feeding in C57bl/6 mice chronically exposed to bisphenol A. Toxicol Rep 2015; 2:1310-1318. [PMID: 28962473 PMCID: PMC5598525 DOI: 10.1016/j.toxrep.2015.09.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 09/25/2015] [Indexed: 12/16/2022] Open
Abstract
The increased pericardial fat which often accompanies overall obesity is thought to alter cardiac structure/function and increase the risk for atrial fibrillation. We hypothesized that chronic exposure to bisphenol A (BPA) would induce pericardial fat, cardiac hypertrophy or arrhythmia. C57bl/6n dams were exposed to BPA (25 ng/ml drinking water) beginning on gestation day 11 and progeny continued on 2.5 ng BPA/ml drinking water. The progeny of control dams (VEH) and dams treated with diethylstilbestrol (DES, 1 μg/kg/day, gestation days 1114) had tap water. After weaning progeny were fed either a control (CD) or high fat diet (HFD) for 3 months. Pericardial fat was present in CD-BPA and CD-DES and not CD-VEH mice, and was increased in all HFD mice. Catecholamine challenge revealed no differences in males, but BPA-exposed females had longer P-wave and QRS complex duration. Only CD-BPA and CD-DES females developed cardiac hypertrophy which was independent of increased blood pressure. Calcium homeostasis protein expression changes in HFD-BPA and HFD-DES mice predict reduced SERCA2 activity in males and increased SERCA2 activity in females. Thus, chronic BPA exposure induced pericardial fat in the absence of HFD, and female-specific changes in cardiac hypertrophy development and cardiac electrical conduction after a catecholamine challenge.
Collapse
Affiliation(s)
- Bhavini B Patel
- Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 chemin Cote Ste Catherine, Montreal, Quebec H3T 1E2, Canada
| | - Mohamad Raad
- Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 chemin Cote Ste Catherine, Montreal, Quebec H3T 1E2, Canada
| | - Igal A Sebag
- Division of Cardiology, Jewish General Hospital, 3755 chemin Cote Ste Catherine, Montreal, Quebec H3T 1E2, Canada
| | - Lorraine E Chalifour
- Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 chemin Cote Ste Catherine, Montreal, Quebec H3T 1E2, Canada.,Division of Cardiology, Jewish General Hospital, 3755 chemin Cote Ste Catherine, Montreal, Quebec H3T 1E2, Canada.,Division of Endocrinology, Jewish General Hospital, 3755 chemin Cote Ste Catherine, Montréal, Québec H3T 1E2, Canada.,Division of Experimental Medicine, Department of Medicine, McGill University, 850 Sherbrooke Street, Montréal, Québec H3A 1A2, Canada
| |
Collapse
|