1
|
Walker KA, Rudd TK, Vignola JN, McClymont TM, Roberts ND, Laitipaya K, diTargiani RC. Evaluation of dried blood spot sampling for verification of exposure to chemical threat agents. Forensic Toxicol 2025:10.1007/s11419-025-00721-8. [PMID: 40232631 DOI: 10.1007/s11419-025-00721-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 04/01/2025] [Indexed: 04/16/2025]
Abstract
PURPOSE Exposure to chemical threat agents (CTAs), including nerve agents, the vesicating agent sulfur mustard, and opioids, remains a significant threat to warfighter and civilian populations. Definitive analytical methods to verify exposure to CTAs require shipping refrigerated or frozen biomedical samples to reference laboratories for analysis. Logistical and financial burdens arise as the transport of biomedical samples is subject to strict restrictions and complex packaging, which, if done incorrectly, can lead to sample deterioration. The use of dried blood spot (DBS) sampling could provide operational improvements for collecting, storing, and shipping important forensic samples. Therefore, this effort focuses on developing DBS techniques with Mitra® 30-µL volumetric absorptive microsampling (VAMS®) devices for use in CTA exposure verification. METHODS VAMS® devices were loaded and dried with human whole blood that was exposed to the metabolites pinacolyl methylphosphonic acid (PMPA), ethyl methylphosphonic acid (EMPA), 1,1'sulfonylbis[2-(methylsulfinyl)ethane] (SBMSE), norfentanyl, norcarfentanil, norsufentanil, and norlofentanil. Following extraction from the VAMS® devices, metabolites were detected using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The methods were validated for performance by assessing sensitivity, precision, accuracy, and recovery. RESULTS These methods were sensitive to 1 ng/mL for SBMSE, 0.5 ng/mL for PMPA, EMPA, and norfentanyl; 0.1 ng/mL for norlofentanil, and 0.05 ng/mL for norsufentanil and norcarfentanil. All methods met acceptable precision and accuracy criteria with favorable recovery. CONCLUSIONS These results demonstrated the utility of VAMS® in stabilizing human whole blood and show promise as an improved collection method for verification of exposure to various CTAs.
Collapse
Affiliation(s)
- Katie A Walker
- United States Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Road, Aberdeen Proving Ground, MD, 21010, USA
| | - Trinity K Rudd
- United States Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Road, Aberdeen Proving Ground, MD, 21010, USA
| | - Justin N Vignola
- United States Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Road, Aberdeen Proving Ground, MD, 21010, USA
| | - Thomas M McClymont
- United States Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Road, Aberdeen Proving Ground, MD, 21010, USA
| | - Noah D Roberts
- United States Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Road, Aberdeen Proving Ground, MD, 21010, USA
| | - Kevin Laitipaya
- United States Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Road, Aberdeen Proving Ground, MD, 21010, USA
| | - Robert C diTargiani
- United States Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Road, Aberdeen Proving Ground, MD, 21010, USA.
| |
Collapse
|
2
|
Cenk M, Bekiroğlu Ataş H, Sabuncuoğlu S. Glutathione conjugation of sesquimustard: in vitro investigation of potential biomarkers. Arch Toxicol 2024; 98:2867-2877. [PMID: 38780811 PMCID: PMC11324776 DOI: 10.1007/s00204-024-03788-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
Sesquimustard (Q) is a powerful blistering agent that contains additional sulfur atoms. Sulfur mustard causes covalent bonding by alkylating nucleophilic groups of biologically important macromolecules such as lipids, proteins, DNA, or RNA. Most cells maintain relatively high amounts of a unique tripeptide called glutathione (GSH) (γ-glutamyl-cysteinyl glycine), which possesses a free thiol group, to prevent unwanted reactions caused by reactive chemical entities. Moreover, these thiol groups on cysteines (Cys) are the main target for alkylation. Although Q is the most potent vesicant among sulfur mustards, research studies identifying biomarkers of Q are very limited. Therefore, here in this study, we aimed to identify the GSH and Cys conjugates of Q using mass spectrometric methods and to observe the formation of these conjugates in HaCat cell culture following exposure to different doses. We identified four different conjugates of Q, which are bis-glutathionyl ethylthioethylthioethyl conjugate (GSH-ETETE-GSH), hydroxyethylthioethylthioethyl glutathione conjugate (HETETE-GSH), bis-cysteinyl ethylthioethylthioethyl conjugate (Cys-ETETE-Cys), and hydroxyethylthioethylthioethyl cysteine conjugate (HETETE-Cys). The identity of the conjugates was elucidated using liquid chromatography-high-resolution mass spectrometry (LC-HRMS). We also investigated changes in conjugate formation with exposure concentration and time elapsed after exposure in the cell culture. After exposure, GSH conjugates decreased until 1st hour, while Cys conjugates increased until 6th hour. We also observed that conjugate formation depended on the concentration of Q. This is the first study to elucidate the conjugates of Q dependent on GSH conjugation. As biomarkers are essential tools for evaluating exposure to Q, this study contributes to the limited number of studies identifying biomarkers for Q.
Collapse
Affiliation(s)
- Muharrem Cenk
- Department of Toxicology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
- General Directorate of Public Health, National Public Health Reference Laboratory, Ankara, Turkey
| | - Havva Bekiroğlu Ataş
- General Directorate of Public Health, National Public Health Reference Laboratory, Ankara, Turkey
| | - Suna Sabuncuoğlu
- Department of Toxicology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
3
|
Avigo L, Hallez F, Combès A, Desoubries C, Albaret C, Bossée A, Pichon V. Analytical methods based on liquid chromatography for the analysis of albumin adducts involved in retrospective biomonitoring of exposure to mustard agents. Anal Bioanal Chem 2024; 416:2173-2188. [PMID: 37702771 DOI: 10.1007/s00216-023-04925-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/14/2023]
Abstract
The objective of the present review is to list, describe, compare, and critically analyze the main procedures developed in the last 20 years for the analysis of digested alkylated peptides, resulting from the adduction of albumin by different mustard agents, and that can be used as biomarkers of exposure to these chemical agents. While many biomarkers of sulfur mustard, its analogues, and nitrogen mustards can easily be collected in urine such as their hydrolysis products, albumin adducts require blood or plasma collection to be analyzed. Nonetheless, albumin adducts offer a wider period of detectability in human exposed patients than urine found biomarkers with detection up to 25 days after exposure to the chemical agent. The detection of these digested alkylated peptides of adducted albumin constitutes unambiguous proof of exposure. However, their determination, especially when they are present at very low concentration levels, can be very difficult due to the complexity of the biological matrices. Therefore, numerous sample preparation procedures to extract albumin and to recover alkylated peptides after a digestion step using enzymes have been proposed prior to the analysis of the targeted peptides by liquid chromatography coupled to mass spectrometry method with or without derivatization step. This review describes and compares the numerous procedures including a number of different steps for the extraction and purification of adducted albumin and its digested peptides described in the literature to achieve detection limits for biological samples exposed to sulfur mustard, its analogues, and nitrogen mustards in the ng/mL range.
Collapse
Affiliation(s)
- Lorenzo Avigo
- Department of Analytical, Bioanalytical Sciences and Miniaturization (LSABM) Chemistry, Biology and Innovation (CBI), ESPCI Paris, PSL University, CNRS, 10 Rue Vauquelin, 75005, Paris, France
- Sorbonne Université, 4 Place Jussieu, 75005, Paris, France
| | - Florine Hallez
- Department of Analytical, Bioanalytical Sciences and Miniaturization (LSABM) Chemistry, Biology and Innovation (CBI), ESPCI Paris, PSL University, CNRS, 10 Rue Vauquelin, 75005, Paris, France
| | - Audrey Combès
- Department of Analytical, Bioanalytical Sciences and Miniaturization (LSABM) Chemistry, Biology and Innovation (CBI), ESPCI Paris, PSL University, CNRS, 10 Rue Vauquelin, 75005, Paris, France
| | | | | | - Anne Bossée
- DGA, CBRN Defence, 5 Rue Lavoisier, 91710, Vert-Le-Petit, France
| | - Valérie Pichon
- Department of Analytical, Bioanalytical Sciences and Miniaturization (LSABM) Chemistry, Biology and Innovation (CBI), ESPCI Paris, PSL University, CNRS, 10 Rue Vauquelin, 75005, Paris, France.
- Sorbonne Université, 4 Place Jussieu, 75005, Paris, France.
| |
Collapse
|
4
|
Li XS, Yang FC, Yan L, Wu JN, Yuan L, Yang Y, Liu SL. Simultaneous Quantification of Biomarkers for Bis-(2-chloroethyl) Sulfide and 1,2-Bis(2-chloroethylthio) Ethane Exposure in Human Urine at Trace Exposure Levels by Gas Chromatography Tandem Mass Spectrometry via Simultaneous Incubation and Extraction. Chem Res Toxicol 2023; 36:1549-1559. [PMID: 37657424 DOI: 10.1021/acs.chemrestox.3c00170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
Sulfur mustard [HD; bis-(2-chloroethyl) sulfide] and other analogues are a kind of highly toxic vesicant and have been prohibited by the Organization for the Prohibition of Chemical Weapons (OPCW) since 1997. Exposures to HD could generate several adducts in the plasma and hydrolysis products in the urine, which are widely applied as biomarkers to identify HD exposure in forensic analysis. Several methods have been developed for the detection of related biomarkers. However, most methods are based on complex derivatization, and not enough attention is paid to HD analogues. A modified and convenient analytical method reported herein includes simultaneous incubation and organic solvent extraction. The biomarkers such as thiodiglycol and 1,2-bis (2-hydroxyethylthio) are transferred to HD and 1,2-bis(2-chloroethylthio) ethane via hydrochloric acid at the appropriate temperature. The analytes are analyzed by gas chromatography tandem mass spectrometry (GC-MS/MS) with 2-chloroethyl ethyl sulfide (2-CEES) applied as the internal standard. The interday and intraday study according to FDA rules has been achieved to evaluate the accuracy and precision of the method. The two targets are detected with a good linearity (R2 > 0.99) in the concentration ranges from 5 to 1000 ng/mL and 10 to 1000 ng/mL, with small relative standard deviations (RSD ≤6.62% and RSD ≤6.93%) and favorable recoveries between 90.3 and 107.3% and between 89.4 and 108.7%, respectively. The established method can be used for retrospective detection of sulfur mustards in biological samples and successfully applied in the biomedical proficiency testing organized by the OPCW.
Collapse
Affiliation(s)
- Xiao-Sen Li
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Fang-Chao Yang
- School of Chemistry and Chemical Engineering, Nanjing University of Sciences & Technology, Nanjing 210094, P. R. China
| | - Long Yan
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Ji-Na Wu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Ling Yuan
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Yang Yang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Shi-Lei Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| |
Collapse
|
5
|
Chen B, Ren Z, Zhang T, Yu H, Shu Z, Liu C, Yang Y, Xu P, Liu S. Simultaneous quantification of multiple amino acid adducts from sulfur mustard-modified human serum albumin in plasma at trace exposure levels by ultra-high performance liquid chromatography-triple quadrupole mass spectrometry after propionyl derivatization. J Chromatogr A 2022; 1678:463354. [PMID: 35901667 DOI: 10.1016/j.chroma.2022.463354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 10/17/2022]
Abstract
Sulfur mustard (HD) is a highly toxic vesicant and is prohibited by the Organisation for the Prohibition of Chemical Weapons (OPCW). HD can modify human serum albumin (HSA) to generate hydroxyethylthioethyl (HETE) adducts, which could be utilized as biomarkers for verifying HD exposure in forensic analysis. Here, five amino acid adducts generated from pronase digestion of HD-exposed human serum albumin (HD-HSA) in plasma were selected as biomarkers to retrospectively detect HD exposure. HD-HSA was precipitated from plasma with acetone, digested by pronase, derivatized with propionic anhydride (PA), and analysed with ultra-high performance liquid chromatography coupled with triple quadrupole mass spectrometry (UHPLC-TQ MS). The limits of detection (LODs) and limits of quantification (LOQs) of the HD exposure concentrations were evaluated as 1.00 ng/mL at S/N≥3 and 3.00 ng/mL at S/N≥10, respectively, which are approximately 60 times lower than those of the reported method. The approach shows good linearity (R2≥0.997) from 3.00 ng/mL to 10.0 µg/mL of HD-exposed human plasma with satisfactory precision and accuracy. The developed approach was applied to analysing samples from the 6th OPCW Biomedical Proficiency Test (BioPT). The study showed that the developed approach was also suitable for analysing human plasma samples that were exposed to six of HD analogues, which were common impurities in sulfur mustard mixtures. Moreover, the method was successfully applied to plasma from other species, including rabbits, rats and cattle. This study provides a reliable and sensitive tool for the retrospective detection of vesicants exposure based on multiple biomarkers.
Collapse
Affiliation(s)
- Bo Chen
- State Key Laboratory of NBC Protection for Civilian, Laboratory of Analytical Chemistry, Research Institute of Chemical Defence, Beijing 102205, P. R. China
| | - Zhe Ren
- School of Chemistry and Chemical Engineering, Nanjing University of Sciences & Technology, Nanjing, 210094, P. R. China
| | - Tao Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, 102206, P. R. China
| | - Huilan Yu
- State Key Laboratory of NBC Protection for Civilian, Laboratory of Analytical Chemistry, Research Institute of Chemical Defence, Beijing 102205, P. R. China
| | - ZhiBin Shu
- State Key Laboratory of NBC Protection for Civilian, Laboratory of Analytical Chemistry, Research Institute of Chemical Defence, Beijing 102205, P. R. China
| | - Changcai Liu
- State Key Laboratory of NBC Protection for Civilian, Laboratory of Analytical Chemistry, Research Institute of Chemical Defence, Beijing 102205, P. R. China
| | - Yang Yang
- State Key Laboratory of NBC Protection for Civilian, Laboratory of Analytical Chemistry, Research Institute of Chemical Defence, Beijing 102205, P. R. China
| | - Ping Xu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, 102206, P. R. China.
| | - Shilei Liu
- State Key Laboratory of NBC Protection for Civilian, Laboratory of Analytical Chemistry, Research Institute of Chemical Defence, Beijing 102205, P. R. China.
| |
Collapse
|
6
|
Schmeißer W, Siegert M, Thiermann H, Rein T, John H. Highly stable peptide adducts from hard keratins as biomarkers to verify local sulfur mustard exposure of hair by high-resolution mass spectrometry. Arch Toxicol 2022; 96:2287-2298. [PMID: 35570235 PMCID: PMC9217830 DOI: 10.1007/s00204-022-03307-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/27/2022] [Indexed: 11/03/2022]
Abstract
In the recent past, the blister agent sulfur mustard (SM) deployed by the terroristic group Islamic State has caused a huge number of civilian and military casualties in armed conflicts in the Middle East. The vaporized or aerolized agent might be inhaled and have direct contact to skin and hair. Reaction products of SM with plasma proteins (adducts) represent well-established systemic targets for the bioanalytical verification of exposure. The SM-derived hydroxyethylthioethyl (HETE)-moiety is attached to nucleophilic amino acid side chains and allows unambiguous adduct detection. For shipping of common blood and plasma samples, extensive packaging rules are to be followed as these matrices are considered as potentially infectious material. In contrast, hair is considered as non-infectious thus making its handling and transportation much less complicated. Therefore, we addressed this matrix to develop a procedure for bioanalytical verification. Following optimized lysis of SM-treated human scalp hair and pepsin-catalyzed proteolysis of adducts of keratin type I and II, microbore liquid chromatography-electrospray ionization high-resolution tandem-mass spectrometry (µLC-ESI MS/HR MS) was used to detect three alkylated keratin-derived biomarker peptides: AE(-HETE)IRSDL, FKTIE(-HETE)EL, and LE(-HETE)TKLQF simultaneously. All bear the HETE-moiety bound to a glutamic acid residue. Protein adducts were stable for at least 14 weeks at ambient temperature and contact to air, and were not affected by washing the hair with shampoo. The biomarker peptides were also obtained from beard, armpit, abdominal, and pubic hair. This is the first report introducing stable local peptide adduct biomarkers from hair, that is easily accessible by a non-invasive sampling process.
Collapse
Affiliation(s)
- Wolfgang Schmeißer
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstrasse 11, 80937, Munich, Germany
| | - Markus Siegert
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstrasse 11, 80937, Munich, Germany.,Department of Chemistry, Humboldt-Universität Zu Berlin, Brook-Taylor-Strasse 2, 12489, Berlin, Germany.,Proteros Biostructures GmbH, Bunsenstrasse 7a, 82152, Planegg, Germany
| | - Horst Thiermann
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstrasse 11, 80937, Munich, Germany
| | - Theo Rein
- Max Planck Institute of Psychiatry, Kraepelinstrasse 2-10, 80804, Munich, Germany
| | - Harald John
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstrasse 11, 80937, Munich, Germany.
| |
Collapse
|
7
|
Gros-Désormeaux F, Caffin F, Igert A, Guatto N, Piérard C. Is CEES a good analog of sulfur mustard? Macroscopic aspect, histology, and molecular biology comparisons between sulfur mustard and CEES-induced skin lesions. Toxicol Lett 2022; 361:21-28. [PMID: 35341927 DOI: 10.1016/j.toxlet.2022.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/22/2022] [Accepted: 03/22/2022] [Indexed: 11/19/2022]
Abstract
Sulfur mustard (SM) is a chemical blistering warfare agent affecting multiple organs. SM is an ongoing chemical threat in addition to the accidental risk associated with World War I buried shells. As no specific treatments are available, only symptomatic therapies can be used. To test new medical countermeasures in standard laboratories, analogs such as 2-chloroethyl ethylsulfide (CEES) are currently used, although only a few studies compare its clinical effects with SM. In the present paper, skin lesions induced by SM and CEES are compared in terms of their macroscopic aspects, histology, and molecular biology to evaluate the pertinence of CEES as a SM analog. For this purpose, an in vivo model of CEES vapor exposure, similar to that of SM, is described in this paper. RESULTS: showed similar skin lesions with CEES and SM but with slight differences in the apparition delay and intensity of the lesions. Indeed, SM induced earlier, deeper, and stronger lesions. However, the same healing status was observed at the end of the study period (14 days). In conclusion, CEES appears a relevant analog of SM, leading to similar skin lesions. The CEES vapor exposure model therefore seems suitable for testing new medical countermeasures.
Collapse
Affiliation(s)
- Fanny Gros-Désormeaux
- Département de Toxicologie et Risques Chimiques - Unité Vésicants, Institut de Recherche Biomédicale des Armées (IRBA), 1 place du Général Valérie André, 91220 Brétigny sur Orge, France.
| | - Fanny Caffin
- Département de Toxicologie et Risques Chimiques - Unité Vésicants, Institut de Recherche Biomédicale des Armées (IRBA), 1 place du Général Valérie André, 91220 Brétigny sur Orge, France
| | - Alexandre Igert
- Département de Toxicologie et Risques Chimiques - Unité Vésicants, Institut de Recherche Biomédicale des Armées (IRBA), 1 place du Général Valérie André, 91220 Brétigny sur Orge, France
| | - Nathalie Guatto
- Département des Plateformes et Recherches Technologiques - Unité Imagerie, Institut de Recherche Biomédicale des Armées (IRBA), 1 place du Général Valérie André, 91220 Brétigny sur Orge, France
| | - Christophe Piérard
- Département de Toxicologie et Risques Chimiques - Unité Vésicants, Institut de Recherche Biomédicale des Armées (IRBA), 1 place du Général Valérie André, 91220 Brétigny sur Orge, France
| |
Collapse
|
8
|
Rafati-Rahimzadeh M, Rafati-Rahimzadeh M, Kazemi S, Jafarian Amiri SR, Soleymani A, Moghadamnia AA. Ophthalmological aspects of mustard gas poisoning (focus on management). CASPIAN JOURNAL OF INTERNAL MEDICINE 2022; 13:458-468. [PMID: 35974928 PMCID: PMC9348212 DOI: 10.22088/cjim.13.3.458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/14/2021] [Accepted: 12/06/2021] [Indexed: 10/31/2022]
Abstract
Background Amongst the chemical warfare agents, blistering (vesicant) agents can be significant materials. The most important agent in this group is sulfur mustard (mustard gas) which is known as "King of chemical warfare (CW) agents ". Exposure to this agent, seriously causes damages in several organs, such as the eyes. This article reviews the ophthalmological aspects of sulfur mustard with reference of its management. Methods A wide-ranging search in PubMed databases, Thomson Reuters and Scopus was done and different aspects of chemical properties of sulfur mustard, its mechanism of action and effects on eyes, clinical finding, diagnostic evaluation, initiate actions, pharmaceutical and surgical interventions was reported. Results Sulfur mustard can alkylate DNA and RNA strands and break down structures of protein and lipid of cell membrane. This may impair cell energy production, and leads to cell death. Exposure to sulfur mustard, therefore, causes such problems for organs, including irreversible damage to the eyes. Conclusion Understanding the mechanism of the sulfur mustard effect and the early training in prevention injuries will cause fewer complications and damage to organs, including the eyes. Washing the eyes with tap water or eyewash solutions, using mydriatic drops, anti- inflammatory drugs, matrix metalloproteinase inhibitors and antibiotics may help to the management of poisoning. Surgical interventions including tarsorrhaphy, amniotic membrane transplantation, stem cell transplantation and corneal transplantation could reduce the harm to the victims.
Collapse
Affiliation(s)
- Mehrdad Rafati-Rahimzadeh
- Department of Nursing, Babol University of Medical Sciences, Babol, Iran,Neuroscience Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | | | - Sohrab Kazemi
- Cancer Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | | | - Abbas Soleymani
- Department of Ophthalmology, Babol University of Medical Sciences, Babol, Iran
| | - Ali Akbar Moghadamnia
- Department of Ophthalmology, Babol University of Medical Sciences, Babol, Iran ,Correspondence: Ali Akbar Moghadamnia , Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran. E-mail: , Tel: 0098 1132207918, Fax: 0098 1132207918
| |
Collapse
|
9
|
Abstract
Chemicals are measured regularly in air, food, the environment, and the workplace. Biomonitoring of chemicals in biological fluids is a tool to determine the individual exposure. Blood protein adducts of xenobiotics are a marker of both exposure and the biologically effective dose. Urinary metabolites and blood metabolites are short term exposure markers. Stable hemoglobin adducts are exposure markers of up to 120 days. Blood protein adducts are formed with many xenobiotics at different sites of the blood proteins. Newer methods apply the techniques developed in the field of proteomics. Larger adducted peptides with 20 amino acids are used for quantitation. Unfortunately, at present the methods do not reach the limits of detection obtained with the methods looking at single amino acid adducts or at chemically cleaved adducts. Therefore, to progress in the field new approaches are needed.
Collapse
|
10
|
Timperley CM, Forman JE, Abdollahi M, Al-Amri AS, Baulig A, Benachour D, Borrett V, Cariño FA, Curty C, Geist M, Gonzalez D, Kane W, Kovarik Z, Martínez-Álvarez R, Mourão NMF, Neffe S, Raza SK, Rubaylo V, Suárez AG, Takeuchi K, Tang C, Trifirò F, van Straten FM, Vanninen PS, Vučinić S, Zaitsev V, Zafar-Uz-Zaman M, Zina MS, Holen S, Alwan WS, Suri V, Hotchkiss PJ, Ghanei M. Advice on assistance and protection provided by the Scientific Advisory Board of the Organisation for the Prohibition of Chemical Weapons: Part 3. On medical care and treatment of injuries from sulfur mustard. Toxicology 2021; 463:152967. [PMID: 34619302 DOI: 10.1016/j.tox.2021.152967] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/19/2021] [Accepted: 09/29/2021] [Indexed: 11/24/2022]
Abstract
Blister agents damage the skin, eyes, mucous membranes and subcutaneous tissues. Other toxic effects may occur after absorption. The response of the Scientific Advisory Board (SAB) of the Organisation for the Prohibition of Chemical Weapons (OPCW) to a request from the OPCW Director-General in 2013 on the status of medical countermeasures and treatments to blister agents is updated through the incorporation of the latest information. The physical and toxicological properties of sulfur mustard and clinical effects and treatments are summarised. The information should assist medics and emergency responders who may be unfamiliar with the toxidrome of sulfur mustard and its treatment.
Collapse
Affiliation(s)
- Christopher M Timperley
- Chair of the OPCW SAB from 2015-2018, Defence Science and Technology Laboratory (Dstl), Porton Down, Salisbury, Wiltshire, United Kingdom.
| | - Jonathan E Forman
- Science Policy Adviser and Secretary to the SAB, OPCW, The Hague, 2417, JR, the Netherlands, from 2015-2018
| | - Mohammad Abdollahi
- Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), and Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | | | - Augustin Baulig
- Secrétariat Général de la Défense et de la Sécurité Nationale (SGDSN), Paris, France
| | - Djafer Benachour
- LMPMP, Faculty of Technology, Ferhat Abbas University, Setif-1, Algeria
| | - Veronica Borrett
- La Trobe Institute for Agriculture and Food, La Trobe University, Victoria, 3086, Australia
| | | | | | | | - David Gonzalez
- Facultad De Química, Universidad de la República, Montevideo, Uruguay
| | | | - Zrinka Kovarik
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | | | | | | | - Syed K Raza
- Chairperson Accreditation Committee, National Accreditation Board for Testing and Calibration Laboratories (NABL), India
| | - Valentin Rubaylo
- State Scientific Research Institute of Organic Chemistry and Technology (GosNIIOKhT), Moscow, Russian Federation
| | - Alejandra Graciela Suárez
- Universidad Nacional de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Rosario, Argentina
| | - Koji Takeuchi
- National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Cheng Tang
- Office for the Disposal of Japanese Abandoned Chemical Weapons, Ministry of National Defence, Beijing, China
| | - Ferruccio Trifirò
- Department of Industrial Chemistry, University of Bologna, Bologna, Italy
| | | | - Paula S Vanninen
- VERIFIN, Department of Chemistry, Faculty of Science, University of Helsinki, Helsinki, Finland
| | - Slavica Vučinić
- National Poison Control Centre, Military Medical Academy, Belgrade, Serbia
| | | | | | | | - Stian Holen
- Head of Strategy and Policy at the OPCW from 2009 to 2015
| | - Wesam S Alwan
- Medicinal Chemistry Department, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052, Victoria, Australia
| | - Vivek Suri
- Intern in the OPCW Office of Strategy and Policy, Summer 2018
| | - Peter J Hotchkiss
- Senior Science Policy Officer and Secretary to the SAB, OPCW, The Hague, 2417, JR, the Netherlands.
| | - Mostafa Ghanei
- Chemical Injuries Research Center, Baqiyatallah University of Medical Sciences, Tehran, Islamic Republic of Iran
| |
Collapse
|
11
|
Gilardoni M, Léonço D, Caffin F, Gros-Désormeaux F, Eldin C, Béal D, Ouzia S, Junot C, Fenaille F, Piérard C, Douki T. Evidence for the systemic diffusion of (2-chloroethyl)-ethyl-sulfide, a sulfur mustard analog, and its deleterious effects in brain. Toxicology 2021; 462:152950. [PMID: 34534560 DOI: 10.1016/j.tox.2021.152950] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/03/2021] [Accepted: 09/09/2021] [Indexed: 10/20/2022]
Abstract
Sulfur mustard, a chemical warfare agent known to be a vesicant of skin, readily diffuses in the blood stream and reaches internal organs. In the present study, we used the analog (2-chloroethyl)-ethyl-sulfide (CEES) to provide novel data on the systemic diffusion of vesicants and on their ability to induce brain damage, which result in neurological disorders. SKH-1 hairless mice were topically exposed to CEES and sacrificed at different time until 14 days after exposure. A plasma metabolomics study showed a strong systemic impact following a self-protection mechanism to alleviate the injury of CEES exposure. This result was confirmed by the quantification of specific biomarkers in plasma. Those were the conjugates of CEES with glutathione (GSH-CEES), cysteine (Cys-CEES) and N-acetyl-cysteine (NAC-CEES), as well as the guanine adduct (N7Gua-CEES). In brain, N7Gua-CEES could be detected both in DNA and in organ extracts. Similarly, GSH-CEES, Cys-CEES and NAC-CEES were present in the extracts until day14. Altogether, these results, based on novel exposure markers, confirm the ability of vesicants to induce internal damage following dermal exposure. The observation of alkylation damage to glutathione and DNA in brain provides an additional mechanism to the neurological insult of SM.
Collapse
Affiliation(s)
- Marie Gilardoni
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, F-38000, Grenoble, France
| | - Daniel Léonço
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, F-91191, Gif sur Yvette, France
| | - Fanny Caffin
- Institut de Recherche Biomédicale des Armées (IRBA), Place Général Valérie André, BP 73, 91223, Brétigny-sur-Orge Cedex, France
| | - Fanny Gros-Désormeaux
- Institut de Recherche Biomédicale des Armées (IRBA), Place Général Valérie André, BP 73, 91223, Brétigny-sur-Orge Cedex, France
| | - Camille Eldin
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, F-38000, Grenoble, France
| | - David Béal
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, F-38000, Grenoble, France
| | - Sadia Ouzia
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, F-91191, Gif sur Yvette, France
| | - Christophe Junot
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, F-91191, Gif sur Yvette, France
| | - François Fenaille
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, F-91191, Gif sur Yvette, France
| | - Christophe Piérard
- Institut de Recherche Biomédicale des Armées (IRBA), Place Général Valérie André, BP 73, 91223, Brétigny-sur-Orge Cedex, France
| | - Thierry Douki
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, F-38000, Grenoble, France.
| |
Collapse
|
12
|
Richter A, Siegert M, Thiermann H, John H. Alkylated albumin-derived dipeptide C(-HETE)P derivatized by propionic anhydride as a biomarker for the verification of poisoning with sulfur mustard. Anal Bioanal Chem 2021; 413:4907-4916. [PMID: 34215915 PMCID: PMC8318952 DOI: 10.1007/s00216-021-03454-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/25/2021] [Accepted: 06/04/2021] [Indexed: 12/26/2022]
Abstract
Sulfur mustard (SM) is a banned chemical warfare agent recently used in the Syrian Arab Republic conflict causing erythema and blisters characterized by complicated and delayed wound healing. For medical and legal reasons, the proof of exposure to SM is of high toxicological and forensic relevance. SM reacts with endogenous human serum albumin (HSA adducts) alkylating the thiol group of the cysteine residue C34, thus causing the addition of the hydroxyethylthioethyl (HETE) moiety. Following proteolysis with pronase, the biomarker dipeptide C(-HETE)P is produced. To expand the possibilities for verification of exposure, we herein introduce a novel biomarker produced from that alkylated dipeptide by derivatization with propionic anhydride inducing the selective propionylation of the N-terminus yielding PA-C(-HETE)P. Quantitative derivatization is carried out at room temperature in aqueous buffer within 10 s. The biomarker was found to be stable in the autosampler at 15 °C for at least 24 h, thus documenting its suitability even for larger sets of samples. Selective and sensitive detection is done by micro liquid chromatography-electrospray ionization tandem-mass spectrometry (μLC-ESI MS/MS) operating in the selected reaction monitoring (SRM) mode detecting product ions of the single protonated PA-C(-HETE)P (m/z 379.1) at m/z 116.1, m/z 137.0, and m/z 105.0. The lower limit of detection corresponds to 32 nM SM in plasma in vitro and the limit of identification to 160 nM. The applicability to real exposure scenarios was proven by analyzing samples from the Middle East confirming poisoning with SM. ![]()
Collapse
Affiliation(s)
- Annika Richter
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| | - Markus Siegert
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany.,Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstrasse 11, 80937, Munich, Germany
| | - Horst Thiermann
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstrasse 11, 80937, Munich, Germany
| | - Harald John
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstrasse 11, 80937, Munich, Germany.
| |
Collapse
|
13
|
John H, Richter A, Thiermann H. Evidence of sulfur mustard poisoning by detection of the albumin-derived dipeptide biomarker C(-HETE)P after nicotinylation. Drug Test Anal 2021; 13:1593-1602. [PMID: 34145783 DOI: 10.1002/dta.3114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/13/2021] [Accepted: 06/13/2021] [Indexed: 12/13/2022]
Abstract
Sulfur mustard (SM, bis[2-chloroethyl]-sulfide) is a banned chemical warfare agent that was frequently used in recent years and led to numerous poisoned victims who developed painful erythema and blisters. Post-exposure analysis of SM incorporation can be performed by the detection of human serum albumin (HSA)-derived peptides. HSA alkylated by SM contains a hydroxyethylthioethyl (HETE)-moiety bound to the cysteine residue C34 yielding the dipeptide biomarker C(-HETE)P after pronase-catalyzed proteolysis. We herein present a novel procedure for the selective precolumn nicotinylation of its N-terminus using 1-nicotinoyloxy-succinimide. The reaction was carried out for 2 h at ambient temperature with a yield of 81%. The derivative NA-C(-HETE)P was analyzed by micro liquid chromatography-electrospray ionization tandem-mass spectrometry working in the selected reaction monitoring mode (μLC-ESI MS/MS SRM). The derivative was shown to be stable in the autosampler at 15°C for at least 24 h. The single protonated precursor ion (m/z 428.1) was subjected to collision-induced dissociation yielding product ions at m/z 116.1, m/z 137.0, and m/z 105.0 used for selective monitoring without any plasma-derived interferences. NA-C(-HETE)P showed a mass spectrometric response superior to the non-derivatized dipeptide thus yielding larger peak areas (factor 1.3 ± 0.2). The lower limit of identification corresponded to 80 nM SM spiked to plasma in vitro. The presented procedure was applied to real case plasma samples from 2015 collected in the Middle East confirming SM poisoning.
Collapse
Affiliation(s)
- Harald John
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| | - Annika Richter
- Department of Chemistry, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Horst Thiermann
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| |
Collapse
|
14
|
Prihed H, Shifrovich A, Shamai Yamin T, Madmon M, Smolkin B, Chen R, Blanca M, Weissberg A. A novel approach for the detection and identification of sulfur mustard using liquid chromatography-electrospray ionization-tandem mass spectrometry based on its selective oxidation to sulfur mustard monoxide with N-iodosuccinimide. JOURNAL OF MASS SPECTROMETRY : JMS 2021; 56:e4721. [PMID: 33848030 DOI: 10.1002/jms.4721] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
A new derivatization strategy for the detection and identification of sulfur mustard (HD) via liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) is developed. The method incorporates selective oxidation of the sulfide group by the electrophilic iodine reagent N-iodosuccinimide (NIS) to produce sulfur mustard monoxide (HDSO). The derivatization reaction efficiencies were evaluated with acetonitrile extracts of soil, asphalt, cloth, Formica, and linoleum spiked with HD at concentrations of 50-5000 pg/ml and found to be similar to that with pure acetonitrile. The current derivatization approach is the first to preserve the identity of chloride groups and support HD regulation and evidentiary findings.
Collapse
Affiliation(s)
- Hagit Prihed
- Department of Analytical Chemistry, Israel Institute for Biological Research (IIBR), Ness Ziona, Israel
| | - Avital Shifrovich
- Department of Analytical Chemistry, Israel Institute for Biological Research (IIBR), Ness Ziona, Israel
| | - Tamar Shamai Yamin
- Department of Analytical Chemistry, Israel Institute for Biological Research (IIBR), Ness Ziona, Israel
| | - Moran Madmon
- Department of Analytical Chemistry, Israel Institute for Biological Research (IIBR), Ness Ziona, Israel
| | - Boris Smolkin
- Department of Organic Chemistry, Israel Institute for Biological Research (IIBR), Ness Ziona, Israel
| | - Ravit Chen
- Department of Organic Chemistry, Israel Institute for Biological Research (IIBR), Ness Ziona, Israel
| | - Merav Blanca
- Department of Analytical Chemistry, Israel Institute for Biological Research (IIBR), Ness Ziona, Israel
| | - Avi Weissberg
- Department of Analytical Chemistry, Israel Institute for Biological Research (IIBR), Ness Ziona, Israel
| |
Collapse
|
15
|
Cheng X, Liu C, Yang Y, Liang L, Chen B, Yu H, Xia J, Liu S, Li Y. Advances in sulfur mustard-induced DNA adducts: Characterization and detection. Toxicol Lett 2021; 344:46-57. [PMID: 33705862 DOI: 10.1016/j.toxlet.2021.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 12/20/2022]
Abstract
Sulfur mustard (SM) is a blister chemical warfare agent with severe cytotoxicity and genotoxicity. It can extensively alkylate important macromolecules in organisms, such as proteins, DNA, and lipids, and produce a series of metabolites, among which the characteristic ones can be used as biomarkers. The exact toxicological mechanisms of SM remain unclear but mainly involve the DNA lesions induced by alkylation and oxidative stress caused by glutathione depletion. Various methods have been used to analyze DNA damage caused by SM. Among these methods, liquid chromatography-tandem mass spectrometry (LC-MS/MS) technology stands out and makes it possible to observe damage in view of biomarkers induced by SM. Sample preparation is critical for detection by LC-MS/MS and mainly includes DNA isolation, adduct hydrolysis, and adduct purification. Moreover, optimization of chromatographic conditions, selection of MS transitions, and quantitative strategies are also essential. SM-DNA adducts are generally considered to be N7-HETEG, O6-HETEG, N7-BisG, and N3-HETEA. This article proposes some other possibilities of SM-DNA adducts for the identification of SM genotoxicity.
Collapse
Affiliation(s)
- Xi Cheng
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, 410073, PR China; State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, PR China
| | - Changcai Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, PR China
| | - Yang Yang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, PR China
| | - Longhui Liang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, PR China
| | - Bo Chen
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, PR China
| | - Huilan Yu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, PR China
| | - Junmei Xia
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, PR China
| | - Shilei Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, PR China.
| | - Yihe Li
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, 410073, PR China.
| |
Collapse
|
16
|
Alkylated epidermal creatine kinase as a biomarker for sulfur mustard exposure: comparison to adducts of albumin and DNA in an in vivo rat study. Arch Toxicol 2021; 95:1323-1333. [PMID: 33635393 PMCID: PMC8032612 DOI: 10.1007/s00204-021-03005-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/16/2021] [Indexed: 12/20/2022]
Abstract
Sulfur mustard (SM) is a chemical warfare agent which use is banned under international law and that has been used recently in Northern Iraq and Syria by the so-called Islamic State. SM induces the alkylation of endogenous proteins like albumin and hemoglobin thus forming covalent adducts that are targeted by bioanalytical methods for the verification of systemic poisoning. We herein report a novel biomarker, namely creatine kinase (CK) B-type, suitable as a local biomarker for SM exposure on the skin. Human and rat skin were proven to contain CK B-type by Western blot analysis. Following exposure to SM ex vivo, the CK-adduct was extracted from homogenates by immunomagnetic separation and proteolyzed afterwards. The cysteine residue Cys282 was found to be alkylated by the SM-specific hydroxyethylthioethyl (HETE)-moiety detected as the biomarker tetrapeptide TC(-HETE)PS. A selective and sensitive micro liquid chromatography-electrospray ionization high-resolution tandem-mass spectrometry (µLC-ESI MS/HRMS) method was developed to monitor local CK-adducts in an in vivo study with rats percutaneously exposed to SM. CK-adduct formation was compared to already established DNA- and systemic albumin biomarkers. CK- and DNA-adducts were successfully detected in biopsies of exposed rat skin as well as albumin-adducts in plasma. Relative biomarker concentrations make the CK-adduct highly appropriate as a local dermal biomarker. In summary, CK or rather Cys282 in CK B-type was identified as a new, additional dermal target of local SM exposures. To our knowledge, it is also the first time that HETE-albumin adducts, and HETE-DNA adducts were monitored simultaneously in an in vivo animal study.
Collapse
|
17
|
Rybal’chenko IV, Baigil’diev TM, Rodin IA. Chromatography–Mass Spectrometry Analysis for the Determination of the Markers and Biomarkers of Chemical Warfare Agents. JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1134/s1061934821010111] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Roser M, Béal D, Eldin C, Gudimard L, Caffin F, Gros-Désormeaux F, Léonço D, Fenaille F, Junot C, Piérard C, Douki T. Glutathione conjugates of the mercapturic acid pathway and guanine adduct as biomarkers of exposure to CEES, a sulfur mustard analog. Anal Bioanal Chem 2021; 413:1337-1351. [PMID: 33410976 DOI: 10.1007/s00216-020-03096-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/23/2020] [Accepted: 11/25/2020] [Indexed: 12/20/2022]
Abstract
Sulfur mustard (SM), a chemical warfare agent, is a strong alkylating compound that readily reacts with numerous biomolecules. The goal of the present work was to define and validate new biomarkers of exposure to SM that could be easily accessible in urine or plasma. Because investigations using SM are prohibited by the Organisation for the Prohibition of Chemical Weapons, we worked with 2-chloroethyl ethyl sulfide (CEES), a monofunctional analog of SM. We developed an ultra-high-pressure liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) approach to the conjugate of CEES to glutathione and two of its metabolites: the cysteine and the N-acetylcysteine conjugates. The N7-guanine adduct of CEES (N7Gua-CEES) was also targeted. After synthesizing the specific biomarkers, a solid-phase extraction protocol and a UHPLC-MS/MS method with isotopic dilution were optimized. We were able to quantify N7Gua-CEES in the DNA of HaCaT keratinocytes and of explants of human skin exposed to CEES. N7Gua-CEES was also detected in the culture medium of these two models, together with the glutathione and the cysteine conjugates. In contrast, the N-acetylcysteine conjugate was not detected. The method was then applied to plasma from mice cutaneously exposed to CEES. All four markers could be detected. Our present results thus validate both the analytical technique and the biological relevance of new, easily quantifiable biomarkers of exposure to CEES. Because CEES behaves very similar to SM, the results are promising for application to this toxic of interest.
Collapse
Affiliation(s)
- Marie Roser
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 38000, Grenoble, France
| | - David Béal
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 38000, Grenoble, France
| | - Camille Eldin
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 38000, Grenoble, France
| | - Leslie Gudimard
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 38000, Grenoble, France
| | - Fanny Caffin
- Institut de Recherche Biomédicale des Armées (IRBA), 91223, Brétigny-sur-Orge, France
| | - Fanny Gros-Désormeaux
- Institut de Recherche Biomédicale des Armées (IRBA), 91223, Brétigny-sur-Orge, France
| | - Daniel Léonço
- Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, Université Paris-Saclay, CEA, INRAE, 91191, Gif-sur-Yvette, France
| | - François Fenaille
- Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, Université Paris-Saclay, CEA, INRAE, 91191, Gif-sur-Yvette, France
| | - Christophe Junot
- Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, Université Paris-Saclay, CEA, INRAE, 91191, Gif-sur-Yvette, France
| | - Christophe Piérard
- Institut de Recherche Biomédicale des Armées (IRBA), 91223, Brétigny-sur-Orge, France
| | - Thierry Douki
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 38000, Grenoble, France.
| |
Collapse
|
19
|
Chromatographic analysis of chemical warfare agents and their metabolites in biological samples. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115960] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
20
|
Two dimensional proteomic analysis of serum shows immunological proteins exclusively expressed in sulfur mustard exposed patients with long term pulmonary complications. Int Immunopharmacol 2020; 88:106857. [PMID: 32853926 DOI: 10.1016/j.intimp.2020.106857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/25/2020] [Accepted: 07/27/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND Despite more than 30 years after utilization of sulfur mustard or bis (2-chloroethyl) sulfide (SM) by Iraqi troops against Iranian military members and civilians, there are a lot of reported delayed complications for the exposed people. Nonetheless, the molecular mechanism of action from this chemical warfare agent is not recognized yet. MATERIAL AND METHOD In this study, we employed two dimensional gel electrophoresis (2DE) technique to investigate the serum proteins from chemical exposed people compared to non-exposed individuals to provide an inside into molecular mechanism of this chemical agent. Each group was divided into two subgroups including individuals with, and without respiratory complications. For each group, 10 individuals were included after informed consent. RESULT The results showed protein spots, which were exclusively/mainly expressed in chemical exposed patients with complications, including T cell receptor alpha, and hematopoietic cell signal transducer. Also there were protein spots that were expressed only in all exposed groups (with and without complications). On the other hand, we could identify protein spots that were exclusively expressed/altered only in non-exposed group with complications including Pre T-cell antigen receptor, CD40 ligand, and multidrug and toxin extrusion proteins. CONCLUSION Our investigation could result in identification of proteins that are associated to chemical exposure, as well as those specific for respiratory complications irrespective of chemical exposure. These candidate proteins can be used as biomarker, as well as a base for understanding the molecular mechanism of this chemical agent.
Collapse
|
21
|
Orlova OI, Karakashev GV, Savel’eva EI. Simultaneous Determination of Sulfur Mustard Adducts with Guanine and Acetylcysteine in Urine by High-Resolution High-Performance Liquid Chromatography–Tandem Mass Spectrometry. JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1134/s1061934820060155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Recent sulfur mustard attacks in Middle East and experience of health professionals. Toxicol Lett 2020; 320:52-57. [DOI: 10.1016/j.toxlet.2019.12.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/21/2019] [Accepted: 12/01/2019] [Indexed: 12/11/2022]
|
23
|
Sezigen S, Eyison RK, Kilic E, Kenar L. Evidence of sulfur mustard exposure in victims of chemical terrorism by detection of urinary β-lyase metabolites. Clin Toxicol (Phila) 2019; 58:36-44. [DOI: 10.1080/15563650.2019.1614190] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Sermet Sezigen
- Department of Medical CBRN Defense, University of Health Sciences, Ankara, Turkey
| | - Rusen Koray Eyison
- Department of Medical CBRN Defense, University of Health Sciences, Ankara, Turkey
| | - Ertugrul Kilic
- Department of Anesthesia and Reanimation, SehitKamil State Hospital, Gaziantep, Turkey
| | - Levent Kenar
- Department of Medical CBRN Defense, University of Health Sciences, Ankara, Turkey
| |
Collapse
|
24
|
Forensic evidence of sulfur mustard exposure in real cases of human poisoning by detection of diverse albumin-derived protein adducts. Arch Toxicol 2019; 93:1881-1891. [DOI: 10.1007/s00204-019-02461-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 04/18/2019] [Indexed: 10/26/2022]
|
25
|
Pantazides BG, Quiñones-González J, Rivera Nazario DM, Crow BS, Perez JW, Blake TA, Johnson RC. A quantitative method to detect human exposure to sulfur and nitrogen mustards via protein adducts. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1121:9-17. [PMID: 31082684 DOI: 10.1016/j.jchromb.2019.05.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/22/2019] [Accepted: 05/04/2019] [Indexed: 02/01/2023]
Abstract
Sulfur and nitrogen mustards are internationally banned vesicants listed as Schedule 1 chemical agents in the Chemical Weapons Convention. These compounds are highly reactive electrophiles that form stable adducts to a variety of available amino acid residues on proteins upon exposure. We present a quantitative exposure assay that simultaneously measures agent specific protein adducts to cysteine for sulfur mustard (HD) and three nitrogen mustards (HN1, HN2, and HN3). Proteinase K was added to a serum or plasma sample to digest protein adducts and form the target analyte, the blister agent bound to the tripeptide cysteine-proline-phenylalanine (CPF). The mustard adducted-tripeptide was purified by solid phase extraction and analyzed using isotope dilution LC-MS/MS. Product ion structures were identified using high-resolution product ion scan data for HD-CPF, HN1-CPF, HN2-CPF, and HN3-CPF. Thorough matrix comparison, analyte recovery, ruggedness, and stability studies were incorporated during method validation to produce a robust method. The method demonstrated long term-stability, precision (RSD < 15%), and intra- and inter-day accuracies > 85% across the reportable range of 3.00-200 ng/mL for each analyte. Compared to previously published assays, this method quantitates both sulfur and nitrogen mustard exposure biomarkers, requires only 10 μL of sample volume, and can use either a liquid sample or dried sample spot.
Collapse
Affiliation(s)
- Brooke G Pantazides
- Emergency Response Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Highway, NE, Atlanta, GA 30341, United States
| | - Jennifer Quiñones-González
- Emergency Response Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Highway, NE, Atlanta, GA 30341, United States
| | - Danisha M Rivera Nazario
- Emergency Response Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Highway, NE, Atlanta, GA 30341, United States
| | - Brian S Crow
- Emergency Response Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Highway, NE, Atlanta, GA 30341, United States
| | - Jonas W Perez
- Emergency Response Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Highway, NE, Atlanta, GA 30341, United States
| | - Thomas A Blake
- Emergency Response Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Highway, NE, Atlanta, GA 30341, United States.
| | - Rudolph C Johnson
- Emergency Response Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Highway, NE, Atlanta, GA 30341, United States
| |
Collapse
|
26
|
A sensitive quantification approach for detection of HETE-CP adduct after benzyl chloroformate derivatization using ultra-high-pressure liquid chromatography tandem mass spectrometry. Anal Bioanal Chem 2019; 411:3405-3415. [DOI: 10.1007/s00216-019-01820-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 03/23/2019] [Accepted: 03/28/2019] [Indexed: 10/27/2022]
|
27
|
Ghosh S, Ghosh S, Sil PC. Role of nanostructures in improvising oral medicine. Toxicol Rep 2019; 6:358-368. [PMID: 31080743 PMCID: PMC6502743 DOI: 10.1016/j.toxrep.2019.04.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/05/2019] [Accepted: 04/14/2019] [Indexed: 12/18/2022] Open
Abstract
The most preferable mode of drugs administration is via the oral route but physiological barriers such as pH, enzymatic degradation etc. limit the absolute use of this route. Herein lies the importance of nanotechnology having a wide range of applications in the field of nano-medicine, particularly in drug delivery systems. The exclusive properties particularly small size and high surface area (which can be modified as required), exhibited by these nanoparticlesrender these structures more suitable for the purpose of drug delivery. Various nanostructures, like liposomes, dendrimers, mesoporous silica nanoparticles, etc. have been designed for the said purpose. These nanostructures have several advantages over traditional administration of medicine. Apart from overcoming the pharmacokinetic and pharmacodynamics limitations of many potential therapeutic molecules, they may also be useful for advanced drug delivery purposes like targeted drug delivery, controlled release, enhanced permeability and retention (EPR) effect. In this review, we attempt to describe an up-to-date knowledge on various strategically devised nanostructures to overcome the problems related to oral drug administration.
Collapse
Key Words
- 5-FU, 5-fluorouracil
- AD, Alzheimer’s disease
- AMCNS, cationic niosome-based azithromycin delivery systems
- AP, acetylpuerarin
- AT1R, angiotensin II receptor type 1
- AmB, amphotericin B
- BCRP, breast cancer resistance protein
- CNL, conventional lipid nanoparticles
- CSC, core shell corona nanolipoparticles
- DCK, N-deoxycholyl-l-lysyl-methylester
- DDS, drug delivery system
- DM, diabetes mellitus
- DOX, doxorubicin
- Drug delivery system
- EPR, enhanced permeability and retention effect
- FRET, Foster resonance energy transfer
- GI, gastrointestinal
- GMO, glyceryl monoolein
- IBD, inflammatory bowel disease
- LG, Lakshadi Guggul
- LNC, Lipid Nanocapsule
- MFS, Miltefosine
- MNBNC, Micronucleated Binucleated Cells
- MSN, mesoporous silica nanoparticle
- MTX, methotrexate
- NP, nanoparticle
- NPC, nanoparticulate carriers
- NSAID, non-steroidal anti-inflammatory drug
- Nanostructures
- OA, osteoarthritis
- OXA, oxaliplatin
- Oral medicine
- PAMAM, poly (amidoamine)
- PD, Parkinson’s disease
- PEG, polyethylene glycol
- PIP, 1-piperoylpiperidine
- PLGA, polylactic-co-glycolic acid
- PNL, PEGylated lipid nanoparticles
- PZQ, praziquantel
- SLN, solid lipid nanoparticle
- SMA, styrene maleic acid
- SMEDD, self microemulsifying drug delivery system
- TB, tuberculosis
- TNBS, trinitrobenzenesulphonic acid
- TPGS, tocopheryl polyethylene glycol succinate
- Tmf, tamoxifen
- WGA, wheat germ agglutinin
- pSi, porous silicon
- pSiO, porous silica oxide
Collapse
Affiliation(s)
| | | | - Parames C. Sil
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Calcutta, 700054, West Bengal, India
| |
Collapse
|
28
|
Eyison RK, Sezigen S, Ortatatli M, Kenar L. Optimized Gas Chromatography-Tandem Mass Spectrometry for 1,1′-sulfonylbis[2-(methylthio) ethane] Quantification in Human Urine. J Chromatogr Sci 2019; 57:397-402. [DOI: 10.1093/chromsci/bmz017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 02/22/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Rusen Koray Eyison
- Department of Medical CBRN Defense, University of Health Sciences, Ankara, Turkey
| | - Sermet Sezigen
- Department of Medical CBRN Defense, University of Health Sciences, Ankara, Turkey
| | | | - Levent Kenar
- Department of Medical CBRN Defense, University of Health Sciences, Ankara, Turkey
| |
Collapse
|
29
|
Sezigen S, Ivelik K, Ortatatli M, Almacioglu M, Demirkasimoglu M, Eyison R, Kunak Z, Kenar L. Victims of chemical terrorism, a family of four who were exposed to sulfur mustard. Toxicol Lett 2019; 303:9-15. [DOI: 10.1016/j.toxlet.2018.12.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/07/2018] [Accepted: 12/13/2018] [Indexed: 10/27/2022]
|
30
|
Siegert M, Gandor F, Kranawetvogl A, Börner H, Thiermann H, John H. Methionine
329
in human serum albumin: A novel target for alkylation by sulfur mustard. Drug Test Anal 2019; 11:659-668. [DOI: 10.1002/dta.2548] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/15/2018] [Accepted: 11/16/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Markus Siegert
- Department of ChemistryHumboldt‐Universität zu Berlin Brook‐Taylor‐Straße 2 12489 Berlin Germany
- Bundeswehr Institute of Pharmacology and Toxicology Neuherbergstraße 11 80937 Munich Germany
| | - Felix Gandor
- Department of ChemistryHumboldt‐Universität zu Berlin Brook‐Taylor‐Straße 2 12489 Berlin Germany
| | - Andreas Kranawetvogl
- Bundeswehr Institute of Pharmacology and Toxicology Neuherbergstraße 11 80937 Munich Germany
| | - Hans Börner
- Department of ChemistryHumboldt‐Universität zu Berlin Brook‐Taylor‐Straße 2 12489 Berlin Germany
| | - Horst Thiermann
- Bundeswehr Institute of Pharmacology and Toxicology Neuherbergstraße 11 80937 Munich Germany
| | - Harald John
- Bundeswehr Institute of Pharmacology and Toxicology Neuherbergstraße 11 80937 Munich Germany
| |
Collapse
|
31
|
Koryagina NL, Savel’eva EI, Khlebnikova NS, Radilov AS. Determination of Thiodiglycol and Its Oxide in Biomedical Samples by Gas Chromatography–Mass Spectrometry. JOURNAL OF ANALYTICAL CHEMISTRY 2019. [DOI: 10.1134/s1061934818130075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Koryagina NL, Shachneva MD, Ukolov AI, Savel’eva EI, Khlebnikova NS, Radilov AS. An Improved Procedure for the Gas Chromatography–Tandem Mass Spectrometry Detection of the Globin Adduct of Sulfur Mustard. JOURNAL OF ANALYTICAL CHEMISTRY 2019. [DOI: 10.1134/s1061934818130087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Rafati-Rahimzadeh M, Rafati-Rahimzadeh M, Kazemi S, Moghadamnia AA. Therapeutic options to treat mustard gas poisoning - Review. CASPIAN JOURNAL OF INTERNAL MEDICINE 2019; 10:241-264. [PMID: 31558985 PMCID: PMC6729161 DOI: 10.22088/cjim.10.3.241] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/29/2019] [Accepted: 02/03/2019] [Indexed: 11/14/2022]
Abstract
Among the blistering (vesicant) chemical warfare agents (CWA), sulfur mustard is the most important since it is known as the "King of chemical warfare agents". The use of sulfur mustard has caused serious damages in several organs, especially the eyes, skin, respiratory, central and peripheral nervous systems after short and long term exposure, incapacitating and even killing people and troops. In this review, chemical properties, mechanism of actions and their effects on each organ, clinical manifestations, diagnostic evaluation of the actions triage, and treatment of injuries have been described.
Collapse
Affiliation(s)
- Mehrdad Rafati-Rahimzadeh
- Cancer Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | | | - Sohrab Kazemi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Ali Akbar Moghadamnia
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
34
|
Rapid analysis of sulfur mustard oxide in plasma using gas chromatography-chemical ionization-mass spectrometry for diagnosis of sulfur mustard exposure. J Chromatogr A 2018; 1572:106-111. [PMID: 30170867 DOI: 10.1016/j.chroma.2018.08.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 08/08/2018] [Accepted: 08/14/2018] [Indexed: 11/21/2022]
Abstract
Sulfur mustard (SM) is the most utilized chemical warfare agent in modern history and has caused more casualties than all other chemical weapons combined. SM still poses a threat to civilians globally because of existing stockpiles and ease of production. Exposure to SM causes irritation to the eyes and blistering of skin and respiratory tract. These clinical signs of exposure to SM can take 6-24 h to appear. Therefore, analyzing biomarkers of SM from biological specimens collected from suspected victims is necessary for diagnosis during this latent period. Here, we report a rapid, simple, and direct quantitative analytical method for an important and early SM biomarker, sulfur mustard oxide (SMO). The method includes addition of a stable isotope labeled internal standard, SMO extraction directly into dichloromethane (DCM), rapid drying and reconstitution of the extract, and direct analysis of SMO using gas chromatography-chemical ionization-mass spectrometry. The limit of detection of the method was 0.1 μM, with a linear range from 0.5 to 100 μM. Method selectivity, matrix effect, recovery, and short-term stability were also evaluated. Furthermore, the applicability of the method was tested by analyzing samples from inhalation exposure studies performed in swine. The method was able to detect SMO from 100% of the exposed swine (N = 9), with no interferences present in the plasma of the same swine prior to exposure. The method presented here is the first of its kind to allow for easy and rapid diagnosis of SM poisoning (sample analysis <15 min), especially important during the asymptomatic latency period.
Collapse
|
35
|
Zubel T, Bürkle A, Mangerich A. Mass spectrometric analysis of sulfur mustard-induced biomolecular adducts: Are DNA adducts suitable biomarkers of exposure? Toxicol Lett 2018; 293:21-30. [DOI: 10.1016/j.toxlet.2017.12.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 12/10/2017] [Accepted: 12/20/2017] [Indexed: 11/25/2022]
|
36
|
Witkiewicz Z, Neffe S, Sliwka E, Quagliano J. Analysis of the Precursors, Simulants and Degradation Products of Chemical Warfare Agents. Crit Rev Anal Chem 2018. [PMID: 29533075 DOI: 10.1080/10408347.2018.1439366] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Recent advances in analysis of precursors, simulants and degradation products of chemical warfare agents (CWA) are reviewed. Fast and reliable analysis of precursors, simulants and CWA degradation products is extremely important at a time, when more and more terrorist groups and radical non-state organizations use or plan to use chemical weapons to achieve their own psychological, political and military goals. The review covers the open source literature analysis after the time, when the chemical weapons convention had come into force (1997). The authors stated that during last 15 years increased number of laboratories are focused not only on trace analysis of CWA (mostly nerve and blister agents) in environmental and biological samples, but the growing number of research are devoted to instrumental analysis of precursors and degradation products of these substances. The identification of low-level concentration of CWA degradation products is often more important and difficult than the original CWA, because of lower level of concentration and a very large number of compounds present in environmental and biological samples. Many of them are hydrolysis products and are present in samples in the ionic form. For this reason, two or three instrumental methods are used to perform a reliable analysis of these substances.
Collapse
Affiliation(s)
- Zygfryd Witkiewicz
- a Faculty of Advanced Technologies and Chemistry , Military University of Technology , Warsaw , Poland
| | - Slawomir Neffe
- a Faculty of Advanced Technologies and Chemistry , Military University of Technology , Warsaw , Poland
| | - Ewa Sliwka
- b Division of Chemistry and Technology of Fuel , Wroclaw University of Technology , Wroclaw , Poland
| | - Javier Quagliano
- c Applied Chemistry Department , Argentine Institute for Scientific and Technical Research for the Defense (CITEDEF) , Buenos Aires , Argentina
| |
Collapse
|
37
|
Xu H, Gao Z, Wang P, Xu B, Zhang Y, Long L, Zong C, Guo L, Jiang W, Ye Q, Wang L, Xie J. Biological effects of adipocytes in sulfur mustard induced toxicity. Toxicology 2017; 393:140-149. [PMID: 29129815 DOI: 10.1016/j.tox.2017.11.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 10/14/2017] [Accepted: 11/07/2017] [Indexed: 12/30/2022]
Abstract
Sulphur mustard (2,2'-dichloroethyl sulfide; SM) is a vesicant chemical warfare agent whose mechanism of acute or chronic action is not known with any certainty and to date there is no effective antidote. SM accumulation in adipose tissue (AT) has been originally verified in our previous study. To evaluate the biological effect caused by the presence of abundant SM in adipocyte and assess the biological role of AT in SM poisoning, in vitro and in vivo experiments were performed. High content analysis revealed multi-cytotoxicity in SM exposed cells in a time and dose dependent manner, and adipocytes showed a relative moderate damage compared with non-adipocytes. Cell co-culture model was established and revealed the adverse effect of SM-exposed adipocyte supernatant on the growth of co-cultured cells. The pathological changes in AT from 10mg/kg SM percutaneously exposed rats were checked and inflammation phenomena were observed. The mRNA and protein levels of inflammation-related adipokines secreted from AT in rats exposed to 1, 3 and 10mg/kg doses of SM were determined by reverse transcriptase-polymerase chain reaction and enzyme-linked immunosorbent assays. The expressions of proinflammatory and anti-inflammatory adipokines together promoted the inflammation development in the body. The positive correlations between AT and serum adipokine levels were explored, which demonstrated a substantial role of AT in systemic inflammation responding to SM exposure. Thus, AT is not only a target of SM but also a modulator in the SM toxicity.
Collapse
Affiliation(s)
- Hua Xu
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, China
| | - Zhongcai Gao
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, China; The Rocket Force General Hospital, PLA, No. 16, Xinjiekouwai Street, Xicheng District, Beijing 100088, China
| | - Peng Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, China
| | - Bin Xu
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, China
| | - Yajiao Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, China
| | - Long Long
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, China
| | - Cheng Zong
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, China
| | - Lei Guo
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, China
| | - Weijian Jiang
- The Rocket Force General Hospital, PLA, No. 16, Xinjiekouwai Street, Xicheng District, Beijing 100088, China
| | - Qinong Ye
- Department of Medical Molecular Biology, Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, China
| | - Lili Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, China.
| | - Jianwei Xie
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, China.
| |
Collapse
|
38
|
Bevan MJ, Wogen MT, Lunda MD, Saravia SA. High throughput quantitative analysis of the β-lyase sulfur mustard metabolite, 1,1′-sulfonylbis[2-(methylsulfinyl)ethane] in urine via high performance liquid chromatography tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1051:1-8. [DOI: 10.1016/j.jchromb.2017.02.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 02/14/2017] [Indexed: 10/20/2022]
|
39
|
Liu CC, Liu SL, Xi HL, Yu HL, Zhou SK, Huang GL, Liang LH, Liu JQ. Simultaneous quantification of four metabolites of sulfur mustard in urine samples by ultra-high performance liquid chromatography-tandem mass spectrometry after solid phase extraction. J Chromatogr A 2017; 1492:41-48. [DOI: 10.1016/j.chroma.2017.02.056] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 02/06/2017] [Accepted: 02/23/2017] [Indexed: 01/26/2023]
|
40
|
Braun AV, Rybal’chenko IV, Ponsov MA, Stavitskaya YV, Tikhomirov LA, Grechukhin AP. Optimization of a method for the determination of a mustard gas biomarker in human blood plasma by liquid chromatography–high-resolution mass spectrometry. JOURNAL OF ANALYTICAL CHEMISTRY 2017. [DOI: 10.1134/s1061934817030030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
41
|
Orlova OI, Savel’eva EI, Karakashev GV. Methods of determination of sulfur yperite–DNA adducts. JOURNAL OF ANALYTICAL CHEMISTRY 2017. [DOI: 10.1134/s1061934817010099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
42
|
Chromatographic analysis of chemical compounds related to the Chemical Weapons Convention. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.05.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
43
|
Pantazides BG, Crow BS, Garton JW, Quiñones-González JA, Blake TA, Thomas JD, Johnson RC. Simplified Method for Quantifying Sulfur Mustard Adducts to Blood Proteins by Ultrahigh Pressure Liquid Chromatography−Isotope Dilution Tandem Mass Spectrometry. Chem Res Toxicol 2016; 28:256-61. [PMID: 25622494 DOI: 10.1021/tx500468h] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sulfur mustard binds to reactive cysteine residues, forming a stable sulfur-hydroxyethylthioethyl [SHETE]adduct that can be used as a long-term biomarker of sulfur mustard exposure in humans. The digestion of sulfur mustard-exposed blood samples with proteinase K following total protein precipitation with acetone produces the tripeptide biomarker [S-HETE]-Cys-Pro-Phe. The adducted tripeptide is purified by solid phase extraction, separated by ultra high pressure liquid chromatography, and detected by isotope dilution tandem mass spectrometry. This approach was thoroughly validated and characterized in our laboratory. The average interday relative standard deviation was ≤ 9.49%, and the range of accuracy was between 96.1 and 109% over a concentration range of 3.00 to 250. ng/mL with a calculated limit of detection of1.74 ng/mL. A full 96-well plate can be processed and analyzed in 8 h, which is 5 times faster than our previous 96-well plate method and only requires 50 μL of serum, plasma, or whole blood. Extensive ruggedness and stability studies and matrix comparisons were conducted to create a robust, easily transferrable method. As a result, a simple and high-throughput method has been developed and validated for the quantitation of sulfur mustard blood protein adducts in low volume blood specimens which should be readily adaptable for quantifying human exposures to other alkylating agents.
Collapse
|
44
|
John H, Willoh S, Hörmann P, Siegert M, Vondran A, Thiermann H. Procedures for Analysis of Dried Plasma Using Microsampling Devices to Detect Sulfur Mustard-Albumin Adducts for Verification of Poisoning. Anal Chem 2016; 88:8787-94. [DOI: 10.1021/acs.analchem.6b02199] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Harald John
- Bundeswehr Institute of Pharmacology and Toxicology, 80937 Munich, Germany
| | - Sophia Willoh
- University of Applied Sciences and Arts Coburg, Department
of Applied Sciences, Coburg, Germany
| | - Philipp Hörmann
- University of Applied Sciences Weihenstephan-Triesdorf, Department of Biotechnology and Bioinformatics, Weihenstephan, Germany
| | - Markus Siegert
- Department
of Chemistry, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Antje Vondran
- University of Applied Sciences and Arts Coburg, Department
of Applied Sciences, Coburg, Germany
| | - Horst Thiermann
- Bundeswehr Institute of Pharmacology and Toxicology, 80937 Munich, Germany
| |
Collapse
|
45
|
Qi M, Xu B, Wu J, Zhang Y, Zong C, Chen J, Guo L, Xie J. Simultaneous determination of sulfur mustard and related oxidation products by isotope-dilution LC–MS/MS method coupled with a chemical conversion. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1028:42-50. [DOI: 10.1016/j.jchromb.2016.06.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 05/30/2016] [Accepted: 06/01/2016] [Indexed: 12/01/2022]
|
46
|
Xu B, Zong C, Zhang Y, Zhang T, Wang X, Qi M, Wu J, Guo L, Wang P, Chen J, Liu Q, Xu H, Xie J, Zhang Z. Accumulation of intact sulfur mustard in adipose tissue and toxicokinetics by chemical conversion and isotope-dilution liquid chromatography-tandem mass spectrometry. Arch Toxicol 2016; 91:735-747. [PMID: 27351766 DOI: 10.1007/s00204-016-1774-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 06/20/2016] [Indexed: 11/26/2022]
Abstract
Sulfur mustard (SM) is a powerful vesicant and one of the most harmful chemical warfare agents. Although having been studied for a long time, it is still difficult to fully elucidate the mechanisms of SM poisoning, and there is no effective antidote or specific treatment for SM injury. The investigations on toxicokinetics and tissue distribution of SM will help to understand its toxicity and provide a theoretical basis for pretreatment and therapy of SM poisoning. But the metabolic trajectory or fate of intact SM in vivo remains unclear, and there are insufficient experimental data to elucidate, due to its high reactivity and difficulty in biomedical sample analysis. In this paper, a sensitive method for the detection and quantification of intact SM in blood or tissues using isotope-dilution LC-MS/MS coupled with chemical conversion was developed. By transforming highly reactive SM into stable derivative product, the real concentration of intact SM in biological samples was obtained accurately. The toxicokinetics and tissue distribution studies of intact SM in rats were successfully profiled by the novel method after intravenous (10 mg/kg) or cutaneous administration (1, 3 and 10 mg/kg). The SM level in blood with peak time at 30-60 min determined in cutaneous exposure experiment was found much higher than previously reported, and the mean residence time in blood extended to 1-1.5 h. A significant accumulation of intact SM was observed in adipose tissues, including the perirenal fat, epididymal fat, subcutaneous fat and brown fat, in which the concentrations of SM were at least 15 times greater than those in non-adipose tissues in cutaneous exposed rats. The recovery of SM in body fat was calculated as 3.3 % of bioavailable SM (the bioavailability after cutaneous exposure was evaluated as 16 %). Thus, the adipose tissue was important for SM distribution and toxicity, which may pioneer a new model for both the prevention and treatment of SM exposure.
Collapse
Affiliation(s)
- Bin Xu
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, 100850, Beijing, China
| | - Cheng Zong
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, 100850, Beijing, China
| | - Yajiao Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, 100850, Beijing, China
| | - Tianhong Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, 100850, Beijing, China
| | - Xiaoying Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, 100850, Beijing, China
| | - Meiling Qi
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, 100850, Beijing, China
| | - Jianfeng Wu
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, 100850, Beijing, China
| | - Lei Guo
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, 100850, Beijing, China
| | - Peng Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, 100850, Beijing, China
| | - Jia Chen
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, 100850, Beijing, China
| | - Qin Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, 100850, Beijing, China
| | - Hua Xu
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, 100850, Beijing, China.
| | - Jianwei Xie
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, 100850, Beijing, China.
| | - Zhenqing Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, 100850, Beijing, China
| |
Collapse
|
47
|
Halme M, Pesonen M, Hakala U, Pasanen M, Vähäkangas K, Vanninen P. Applying human and pig hepatic in vitro experiments for sulfur mustard study: screening and identification of metabolites by liquid chromatography/tandem mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2015; 29:1279-1287. [PMID: 26405789 DOI: 10.1002/rcm.7218] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 04/23/2015] [Accepted: 04/26/2015] [Indexed: 06/05/2023]
Abstract
RATIONALE Sulfur mustard is a chemical warfare agent (CWA) with high toxicity and complex metabolism. This study aimed at identification of new metabolic biomarkers for sulfur mustard using in in vitro exposures and various mass spectrometric techniques. METHODS Human and pig liver subcellular fractions were used as biocatalysts. Metabolites were screened by liquid chromatography and tandem mass spectrometry (LC/MS/MS) using positive electrospray ionization (ESI). For structural identification, product ion scans (MS/MS, MS(3) ) and accurate mass measurements using liquid chromatography/time-of-flight mass spectrometry (LC/TOFMS) were acquired. RESULTS Sulfur mustard is metabolized in vitro by S-oxidation and glutathione (GSH) conjugations. One S-oxidized metabolite, bis(2-chloroethyl) sulfoxide (m/z 175), was formed in both species only when liver microsomes were present in incubations, and it was the main metabolite if GSH was not added into the reaction mixture. However, conjugation with GSH was found to be a spontaneous reaction in physiological pH and buffered solution. Three GSH conjugates of sulfur mustard were detected and identified, among which two were novel; 2-((2-(S-glutathionyl)ethyl)thio)ethanol (m/z 412) and 2-((2-(S-glutathionyl)ethyl)thio)ethyl phosphate (m/z 492). CONCLUSIONS To our knowledge, this was the first time that S-oxidized metabolites and GSH conjugates of sulfur mustard have been detected and identified from human samples in vitro by LC/MS/MS. The usefulness of the GSH conjugates to serve as biomarkers for sulfur mustard exposure in human samples requires further studies.
Collapse
Affiliation(s)
- Mia Halme
- VERIFIN, Finnish Institute for Verification of the Chemical Weapons Convention, Department of Chemistry, University of Helsinki, P.O. Box 55, FI-00014, Finland
| | - Maija Pesonen
- Research and Development, Centre for Military Medicine, Finnish Defence Forces, P.O. Box 50, FI-00301, Helsinki, Finland
- School of Pharmacy/Toxicology, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Ullastiina Hakala
- VERIFIN, Finnish Institute for Verification of the Chemical Weapons Convention, Department of Chemistry, University of Helsinki, P.O. Box 55, FI-00014, Finland
| | - Markku Pasanen
- School of Pharmacy/Toxicology, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Kirsi Vähäkangas
- School of Pharmacy/Toxicology, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Paula Vanninen
- VERIFIN, Finnish Institute for Verification of the Chemical Weapons Convention, Department of Chemistry, University of Helsinki, P.O. Box 55, FI-00014, Finland
| |
Collapse
|
48
|
Liu C, Liang L, Xiang Y, Yu H, Zhou S, Xi H, Liu S, Liu J. An improved method for retrospective quantification of sulfur mustard exposure by detection of its albumin adduct using ultra-high pressure liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem 2015; 407:7037-46. [PMID: 26164303 DOI: 10.1007/s00216-015-8842-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 06/05/2015] [Accepted: 06/09/2015] [Indexed: 10/23/2022]
Abstract
Sulfur mustard (HD) adduct to human serum albumin (ALB) at Cys-34 residue has become an important and long-term retrospective biomarker of HD exposure. Here, a novel, sensitive, and convenient approach for retrospective quantification of HD concentration exposed to plasma was established by detection of the HD-ALB adduct using ultra-high pressure liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) with a novel non-isotope internal standard (IS). The HD-ALB adduct was isolated from HD-exposed plasma with blue Sepharose. The adduct was digested with proteinase K to form sulfur-hydroxyethylthioethyl ([S-HETE])-Cys-Pro-Phe tripeptide biomarker. The tripeptide adduct could be directly analyzed by UHPLC-MS/MS without an additional solid phase extraction (SPE), which was considered as a critical procedure in previous methods. The easily available 2-chloroethyl ethylsulfide (2-CEES) as HD surrogate was first reported to be used as IS in place of traditional d8-HD for quantification of HD exposure. Furthermore, 2-CEES was also confirmed to be a good IS alternative for quantification of HD exposure by investigation of product ion spectra for their corresponding tripeptide adducts which exhibited identical MS/MS fragmentation behaviors. The method was found to be linear between 1.00 and 250 ng•mL(-1) HD exposure (R(2)>0.9989) with precision of <4.50% relative standard deviation (%RSD), accuracy range between 96.5% and 114%, and a calculated limit of detection (LOD) of 0.532 ng•mL(-1). The lowest reportable limit (LRL) is 1.00 ng•mL(-1), over seven times lower than that of the previous method. The entire method required only 0.1 mL of plasma sample and took under 7 h without special sample preparation equipment. It is proven to be a sensitive, simple, and rugged method, which is easily applied in international laboratories to improve the capabilities for the analysis of biomedical samples related to verification of the Chemical Weapon Convention (CWC).
Collapse
Affiliation(s)
- ChangCai Liu
- Laboratory of Analytical Chemistry, Research Institute of Chemical Defence, Beijing, 102205, China
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Wang P, Zhang Y, Chen J, Guo L, Xu B, Wang L, Xu H, Xie J. Analysis of different fates of DNA adducts in adipocytes post-sulfur mustard exposure in vitro and in vivo using a simultaneous UPLC-MS/MS quantification method. Chem Res Toxicol 2015; 28:1224-33. [PMID: 25955432 DOI: 10.1021/acs.chemrestox.5b00055] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sulfur mustard (SM) is a powerful alkylating vesicant that can rapidly penetrate skin, ocular, and lung bronchus mucous membranes and react with numerous nucleophiles in vivo. Although the lesion mechanisms of SM remain unclear, DNA damage is believed to be the most crucial factor in initiating SM-induced toxicity. Four major DNA adducts were identified for retrospective detection and DNA lesion evaluation, namely, N(7)-[2-[(2-hydroxyethyl)thio]-ethyl]guanine (N(7)-HETEG), bis(2-ethyl-N(7)-guanine)thioether (Bis-G), N(3)-(2-hydroxyethylthioethyl)-2'-adenine (N(3)-HETEA), and O(6)-[2-[(2-hydroxyethyl)thio]-ethyl]guanine (O(6)-HETEG). Because of previous observations that the levels of SM-DNA adducts were relatively higher in adipose-rich organs, such as the brain, we focused on the in vitro and in vivo fates of the DNA adducts in exposed adipocytes. A UPLC-MS/MS method developed in our laboratory was used to profile the N(7)-HETEG, Bis-G, and N(3)-HETEA levels in human mature adipocytes (HA-s) that had differentiated from human subcutaneous preadipocytes (HPA-s). This method was also used to profile three other cell lines related to the targeting of major tissues, including human keratinocytes (HaCaT), human hepatocytes (L-02), and human lung fibroblasts (HLF). Long-lasting adduct persistence and a high proportion of Bis-G were found in exposed adipocytes in vitro. The survival properties of exposed adipocytes were also tested. At the same time, the fate of SM-DNA adducts in vivo was characterized using a rat model exposed to 1 and 10 mg/kg doses of SM. The level of DNA adducts in the exposed adipose tissue (AT) was much lower than those in other organs studied in our previous work. The adduct persistence behavior was observed in AT with an extremely high proportion of Bis-G, which was higher than N(7)-HETEG. In light of these results, we suggest that an adipose-rich environment may promote the formation of Bis-G and that adipocyte-specific DNA repair mechanisms may result in adduct persistence and the survival of adipocytes after SM exposure. These conclusions should be further investigated.
Collapse
Affiliation(s)
- Peng Wang
- †State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, 100850, Beijing, China
| | - Yajiao Zhang
- †State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, 100850, Beijing, China
| | - Jia Chen
- †State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, 100850, Beijing, China
| | - Lei Guo
- †State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, 100850, Beijing, China
| | - Bin Xu
- †State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, 100850, Beijing, China
| | - Lili Wang
- ‡State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, 100850, Beijing, China
| | - Hua Xu
- †State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, 100850, Beijing, China
| | - Jianwei Xie
- †State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, 100850, Beijing, China
| |
Collapse
|