1
|
Gopalsamy RG, Antony PJ, Athesh K, Hillary VE, Montalvão MM, Hariharan G, Santana LADM, Borges LP, Gurgel RQ. Dietary essential oil components: A systematic review of preclinical studies on the management of gastrointestinal diseases. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 140:156630. [PMID: 40085990 DOI: 10.1016/j.phymed.2025.156630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/24/2025] [Accepted: 03/06/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND The gut is responsible for the digestion and absorption of nutrients, immune regulation, and barrier function. However, factors like poor diet, stress, and infection, can disrupt the balance of the gut microbiota and lead to intestinal inflammation and dysfunction. PURPOSE This systematic review aims to evaluate the effects of dietary plants-derived essential oil components on gut health and intestinal functions in animal models. METHODS The literature was gathered from the Scopus, Web of Science, PubMed, and Embase databases by using related search terms, such as "dietary plants", "dietary sources", "essential oils", "gut health", "intestine", "anti-inflammatory", "antioxidant", and "gut microbiota". RESULTS The results indicate that plant-derived dietary essential oil components, such as butyrolactone-I, carvacrol, cinnamaldehyde, citral, D-limonene, eugenol, farnesol, geraniol, indole, nerolidol, oleic acid, thymol, trans-anethole, vanillin, α-bisabolol, α-linolenic acid, α-pinene, α-terpineol, β-carotene, β-caryophyllene, and β-myrcene have been found to regulate gut health by influencing vital signalling pathways associated with inflammation. Dietary essential oil components modulate the expression of tumor necrosis factor alpha, interleukin 1 beta (IL-1β), interleukin (IL)-6, IL-10, inducible nitric oxide synthase, cyclooxygenase-2, toll-like receptor-4, matrix metalloproteinase, and interferon gamma in mitigating gut inflammation. The primary signalling molecules controlled by these molecules were AMP-activated protein kinase (AMPK), protein kinase B, extracellular signal-regulated kinase, c-Jun N-terminal kinase, mitogen-activated protein kinase, myeloid differentiation primary response 88, nuclear factor erythroid-2-related factor-2, and phosphoinositide 3-kinase (PI3K). Moreover, these phytochemicals have been shown to improve glucose homeostasis by regulating glucose transporter 4, glucagon-like peptide-1, peroxisome proliferator-activated receptor gamma, nuclear factor kappa B, AMPK, PI3K, and uncoupling protein-1. They can also reduce thiobarbituric acid reactive substance, malondialdehyde, and oxidative stress and enhance superoxide dismutase, catalase, and glutathione peroxidase levels. CONCLUSION In conclusion, dietary plants-derived essential oil components have the potential to mitigate inflammation and oxidative stress in the gut. However, additional clinical investigations are necessary to confirm their complete potential in improving human gut health functions.
Collapse
Affiliation(s)
- Rajiv Gandhi Gopalsamy
- Division of Phytochemistry and Drug-Design, Department of Biosciences, Rajagiri College of Social Sciences (Autonomous), Kochi, Kerala, India; Postgraduate Program of Health Sciences (PPGCS), Federal University of Sergipe, Campus Prof. João Cardoso Nascimento, Aracaju, Sergipe, Brazil
| | - Poovathumkal James Antony
- Department of Microbiology, North Bengal University, St. Joseph's College, Darjeeling, West Bengal, India
| | - Kumaraswamy Athesh
- School of Sciences, Bharata Mata College (Autonomous), Kochi, Kerala, India
| | - Varghese Edwin Hillary
- Division of Phytochemistry and Drug-Design, Department of Biosciences, Rajagiri College of Social Sciences (Autonomous), Kochi, Kerala, India
| | | | | | | | - Lysandro Pinto Borges
- Department of Pharmacy, Federal University of Sergipe, São Cristovão, Sergipe, Brazil
| | - Ricardo Queiroz Gurgel
- Postgraduate Program of Health Sciences (PPGCS), Federal University of Sergipe, Campus Prof. João Cardoso Nascimento, Aracaju, Sergipe, Brazil.
| |
Collapse
|
2
|
Lim CR, Ogawa S, Kumari Y. Exploring β-caryophyllene: a non-psychotropic cannabinoid's potential in mitigating cognitive impairment induced by sleep deprivation. Arch Pharm Res 2025; 48:1-42. [PMID: 39653971 DOI: 10.1007/s12272-024-01523-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/25/2024] [Indexed: 01/04/2025]
Abstract
Sleep deprivation or sleep loss, a prevalent issue in modern society, is linked to cognitive impairment, leading to heightened risks of errors and accidents. Chronic sleep deprivation affects various cognitive functions, including memory, attention, and decision-making, and is associated with an increased risk of neurodegenerative diseases, cardiovascular issues, and metabolic disorders. This review examines the potential of β-caryophyllene, a dietary non-psychotropic cannabinoid, and FDA-approved flavoring agent, as a therapeutic solution for sleep loss-induced cognitive impairment. It highlights β-caryophyllene's ability to mitigate key contributors to sleep loss-induced cognitive impairment, such as inflammation, oxidative stress, neuronal death, and reduced neuroplasticity, by modulating various signaling pathways, including TLR4/NF-κB/NLRP3, MAPK, Nrf2/HO-1, PI3K/Akt, and cAMP/PKA/CREB. As a naturally occurring, non-psychotropic compound with low toxicity, β-caryophyllene emerges as a promising candidate for further investigation. The review underscores the therapeutic potential of β-caryophyllene for sleep loss-induced cognitive impairment and provides mechanistic insights into its action on crucial pathways, suggesting that β-caryophyllene could be a valuable addition to strategies aimed at combating cognitive impairment and other health issues due to sleep loss.
Collapse
Affiliation(s)
- Cher Ryn Lim
- Neurological Disorder and Aging Research Group (NDA), Neuroscience Research Strength (NRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Selangor, Malaysia
| | - Satoshi Ogawa
- Neuroscience Research Strength (NRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Selangor, Malaysia
| | - Yatinesh Kumari
- Neurological Disorder and Aging Research Group (NDA), Neuroscience Research Strength (NRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Selangor, Malaysia.
| |
Collapse
|
3
|
do Almo MM, Sousa IG, Olinto VG, Pinhate SB, Jivago JLDPR, de Sousa DER, de Castro MB, Rubini MR, Maranhão AQ, Brigido MM. Therapeutic Effects of Zymomonas mobilis on Experimental DSS-Induced Colitis Mouse Model. Microorganisms 2023; 11:2793. [PMID: 38004805 PMCID: PMC10672878 DOI: 10.3390/microorganisms11112793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/08/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Zymomonas mobilis, a Gram-negative bacteria observed in some popular beverages, is considered safe and has been studied for its potential therapeutic benefits. In this study, we explored its effects on the inflammatory process, tissue integrity, differential gene expression, and microbiota composition in an experimental dextran sulfate sodium (DSS)-induced colitis model in mice. As a result, Z. mobilis alleviated the symptoms caused by DSS administration, as indicated by reduced weight loss, disease activity index, a significant reduction in the colon weight/length ratio, and histopathological improvement. Also, Z. mobilis could restore the mucosal barrier as well as increase the expression of Muc3 and Ocln genes. An analysis of 16S rRNA sequences showed that Z. mobilis alters gut microbiota, increasing Akkermansia muciniphila abundance and decreasing Escherichia coli. Furthermore, Z. mobilis seems to be involved in potentiating a regulatory phenotype by inducing immunomodulatory genes like Tgfb, Il5, Il10, and Foxp3 and reducing the relative mRNA expression of proinflammatory cytokines TNF, Il6, and Il17. Our data suggest that Z. mobilis could alleviate disease progression and be considered a possible probiotic adjuvant for pathologies of the bowel.
Collapse
Affiliation(s)
- Manuela Maragno do Almo
- Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil; (M.M.d.A.); (I.G.S.); (V.G.O.); (S.B.P.); (A.Q.M.)
- Molecular Pathology Graduation Program, Medicine Faculty, University of Brasilia, Brasilia 70910-900, Brazil
| | - Isabel Garcia Sousa
- Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil; (M.M.d.A.); (I.G.S.); (V.G.O.); (S.B.P.); (A.Q.M.)
| | - Vitor Guimarães Olinto
- Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil; (M.M.d.A.); (I.G.S.); (V.G.O.); (S.B.P.); (A.Q.M.)
- Molecular Biology Graduation Program, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil
| | - Sylvia Barbosa Pinhate
- Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil; (M.M.d.A.); (I.G.S.); (V.G.O.); (S.B.P.); (A.Q.M.)
- Molecular Biology Graduation Program, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil
| | | | - Davi Emanuel Ribeiro de Sousa
- Veterinary Pathology Laboratory, Campus Darcy Ribeiro, University of Brasilia, Brasilia 70910-900, Brazil; (D.E.R.d.S.); (M.B.d.C.)
| | - Márcio Botelho de Castro
- Veterinary Pathology Laboratory, Campus Darcy Ribeiro, University of Brasilia, Brasilia 70910-900, Brazil; (D.E.R.d.S.); (M.B.d.C.)
| | - Marciano Régis Rubini
- Laboratory of Genetics and Molecular Biology, Embrapa Agroenergy, Brasilia 70770-901, Brazil;
| | - Andrea Queiroz Maranhão
- Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil; (M.M.d.A.); (I.G.S.); (V.G.O.); (S.B.P.); (A.Q.M.)
- Institute for Immunology Investigation, National Institute of Science and Technology (iii-INCT), Brasilia 70067-900, Brazil
| | - Marcelo Macedo Brigido
- Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil; (M.M.d.A.); (I.G.S.); (V.G.O.); (S.B.P.); (A.Q.M.)
- Institute for Immunology Investigation, National Institute of Science and Technology (iii-INCT), Brasilia 70067-900, Brazil
| |
Collapse
|
4
|
Yeom JE, Kim SK, Park SY. Regulation of the Gut Microbiota and Inflammation by β-Caryophyllene Extracted from Cloves in a Dextran Sulfate Sodium-Induced Colitis Mouse Model. Molecules 2022; 27:7782. [PMID: 36431883 PMCID: PMC9695579 DOI: 10.3390/molecules27227782] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Ulcerative colitis is an inflammatory bowel disease characterized by symptoms such as abdominal pain, diarrhea, bleeding, and weight loss. Ulcerative colitis is typically treated with anti-inflammatory drugs; however, these drugs are associated with various side effects, limiting their use. β-Caryophyllene (BCP), a natural compound derived from cloves, has antioxidant, antibacterial, and anti-inflammatory activities. In this study, we aimed to investigate the effects of BCP on colitis in a dextran sulfate sodium (DSS)-induced colitis mouse model. BCP was administered for seven days, followed by 2.5% DSS for additional seven days to induce colitis. Changes in stool weight, recovery of gut motility, colon length, colon histology, myeloperoxidase activity, inflammatory cytokines (TNF-α, IL-1β, IL-6, IgA, and IgG), and the gut microbiota were observed. Administration of BCP increased stool weight, restored gut motility, and considerably increased colon length compared to those in the untreated colitis mouse model. In addition, the amount of mucin and myeloperoxidase activity in the colon increased, whereas the concentrations of IL-1β, IL-6, and TNF-α decreased following the administration of BCP. Furthermore, BCP reduced the abundance of Proteobacteria which can cause intestinal immune imbalance. These results suggest that BCP has a potential to be developed as a preventive agent for colitis.
Collapse
Affiliation(s)
- Ji Eun Yeom
- Laboratory of Pharmacognosy, College of Pharmacy, Dankook University, 119, Dandae-ro, Dongnam-gu, Cheonan-si 31116, Korea
- SFC Bio Co., Ltd., 119, Dandae-ro, Dongnam-gu, Cheonan-si 31116, Korea
| | - Sung-Kyu Kim
- SFC Bio Co., Ltd., 119, Dandae-ro, Dongnam-gu, Cheonan-si 31116, Korea
| | - So-Young Park
- Laboratory of Pharmacognosy, College of Pharmacy, Dankook University, 119, Dandae-ro, Dongnam-gu, Cheonan-si 31116, Korea
| |
Collapse
|
5
|
Dong W, Postlethwaite BC, Wheller PA, Brand D, Jiao Y, Li W, Myers LK, Gu W. Beta-caryophyllene prevents the defects in trabecular bone caused by Vitamin D deficiency through pathways instated by increased expression of klotho. Bone Joint Res 2022; 11:528-540. [PMID: 35920089 PMCID: PMC9396919 DOI: 10.1302/2046-3758.118.bjr-2021-0392.r1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Aims This study investigated the effects of β-caryophyllene (BCP) on protecting bone from vitamin D deficiency in mice fed on a diet either lacking (D-) or containing (D+) vitamin D. Methods A total of 40 female mice were assigned to four treatment groups (n = 10/group): D+ diet with propylene glycol control, D+ diet with BCP, D-deficient diet with control, and D-deficient diet with BCP. The D+ diet is a commercial basal diet, while the D-deficient diet contains 0.47% calcium, 0.3% phosphorus, and no vitamin D. All the mice were housed in conditions without ultraviolet light. Bone properties were evaluated by X-ray micro-CT. Serum levels of klotho were measured by enzyme-linked immunosorbent assay. Results Under these conditions, the D-deficient diet enhanced the length of femur and tibia bones (p < 0.050), and increased bone volume (BV; p < 0.010) and trabecular bone volume fraction (BV/TV; p < 0.010) compared to D+ diet. With a diet containing BCP, the mice exhibited higher BV and bone mineral density (BMD; p < 0.050) than control group. The trabecular and cortical bone were also affected by vitamin D and BCP. In addition, inclusion of dietary BCP improved the serum concentrations of klotho (p < 0.050). In mice, klotho regulates the expression level of cannabinoid type 2 receptor (Cnr2) and fibroblast growth factor 23 (Fgf23) through CD300a. In humans, data suggest that klotho is connected to BMD. The expression of klotho is also associated with bone markers. Conclusion These data indicate that BCP enhances the serum level of klotho, leading to improved bone properties and mineralization in an experimental mouse model. Cite this article: Bone Joint Res 2022;11(8):528–540.
Collapse
Affiliation(s)
- Wei Dong
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, Tennessee, USA.,Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Bradley C Postlethwaite
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Patricia A Wheller
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - David Brand
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA.,Research Service, Veterans Affairs Medical Center, Memphis, Tennessee, USA
| | - Yan Jiao
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Wei Li
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Linda K Myers
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Weikuan Gu
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, Tennessee, USA.,Research Service, Veterans Affairs Medical Center, Memphis, Tennessee, USA
| |
Collapse
|
6
|
Brooks-Warburton J, Modos D, Sudhakar P, Madgwick M, Thomas JP, Bohar B, Fazekas D, Zoufir A, Kapuy O, Szalay-Beko M, Verstockt B, Hall LJ, Watson A, Tremelling M, Parkes M, Vermeire S, Bender A, Carding SR, Korcsmaros T. A systems genomics approach to uncover patient-specific pathogenic pathways and proteins in ulcerative colitis. Nat Commun 2022; 13:2299. [PMID: 35484353 PMCID: PMC9051123 DOI: 10.1038/s41467-022-29998-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 04/06/2022] [Indexed: 12/11/2022] Open
Abstract
We describe a precision medicine workflow, the integrated single nucleotide polymorphism network platform (iSNP), designed to determine the mechanisms by which SNPs affect cellular regulatory networks, and how SNP co-occurrences contribute to disease pathogenesis in ulcerative colitis (UC). Using SNP profiles of 378 UC patients we map the regulatory effects of the SNPs to a human signalling network containing protein-protein, miRNA-mRNA and transcription factor binding interactions. With unsupervised clustering algorithms we group these patient-specific networks into four distinct clusters driven by PRKCB, HLA, SNAI1/CEBPB/PTPN1 and VEGFA/XPO5/POLH hubs. The pathway analysis identifies calcium homeostasis, wound healing and cell motility as key processes in UC pathogenesis. Using transcriptomic data from an independent patient cohort, with three complementary validation approaches focusing on the SNP-affected genes, the patient specific modules and affected functions, we confirm the regulatory impact of non-coding SNPs. iSNP identified regulatory effects for disease-associated non-coding SNPs, and by predicting the patient-specific pathogenic processes, we propose a systems-level way to stratify patients.
Collapse
Affiliation(s)
- Johanne Brooks-Warburton
- Earlham Institute, Norwich Research Park, Norwich, UK
- Gut Microbes and Health Programme, The Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Department of Clinical, Pharmaceutical and Biological Sciences, University of Hertfordshire, Hertford, UK
- Gastroenterology Department, Lister Hospital, Stevenage, UK
| | - Dezso Modos
- Earlham Institute, Norwich Research Park, Norwich, UK
- Gut Microbes and Health Programme, The Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Centre for Molecular Science Informatics, Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Padhmanand Sudhakar
- Earlham Institute, Norwich Research Park, Norwich, UK
- Gut Microbes and Health Programme, The Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- KU Leuven, Department of Chronic diseases, Metabolism and Ageing, Leuven, Belgium
| | - Matthew Madgwick
- Earlham Institute, Norwich Research Park, Norwich, UK
- Gut Microbes and Health Programme, The Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - John P Thomas
- Earlham Institute, Norwich Research Park, Norwich, UK
- Gut Microbes and Health Programme, The Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Department of Gastroenterology, Norfolk and Norwich University Hospitals, Norwich, UK
| | - Balazs Bohar
- Earlham Institute, Norwich Research Park, Norwich, UK
- Department of Genetics, Eötvös Loránd University, Budapest, Hungary
| | - David Fazekas
- Earlham Institute, Norwich Research Park, Norwich, UK
- Department of Genetics, Eötvös Loránd University, Budapest, Hungary
| | - Azedine Zoufir
- Centre for Molecular Science Informatics, Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Orsolya Kapuy
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary
| | | | - Bram Verstockt
- KU Leuven, Department of Chronic diseases, Metabolism and Ageing, Leuven, Belgium
- University Hospitals Leuven, Department of Gastroenterology and Hepatology, KU Leuven, Leuven, Belgium
| | - Lindsay J Hall
- Gut Microbes and Health Programme, The Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Norwich Medical School, University of East Anglia, Norwich, UK
- School of Life Sciences, ZIEL - Institute for Food & Health, Technical University of Munich, 80333, Freising, Germany
| | - Alastair Watson
- Department of Gastroenterology, Norfolk and Norwich University Hospitals, Norwich, UK
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Mark Tremelling
- Department of Gastroenterology, Norfolk and Norwich University Hospitals, Norwich, UK
| | - Miles Parkes
- Inflammatory Bowel Disease Research Group, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Severine Vermeire
- KU Leuven, Department of Chronic diseases, Metabolism and Ageing, Leuven, Belgium
- University Hospitals Leuven, Department of Gastroenterology and Hepatology, KU Leuven, Leuven, Belgium
| | - Andreas Bender
- Centre for Molecular Science Informatics, Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Simon R Carding
- Gut Microbes and Health Programme, The Quadram Institute Bioscience, Norwich Research Park, Norwich, UK.
- Norwich Medical School, University of East Anglia, Norwich, UK.
| | - Tamas Korcsmaros
- Earlham Institute, Norwich Research Park, Norwich, UK.
- Gut Microbes and Health Programme, The Quadram Institute Bioscience, Norwich Research Park, Norwich, UK.
| |
Collapse
|
7
|
Development and validation of a gas chromatography method for the determination of β-caryophyllene in clove extract and its application. Sci Rep 2021; 11:13853. [PMID: 34226604 PMCID: PMC8257650 DOI: 10.1038/s41598-021-93306-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/25/2021] [Indexed: 11/21/2022] Open
Abstract
The purpose of this study is to check the effectiveness of the analysis method that separates and quantifies β-caryophyllene among clove extracts and validate according to current ICH guidelines. The β-caryophyllene was active constituent of clove buds. The developed method gave a good detection response. In the specificity test, the standard solution was detected at about 17.32 min, and the test solution was detected at 17.32 min. The linearity of β-caryophyllen was confirmed, and at this time, the correlation coefficient (R2) of the calibration curve showed a high linearity of 0.999 or more in the concentration range. The levels of LOD and LOQ were 1.28 ug/mL and 3.89 ug/mL, respectively. The accuracy was confirmed to be 101.6–102.2% and RSD 0.95 ~ 1.31%. As a result of checking the repeatability and inter-tester reproducibility to confirm the precision, the RSD was found to be 1.34 ~ 2.69%. This validated GC method was successfully applied to a soft capsule containing clove extract and other materials for clinical trials. Therefore, this method can be used as an analytical tool for quality control of various samples, including clove extracts and their products of food and pharmaceutical uses.
Collapse
|
8
|
Jha NK, Sharma C, Hashiesh HM, Arunachalam S, Meeran MN, Javed H, Patil CR, Goyal SN, Ojha S. β-Caryophyllene, A Natural Dietary CB2 Receptor Selective Cannabinoid can be a Candidate to Target the Trinity of Infection, Immunity, and Inflammation in COVID-19. Front Pharmacol 2021; 12:590201. [PMID: 34054510 PMCID: PMC8163236 DOI: 10.3389/fphar.2021.590201] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 02/04/2021] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease (COVID-19), caused by novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is an ongoing pandemic and presents a public health emergency. It has affected millions of people and continues to affect more, despite tremendous social preventive measures. Identifying candidate drugs for the prevention and treatment of COVID-19 is crucial. The pathogenesis and the complications with advanced infection mainly involve an immune-inflammatory cascade. Therefore, therapeutic strategy relies on suppressing infectivity and inflammation, along with immune modulation. One of the most promising therapeutic targets for the modulation of immune-inflammatory responses is the endocannabinoid system, particularly the activation of cannabinoid type 2 receptors (CB2R), a G-protein coupled receptor which mediates the anti-inflammatory properties by modulating numerous signaling pathways. To pharmacologically activate the CB2 receptors, a naturally occurring cannabinoid ligand, beta-caryophyllene (BCP), received attention due to its potent anti-inflammatory, antiviral, and immunomodulatory properties. BCP is recognized as a full selective functional agonist on CB2 receptors and produces therapeutic effects by activating CB2 and the nuclear receptors, peroxisome proliferator-activated receptors (PPARs). BCP is regarded as the first dietary cannabinoid with abundant presence across cannabis and non-cannabis plants, including spices and other edible plants. BCP showed tissue protective properties and favorably modulates numerous signaling pathways and inhibits inflammatory mediators, including cytokines, chemokines, adhesion molecules, prostanoids, and eicosanoids. Based on its pharmacological properties, molecular mechanisms, and the therapeutic potential of BCP as an immunomodulator, anti-inflammatory, organ-protective, and antiviral, we hypothesize that BCP could be a promising therapeutic and/or preventive candidate to target the triad of infection, immunity, and inflammation in COVID-19. In line with numerous studies that proposed the potential of cannabinoids in COVID-19, BCP may be a novel candidate compound for pharmaceutical and nutraceutical development due to its unique functional receptor selectivity, wide availability and accessibility, dietary bioavailability, nonpsychoactivity, and negligible toxicity along with druggable properties, including favorable pharmacokinetic and physicochemical properties. Based on reasonable pharmacological mechanisms and therapeutic properties, we speculate that BCP has potential to be investigated against COVID-19 and will inspire further preclinical and clinical studies.
Collapse
Affiliation(s)
- Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, India
| | - Charu Sharma
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Hebaallah Mamdouh Hashiesh
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Seenipandi Arunachalam
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mf Nagoor Meeran
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Hayate Javed
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Chandragouda R Patil
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Sameer N Goyal
- Shri Vile Parle Kelvani Mandal's Institute of Pharmacy, Dhule, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
9
|
Song Y, Wang L, Zhang L, Huang D. The involvement of semaphorin 7A in tumorigenic and immunoinflammatory regulation. J Cell Physiol 2021; 236:6235-6248. [PMID: 33611799 DOI: 10.1002/jcp.30340] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/12/2021] [Accepted: 02/05/2021] [Indexed: 02/04/2023]
Abstract
Semaphorins, a large group of highly conserved proteins, consist of eight subfamilies that are widely expressed in vertebrates, invertebrates, and viruses and exist in membrane-bound or secreted forms. First described as axon guidance cues during neurogenesis, semaphorins also perform physiological functions in other organ systems, such as bone homeostasis, immune response, and tumor progression. Semaphorin 7A (SEMA7A), also known as CDw108, is an immune semaphorin that modulates diverse immunoinflammatory processes, including immune cell interactions, inflammatory infiltration, and cytokine production. In addition, SEMA7A regulates the proliferation, migration, invasion, lymph formation, and angiogenesis of multiple types of tumor cells, and these effects are mediated by the interaction of SEMA7A with two specific receptors, PLXNC1 and integrins. Thus, SEMA7A is intimately related to the pathogenesis of multiple autoimmune and inflammation-related diseases and tumors. This review focuses on the role of SEMA7A in the pathogenesis of autoimmune disorders, inflammatory diseases, and tumors, as well as the underlying mechanisms. Furthermore, strategies targeting SEMA7A as a potential predictive, diagnostic, and therapeutic agent for these diseases are also addressed.
Collapse
Affiliation(s)
- Yao Song
- State Key Laboratory of Oral Diseases and National Clinical Research Center of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Liu Wang
- State Key Laboratory of Oral Diseases and National Clinical Research Center of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lan Zhang
- State Key Laboratory of Oral Diseases and National Clinical Research Center of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Dingming Huang
- State Key Laboratory of Oral Diseases and National Clinical Research Center of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
10
|
Hossen I, Hua W, Mehmood A, Raka RN, Jingyi S, Jian-Ming J, Min X, Shakoor A, Yanping C, Wang C, Junsong X. Glochidion ellipticum Wight extracts ameliorate dextran sulfate sodium-induced colitis in mice by modulating nuclear factor kappa-light-chain-enhancer of activated B cells signalling pathway. J Pharm Pharmacol 2021; 73:410-423. [PMID: 33793884 DOI: 10.1093/jpp/rgaa044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 11/13/2020] [Indexed: 12/22/2022]
Abstract
OBJECTIVES Glochidion ellipticum Wight is a medicinal plant, rich in polyphenols, frequently used by the indigenous communities of Bangladesh and possess with multiple health benefits. It exerts anti-inflammatory and antidiarrheal properties, but the detailed chemical constituents are yet to be elucidated. METHODS Glochidion ellipticum extracts were analyzed using ultra-high performance liquid chromatography/quadrupole time-of-flight mass spectrometry and then tested by both lipopolysaccharide (LPS) induced inflammation of Raw 264.7 macrophage cells and dextran sulfate sodium (DSS) induced acute colitis model. Blood serum was taken for fluorescein isothiocyanate-dextran (FITC-dextran) measurement and tissue samples were used to perform histology, RT-PCR and Western blotting. KEY FINDINGS The extracts could lower the levels of nitric oxide (NO), reactive oxygen species (ROS) and pro-inflammatory cytokines significantly in LPS induced macrophage cells. The extracts could also reduce disease activity index (DAI) score, restore antioxidants and pro-oxidants and improve macroscopic and microscopic features of colonic tissues in DSS induced mice. Expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in protein level was markedly diminished (up to 51.21% and 71.11%, respectively) in the treatment groups compared to the model group of colitic mice. CONCLUSIONS Our findings suggested that G. ellipticum extracts ameliorate DSS colitis via blocking nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathway, which make them to be potential candidates for further research against inflammation and colitis.
Collapse
Affiliation(s)
- Imam Hossen
- Beijing Technology and Business University, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing, China.,Beijing Engineering and Technology Research Center of Food Additives, Beijing, China
| | - Wu Hua
- Beijing Technology and Business University, Beijing, China.,Beijing Key Lab of Plant Resource Research and Development, Beijing, China
| | - Arshad Mehmood
- Beijing Technology and Business University, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing, China.,Beijing Engineering and Technology Research Center of Food Additives, Beijing, China
| | - Rifat Nowshin Raka
- Beijing Technology and Business University, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing, China.,Beijing Engineering and Technology Research Center of Food Additives, Beijing, China
| | - Song Jingyi
- Beijing Technology and Business University, Beijing, China
| | - Jin Jian-Ming
- Beijing Technology and Business University, Beijing, China.,Beijing Key Lab of Plant Resource Research and Development, Beijing, China
| | - Xu Min
- Beijing Technology and Business University, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing, China.,Beijing Engineering and Technology Research Center of Food Additives, Beijing, China
| | - Ashbala Shakoor
- Beijing Technology and Business University, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing, China.,Beijing Laboratory for Food Quality and Safety, Beijing, China
| | - Cao Yanping
- Beijing Technology and Business University, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing, China
| | - Chengtao Wang
- Beijing Technology and Business University, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing, China.,Beijing Engineering and Technology Research Center of Food Additives, Beijing, China
| | - Xiao Junsong
- Beijing Technology and Business University, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing, China.,Beijing Engineering and Technology Research Center of Food Additives, Beijing, China
| |
Collapse
|
11
|
Amalraj A, Jacob J, Varma K, Gopi S. Preparation and Characterization of Liposomal β-Caryophyllene (Rephyll) by Nanofiber Weaving Technology and Its Effects on Delayed Onset Muscle Soreness (DOMS) in Humans: A Randomized, Double-Blinded, Crossover-Designed, and Placebo-Controlled Study. ACS OMEGA 2020; 5:24045-24056. [PMID: 32984726 PMCID: PMC7513359 DOI: 10.1021/acsomega.0c03456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 08/26/2020] [Indexed: 05/08/2023]
Abstract
Delayed onset muscle soreness (DOMS) is a complex spreading out, which is related to swelling of muscles, tenderness, rigidity, pain, disruption of muscle fiber, alteration in the kinematics of joint, acute tissue damage, and reduction in power and strength. β-Caryophyllene (BCP), a potent phytocannabinoid, could play an important role in managing DOMS because of its wide diversity of biological activities, particularly its anti-inflammatory activity; however, its poor stability in light, temperature, high volatility, and insolubility can restrict the medical practices. In this study, liposomal β-caryophyllene (Rephyll) was designed and established in powder form constructed by the nanofiber weaving technology to improve the bioavailability of BCP with improved stability. Rephyll was characterized by Fourier transform infrared spectroscopy, transmission electron microscopy, and differential scanning calorimetry studies. Encapsulation efficiency, loading capacity, and in vitro release studies revealed that Rephyll can be an auspicious drug delivery arrangement for BCP. The effects of Rephyll were evaluated by a randomized, double-blinded, crossover-designed, placebo-controlled study. The oral consumption of Rephyll significantly reduced the pain visual assessment score, revealing that Rephyll effectively reduced DOMS with improved recovery without any side effects due to the bioavailable form of the phytocannabinoid BCP in the liposomal powder formulation.
Collapse
|
12
|
Li H, Wang D, Chen Y, Yang M. β-Caryophyllene inhibits high glucose-induced oxidative stress, inflammation and extracellular matrix accumulation in mesangial cells. Int Immunopharmacol 2020; 84:106556. [PMID: 32416450 DOI: 10.1016/j.intimp.2020.106556] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 04/30/2020] [Accepted: 04/30/2020] [Indexed: 12/25/2022]
Abstract
β-Caryophyllene (BCP) is a bicyclic sesquiterpene compound that has anti-diabetic activity. However, the effect of BCP on diabetic nephropathy (DN) remains unclear. Here, we aimed to evaluate the potential role of BCP in high glucose (HG)-induced glomerular mesangial cells (MCs). MCs were maintained under HG condition to simulate DN in vitro. Our results showed that BCP inhibited HG-induced cell proliferation, ROS production and NADPH oxidase (NOX) 2/4 expression. BCP exhibited anti-inflammatory activity with decreased levels of TNF-α, IL-1β, IL-6 in HG-induced MCs. Moreover, BCP treatment suppressed the HG-induced secretion of fibronectin (FN) and collagen IV (Col IV) in MCs. Furthermore, BCP suppressed the NF-κB activation and enhanced the Nrf2 activation in HG-induced MCs. However, inhibition of Nrf2 attenuated the protective effects of BCP on HG-induced MCs, while inhibition of NF-κB enhanced the nephro-protective effects of BCP on MCs. In conclusion, these findings demonstrated that BCP executed protective effects on HG-induced MCs via regulating NF-κB and Nrf2 signaling pathways.
Collapse
Affiliation(s)
- Heng Li
- Department of Traditional Medicine, Ninth Hospital of Xi'an, Xi'an 710054, Shaanxi Province, China
| | - Defen Wang
- Department of Endocrinology, Xi'an Hospital of Traditional Chinese Medicine, Xi'an 710021, Shaanxi Province, China
| | - Yujie Chen
- Department of Traditional Medicine, Ninth Hospital of Xi'an, Xi'an 710054, Shaanxi Province, China
| | - Minsheng Yang
- Department of Endocrinology, Xi'an Hospital of Traditional Chinese Medicine, Xi'an 710021, Shaanxi Province, China.
| |
Collapse
|
13
|
Cymbopogon Proximus Essential Oil Protects Rats against Isoproterenol-Induced Cardiac Hypertrophy and Fibrosis. Molecules 2020; 25:molecules25081786. [PMID: 32295062 PMCID: PMC7221672 DOI: 10.3390/molecules25081786] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/08/2020] [Accepted: 04/11/2020] [Indexed: 01/19/2023] Open
Abstract
Cardiac hypertrophy is an independent risk factor of many cardiovascular diseases. Several cardiovascular protective properties of Cymbopogon proximus have been reported. However, no reports investigating the direct effect of C. proximus essential oil on the heart are available. The goal of this study was to explore the cardioprotective effect of C. proximus on cardiac hypertrophy and fibrosis. Male albino rats were administered C. proximus essential oil in the presence or absence of hypertrophic agonist isoproterenol. Cardiac hypertrophy and fibrosis were assessed using real-time polymerase chain reaction (PCR) and histological examination. Pre- treatment of rats with C. proximus decreased the ratio of heart weight to body weight and gene expression of hypertrophy markers atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and β-myosin heavy chain (β-MHC), which were induced by isoproterenol. Moreover, C. proximus prevented the increase in gene expression of fibrosis markers procollagen I and procollagen III and alleviated the collagen volume fraction caused by isoproterenol. The pre- treatment with C. proximus essential oil conferred cardio-protection against isoproterenol- induced cardiac hypertrophy and fibrosis.
Collapse
|
14
|
Venkataraman B, Ojha S, Belur PD, Bhongade B, Raj V, Collin PD, Adrian TE, Subramanya SB. Phytochemical drug candidates for the modulation of peroxisome proliferator-activated receptor γ in inflammatory bowel diseases. Phytother Res 2020; 34:1530-1549. [PMID: 32009281 DOI: 10.1002/ptr.6625] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 12/23/2019] [Accepted: 01/14/2020] [Indexed: 12/12/2022]
Abstract
Plant-based compounds or phytochemicals such as alkaloids, glycosides, flavonoids, volatile oils, tannins, resins, and polyphenols have been used extensively in traditional medicine for centuries and more recently in Western alternative medicine. Extensive evidence suggests that consumption of dietary polyphenolic compounds lowers the risk of inflammatory diseases. The anti-inflammatory properties of several phytochemicals are mediated through ligand-inducible peroxisome proliferator-activated receptors (PPARs), particularly the PPARγ transcription factor. Inflammatory bowel disease (IBD) is represented by ulcerative colitis, which occurs in the mucosa of the colon and rectum, and Crohn's disease (CD) that can involve any segment of gastrointestinal tract. Because of the lack of cost-effective pharmaceutical treatment options, many IBD patients seek and use alternative and unconventional therapies to alleviate their symptoms. PPARγ plays a role in the inhibition of inflammatory cytokine expression and activation of anti-inflammatory immune cells. The phytochemicals reported here are ligands that activate PPARγ, which in turn modulates inflammatory responses. PPARγ is highly expressed in the gut making it a potential therapeutic target for IBDs. This review summarizes the effects of the currently published phytochemicals that modulate the PPARγ pathway and reduce or eliminate colonic inflammation.
Collapse
Affiliation(s)
- Balaji Venkataraman
- Department of Physiology, Zayed Bin Sultan Center for Health Sciences, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Prasanna D Belur
- Department of Chemical Engineering, National Institute of Technology Karnataka, Mangalore, India
| | - Bhoomendra Bhongade
- Department of Pharmaceutical Chemistry, RAK College of Pharmaceutical Sciences, RAK Medical & Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Vishnu Raj
- Department of Physiology, Zayed Bin Sultan Center for Health Sciences, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | | | - Thomas E Adrian
- Department of Basic Medical Sciences, Mohamed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Sandeep B Subramanya
- Department of Physiology, Zayed Bin Sultan Center for Health Sciences, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
15
|
Amalraj A, Jacob J, Varma K, Kunnumakkara AB, Divya C, Gopi S. Acujoint™, a highly efficient formulation with natural bioactive compounds, exerts potent anti-arthritis effects in human osteoarthritis – A pilot randomized double blind clinical study compared to combination of glucosamine and chondroitin. J Herb Med 2019. [DOI: 10.1016/j.hermed.2019.100276] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
16
|
Aguilar-Ávila DS, Flores-Soto ME, Tapia-Vázquez C, Pastor-Zarandona OA, López-Roa RI, Viveros-Paredes JM. β-Caryophyllene, a Natural Sesquiterpene, Attenuates Neuropathic Pain and Depressive-Like Behavior in Experimental Diabetic Mice. J Med Food 2019; 22:460-468. [DOI: 10.1089/jmf.2018.0157] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Affiliation(s)
| | - Mario Eduardo Flores-Soto
- Laboratory of Cellular and Molecular Neurobiology, Mexican Social Security Institute (IMSS), Guadalajara, Mexico
| | - Carolina Tapia-Vázquez
- Laboratory of Research and Pharmaceutical Development, University of Guadalajara, Guadalajara, Mexico
| | | | - Rocío Ivette López-Roa
- Laboratory of Research and Pharmaceutical Development, University of Guadalajara, Guadalajara, Mexico
| | | |
Collapse
|
17
|
Tornatore L, Capece D, D'Andrea D, Begalli F, Verzella D, Bennett J, Acton G, Campbell EA, Kelly J, Tarbit M, Adams N, Bannoo S, Leonardi A, Sandomenico A, Raimondo D, Ruvo M, Chambery A, Oblak M, Al-Obaidi MJ, Kaczmarski RS, Gabriel I, Oakervee HE, Kaiser MF, Wechalekar A, Benjamin R, Apperley JF, Auner HW, Franzoso G. Preclinical toxicology and safety pharmacology of the first-in-class GADD45β/MKK7 inhibitor and clinical candidate, DTP3. Toxicol Rep 2019; 6:369-379. [PMID: 31080744 PMCID: PMC6502747 DOI: 10.1016/j.toxrep.2019.04.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 04/04/2019] [Accepted: 04/18/2019] [Indexed: 12/25/2022] Open
Abstract
Aberrant NF-κB activity drives oncogenesis and cell survival in multiple myeloma (MM) and many other cancers. However, despite an aggressive effort by the pharmaceutical industry over the past 30 years, no specific IκBα kinase (IKK)β/NF-κB inhibitor has been clinically approved, due to the multiple dose-limiting toxicities of conventional NF-κB-targeting drugs. To overcome this barrier to therapeutic NF-κB inhibition, we developed the first-in-class growth arrest and DNA-damage-inducible (GADD45)β/mitogen-activated protein kinase kinase (MKK)7 inhibitor, DTP3, which targets an essential, cancer-selective cell-survival module downstream of the NF-κB pathway. As a result, DTP3 specifically kills MM cells, ex vivo and in vivo, ablating MM xenografts in mice, with no apparent adverse effects, nor evident toxicity to healthy cells. Here, we report the results from the preclinical regulatory pharmacodynamic (PD), safety pharmacology, pharmacokinetic (PK), and toxicology programmes of DTP3, leading to the approval for clinical trials in oncology. These results demonstrate that DTP3 combines on-target-selective pharmacology, therapeutic anticancer efficacy, favourable drug-like properties, long plasma half-life and good bioavailability, with no target-organs of toxicity and no adverse effects preclusive of its clinical development in oncology, upon daily repeat-dose administration in both rodent and non-rodent species. Our study underscores the clinical potential of DTP3 as a conceptually novel candidate therapeutic selectively blocking NF-κB survival signalling in MM and potentially other NF-κB-driven cancers.
Collapse
Affiliation(s)
- Laura Tornatore
- CCSI, Department of Medicine, Imperial College London, London, UK
| | - Daria Capece
- CCSI, Department of Medicine, Imperial College London, London, UK
| | - Daniel D'Andrea
- CCSI, Department of Medicine, Imperial College London, London, UK
| | - Federica Begalli
- CCSI, Department of Medicine, Imperial College London, London, UK
| | - Daniela Verzella
- CCSI, Department of Medicine, Imperial College London, London, UK
| | - Jason Bennett
- CCSI, Department of Medicine, Imperial College London, London, UK
| | - Gary Acton
- Cancer Research UK Centre for Drug Development, London, UK
| | | | | | | | | | - Selina Bannoo
- CCSI, Department of Medicine, Imperial College London, London, UK
| | - Antonio Leonardi
- Department of Molecular Medicine, University of Naples Federico II, Naples, Italy
| | | | - Domenico Raimondo
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Menotti Ruvo
- IBB-CNR and CIRPeB, "Federico II" University of Naples, Naples, Italy
| | - Angela Chambery
- DiSTABiF, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Metod Oblak
- West Middlesex University Hospital, Isleworth, Greater London, UK
| | | | | | - Ian Gabriel
- Haematology Department, Chelsea and Westminster Hospital, London, UK
| | | | - Martin F. Kaiser
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | | | - Reuben Benjamin
- Department of Haematology, King's College Hospital, London, UK
| | | | - Holger W. Auner
- Centre for Haematology, Imperial College, London, UK
- Cancer Cell Protein Metabolism, Department of Medicine, Imperial College London, London, UK
| | - Guido Franzoso
- CCSI, Department of Medicine, Imperial College London, London, UK
| |
Collapse
|
18
|
Hossen I, Hua W, Ting L, Mehmood A, Jingyi S, Duoxia X, Yanping C, Hongqing W, Zhipeng G, Kaiqi Z, Fang Y, Junsong X. Phytochemicals and inflammatory bowel disease: a review. Crit Rev Food Sci Nutr 2019; 60:1321-1345. [PMID: 30729797 DOI: 10.1080/10408398.2019.1570913] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Gastrointestinal tract is the second largest organ in the body that mainly functions in nutrients and minerals intake through the intestinal barrier. Intestinal permeability maintains the circulation of minerals and nutrients from digested foods. Life and all the metabolic processes depend either directly or indirectly on proper functioning of GI tract. Compromised intestinal permeability and related disorders are common among all the patients with inflammatory bowel disease (IBD), which is a collective term of inflammatory diseases including Crohn's disease and ulcerative colitis. Many synthetic drugs are currently in use to treat IBD such as 5-aminosalicylic acid corticosteroids. However, they all have some drawbacks as long-term use result in many complications. These problems encourage us to look out for alternative medicine. Numerous in vitro and in vivo experiments showed that the plant-derived secondary metabolites including phenolic compounds, glucosinolates, alkaloids, terpenoids, oligosaccharides, and quinones could reduce permeability, ameliorate-related dysfunctions with promising results. In addition, many of them could modulate enzymatic activity, suppress the inflammatory transcriptional factors, ease oxidative stress, and reduce pro-inflammatory cytokines secretion. In this review, we summarized the phytochemicals, which were proven potent in treating increased intestinal permeability and related complication along with their mechanism of action.
Collapse
Affiliation(s)
- Imam Hossen
- School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing, China.,Beijing Key Lab of Plant Resource Research and Development, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing, China
| | - Wu Hua
- School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing, China.,Beijing Key Lab of Plant Resource Research and Development, Beijing, China
| | - Luo Ting
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Arshad Mehmood
- School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing, China.,Beijing Key Lab of Plant Resource Research and Development, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing, China
| | - Song Jingyi
- School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing, China.,Beijing Key Lab of Plant Resource Research and Development, Beijing, China
| | - Xu Duoxia
- School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing, China.,Beijing Key Lab of Plant Resource Research and Development, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing, China
| | - Cao Yanping
- School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing, China.,Beijing Key Lab of Plant Resource Research and Development, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing, China
| | - Wu Hongqing
- School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing, China.,Beijing Key Lab of Plant Resource Research and Development, Beijing, China
| | - Gao Zhipeng
- School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing, China.,Beijing Key Lab of Plant Resource Research and Development, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing, China
| | - Zhang Kaiqi
- School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing, China.,Beijing Key Lab of Plant Resource Research and Development, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing, China
| | - Yang Fang
- School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing, China.,Beijing Key Lab of Plant Resource Research and Development, Beijing, China
| | - Xiao Junsong
- School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing, China.,Beijing Key Lab of Plant Resource Research and Development, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing, China.,Beijing Engineering and Technology Research Center of Food Additives, Beijing, China
| |
Collapse
|
19
|
Mazutti da Silva SM, Rezende Costa CR, Martins Gelfuso G, Silva Guerra EN, de Medeiros Nóbrega YK, Gomes SM, Pic-Taylor A, Fonseca-Bazzo YM, Silveira D, Magalhães PDO. Wound Healing Effect of Essential Oil Extracted from Eugenia dysenterica DC (Myrtaceae) Leaves. Molecules 2018; 24:molecules24010002. [PMID: 30577426 PMCID: PMC6337431 DOI: 10.3390/molecules24010002] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/07/2018] [Accepted: 12/07/2018] [Indexed: 12/20/2022] Open
Abstract
The use of natural oils in topical pharmaceutical preparations has usually presented safe agents for the improvement of human health. Based on research into the immense potential of wound management and healing, we aimed to validate the use of topical natural products by studying the ability of the essential oil of Eugenia dysenterica DC leaves (oEd) to stimulate in vitro skin cell migration. Skin cytotoxicity was evaluated using a fibroblast cell line (L929) by MTT assay. The oil chemical profile was investigated by GC-MS. Moreover, the inhibition of lipopolysaccharide (LPS) induced nitric oxide (NO) production in the macrophage cell line (RAW 264.7) tested. The Chick Chorioallantoic Membrane (CAM) assay was used to evaluate the angiogenic activity and irritating potential of the oil. The oEd induces skin cell migration in a scratch assay at a concentration of 542.2 µg/mL. α-humulene and β-caryophyllene, the major compounds of this oil, as determined by GC-MS, may partly explain the migration effect. The inhibition of nitric oxide by oEd and α-humulene suggested an anti-inflammatory effect. The CAM assay showed that treatment with oEd ≤ 292 µg/mL did not cause skin injury, and that it can promote angiogenesis in vivo. Hence, these results indicate the feasibility of the essential oil of Eugenia dysenterica DC leaves to developed dermatological products capable of helping the body to repair damaged tissue.
Collapse
Affiliation(s)
- Sandra Márcia Mazutti da Silva
- Natural Products Laboratory, School of Health Sciences, University of Brasília, 70910-900, Campus Universitário Darcy Ribeiro, 70910-900 Brasília-DF, Brazil.
| | | | - Guilherme Martins Gelfuso
- Laboratory of Food, Drugs and Cosmetics (LTMAC), School of Health Sciences, University of Brasília, 70910-900 Campus Universitario Darcy Ribeiro, Brasília-DF 70910-900, Brazil.
| | - Eliete Neves Silva Guerra
- Laboratory of Oral Histopathology, Health Sciences Faculty, University of Brasília, 70910-900 Brasília, Brazil.
| | - Yanna Karla de Medeiros Nóbrega
- Natural Products Laboratory, School of Health Sciences, University of Brasília, 70910-900, Campus Universitário Darcy Ribeiro, 70910-900 Brasília-DF, Brazil.
| | - Sueli Maria Gomes
- Department of Botany, Institute of Biological Sciences, University of Brasília, Brasília, Campus Universitário Darcy Ribeiro, Brasília-DF 70910-900, Brazil.
| | - Aline Pic-Taylor
- Laboratory of Embryology and Developmental Biology, Genetics and Morphology Department, Institute of Biological Sciences, University of Brasília, 70910-900, Campus Universitário Darcy Ribeiro, Brasília-DF 70910-900, Brazil.
| | - Yris Maria Fonseca-Bazzo
- Natural Products Laboratory, School of Health Sciences, University of Brasília, 70910-900, Campus Universitário Darcy Ribeiro, 70910-900 Brasília-DF, Brazil.
| | - Damaris Silveira
- Natural Products Laboratory, School of Health Sciences, University of Brasília, 70910-900, Campus Universitário Darcy Ribeiro, 70910-900 Brasília-DF, Brazil.
| | - Pérola de Oliveira Magalhães
- Natural Products Laboratory, School of Health Sciences, University of Brasília, 70910-900, Campus Universitário Darcy Ribeiro, 70910-900 Brasília-DF, Brazil.
| |
Collapse
|
20
|
Feng W, Ao H, Yue S, Peng C. Systems pharmacology reveals the unique mechanism features of Shenzhu Capsule for treatment of ulcerative colitis in comparison with synthetic drugs. Sci Rep 2018; 8:16160. [PMID: 30385774 PMCID: PMC6212405 DOI: 10.1038/s41598-018-34509-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 10/16/2018] [Indexed: 12/17/2022] Open
Abstract
In clinic, both synthetic drugs and Shenzhu Capsule (SZC), one kind of traditional Chinese medicines (TCMs), are used to treat ulcerative colitis (UC). In our study, a systems pharmacology approach was employed to elucidate the chemical and mechanism differences between SZC and synthetic drugs in treating UC. First, the compound databases were constructed for SZC and synthetic drugs. Then, the targets of SZC were predicted with on-line tools and validated using molecular docking method. Finally, chemical space, targets, and pathways of SZC and synthetic drugs were compared. Results showed that atractylenolide I, atractylone, kaempferol, etc., were bioactive compounds of SZC. Comparison of SZC and synthetic drugs showed that (1) in chemical space, the area of SZC encompasses the area of synthetic drugs; (2) SZC can act on more targets and pathways than synthetic drugs; (3) SZC can not only regulate immune and inflammatory reactions but also act on ulcerative colitis complications (bloody diarrhea) and prevent UC to develop into colorectal cancer whereas synthetic drugs mainly regulate immune and inflammatory reactions. Our study could help us to understand the compound and mechanism differences between TCM and synthetic drugs.
Collapse
Affiliation(s)
- Wuwen Feng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hui Ao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shijun Yue
- College of Pharmacy and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Cheng Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
21
|
Han X, Beaumont C, Rodriguez D, Bahr T. Black pepper (Piper nigrum) essential oil demonstrates tissue remodeling and metabolism modulating potential in human cells. Phytother Res 2018; 32:1848-1852. [PMID: 29770504 DOI: 10.1002/ptr.6110] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 02/09/2018] [Accepted: 04/11/2018] [Indexed: 11/06/2022]
Abstract
Very few studies have investigated the biological activities of black pepper essential oil (BPEO) in human cells. Therefore, in the current study, we examined the biological activities of BPEO in cytokine-stimulated human dermal fibroblasts by analyzing the levels of 17 important protein biomarkers pertinent to inflammation and tissue remodeling. BPEO exhibited significant antiproliferative activity in these skin cells and significantly inhibited the production of Collagen I, Collagen III, and plasminogen activator inhibitor 1. In addition, we studied the effect of BPEO on the regulation of genome-wide expression and found that BPEO diversely modulated global gene expression. Further analysis showed that BPEO affected many important genes and signaling pathways closely related to metabolism, inflammation, tissue remodeling, and cancer signaling. This study is the first to provide evidence of the biological activities of BPEO in human dermal fibroblasts. The data suggest that BPEO possesses promising potential to modulate the biological processes of tissue remodeling, wound healing, and metabolism. Although further research is required, BPEO appears to be a good therapeutic candidate for a variety of health conditions including wound care and metabolic diseases. Research into the biological and pharmacological mechanisms of action of BPEO and its major active constituents is recommended.
Collapse
Affiliation(s)
- Xuesheng Han
- dōTERRA International, LLC, 389 S. 1300 W, Pleasant Grove, UT, 84062, USA
| | - Cody Beaumont
- dōTERRA International, LLC, 389 S. 1300 W, Pleasant Grove, UT, 84062, USA
| | - Damian Rodriguez
- dōTERRA International, LLC, 389 S. 1300 W, Pleasant Grove, UT, 84062, USA
| | - Tyler Bahr
- dōTERRA International, LLC, 389 S. 1300 W, Pleasant Grove, UT, 84062, USA
| |
Collapse
|
22
|
Guo S, Yu S, Qian Y, Hu M, Shan M, Chen P, Chen Y, Zhang L, Ding A, Wu Q, Li SFY. Correlation of antioxidant activity and volatile oil chemical components from Schizonepeta tenuifolia herbs by chemometric methods. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2017. [DOI: 10.1080/10942912.2017.1328438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- ShuChen Guo
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Sheng Yu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yan Qian
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - MinHui Hu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - MingQiu Shan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - PeiDong Chen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - YaYun Chen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Li Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - AnWei Ding
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - QiNan Wu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Sam Fong Yau Li
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| |
Collapse
|
23
|
Rodríguez-Chávez JL, Egas V, Linares E, Bye R, Hernández T, Espinosa-García FJ, Delgado G. Mexican Arnica (Heterotheca inuloides Cass. Asteraceae: Astereae): Ethnomedical uses, chemical constituents and biological properties. JOURNAL OF ETHNOPHARMACOLOGY 2017; 195:39-63. [PMID: 27847336 DOI: 10.1016/j.jep.2016.11.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 11/08/2016] [Accepted: 11/10/2016] [Indexed: 05/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Heterotheca inuloides Cass. (Asteraceae) has been traditionally used to treat a wide range of diseases in Mexico in the treatment of rheumatism, topical skin inflammation, muscular pain colic, and other painful conditions associated with inflammatory processes, additionally has been used to treat dental diseases, and gastrointestinal disorders. This species has also been used for the treatment of cancer and diabetes. This review provides up-to-date information on the botanical characterization, traditional uses, chemical constituents, as well as the biolological activities of H. inuloides. MATERIAL AND METHODS A literature search was conducted by analyzing the published scientific material. Information related to H. inuloides was collected from various primary information sources, including books, published articles in peer-reviewed journals, monographs, theses and government survey reports. The electronic search of bibliographic information was gathered from accepted scientific databases such as Scienfinder, ISI Web of Science, Scielo, LILACS, Redalyc, Pubmed, SCOPUS and Google Scholar. RESULTS To date, more than 140 compounds have been identified from H. inuloides, including cadinane sesquiterpenes, flavonoids, phytosterols, triterpenes, benzoic acid derivatives, and other types of compounds. Many biological properties associated with H. inuloides. Many studies have shown that the extracts and some compounds isolated from this plant exhibit a broad spectrum of biological activities such as antioxidant, antitumor, anti-inflammatory, cytotoxic, and chelating activities, as well as insecticidal and phytotoxic activity. To date, reports on the toxicity of H. inuloides are limited. CONCLUSIONS A comprehensive analysis of the literature obtained through the above-mentioned sources confirmed that ethnomedical uses of H. inuloides have been recorded in Mexico to treat rheumatism, pain, and conditions associated with inflammatory processes. Pharmacological studies have demonstrated the activity of certain compounds associated with the traditional use of the plant such as the anti-inflammatory and cytotoxic activities of the species. The available literature showed that cadinene sesquiterpenes are the major bioactive components of H. inuloides with potential pharmacological activities. Further investigations are needed to fully understand the mode of action of the major active constituents.
Collapse
Affiliation(s)
- José Luis Rodríguez-Chávez
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán 04510, Ciudad de México, México
| | - Verónica Egas
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán 04510, Ciudad de México, México
| | - Edelmira Linares
- Instituto de Biología, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán 04510, Ciudad de México, México
| | - Robert Bye
- Instituto de Biología, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán 04510, Ciudad de México, México
| | - Tzasna Hernández
- Laboratorio de Fitoquímica, UBIPRO, FES-Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla 54090, Estado de México, México
| | - Francisco J Espinosa-García
- Instituto de Investigaciones en Ecosistemas, Universidad Nacional Autónoma de México, Ex Hacienda de San José de la Huerta 58190, Morelia, Michoacán, México
| | - Guillermo Delgado
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán 04510, Ciudad de México, México.
| |
Collapse
|