1
|
Aishwarya S, Gunasekaran K. Differential Gene Expression Profiles Involved in the Inflammations Due to COVID-19 and Inflammatory Bowel Diseases and the Investigation of Predictive Biomarkers. Biochem Genet 2024; 62:311-332. [PMID: 37335372 DOI: 10.1007/s10528-023-10414-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 06/06/2023] [Indexed: 06/21/2023]
Abstract
Gastrointestinal manifestations in COVID-19 were attributed to 74-86% of the hospitalised patients due to severe or prolonged pathogenesis. Though it is a respiratory disease, the impact it elicits on the gastrointestinal tract and brain are intense. Inflammatory bowel disease including Crohn's disease and ulcerative colitis are idiopathic inflammatory disorders of the gastrointestinal tract. The intrinsic mechanisms involved in gut inflammations due to a respiratory viral disease can be deciphered when the gene expression profiles of COVID-19 and IBD are compared. The current study utilises an integrated bioinformatics approach to unravel them. The publicly available gene expression profiles of colon transcriptomes infected with COVID-19, Crohn's disease and Ulcerative colitis were retrieved, integrated and analysed for the identification of differentially expressed genes. The inter-relational analysis along with gene annotation and pathway enrichment detailed the functional and metabolic pathways of the genes during normal and diseased conditions. The protein-protein interactions deduced from the STRING database and the identified hub genes predicted potential biomarker candidates for COVID-19, Crohn's disease and ulcerative colitis. The inflammatory response pathways were upregulated and enrichment of chemokine signalling, altered lipid metabolism, coagulation and complement cascades were seen in all three conditions along with impaired transport mechanisms. CXCL11, MMP10, and CFB are predicted to be overexpressed biomarkers, whilst GUCA2A, SLC13A2, CEACAM, and IGSF9 as downregulated novel biomarker candidates for colon inflammations. The three miRNAs hsa-miR-16-5p, hsa-miR-21-5p, and hsa-miR-27b-5p exhibited significant interactions with the upregulated hub genes and four long non-coding RNAs NEAT1, KCNQ1OT1, and LINC00852 capable of regulating miRNA were also predicted. This study offers significant information on the underlying molecular mechanisms of inflammatory bowel disease with identification of potential biomarkers.
Collapse
Affiliation(s)
- S Aishwarya
- Department of Bioinformatics, Stella Maris College (Autonomous), Chennai, India.
- CAS in Crystallography and Biophysics, University of Madras, Chennai, India.
| | - K Gunasekaran
- CAS in Crystallography and Biophysics, University of Madras, Chennai, India
| |
Collapse
|
2
|
Porter AL, Markley M, Newman N. The long COVID research literature. Front Res Metr Anal 2023; 8:1149091. [PMID: 37034420 PMCID: PMC10080666 DOI: 10.3389/frma.2023.1149091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 02/23/2023] [Indexed: 04/11/2023] Open
Abstract
While the COVID-19 pandemic morphs into less malignant forms, the virus has spawned a series of poorly understood, post-infection symptoms with staggering ramifications, i. e., long COVID (LC). This bibliometric study profiles the rapidly growing LC research domain [5,243 articles from PubMed and Web of Science (WoS)] to make its knowledge content more accessible. The article addresses What? Where? Who? and When? questions. A 13-topic Concept Grid presents bottom-up topic clusters. We break out those topics with other data fields, including disciplinary concentrations, topical details, and information on research "players" (countries, institutions, and authors) engaging in those topics. We provide access to results via a Dashboard website. We find a strongly growing, multidisciplinary LC research domain. That domain appears tightly connected based on shared research knowledge. However, we also observe notable concentrations of research activity in different disciplines. Data trends over 3 years of LC research suggest heightened attention to psychological and neurodegenerative symptoms, fatigue, and pulmonary involvement.
Collapse
Affiliation(s)
- Alan L. Porter
- Search Technology, Inc., Peachtree Corners, GA, United States
| | | | | |
Collapse
|
3
|
Moreau E. Literature-based discovery: addressing the issue of the subpar evaluation methodology. Bioinformatics 2023; 39:btad090. [PMID: 36786419 PMCID: PMC9945845 DOI: 10.1093/bioinformatics/btad090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/26/2023] [Accepted: 02/13/2023] [Indexed: 02/15/2023] Open
Affiliation(s)
- Erwan Moreau
- Adapt Centre, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
4
|
Kostoff RN, Briggs MB, Kanduc D, Dewanjee S, Kandimalla R, Shoenfeld Y, Porter AL, Tsatsakis A. Modifiable contributing factors to COVID-19: A comprehensive review. Food Chem Toxicol 2023; 171:113511. [PMID: 36450305 PMCID: PMC9701571 DOI: 10.1016/j.fct.2022.113511] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 11/29/2022]
Abstract
The devastating complications of coronavirus disease 2019 (COVID-19) result from an individual's dysfunctional immune response following the initial severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Multiple toxic stressors and behaviors contribute to underlying immune system dysfunction. SARS-CoV-2 exploits the dysfunctional immune system to trigger a chain of events ultimately leading to COVID-19. The current study identifies eighty immune system dysfunction-enabling toxic stressors and behaviors (hereafter called modifiable contributing factors (CFs)) that also link directly to COVID-19. Each CF is assigned to one of the five categories in the CF taxonomy shown in Section 3.3.: Lifestyle (e.g., diet, substance abuse); Iatrogenic (e.g., drugs, surgery); Biotoxins (e.g., micro-organisms, mycotoxins); Occupational/Environmental (e.g., heavy metals, pesticides); Psychosocial/Socioeconomic (e.g., chronic stress, lower education). The current study shows how each modifiable factor contributes to decreased immune system capability, increased inflammation and coagulation, and increased neural damage and neurodegeneration. It is unclear how real progress can be made in combatting COVID-19 and other similar diseases caused by viral variants without addressing and eliminating these modifiable CFs.
Collapse
Affiliation(s)
- Ronald Neil Kostoff
- Independent Consultant, Gainesville, VA, 20155, USA,Corresponding author. Independent Consultant, 13500 Tallyrand Way, Gainesville, VA, 20155, USA
| | | | - Darja Kanduc
- Dept. of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari, Via Orabona 4, Bari, 70125, Italy
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Ramesh Kandimalla
- Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, 500007, Telangana, India
| | - Yehuda Shoenfeld
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, 5265601, Israel
| | - Alan L. Porter
- School of Public Policy, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Aristidis Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003, Heraklion, Greece
| |
Collapse
|
5
|
Kagawa Y. Influence of Nutritional Intakes in Japan and the United States on COVID-19 Infection. Nutrients 2022; 14:633. [PMID: 35276992 PMCID: PMC8839931 DOI: 10.3390/nu14030633] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 02/07/2023] Open
Abstract
The U.S. and Japan are both democratic industrialized societies, but the numbers of COVID-19 cases and deaths per million people in the U.S. (including Japanese Americans) are 12.1-times and 17.4-times higher, respectively, than those in Japan. The aim of this study was to investigate the effects of diet on preventing COVID-19 infection. An analysis of dietary intake and the prevalence of obesity in the populations of both countries was performed, and their effects on COVID-19 infection were examined. Approximately 1.5-times more saturated fat and less eicosapentaenoic acid/docosahexaenoic acid are consumed in the U.S. than in Japan. Compared with food intakes in Japan (100%), those in the U.S. were as follows: beef 396%, sugar and sweeteners 235%, fish 44.3%, rice 11.5%, soybeans 0.5%, and tea 54.7%. The last four of these foods contain functional substances that prevent COVID-19. The prevalence of obesity is 7.4- and 10-times greater in the U.S. than in Japan for males and females, respectively. Mendelian randomization established a causal relationship between obesity and COVID-19 infection. Large differences in nutrient intakes and the prevalence of obesity, but not racial differences, may be partly responsible for differences in the incidence and mortality of COVID-19 between the U.S. and Japan.
Collapse
Affiliation(s)
- Yasuo Kagawa
- Department of Medical Chemistry, Kagawa Nutrition University, Saitama 350-0288, Japan
| |
Collapse
|
6
|
Maio ACD, Basile G, Iacopetta D, Catalano A, Ceramella J, Cafaro D, Saturnino C, Sinicropi MS. The significant role of nutraceutical compounds in ulcerative colitis treatment. Curr Med Chem 2021; 29:4216-4234. [PMID: 34961429 DOI: 10.2174/0929867329666211227121321] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/06/2021] [Accepted: 11/09/2021] [Indexed: 11/22/2022]
Abstract
Ulcerative colitis (UC) is a type of inflammatory bowel disease (IBD) mainly affecting the colon and the rectum. Its main characters are represented by relapsing and remitting mucosal inflammation, starting in the rectum and typically extending continuously proximally through part or the entire colon. UC pathogenesis depends on multiple factors, such as genetic predisposition, defects in the epithelial barrier, dysregulated immune responses, and environmental causes. The most frequent symptoms are abdominal pain, weight loss, mucus discharge, bloody diarrhoea, incontinence, nocturnal defecations, fever, and anemia. Existing therapies for UC include 5-aminosalicylic acid (5-ASA) and its derivatives, steroids, immunosuppressants and biological drugs. However, limited efficacy and unwanted adverse effects hardly limit these strategies of treatment. In the last decades, research studies have been driven towards complementary and alternative medicines for the treatment of UC. Various nutraceuticals have exhibited promising results in modulating intestinal inflammation meanwhile improving symptoms. These compounds possess a wide spectrum of positive health effects evidenced by in vitro studies, characterized by their involvement in antioxidant defenses, cell proliferation, and gene expression. The present review analyzes the available data about the different types of nutraceuticals and their potential effectiveness as adjuvant therapy of IBD, with particular emphasis to UC.
Collapse
Affiliation(s)
- Azzurra Chiara De Maio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Giovanna Basile
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Alessia Catalano
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", 70126 Bari, Italy
| | - Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Danilo Cafaro
- Proctology Surgery, Tropea Hospital, Vibo Valentia, Italy
| | - Carmela Saturnino
- Department of Science, University of Basilicata, 85100 Potenza, Italy
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| |
Collapse
|
7
|
Kostoff RN, Briggs MB, Kanduc D, Shores DR, Kovatsi L, Drakoulis N, Porter AL, Tsatsakis A, Spandidos DA. Contributing factors common to COVID‑19 and gastrointestinal cancer. Oncol Rep 2021; 47:16. [PMID: 34779496 PMCID: PMC8611322 DOI: 10.3892/or.2021.8227] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 11/04/2021] [Indexed: 12/11/2022] Open
Abstract
The devastating complications of coronavirus disease 2019 (COVID-19) result from the dysfunctional immune response of an individual following the initial severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Multiple toxic stressors and behaviors contribute to underlying immune system dysfunction. SARS-CoV-2 exploits the dysfunctional immune system to trigger a chain of events, ultimately leading to COVID-19. The authors have previously identified a number of contributing factors (CFs) common to myriad chronic diseases. Based on these observations, it was hypothesized that there may be a significant overlap between CFs associated with COVID-19 and gastrointestinal cancer (GIC). Thus, in the present study, a streamlined dot-product approach was used initially to identify potential CFs that affect COVID-19 and GIC directly (i.e., the simultaneous occurrence of CFs and disease in the same article). The nascent character of the COVID-19 core literature (~1-year-old) did not allow sufficient time for the direct effects of numerous CFs on COVID-19 to emerge from laboratory experiments and epidemiological studies. Therefore, a literature-related discovery approach was used to augment the COVID-19 core literature-based ‘direct impact’ CFs with discovery-based ‘indirect impact’ CFs [CFs were identified in the non-COVID-19 biomedical literature that had the same biomarker impact pattern (e.g., hyperinflammation, hypercoagulation, hypoxia, etc.) as was shown in the COVID-19 literature]. Approximately 2,250 candidate direct impact CFs in common between GIC and COVID-19 were identified, albeit some being variants of the same concept. As commonality proof of concept, 75 potential CFs that appeared promising were selected, and 63 overlapping COVID-19/GIC potential/candidate CFs were validated with biological plausibility. In total, 42 of the 63 were overlapping direct impact COVID-19/GIC CFs, and the remaining 21 were candidate GIC CFs that overlapped with indirect impact COVID-19 CFs. On the whole, the present study demonstrates that COVID-19 and GIC share a number of common risk/CFs, including behaviors and toxic exposures, that impair immune function. A key component of immune system health is the removal of those factors that contribute to immune system dysfunction in the first place. This requires a paradigm shift from traditional Western medicine, which often focuses on treatment, rather than prevention.
Collapse
Affiliation(s)
- Ronald Neil Kostoff
- School of Public Policy, Georgia Institute of Technology, Gainesville, VA 20155, USA
| | | | - Darja Kanduc
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, I‑70125 Bari, Italy
| | - Darla Roye Shores
- Department of Pediatrics, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Leda Kovatsi
- Laboratory of Forensic Medicine and Toxicology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Nikolaos Drakoulis
- Research Group of Clinical Pharmacology and Pharmacogenomics, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | | | - Aristidis Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece
| |
Collapse
|