1
|
Rodríguez-Seijo A, Pérez-Rodríguez P, Arias-Estévez M, Gómez-Armesto A, Conde-Cid M, Santás-Miguel V, Campillo-Cora C, Ollio I, Lloret E, Martínez-Martínez S, Zornoza R, Waeyenberge L, Schrader S, Brandt KK, Loit K, Põldmets M, Shanskiy M, Peltoniemi K, Hagner M, Calviño DF. Occurrence, persistence and risk assessment of pesticide residues in European wheat fields: A continental scale approach. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138291. [PMID: 40347612 DOI: 10.1016/j.jhazmat.2025.138291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/28/2025] [Accepted: 04/13/2025] [Indexed: 05/14/2025]
Abstract
Pesticide residues in agricultural soils represent an environmental concern that requires special attention due to their potential ecological and public health risks. We analyzed 614 pesticides in 188 wheat fields across Europe subjected to both conventional and organic farming systems. At least one pesticide residue was detected in 141 soils. Seventy-eight pesticides or their metabolites were detected. The presence of pesticides was significantly higher in both number and concentration in conventional fileds (up to 0.98 mg kg-1) compared to organically managed sites (up to 0.40 mg kg-1). A total of 88 % of conventional fields and 63 % of organic fields contained two or more pesticides. Conversion from conventional to organic farming does not guarantee that soils will be pesticide-free in the short term. Fenbutatin oxide was the most frequently detected pesticide in both farming systems, followed by AMPA. Other substances, such as boscalid, epoxiconazole, diflufenican, tebuconazole, dinoterb, bixafen, and DEET, were found in ≥ 10 % of samples. Some Persistent Organic Pollutants, including dieldrin, endosulfan sulphate, and chlorpyrifos, were also detected. Ecological risks were higher in conventionally managed fields, with 46 % exhibiting high-risk levels, compared to just 1 % in organic fields. Epoxiconazole and boscalid were the substances with the highest risk levels.
Collapse
Affiliation(s)
- Andrés Rodríguez-Seijo
- Section for Soil Science and Agricultural Chemistry, Department of Plant Biology and Soil Science, Faculty of Sciences, University of Vigo, As Lagoas s/n, Ourense 32004, Spain; Institute of Agroecology and Food (IAA), Universidade de Vigo - Campus Auga, Ourense 32004, Spain
| | - Paula Pérez-Rodríguez
- Section for Soil Science and Agricultural Chemistry, Department of Plant Biology and Soil Science, Faculty of Sciences, University of Vigo, As Lagoas s/n, Ourense 32004, Spain; Institute of Agroecology and Food (IAA), Universidade de Vigo - Campus Auga, Ourense 32004, Spain
| | - Manuel Arias-Estévez
- Section for Soil Science and Agricultural Chemistry, Department of Plant Biology and Soil Science, Faculty of Sciences, University of Vigo, As Lagoas s/n, Ourense 32004, Spain; Institute of Agroecology and Food (IAA), Universidade de Vigo - Campus Auga, Ourense 32004, Spain
| | - Antía Gómez-Armesto
- Section for Soil Science and Agricultural Chemistry, Department of Plant Biology and Soil Science, Faculty of Sciences, University of Vigo, As Lagoas s/n, Ourense 32004, Spain; Institute of Agroecology and Food (IAA), Universidade de Vigo - Campus Auga, Ourense 32004, Spain
| | - Manuel Conde-Cid
- Section for Soil Science and Agricultural Chemistry, Department of Plant Biology and Soil Science, Faculty of Sciences, University of Vigo, As Lagoas s/n, Ourense 32004, Spain; Institute of Agroecology and Food (IAA), Universidade de Vigo - Campus Auga, Ourense 32004, Spain.
| | - Vanesa Santás-Miguel
- Section for Soil Science and Agricultural Chemistry, Department of Plant Biology and Soil Science, Faculty of Sciences, University of Vigo, As Lagoas s/n, Ourense 32004, Spain; Institute of Agroecology and Food (IAA), Universidade de Vigo - Campus Auga, Ourense 32004, Spain
| | - Claudia Campillo-Cora
- Section for Soil Science and Agricultural Chemistry, Department of Plant Biology and Soil Science, Faculty of Sciences, University of Vigo, As Lagoas s/n, Ourense 32004, Spain; Institute of Agroecology and Food (IAA), Universidade de Vigo - Campus Auga, Ourense 32004, Spain
| | - Irene Ollio
- Department of Agricultural Engineering, Universidad Politécnica de Cartagena, Paseo Alfonso XIII 48, Cartagena 30203, Spain; Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, Plaza del Hospital s/n, Cartagena 30202, Spain
| | - Eva Lloret
- Department of Agricultural Engineering, Universidad Politécnica de Cartagena, Paseo Alfonso XIII 48, Cartagena 30203, Spain; Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, Plaza del Hospital s/n, Cartagena 30202, Spain
| | - Silvia Martínez-Martínez
- Department of Agricultural Engineering, Universidad Politécnica de Cartagena, Paseo Alfonso XIII 48, Cartagena 30203, Spain
| | - Raúl Zornoza
- Department of Agricultural Engineering, Universidad Politécnica de Cartagena, Paseo Alfonso XIII 48, Cartagena 30203, Spain; Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, Plaza del Hospital s/n, Cartagena 30202, Spain
| | - Lieven Waeyenberge
- ILVO (Flanders Research Institute for Agriculture, Fisheries and Food), Plant Sciences Unit, Burg. Van Gansberghelaan 96, Merelbeke B-9820, Belgium
| | - Stefan Schrader
- Thünen Institute of Biodiversity, Bundesallee 65, Braunschweig D-38116, Germany
| | - Kristian Koefoed Brandt
- Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg DK-1871, Denmark
| | - Kaire Loit
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 5 Fr. R. Kreutzwaldi St., Tartu 51006, Estonia
| | - Marian Põldmets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 5 Fr. R. Kreutzwaldi St., Tartu 51006, Estonia
| | - Merrit Shanskiy
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 5 Fr. R. Kreutzwaldi St., Tartu 51006, Estonia
| | - Krista Peltoniemi
- Natural Resources Institute Finland (Luke), Natural resources, Soil ecosystems, Latokartanonkaari 9, Helsinki FI-00790, Finland
| | - Marleena Hagner
- Natural Resources Institute Finland (Luke), Natural resources, Plant Health, Tietotie 4, Helsinki FI-31600, Finland
| | - David Fernández Calviño
- Section for Soil Science and Agricultural Chemistry, Department of Plant Biology and Soil Science, Faculty of Sciences, University of Vigo, As Lagoas s/n, Ourense 32004, Spain; Institute of Agroecology and Food (IAA), Universidade de Vigo - Campus Auga, Ourense 32004, Spain
| |
Collapse
|
2
|
Chen T, Zhang Y, Wang Y, Liang W, Yan Z, Lu X, Liu X, Zhao C, Xu G. Suspect and nontarget screening of pesticides and their transformation products in agricultural products using liquid chromatography-high-resolution mass spectrometry. Talanta 2025; 283:127154. [PMID: 39515058 DOI: 10.1016/j.talanta.2024.127154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/30/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
Intensive agricultural production involves the extensive use of chemicals, leading to the presence of pesticides and their transformation products (TPs) in agricultural products. Our study developed a high-coverage method to map the occurrence of pesticides and their transformation products in agricultural products using liquid chromatography-high-resolution mass spectrometry (LC-HRMS). Initially, a suspect list of 1265 pesticides was compiled based on in-house standards and online databases to identify potential parent pesticides. Besides, the reported and predicted TPs, as well as the multi-class characteristic fragment ions (CFIs) of pesticides, were summarized. Subsequently, nontarget features were identified by matching with 10226 TPs and 39-classes of CFIs. Both known and unknown parent pesticides and their TPs can be identified via suspect and nontarget screening procedures. Ultimately, the proposed method was applied to strawberry samples to demonstrate its effectiveness. We identified 67 parent pesticides and 57 TPs in 107 samples, with the majority at low concentrations, and preliminary traceability suggesting they may migrate from soil. The findings suggest that our method can enable suspect and nontarget screening of pesticides and their TPs, and it is also applicable to other food matrices. This method may facilitate regulatory agencies in strengthening the supervision of unknown risk substances or TPs, thereby comprehensively safeguarding consumer health.
Collapse
Affiliation(s)
- Tiantian Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yujie Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuting Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenying Liang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zengqi Yan
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Xin Lu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; Liaoning Province Key Laboratory of Metabolomics, Dalian, 116023, China
| | - Xinyu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; Liaoning Province Key Laboratory of Metabolomics, Dalian, 116023, China
| | - Chunxia Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; Liaoning Province Key Laboratory of Metabolomics, Dalian, 116023, China.
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Liaoning Province Key Laboratory of Metabolomics, Dalian, 116023, China.
| |
Collapse
|
3
|
Ma S, Ma L, Lu Y, Zhang J, Xin H, Zhou Y, Feng S, Jin G, Du X, Zhang H, Yin S. Stereoselective In Vitro Metabolism, Hepatotoxicity, and Cytotoxic Effects of Four Enantiomers of the Fungicide Propiconazole. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27775-27786. [PMID: 39654444 DOI: 10.1021/acs.jafc.4c06923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Propiconazole (PRO) is a chiral triazole fungicide that has been widely used for several years. However, its metabolic characteristics and hepatotoxicity in the chiral level environment remain unclear. In this study, the stereoselective behavior of PRO was investigated by using liver microsome incubation, cell viability assay, inhalation exposure, and molecular docking. Our results demonstrated that the isomers trans (-)-2R,4R-PRO and cis (+)-2R,4S-PRO exhibited slower metabolic rates in rat liver microsomes. The cytochrome P450 family 1 subfamily A polypeptide 2 enzyme was found to play a key role in the metabolism of PRO, contributing to its stereoselective behavior. Histopathological and cell viability results showed that exposure to rac-PRO could induce severe hepatotoxicity in mice. This effect might be related to the accumulation of cis (+)-2R,4S-PRO in the liver, which has a slow metabolism and is highly toxic. Our findings indicate that avoiding the application of cis (+)-2R,4S-PRO in agriculture can significantly reduce adverse effects on nontarget organisms.
Collapse
Affiliation(s)
- Siman Ma
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lanfang Ma
- Department of Obstetrics and Gynecology, Guiyang Maternity and Child Health Care Hospital, Guiyang,Guizhou 550003, China
| | - Yanbei Lu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jialin Zhang
- School of Life science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hao Xin
- School of Life science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yuchen Zhou
- School of Pharmacy, Shenyang Medical College, Shenyang 110034, China
| | - Shiwen Feng
- School of Veterinary and Agriculture Sciences, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Ge Jin
- School of Pharmacy, Shenyang Medical College, Shenyang 110034, China
| | - Xinyuan Du
- Pharmaceutical Research Institute, China Shineway Pharmaceutical Group, Beijing 100025, China
| | - Hong Zhang
- School of Life science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Shiliang Yin
- School of Pharmacy, Shenyang Medical College, Shenyang 110034, China
| |
Collapse
|
4
|
Li R, Wu Y, Wen N, Wei W, Zhao W, Li Y, Zhou L, Wang M. Assessing environmental and human health risks: Insight from the enantioselective metabolism and degradation of fenpropidin. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 355:124214. [PMID: 38801883 DOI: 10.1016/j.envpol.2024.124214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Fenpropidin (FPD), a widely employed chiral fungicide, is frequently detected in diverse environments. In an in vitro rat liver microsomes cultivation (RLMs), the metabolism exhibited the order of R-FPD > S-FPD, with respective half-lives of 10.42 ± 0.11 and 12.06 ± 0.15 min, aligning with kinetic analysis results. CYP3A2 has been demonstrated to be the most significant oxidative enzyme through CYP450 enzyme inhibition experiments. Molecular dynamics simulations unveiled the enantioselective metabolic mechanism, demonstrating that R-FPD forms hydrogen bonds with the CYP3A2 protein, resulting in a higher binding affinity (-6.58 kcal mol-1) than S-FPD. Seven new metabolites were identified by Liquid chromatography time-of-flight high-resolution mass spectrometry, which were mainly generated through oxidation, reduction, hydroxylation, and N-dealkylation reactions. The toxicity of the major metabolites predicted by the TEST procedure was found to be stronger than the predicted toxicity of FPD. Moreover, the enantioselective fate of FPD was studied by examining its degradation in three soils with varying physical and chemical properties under aerobic, anaerobic, and sterile conditions. Enantioselective degradation of FPD occurred in soils without enantiomeric transformation, displaying a preference for R-FPD degradation. R-FPD is a low-risk stereoisomer both in the environment and in mammals. The research presented a systematic and comprehensive method for analyzing the metabolic and degradation system of FPD enantiomers. This approach aids in understanding the behavior of FPD in the environment and provides valuable insights into their potential risks to human health.
Collapse
Affiliation(s)
- Rui Li
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Yingying Wu
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Nuanhui Wen
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Wenjie Wei
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Wei Zhao
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Yanhong Li
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Liangliang Zhou
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Minghua Wang
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China.
| |
Collapse
|
5
|
Polat B, Tiryaki O. Herbicide contamination of Batak plain agricultural soils and risk assessment. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2024; 59:203-208. [PMID: 38420997 DOI: 10.1080/03601234.2024.2322900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Herbicide residue levels were analyzed in agricultural soils of Batak plain and health risk assessments were made for relevant pesticides. Herbicide contamination levels were analyzed with the use of Quick-Easy-Cheap-Efficient-Rugged-Safe (QuEChERS)-liquid chromatography/tandem mass spectrometry (LC-MS/MS) procedure. Herbicide-free soil samples were spiked at two different levels. Overall recovery of the method was 87.32%. Present findings were parallel to SANTE recovery limits. About 50% of collected samples from the study sites contained herbicides at different concentrations. Totally, eight herbicides were detected, and herbicide concentrations ranged between 1.085 and 1724.23 μg kg-1. Metolachlor had the highest concentration (1724.23 μg kg-1) in a sample taken close to the pesticide waste disposal area. Six herbicides were detected at different concentrations in the same sample. Persistent herbicides (terbuthylazine and pendimethalin) were detected in 35 samples. Risk assessments revealed that hazard index (HI) and hazard quotient (HQ) were less than 1. The greatest HQ values were identified for terbuthylazine as 2772.48 × 10-7 and 20793.61 × 10-7 for adults and children, respectively. The HI for all herbicides were 3916.05 × 10-7 for adult and 29370.39 × 10-7 for children.
Collapse
Affiliation(s)
- Burak Polat
- Department of Plant Protection, Faculty of Agriculture, Canakkale Onsekiz Mart University, Çanakkale, Turkiye
| | - Osman Tiryaki
- Department of Plant Protection, Faculty of Agriculture, Canakkale Onsekiz Mart University, Çanakkale, Turkiye
| |
Collapse
|
6
|
García-Valverde M, Cortes-Corrales L, Gómez-Ramos MM, Martínez-Bueno MJ, Fernández-Alba AR. Evaluation of chemical contamination of crops produced in greenhouse by irrigation with reclaimed water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169454. [PMID: 38123101 DOI: 10.1016/j.scitotenv.2023.169454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
Using reclaimed water for agricultural irrigation is increasing worldwide to compensate for water scarcity. The aim of this work was to evaluate the uptake of some of the most commonly detected organic contaminants of emerging concern (CECs) and pesticides in regenerated water in a field study. Furthermore, it was studied their distribution and accumulation in the different parts of a crop (soil, plant and fruit). Three crops (cucumber, pepper and melon) were grown under controlled agronomic conditions in a greenhouse. In order to make an accurate evaluation of the process, "regenerated blank water" was spiked with 70 chemicals (including antibiotics, anti-inflammatories, analgesics, anaesthetics, anxiolytics, anticonvulsants, pesticides) at environmental concentrations (∼1 μg/L) and used for continuous crop irrigation. After crop season, the average total concentration of contaminants detected in the soil samples ranged from 132 to 232 μg/kg d.w depending of the crops type. Between 7 and 10 different contaminants were found in the harvested fruits, up to levels of 27.8 μg/kg f.w. cucumber, 12.4 μg/kg f.w. melon and 7.8 μg/kg f.w pepper. In general, cucumber fruit showed higher accumulation levels of contaminants than pepper and melon for most target analytes. The accumulation rates followed the order: root (0.2 %) < stem/leaf (1-4 %) < fruit (1-6 %) < soil (17-30 %). The experimental data obtained in this study were also used to assess the risk associated with the reuse of reclaimed water for crop irrigation as well to identify those contaminants that, due to their physicochemical properties, show higher accumulation rates and environmental impact.
Collapse
Affiliation(s)
- M García-Valverde
- University of Almería, Department of Physics and Chemistry, Agrifood Campus of International Excellence (ceiA3), Ctra. Sacramento s/n, La Cañada de San Urbano, 04120 Almería, Spain
| | - L Cortes-Corrales
- University of Almería, Department of Physics and Chemistry, Agrifood Campus of International Excellence (ceiA3), Ctra. Sacramento s/n, La Cañada de San Urbano, 04120 Almería, Spain
| | - M M Gómez-Ramos
- University of Almería, Department of Physics and Chemistry, Agrifood Campus of International Excellence (ceiA3), Ctra. Sacramento s/n, La Cañada de San Urbano, 04120 Almería, Spain
| | - M J Martínez-Bueno
- University of Almería, Department of Physics and Chemistry, Agrifood Campus of International Excellence (ceiA3), Ctra. Sacramento s/n, La Cañada de San Urbano, 04120 Almería, Spain.
| | - A R Fernández-Alba
- University of Almería, Department of Physics and Chemistry, Agrifood Campus of International Excellence (ceiA3), Ctra. Sacramento s/n, La Cañada de San Urbano, 04120 Almería, Spain
| |
Collapse
|
7
|
Mahdavi V, Solhi Heris ME, Mehri F, Atamaleki A, Moridi Farimani M, Mahmudiono T, Fakhri Y. Concentration and non-dietary human health risk assessment of pesticide residues in soil of farms in Golestan province, Iran. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:968-978. [PMID: 36966491 DOI: 10.1080/09603123.2023.2194611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
Detection of pesticide residues in soil samples was conducted using UHPLC-MS/MS. Non-dietary health risk assessment was conducted using calculate chronic daily intake (CDI) from ingestion, inhalation and dermal contact pathways and following non-carcinogenic and carcinogenic risks in the adults and adolescent. The rank order of pesticide in soil based on their concentration was malathion (0.082 mg kg-1)> cyproconazole (0.019 mg kg-1)> propargite (0.018 mg kg-1)> butachlor (0.016 mg kg-1) > chlorpyrifos (0.0067 mg kg-1)> diazinon (0.0014 mg kg-1)> imidacloprid (0.0007 mg kg-1). Hazard index (HI) values obtained of exposure to pesticides in soil in adults and adolescent were 0.0012 and 0.0035, respectively. Hence, exposed population are at the acceptable range of non-carcinogenic risk (HI < 1). Cancer risk (CR) values due to propargite in soil via ingestion pathway in adults and adolescent were 2.03E-09 and 2.08E-09, respectively; therefore, carcinogenic risk due to the exposure to pesticide contaminated soil was safe range (CR < 1E-06).
Collapse
Affiliation(s)
- Vahideh Mahdavi
- Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
| | - Mir-Ebrahim Solhi Heris
- Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Fereshteh Mehri
- Nutrition Health Research Center, Center of Excellence for Occupational Health, Research Center for Health Sciences, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Atamaleki
- Department of Environmental Health Engineering, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mahdi Moridi Farimani
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Trias Mahmudiono
- Department of Nutrition, Faculty of Public Health, Universitas Airlangga, Surabaya, Indonesia
| | - Yadolah Fakhri
- Food Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
8
|
Ibrahim EA, Shalaby SE. Monitoring and accumulative risk assessment of pesticide residues detected in the common vegetables grown in the Eastern Nile Delta, Egypt. FOOD CHEMISTRY ADVANCES 2023; 3:100518. [DOI: 10.1016/j.focha.2023.100518] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
|
9
|
Wang F, Li X, Jiang S, Han J, Wu J, Yan M, Yao Z. Enantioselective Behaviors of Chiral Pesticides and Enantiomeric Signatures in Foods and the Environment. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12372-12389. [PMID: 37565661 DOI: 10.1021/acs.jafc.3c02564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Unreasonable application of pesticides may result in residues in the environment and foods. Chiral pesticides consist of two or more enantiomers, which may exhibit different behaviors. This Review intends to provide progress on the enantioselective residues of chiral pesticides in foods. Among the main chiral analytical methods, high performance liquid chromatography (HPLC) is the most frequently utilized. Most chiral pesticides are utilized as racemates; however, due to enantioselective dissipation, bioaccumulation, biodegradation, and chiral conversion, enantiospecific residues have been found in the environment and foods. Some chiral pesticides exhibit strong enantioselectivity, highlighting the importance of evaluation on an enantiomeric level. However, the occurrence characteristics of chiral pesticides in foods and specific enzymes or transport proteins involved in enantioselectivity needs to be further investigated. This Review could help the production of some chiral pesticides to single-enantiomer formulations, thereby reducing pesticide consumption as well as increasing food production and finally reducing human health risks.
Collapse
Affiliation(s)
- Fang Wang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Xiaoyun Li
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Shanxue Jiang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Jiajun Han
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Junxue Wu
- Institute of Plant and Environmental Protection, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
| | - Meilin Yan
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Zhiliang Yao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
10
|
Al-Mhyawi SR, Abdel-Hamied Abdel-Tawab M, El Nashar RM. A novel electrochemical hybrid platform for sensitive determination of the aminoglycoside antibiotic Kasugamycin residues in vegetables. Food Chem 2023; 411:135506. [PMID: 36682169 DOI: 10.1016/j.foodchem.2023.135506] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/11/2023] [Accepted: 01/15/2023] [Indexed: 01/19/2023]
Abstract
Kasugamycin residues (KASU), a pest control antibiotic, was reported as an ecosystem threat owing to its over-application in plant protection to meet the growing global need for agronomic products. Therefore, we report herein the first electrochemical sensor for fast and sensitive analysis of KASU in vegetables based on the synergetic hybridization between conducting polyserine film (poly (SER)), and carbon nanomaterials including functionalized multiwalled carbon nanotubes (fMWCNTs) and reduced graphene oxide (rGO). The sensor was characterized morphologically using Scanning electron (SEM) and atomic force Microscopy (AFM), while cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used for electrochemical characterization. Under the optimized conditions using differential pulse voltammetry (DPV), the sensor exhibited an outstanding sensitivity and selectivity, with a good linear response of 3-106 µg/mL and an assessed limit of detection and quantification of 0.40 and 1.33 µg/mL, respectively. Furthermore, the electrochemical sensor was effectively applied to quantify KASU in cucumber, zucchini, and carrots with a recovery range 95.5-100.1%, and RSD lower than 4.1% (n = 3), showing its applicability and efficiency for selective analysis of KASU in foodstuffs.
Collapse
Affiliation(s)
- Saedah R Al-Mhyawi
- Department of Chemistry, College of Science, University of Jeddah, Jeddah 22233, Saudi Arabia
| | | | - Rasha M El Nashar
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt.
| |
Collapse
|