1
|
Zhu Y, Xu J, Wang G, Xiao F, Zhang M, Zeng Q, Xu J. Integrated Metabolome and Transcriptome Analyses Provides Insights into Ovule Abortion in Camellia oleifera. PLANTS (BASEL, SWITZERLAND) 2025; 14:613. [PMID: 40006872 PMCID: PMC11859457 DOI: 10.3390/plants14040613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/25/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025]
Abstract
Camellia oleifera is a unique woody edible oil tree species in China, and the ovule development affects the yield of seeds. This study selected three different types of C. oleifera clones and used LC-MS, RNA-seq, and other techniques to compare the endogenous hormone contents, gene expression levels, and metabolite changes between normal and aborted ovules. The results showed that high levels of ABA, JA, and SA may lead to the phenotype of ovule abortion. A total of 270 differential metabolites were identified in the metabolome, with L-methionine, citrulline, L-tryptophan, L-phenylalanine, and indolepyruvate being downregulated to varying degrees in the aborted ovules. Genes involved in plant hormone synthesis and response, such as GH3.1, IAA14, PIN1, AUX22, ARF1_2, BZR1_2, GA2ox, ERFC3, ABF2, and PYL8, responded to ovule development. This study elucidates the physiological, metabolic, and transcriptional responses to ovule abortion, providing a theoretical basis for understanding ovule development and yield regulation in C. oleifera.
Collapse
Affiliation(s)
- Yayan Zhu
- Guizhou Academy of Forestry, Guiyang 550005, China; (Y.Z.)
| | - Jiajuan Xu
- Guizhou Academy of Forestry, Guiyang 550005, China; (Y.Z.)
| | - Gang Wang
- Guizhou Academy of Forestry, Guiyang 550005, China; (Y.Z.)
| | - Feng Xiao
- Institute for Forest Resources and Environment of Guizhou, Guizhou University, Guiyang 550025, China
| | - Minggang Zhang
- Guizhou Academy of Forestry, Guiyang 550005, China; (Y.Z.)
| | - Qinmeng Zeng
- Guizhou Academy of Forestry, Guiyang 550005, China; (Y.Z.)
| | - Jie Xu
- Guizhou Academy of Forestry, Guiyang 550005, China; (Y.Z.)
| |
Collapse
|
2
|
Acharya BR, Gill SP, Kaundal A, Sandhu D. Strategies for combating plant salinity stress: the potential of plant growth-promoting microorganisms. FRONTIERS IN PLANT SCIENCE 2024; 15:1406913. [PMID: 39077513 PMCID: PMC11284086 DOI: 10.3389/fpls.2024.1406913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/24/2024] [Indexed: 07/31/2024]
Abstract
Global climate change and the decreasing availability of high-quality water lead to an increase in the salinization of agricultural lands. This rising salinity represents a significant abiotic stressor that detrimentally influences plant physiology and gene expression. Consequently, critical processes such as seed germination, growth, development, and yield are adversely affected. Salinity severely impacts crop yields, given that many crop plants are sensitive to salt stress. Plant growth-promoting microorganisms (PGPMs) in the rhizosphere or the rhizoplane of plants are considered the "second genome" of plants as they contribute significantly to improving the plant growth and fitness of plants under normal conditions and when plants are under stress such as salinity. PGPMs are crucial in assisting plants to navigate the harsh conditions imposed by salt stress. By enhancing water and nutrient absorption, which is often hampered by high salinity, these microorganisms significantly improve plant resilience. They bolster the plant's defenses by increasing the production of osmoprotectants and antioxidants, mitigating salt-induced damage. Furthermore, PGPMs supply growth-promoting hormones like auxins and gibberellins and reduce levels of the stress hormone ethylene, fostering healthier plant growth. Importantly, they activate genes responsible for maintaining ion balance, a vital aspect of plant survival in saline environments. This review underscores the multifaceted roles of PGPMs in supporting plant life under salt stress, highlighting their value for agriculture in salt-affected areas and their potential impact on global food security.
Collapse
Affiliation(s)
- Biswa R. Acharya
- US Salinity Laboratory, USDA-ARS, Riverside, CA, United States
- College of Natural and Agricultural Sciences, University of California Riverside, Riverside, CA, United States
| | - Satwinder Pal Gill
- Plants, Soils, and Climate, College of Agricultural and Applied Sciences, Utah State University, Logan, UT, United States
| | - Amita Kaundal
- Plants, Soils, and Climate, College of Agricultural and Applied Sciences, Utah State University, Logan, UT, United States
| | - Devinder Sandhu
- US Salinity Laboratory, USDA-ARS, Riverside, CA, United States
| |
Collapse
|
3
|
Wu K, Wang L, Wu Z, Liu Z, Li Z, Shen J, Shi S, Liu H, Rensing C, Feng R. Selenite reduced cadmium uptake, interfered signal transduction of endogenous phytohormones, and stimulated secretion of tartaric acid based on a combined analysis of non-invasive micro-test technique, transcriptome and metabolome. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108107. [PMID: 38029613 DOI: 10.1016/j.plaphy.2023.108107] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023]
Abstract
Selenium (Se) can reduce uptake and translocation of cadmium (Cd) in plants via plenty of ways, including regulation of root morphology. However, the underlying mechanisms on how Se will regulate root morphology under metal(loid) stresses are not fully illustrated. To fill up this knowledge gap, we investigated the effects of 0.5 mg L-1 selenite (Se(IV)) on root exudates, root morphology, root endogenous hormones, and Cd uptake efficiency of rice under the 1 mg L-1 Cd stress condition. The results showed that Se(IV) significantly reduced shoot and root Cd concentrations, and decreased Cd uptake efficiency via root hairs determined by a non-invasive micro-test (NMT) technology. When compared to the 1 mg L-1 Cd (Cd1) treatment, addition of 0.5 mg L-1 Se(IV) (1) significantly reduced root surface area and tip numbers, and non-significantly reduced root length, but significantly enhanced root diameter and root volume; (2) significantly enhanced concentrations of tartaric acid in the root exudate solution, root auxin (IAA) and root jasmonic acid (JA) via a UHPLC or a HPLC analysis; (3) significantly up-regulated metabolites correlated with synthesis of IAA, JA, gibberellin (GA), and salicylic acid, such as GA53, M-SA, (+/-)7-epi-JA, and derivatives of tryptophan and indole in the metabolome analysis. However, results of transcriptome analysis showed that (1) no upregulated differentially expressed genes (DEGs) were enriched in IAA synthesis; (2) some upregulated DEGs were found to be enriched in JA and GA53 synthesis pathways. In summary, although Se(IV) stimulated the synthesis of IAA, JA, and GA53, it significantly inhibited root growth mainly by 1) affecting signal transduction of IAA and GA; 2) altering IAA polar transport and homeostasis; and 3) regulating DEGs including SAUR32, SAUR36, SAUR76, OsSub33, OsEXPA8, OsEXPA18, and Os6bglu24.
Collapse
Affiliation(s)
- KongYuan Wu
- Institute of Environmental Microbiology, College of Resources and Environment, Fuzhou, 350002, China
| | - LiZhen Wang
- Institute of Environmental Microbiology, College of Resources and Environment, Fuzhou, 350002, China
| | - ZiHan Wu
- Institute of Environmental Microbiology, College of Resources and Environment, Fuzhou, 350002, China
| | - ZiQing Liu
- Institute of Environmental Microbiology, College of Resources and Environment, Fuzhou, 350002, China
| | - ZengFei Li
- Institute of Environmental Microbiology, College of Resources and Environment, Fuzhou, 350002, China
| | - Jun Shen
- Institute of Environmental Microbiology, College of Resources and Environment, Fuzhou, 350002, China
| | - ShengJie Shi
- Institute of Environmental Microbiology, College of Resources and Environment, Fuzhou, 350002, China
| | - Hong Liu
- Institute of Environmental Microbiology, College of Resources and Environment, Fuzhou, 350002, China.
| | - Christopher Rensing
- Institute of Environmental Microbiology, College of Resources and Environment, Fuzhou, 350002, China
| | - Renwei Feng
- Institute of Environmental Microbiology, College of Resources and Environment, Fuzhou, 350002, China.
| |
Collapse
|
4
|
Matse DT, Jeyakumar P, Bishop P, Anderson CWN. Nitrification rate in dairy cattle urine patches can be inhibited by changing soil bioavailable Cu concentration. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 320:121107. [PMID: 36669716 DOI: 10.1016/j.envpol.2023.121107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/10/2023] [Accepted: 01/16/2023] [Indexed: 06/17/2023]
Abstract
Ammonia oxidation to hydroxylamine is catalyzed by the ammonia monooxygenase enzyme and copper (Cu) is a key element for this process. We investigated the effect of soil bioavailable Cu changes induced through the application of Cu-complexing compounds on nitrification rate, ammonia-oxidizing bacteria (AOB) and archaea (AOA) amoA gene abundance, and mineral nitrogen (N) leaching in urine patches using the Manawatu Recent soil. Further, evaluated the combination of organic compound calcium lignosulphonate (LS) with a growth stimulant Gibberellic acid (GA). Treatments were applied in May 2021 as late-autumn treatments: control (no urine), urine-only at 600 kg N ha-1, urine + dicyandiamide (DCD), urine + co-poly-acrylic-maleic acid (PA-MA), urine + LS, urine + split-application of LS (2LS), and urine + combination of GA plus LS (GA + LS). In addition, another four treatments were applied in July 2021 as mid-winter treatments: control, urine-only at 600 kg N ha-1, urine + GA, and urine + GA + LS. Soil bioavailable Cu and mineral N leaching were examined during the experimental period. The AOB/AOA amoA genes were quantified using quantitative polymerase chain reaction. Changes in soil bioavailable Cu across treatments correlated with nitrification rate and AOB amoA abundance in late-autumn while the AOA amoA abundance did not change. The reduction in soil bioavailable Cu induced by the PA-MA and 2LS was linked to significant (P < 0.05) reduction in mineral N leaching of 16 and 30%, respectively, relative to the urine-only. The LS did not induce a significant effect on either bioavailable Cu or mineral N leaching relative to urine-only. The GA + LS reduced mineral N leaching by 10% relative to LS in late-autumn, however, there was no significant effect in mid-winter. This study demonstrated that reducing soil bioavailable Cu can be a potential strategy to reduce N leaching from urine patches.
Collapse
Affiliation(s)
- Dumsane Themba Matse
- Environmental Sciences Group, School of Agriculture and Environment, Massey University, Private Bag 11 222, Palmerston North, 4442, New Zealand
| | - Paramsothy Jeyakumar
- Environmental Sciences Group, School of Agriculture and Environment, Massey University, Private Bag 11 222, Palmerston North, 4442, New Zealand.
| | - Peter Bishop
- Environmental Sciences Group, School of Agriculture and Environment, Massey University, Private Bag 11 222, Palmerston North, 4442, New Zealand
| | - Christopher W N Anderson
- Environmental Sciences Group, School of Agriculture and Environment, Massey University, Private Bag 11 222, Palmerston North, 4442, New Zealand
| |
Collapse
|
5
|
Zhao DD, Jang YH, Kim EG, Park JR, Jan R, Lubna, Asaf S, Asif S, Farooq M, Chung H, Kang DJ, Kim KM. Identification of a Major Locus for Lodging Resistance to Typhoons Using QTL Analysis in Rice. PLANTS (BASEL, SWITZERLAND) 2023; 12:449. [PMID: 36771534 PMCID: PMC9919122 DOI: 10.3390/plants12030449] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/06/2023] [Accepted: 01/16/2023] [Indexed: 09/10/2023]
Abstract
We detected a new target quantitative trait locus (QTL) for lodging resistance in rice by analyzing lodging resistance to typhoons (Maysak and Haishen) using a scale from 0 (no prostrating) to 1 (little prostrating or prostrating) to record the resistance score in a Cheongcheong/Nagdong double haploid rice population. Five quantitative trait loci for lodging resistance to typhoons were detected. Among them, qTyM6 and qTyH6 exhibited crucial effects of locus RM3343-RM20318 on chromosome 6, which overlaps with our previous rice lodging studies for the loci qPSLSA6-2, qPSLSB6-5, and qLTI6-2. Within the target locus RM3343-RM20318, 12 related genes belonging to the cytochrome P450 protein family were screened through annotation. Os06g0599200 (OsTyM/Hq6) was selected for further analysis. We observed that the culm and panicle lengths were positively correlated with lodging resistance to typhoons. However, the yield was negatively correlated with lodging resistance to typhoons. The findings of this study improve an understanding of rice breeding, particularly the culm length, early maturing, and heavy panicle varieties, and the mechanisms by which the plant's architecture can resist natural disasters such as typhoons to ensure food safety. These results also provide the insight that lodging resistance in rice may be associated with major traits such as panicle length, culm length, tiller number, and heading date, and thereby improvements in these traits can increase lodging resistance to typhoons. Moreover, rice breeding should focus on maintaining suitable varieties that can withstand the adverse effects of climate change in the future and provide better food security.
Collapse
Affiliation(s)
- Dan-Dan Zhao
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
- Crop Foundation Research Division, National Institute of Crop Science, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Yoon-Hee Jang
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Eun-Gyeong Kim
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jae-Ryoung Park
- Crop Breeding Division, National Institute of Crop Science, Rural Development Administration, Wanju 55365, Republic of Korea
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Rahmatullah Jan
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Lubna
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman
| | - Sajjad Asaf
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman
| | - Saleem Asif
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Muhammad Farooq
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hyunjung Chung
- Crop Foundation Research Division, National Institute of Crop Science, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Dong-Jin Kang
- Teaching and Research Center for Bio-Coexistence, Faculty of Agriculture and Life Science, Hirosaki University, Gosyogawara 037-0202, Japan
| | - Kyung-Min Kim
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
6
|
Martínková J, Motyka V, Bitomský M, Adamec L, Dobrev PI, Filartiga A, Filepová R, Gaudinová A, Lacek J, Klimešová J. What determines root-sprouting ability: Injury or phytohormones? AMERICAN JOURNAL OF BOTANY 2023; 110:e16102. [PMID: 36371783 DOI: 10.1002/ajb2.16102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
PREMISE Root-sprouting (RS) is an evolutionarily independent alternative to axillary stem branching for a plant to attain its architecture. Root-sprouting plants are better adapted to disturbance than non-RS plants, and their vigor is frequently boosted by biomass removal. Nevertheless, RS plants are rarer than plants that are not root-sprouters, possibly because they must overcome developmental barriers such as intrinsic phytohormonal balance or because RS ability is conditioned by injury to the plant body. The objective of this study was to identify whether phytohormones or injury enable RS. METHODS In a greenhouse experiment, growth variables, root respiration, and phytohormones were analyzed in two closely related clonal herbs that differ in RS ability (spontaneously RS Inula britannica and rhizomatous non-RS I. salicina) with and without severe biomass removal. RESULTS As previously reported, I. britannica is a root-sprouter, but injury did not boost its RS ability. Root respiration did not differ between the two species and decreased continuously with time irrespectively of injury, but their phytohormone profiles differed significantly. In RS species, the auxins-to-cytokinins ratio was low, and injury further decreased it. CONCLUSIONS This first attempt to test drivers behind different plant growth forms suggests that intrinsic phytohormone regulation, especially the auxins-to-cytokinins ratio, might be behind RS ability. Injury, causing a phytohormonal imbalance, seems to be less important in spontaneously RS species than expected for RS species in general.
Collapse
Affiliation(s)
- Jana Martínková
- Department of Experimental and Functional Morphology, Institute of Botany of the Czech Academy of Sciences, Dukelská 135, CZ-379 82, Třeboň, Czech Republic
| | - Václav Motyka
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02 Prague 6, Czech Republic
| | - Martin Bitomský
- Department of Experimental and Functional Morphology, Institute of Botany of the Czech Academy of Sciences, Dukelská 135, CZ-379 82, Třeboň, Czech Republic
- Department of Ecology and Environmental Sciences, Palacký University, Šlechtitelů 241/27, CZ-783 71, Olomouc, Czech Republic
| | - Lubomír Adamec
- Department of Experimental and Functional Morphology, Institute of Botany of the Czech Academy of Sciences, Dukelská 135, CZ-379 82, Třeboň, Czech Republic
| | - Peter I Dobrev
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02 Prague 6, Czech Republic
| | - Arinawa Filartiga
- Department of Experimental and Functional Morphology, Institute of Botany of the Czech Academy of Sciences, Dukelská 135, CZ-379 82, Třeboň, Czech Republic
| | - Roberta Filepová
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02 Prague 6, Czech Republic
| | - Alena Gaudinová
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02 Prague 6, Czech Republic
| | - Jozef Lacek
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02 Prague 6, Czech Republic
| | - Jitka Klimešová
- Department of Experimental and Functional Morphology, Institute of Botany of the Czech Academy of Sciences, Dukelská 135, CZ-379 82, Třeboň, Czech Republic
- Department of Botany, Faculty of Science, Charles University, Benátská 2, CZ-128 01 Praha 2, Czech Republic
| |
Collapse
|
7
|
Yang Y, Kong Q, Lim ARQ, Lu S, Zhao H, Guo L, Yuan L, Ma W. Transcriptional regulation of oil biosynthesis in seed plants: Current understanding, applications, and perspectives. PLANT COMMUNICATIONS 2022; 3:100328. [PMID: 35605194 PMCID: PMC9482985 DOI: 10.1016/j.xplc.2022.100328] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/28/2022] [Accepted: 04/14/2022] [Indexed: 05/11/2023]
Abstract
Plants produce and accumulate triacylglycerol (TAG) in their seeds as an energy reservoir to support the processes of seed germination and seedling development. Plant seed oils are vital not only for the human diet but also as renewable feedstocks for industrial use. TAG biosynthesis consists of two major steps: de novo fatty acid biosynthesis in the plastids and TAG assembly in the endoplasmic reticulum. The latest advances in unraveling transcriptional regulation have shed light on the molecular mechanisms of plant oil biosynthesis. We summarize recent progress in understanding the regulatory mechanisms of well-characterized and newly discovered transcription factors and other types of regulators that control plant fatty acid biosynthesis. The emerging picture shows that plant oil biosynthesis responds to developmental and environmental cues that stimulate a network of interacting transcriptional activators and repressors, which in turn fine-tune the spatiotemporal regulation of the pathway genes.
Collapse
Affiliation(s)
- Yuzhou Yang
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Que Kong
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Audrey R Q Lim
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Shaoping Lu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Hu Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China.
| | - Ling Yuan
- Department of Plant and Soil Sciences, Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY 40546, USA; Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| | - Wei Ma
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore.
| |
Collapse
|
8
|
Gao F, Yang L, Chen AJ, Zhou WH, Chen DZ, Chen JM. Promoting effect of plant hormone gibberellin on co-metabolism of sulfamethoxazole by microalgae Chlorella pyrenoidosa. BIORESOURCE TECHNOLOGY 2022; 351:126900. [PMID: 35217156 DOI: 10.1016/j.biortech.2022.126900] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
In this study, sodium acetate (NaAC) as a co-substrate effectively promoted the metabolism of sulfamethoxazole (SMX) by microalgae Chlorella pyrenoidosa. In the cultivation supplied with 5.0 and 10.0 g L-1 NaAC, 51.1% and 61.2% SMX was removed, respectively. On this basis, the improvement effect of plant hormone gibberellin (GA3) on SMX removal by 5 g L-1 NaAC supplied as co-substrate was further investigated. The results showed that biodegradation played decisive role in the removal of SMX. As a plant hormone, GA3 effectively improved the co-metabolic removal efficiency of SMX by C. pyrenoidosa. Especially when GA3 dosage reached 10.0 and 50.0 mg L-1, C. pyrenoidosa showed a very high SMX removal rate of 83.5% and 95.3%, respectively. Transcriptome analysis showed that GA3 promoted the removal of SMX by C. pyrenoidosa was the result of the combined action of exogenous and endogenous plant hormones.
Collapse
Affiliation(s)
- Feng Gao
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan, 316000, China.
| | - Lei Yang
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan, 316000, China
| | - Ai-Jie Chen
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan, 316000, China
| | - Wang-Hao Zhou
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan, 316000, China
| | - Dong-Zhi Chen
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan, 316000, China
| | - Jian-Meng Chen
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan, 316000, China; College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
9
|
Dong W, Wu D, Wang C, Liu Y, Wu D. Characterization of the molecular mechanism underlying the dwarfism of dsh mutant watermelon plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 313:111074. [PMID: 34763866 DOI: 10.1016/j.plantsci.2021.111074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
Developing dwarf watermelon is a major objective among breeders. The dsh dwarf watermelon germplasm developed in our laboratory is genetically stable. We previously produced preliminary evidence that Cla010726, which encodes a gibberellin 20-oxidase-like protein, is the primary gene controlling dwarfism in watermelon. However, the underlying genetic mechanism was unknown. In this study, we characterized the spontaneous recessive mutant dsh, which is a gibberellin (GA)-deficient mutant. Many of the phenotypic traits of dsh plants are similar to those of known GA-deficient mutants. The dsh plants were sensitive to exogenous bioactive GAs, which increased seedling height. Moreover, a quantitative analysis of endogenous GA3 proved that the bioactive GA3 content was substantially lower than normal in dsh. Additionally, the T5ClaGA20ox RNAi plants generally exhibited dwarfism, with short stems and internodes as well as small leaves and fruit. An examination of the transgenic plants carrying the ClaGA20ox1 promoter-GUS and mutant ClaGA20ox2 promoter-GUS constructs confirmed that two promoter sites are involved in the regulation of ClaGA20ox expression. Hence, mutations in the promoter of the GA20ox gene, which encodes a key enzyme involved in gibberellin biosynthesis, lead to the dwarfism of watermelon plants. The dsh mutant is a potentially useful germplasm resource for developing new watermelon varieties exhibiting dwarfism.
Collapse
Affiliation(s)
- Wei Dong
- School of Life Science, Henan University, Kaifeng, Henan, 475004, People's Republic of China
| | - Dewei Wu
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China
| | - Caihui Wang
- School of Life Science, Henan University, Kaifeng, Henan, 475004, People's Republic of China
| | - Ying Liu
- School of Life Science, Henan University, Kaifeng, Henan, 475004, People's Republic of China
| | - Defeng Wu
- School of Life Science, Henan University, Kaifeng, Henan, 475004, People's Republic of China.
| |
Collapse
|
10
|
Wang H, Zhang S, Qu Y, Gao R, Xiao Y, Wang Z, Zhai R, Yang C, Xu L. Jasmonic Acid and Ethylene Participate in the Gibberellin-Induced Ovule Programmed Cell Death Process in Seedless Pear '1913' ( Pyrus hybrid). Int J Mol Sci 2021; 22:ijms22189844. [PMID: 34576007 PMCID: PMC8466629 DOI: 10.3390/ijms22189844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/26/2021] [Accepted: 09/08/2021] [Indexed: 11/16/2022] Open
Abstract
Seedless fruit is a feature appreciated by consumers. The ovule abortion process is highly orchestrated and controlled by numerous environmental and endogenous signals. However, the mechanisms underlying ovule abortion in pear remain obscure. Here, we found that gibberellins (GAs) have diverse functions during ovules development between seedless pear '1913' and seeded pear, and that GA4+7 activates a potential programmed cell death process in '1913' ovules. After hormone analyses, strong correlations were determined among jasmonic acid (JA), ethylene and salicylic acid (SA) in seedless and seeded cultivars, and GA4+7 treatments altered the hormone accumulation levels in ovules, resulting in significant correlations between GA and both JA and ethylene. Additionally, SA contributed to ovule abortion in '1913'. Exogenously supplying JA, SA or the ethylene precursor 1-aminocyclopropane-1-carboxylic acid promoted 'Bartlett' seed death. The regulatory mechanism in which ethylene controls ovule death has been demonstrated; therefore, JA's role in regulating '1913' ovule abortion was investigated. A further study identified that the JA signaling receptor MYC2 bound the SENESCENCE-ASSOCIATED 39 promoter and triggered its expression to regulate ovule abortion. Thus, we established ovule abortion-related relationships between GA and the hormones JA, ethylene and SA, and we determined their synergistic functions in regulating ovule death.
Collapse
Affiliation(s)
- Huibin Wang
- College of Horticulture, Northwest A&F University, Taicheng Road. 3, Yangling, Xianyang 712100, China; (H.W.); (S.Z.); (Y.Q.); (R.G.); (Y.X.); (R.Z.); (C.Y.)
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Taicheng Road, Yangling, Xianyang 712100, China
| | - Shichao Zhang
- College of Horticulture, Northwest A&F University, Taicheng Road. 3, Yangling, Xianyang 712100, China; (H.W.); (S.Z.); (Y.Q.); (R.G.); (Y.X.); (R.Z.); (C.Y.)
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Taicheng Road, Yangling, Xianyang 712100, China
| | - Yingying Qu
- College of Horticulture, Northwest A&F University, Taicheng Road. 3, Yangling, Xianyang 712100, China; (H.W.); (S.Z.); (Y.Q.); (R.G.); (Y.X.); (R.Z.); (C.Y.)
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Taicheng Road, Yangling, Xianyang 712100, China
| | - Rui Gao
- College of Horticulture, Northwest A&F University, Taicheng Road. 3, Yangling, Xianyang 712100, China; (H.W.); (S.Z.); (Y.Q.); (R.G.); (Y.X.); (R.Z.); (C.Y.)
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Taicheng Road, Yangling, Xianyang 712100, China
| | - Yuxiong Xiao
- College of Horticulture, Northwest A&F University, Taicheng Road. 3, Yangling, Xianyang 712100, China; (H.W.); (S.Z.); (Y.Q.); (R.G.); (Y.X.); (R.Z.); (C.Y.)
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Taicheng Road, Yangling, Xianyang 712100, China
| | - Zhigang Wang
- College of Horticulture, Northwest A&F University, Taicheng Road. 3, Yangling, Xianyang 712100, China; (H.W.); (S.Z.); (Y.Q.); (R.G.); (Y.X.); (R.Z.); (C.Y.)
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Taicheng Road, Yangling, Xianyang 712100, China
- Correspondence: (Z.W.); (L.X.); Tel.: +86-29-8708-1023 (L.X.); Fax: +86-29-8708-2613 (L.X.)
| | - Rui Zhai
- College of Horticulture, Northwest A&F University, Taicheng Road. 3, Yangling, Xianyang 712100, China; (H.W.); (S.Z.); (Y.Q.); (R.G.); (Y.X.); (R.Z.); (C.Y.)
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Taicheng Road, Yangling, Xianyang 712100, China
| | - Chengquan Yang
- College of Horticulture, Northwest A&F University, Taicheng Road. 3, Yangling, Xianyang 712100, China; (H.W.); (S.Z.); (Y.Q.); (R.G.); (Y.X.); (R.Z.); (C.Y.)
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Taicheng Road, Yangling, Xianyang 712100, China
| | - Lingfei Xu
- College of Horticulture, Northwest A&F University, Taicheng Road. 3, Yangling, Xianyang 712100, China; (H.W.); (S.Z.); (Y.Q.); (R.G.); (Y.X.); (R.Z.); (C.Y.)
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Taicheng Road, Yangling, Xianyang 712100, China
- Correspondence: (Z.W.); (L.X.); Tel.: +86-29-8708-1023 (L.X.); Fax: +86-29-8708-2613 (L.X.)
| |
Collapse
|
11
|
Liu Y, Wen J, Ke X, Zhang J, Sun X, Wang C, Yang Y. Gibberellin inhibition of taproot formation by modulation of DELLA-NAC complex activity in turnip (Brassica rapa var. rapa). PROTOPLASMA 2021; 258:925-934. [PMID: 33759028 DOI: 10.1007/s00709-021-01609-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
Turnip is a member of the Brassica rapa species and is characterized by a swollen taproot that develops from the hypocotyl and part of the root. Gibberellins (GAs) are plant growth regulators involved in promoting cell elongation and play important roles in many aspects of plant growth and development. Interestingly, exogenous application of GA3 was found to significantly inhibit taproot formation in turnip. Moreover, endogenous GA contents decreased during the early developmental stages of taproot formation, suggesting that GA plays a negative role in taproot formation. We examined the anatomical structure of the taproot and found that lignification of the xylem cell wall was enhanced after treatment with GA3. Yeast two-hybrid assays suggested the occurrence of protein interactions between DELLAs and NACs in turnip. We also found that the expression of NAC-targeted genes involved in lignification of the secondary cell wall was significantly upregulated upon GA3 treatment. Taken together, these results supported the hypothesis that GA induced DELLA proteins degradation to release NAC proteins and induced xylem lignification, therefore inhibiting taproot formation, providing new insight into the molecular mechanism underlying turnip taproot formation.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201, China
- Plant Germplasm and Genomics Center, the Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Wen
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201, China
- Plant Germplasm and Genomics Center, the Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaochun Ke
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201, China
- Plant Germplasm and Genomics Center, the Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Jie Zhang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201, China
- Plant Germplasm and Genomics Center, the Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xudong Sun
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201, China
- Plant Germplasm and Genomics Center, the Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Chuntao Wang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201, China.
- Plant Germplasm and Genomics Center, the Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
- Yuxi Normal University, Yuxi, 653100, China.
| | - Yongping Yang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201, China.
- Plant Germplasm and Genomics Center, the Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|
12
|
Xu C, Feng S, Yu Y, Zhang Y, Wei S. Near-Null Magnetic Field Suppresses Fruit Growth in Arabidopsis. Bioelectromagnetics 2021; 42:593-602. [PMID: 34289513 DOI: 10.1002/bem.22363] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/23/2021] [Accepted: 07/06/2021] [Indexed: 11/08/2022]
Abstract
We previously found that a near-null magnetic field affected reproductive growth in Arabidopsis under white light. To test whether the effect of a near-null magnetic field on fruit growth of Arabidopsis is related to cryptochrome, we grew wild-type Arabidopsis and cryptochrome double mutant, cry1/cry2, in a near-null magnetic field under blue light. We found that fruit growth of wild-type Arabidopsis instead of the cry1/cry2 mutant was suppressed by the near-null magnetic field. Furthermore, gibberellin (GA) levels of GA4 , GA9 , GA34 , and GA51 in fruits of wild-type plants in the near-null magnetic fields were significantly lower than local geomagnetic field controls. However, in cry1/cry2 mutants, levels of the four detected GAs in fruits in the near-null magnetic fields did not differ significantly from controls. Expressions of GA20-oxidase (GA20ox) genes (GA20ox1 and GA20ox2) and GA3-oxidase (GA3ox) genes (GA3ox1 and GA3ox3) in fruits of wild-type plants rather than cry1/cry2 mutants were downregulated by the near-null magnetic field. In contrast, expressions of GA2-oxidase (GA2ox) genes and GA signaling genes were not affected by the near-null magnetic field. These results indicate that suppression of fruit growth by the near-null magnetic field is mediated by cryptochrome and that GAs are involved in the regulation of fruit growth by the near-null magnetic field. © 2021 Bioelectromagnetics Society.
Collapse
Affiliation(s)
- Chunxiao Xu
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, China
| | - Shanshan Feng
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yang Yu
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, China
| | - Yuxia Zhang
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, China
| | - Shufeng Wei
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
13
|
Liu Y, Oduor AMO, Dai Z, Gao F, Li J, Zhang X, Yu F. Suppression of a plant hormone gibberellin reduces growth of invasive plants more than native plants. OIKOS 2021. [DOI: 10.1111/oik.07819] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yanjie Liu
- Key Laboratory of Wetland Ecology and Environment, Northeast Inst. of Geography and Agroecology, Chinese Academy Sciences Changchun PR China
| | - Ayub M. O. Oduor
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou Univ. Taizhou PR China
| | - Zhi‐Cong Dai
- Dept of Applied Biology, Technical Univ. of Kenya Nairobi Kenya
- Inst. of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu Univ. Zhenjiang PR China
| | - Fang‐Lei Gao
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou Univ. Taizhou PR China
- Shandong Key Laboratory of Eco‐Environmental Science for the Yellow River Delta, Binzhou Univ. Binzhou PR China
| | - Junmin Li
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou Univ. Taizhou PR China
| | - Xue Zhang
- Key Laboratory of Wetland Ecology and Environment, Northeast Inst. of Geography and Agroecology, Chinese Academy Sciences Changchun PR China
| | - Fei‐Hai Yu
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou Univ. Taizhou PR China
- Inst. of Wetland Ecology and Clone Ecology, Taizhou Univ. Taizhou PR China
| |
Collapse
|
14
|
Roy D, Sadanandom A. SUMO mediated regulation of transcription factors as a mechanism for transducing environmental cues into cellular signaling in plants. Cell Mol Life Sci 2021; 78:2641-2664. [PMID: 33452901 PMCID: PMC8004507 DOI: 10.1007/s00018-020-03723-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/25/2020] [Accepted: 11/25/2020] [Indexed: 12/31/2022]
Abstract
Across all species, transcription factors (TFs) are the most frequent targets of SUMOylation. The effect of SUMO conjugation on the functions of transcription factors has been extensively studied in animal systems, with over 200 transcription factors being documented to be modulated by SUMOylation. This has resulted in the establishment of a number of paradigms that seek to explain the mechanisms by which SUMO regulates transcription factor functions. For instance, SUMO has been shown to modulate TF DNA binding activity; regulate both localization as well as the abundance of TFs and also influence the association of TFs with chromatin. With transcription factors being implicated as master regulators of the cellular signalling pathways that maintain phenotypic plasticity in all organisms, in this review, we will discuss how SUMO mediated regulation of transcription factor activity facilitates molecular pathways to mount an appropriate and coherent biological response to environmental cues.
Collapse
Affiliation(s)
- Dipan Roy
- Department of Biosciences, Durham University, Stockton Road, Durham, DH1 3LE, UK
| | - Ari Sadanandom
- Department of Biosciences, Durham University, Stockton Road, Durham, DH1 3LE, UK.
| |
Collapse
|
15
|
Skalicky M, Kubes J, Vachova P, Hajihashemi S, Martinkova J, Hejnak V. Effect of Gibberellic Acid on Growing-Point Development of Non-Vernalized Wheat Plants under Long-Day Conditions. PLANTS 2020; 9:plants9121735. [PMID: 33316881 PMCID: PMC7763098 DOI: 10.3390/plants9121735] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/06/2020] [Accepted: 12/08/2020] [Indexed: 11/16/2022]
Abstract
The goal of this study was to determine whether the application of gibberellic acid (GA3) to seeds of common wheat varieties with different vernalization and photoperiod requirements affects the transition from vegetative to generative stage. Three varieties of wheat with different photoperiod sensitivities and vernalization were selected for the experiment—the winter varieties, Mironovskaya and Bezostaya, and the spring variety, Sirael. Seeds were treated with different concentrations of GA3 and plants were grown under long-day conditions with monitoring of their photosynthetic activity (Fv/Fm, Pn, E, gs). We monitored the activity of the photosynthetic apparatus by checking the plants to see if they were growing properly. The phenological stages of the wheat species were checked for indications of a transition from the vegetative to the generative stage. Selected concentrations of GA3 had no effect on the compensation of the vernalization process (transition to the generative phase). Chlorophyll fluorescence was one of the factors for monitoring stress. The variety, Bezostaya, is similar to the spring variety, Sirael, in its trends and values. The growth conditions of Bezostaya and Sirael were not affected by the activity of the photosynthetic apparatus. The development of growing points in winter varieties occurred at the prolonged single ridge stage. The spring variety reached the stage of head emergence after sixty days of growth (changes to the flowering phase did not appear in winter wheat). Application of GA3 to the seeds had no effect on the transition of the growing point to the double-ridge generative stage. The present study highlights the priming effect of GA3 on seeds of common wheat varieties with different vernalization and photoperiod requirements as it affected the transition from vegetative to generative stage.
Collapse
Affiliation(s)
- Milan Skalicky
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, 16500 Prague, Czech Republic; (J.K.); (P.V.); (J.M.); (V.H.)
- Correspondence: ; Tel.: +420-22438-2520
| | - Jan Kubes
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, 16500 Prague, Czech Republic; (J.K.); (P.V.); (J.M.); (V.H.)
| | - Pavla Vachova
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, 16500 Prague, Czech Republic; (J.K.); (P.V.); (J.M.); (V.H.)
| | - Shokoofeh Hajihashemi
- Plant Biology Department, Faculty of Science, Behbahan Khatam Alanbia University of Technology, Khuzestan 63616-47189, Iran;
| | - Jaroslava Martinkova
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, 16500 Prague, Czech Republic; (J.K.); (P.V.); (J.M.); (V.H.)
| | - Vaclav Hejnak
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, 16500 Prague, Czech Republic; (J.K.); (P.V.); (J.M.); (V.H.)
| |
Collapse
|
16
|
Zhang C, Li X, Wang Z, Zhang Z, Wu Z. Identifying key regulatory genes of maize root growth and development by RNA sequencing. Genomics 2020; 112:5157-5169. [PMID: 32961281 DOI: 10.1016/j.ygeno.2020.09.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 09/08/2020] [Accepted: 09/14/2020] [Indexed: 01/31/2023]
Abstract
Root system architecture (RSA), the spatio-temporal configuration of roots, plays vital roles in maize (Zea mays L.) development and productivity. We sequenced the maize root transcriptome of four key growth and development stages: the 6th leaf stage, the 12th leaf stage, the tasseling stage and the milk-ripe stage. Differentially expressed genes (DEGs) were detected. 81 DEGs involved in plant hormone signal transduction pathway and 26 transcription factor (TF) genes were screened. These DEGs and TFs were predicted to be potential candidate genes during maize root growth and development. Several of these genes are homologous to well-known genes regulating root architecture or development in Arabidopsis or rice, such as, Zm00001d005892 (AtERF109), Zm00001d027925 (AtERF73/HRE1), Zm00001d047017 (AtMYC2, OsMYC2), Zm00001d039245 (AtWRKY6). Identification of these key genes will provide a further understanding of the molecular mechanisms responsible for maize root growth and development, it will be beneficial to increase maize production and improve stress resistance by altering RSA traits in modern breeding.
Collapse
Affiliation(s)
- Chun Zhang
- Beijing Agriculture Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Xianglong Li
- Beijing Agriculture Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Zuoping Wang
- Beijing Agriculture Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| | - Zhongbao Zhang
- Beijing Agriculture Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| | - Zhongyi Wu
- Beijing Agriculture Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| |
Collapse
|
17
|
Guo J, Lu C, Zhao F, Gao S, Wang B. Improved reproductive growth of euhalophyte Suaeda salsa under salinity is correlated with altered phytohormone biosynthesis and signal transduction. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 47:170-183. [PMID: 31941563 DOI: 10.1071/fp19215] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 10/20/2019] [Indexed: 05/27/2023]
Abstract
Phytohormones are essential for plant reproductive growth. Salinity limits crop reproductive growth and yield, but improves reproductive growth of euhalophytes. However, little is known about the mechanisms underlying salinity's effects on plant reproductive growth. To elucidate the role of plant hormones in flower development of the euhalophyte Suaeda salsa under saline conditions, we analysed endogenous gibberellic acid (GA3,4), indoleacetic acid (IAA), zeatin riboside (ZR), abscisic acid (ABA), and brassinosteroids (BRs) during flowering in control (0 mM) and NaCl-treated (200 mM) plants. At the end of vegetative growth, endogenous GA3, GA4, ABA and BR contents in stems of NaCl-treated plants were significantly higher than those in controls. During flowering, GA3, GA4, IAA and ZR contents showed the most significant enhancement in flower organs of plants treated with NaCl when compared with controls. Additionally, genes related to ZR, IAA, GA, BR and ABA biosynthesis and plant hormone signal transduction, such as those encoding CYP735A, CYP85A, GID1, NCED, PIF4, AHP, TCH4, SnRK2 and ABF, were upregulated in S. salsa flowers from NaCl-treated plants. These results suggest that coordinated upregulation of genes involved in phytohormone biosynthesis and signal transduction contributes to the enhanced reproductive growth of S. salsa under salinity.
Collapse
Affiliation(s)
- Jianrong Guo
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Ji'nan, Shandong, 250014, PR China
| | - Chaoxia Lu
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Ji'nan, Shandong, 250014, PR China
| | - Fangcheng Zhao
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Ji'nan, Shandong, 250014, PR China
| | - Shuai Gao
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Ji'nan, Shandong, 250014, PR China
| | - Baoshan Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Ji'nan, Shandong, 250014, PR China; and Corresponding author.
| |
Collapse
|
18
|
Shah L, Yahya M, Shah SMA, Nadeem M, Ali A, Ali A, Wang J, Riaz MW, Rehman S, Wu W, Khan RM, Abbas A, Riaz A, Anis GB, Si H, Jiang H, Ma C. Improving Lodging Resistance: Using Wheat and Rice as Classical Examples. Int J Mol Sci 2019; 20:E4211. [PMID: 31466256 PMCID: PMC6747267 DOI: 10.3390/ijms20174211] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/04/2019] [Accepted: 08/19/2019] [Indexed: 01/07/2023] Open
Abstract
One of the most chronic constraints to crop production is the grain yield reduction near the crop harvest stage by lodging worldwide. This is more prevalent in cereal crops, particularly in wheat and rice. Major factors associated with lodging involve morphological and anatomical traits along with the chemical composition of the stem. These traits have built up the remarkable relationship in wheat and rice genotypes either prone to lodging or displaying lodging resistance. In this review, we have made a comparison of our conceptual perceptions with foregoing published reports and proposed the fundamental controlling techniques that could be practiced to control the devastating effects of lodging stress. The management of lodging stress is, however, reliant on chemical, agronomical, and genetic factors that are reducing the risk of lodging threat in wheat and rice. But, still, there are many questions remain to be answered to elucidate the complex lodging phenomenon, so agronomists, breeders, physiologists, and molecular biologists require further investigation to address this challenging problem.
Collapse
Affiliation(s)
- Liaqat Shah
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Wheat Biology and Genetic Improvement on South Yellow & Huai River Valley, Ministry of Agriculture, Anhui Agricultural University, Hefei 230036, China
| | - Muhammad Yahya
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Syed Mehar Ali Shah
- Department of Plant Breeding and Genetics, University of Agriculture Peshawar, Peshawar 57000, Pakistan
| | - Muhammad Nadeem
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Wheat Biology and Genetic Improvement on South Yellow & Huai River Valley, Ministry of Agriculture, Anhui Agricultural University, Hefei 230036, China
| | - Ahmad Ali
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Wheat Biology and Genetic Improvement on South Yellow & Huai River Valley, Ministry of Agriculture, Anhui Agricultural University, Hefei 230036, China
| | - Asif Ali
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Jing Wang
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Muhammad Waheed Riaz
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Wheat Biology and Genetic Improvement on South Yellow & Huai River Valley, Ministry of Agriculture, Anhui Agricultural University, Hefei 230036, China
| | - Shamsur Rehman
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Weixun Wu
- State Key Laboratory for Rice Biology, China National Rice Research Institute, 359#, Tiyuchang Road, Hangzhou 310006, China
| | - Riaz Muhammad Khan
- State Key Laboratory for Rice Biology, China National Rice Research Institute, 359#, Tiyuchang Road, Hangzhou 310006, China
| | - Adil Abbas
- State Key Laboratory for Rice Biology, China National Rice Research Institute, 359#, Tiyuchang Road, Hangzhou 310006, China
| | - Aamir Riaz
- State Key Laboratory for Rice Biology, China National Rice Research Institute, 359#, Tiyuchang Road, Hangzhou 310006, China
| | - Galal Bakr Anis
- State Key Laboratory for Rice Biology, China National Rice Research Institute, 359#, Tiyuchang Road, Hangzhou 310006, China
- Rice Research and Training Center, Field Crops Research Institute, Agriculture Research Center, Kafrelsheikh 33717, Egypt
| | - Hongqi Si
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China.
- Key Laboratory of Wheat Biology and Genetic Improvement on South Yellow & Huai River Valley, Ministry of Agriculture, Anhui Agricultural University, Hefei 230036, China.
| | - Haiyang Jiang
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Chuanxi Ma
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Wheat Biology and Genetic Improvement on South Yellow & Huai River Valley, Ministry of Agriculture, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
19
|
Chang C, Tian L, Ma L, Li W, Nasir F, Li X, Tran LSP, Tian C. Differential responses of molecular mechanisms and physiochemical characters in wild and cultivated soybeans against invasion by the pathogenic Fusarium oxysporum Schltdl. PHYSIOLOGIA PLANTARUM 2019; 166:1008-1025. [PMID: 30430602 DOI: 10.1111/ppl.12870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 10/29/2018] [Accepted: 10/31/2018] [Indexed: 05/07/2023]
Abstract
Cultivated soybean (Glycine max) was derived from the wild soybean (Glycine soja), which has genetic resources that can be critically important for improving plant stress resistance. However, little information is available pertaining to the molecular and physiochemical comparison between the cultivated and wild soybeans in response to the pathogenic Fusarium oxysporum Schltdl. In this study, we first used comparative phenotypic and paraffin section analyses to indicate that wild soybean is indeed more resistant to F. oxysporum than cultivated soybean. Genome-wide RNA-sequencing approach was then used to elucidate the genetic mechanisms underlying the differential physiological and biochemical responses of the cultivated soybean, and its relative, to F. oxysporum. A greater number of genes related to cell wall synthesis and hormone metabolism were significantly altered in wild soybean than in cultivated soybean under F. oxysporum infection. Accordingly, a higher accumulation of lignins was observed in wild soybean than cultivated soybean under F. oxysporum infection. Collectively, these results indicated that secondary metabolites and plant hormones may play a vital role in differentiating the response between cultivated and wild soybeans against the pathogen. These important findings may provide future direction to breeding programs to improve resistance to F. oxysporum in the elite soybean cultivars by taking advantage of the genetic resources within wild soybean germplasm.
Collapse
Affiliation(s)
- Chunling Chang
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin, 130102, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Tian
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin, 130102, China
| | - Lina Ma
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin, 130102, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Weiqiang Li
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
| | - Fahad Nasir
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin, 130102, China
| | - Xiujun Li
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin, 130102, China
| | - Lam-Son Phan Tran
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
| | - Chunjie Tian
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin, 130102, China
| |
Collapse
|
20
|
Chu Y, Xu N, Wu Q, Yu B, Li X, Chen R, Huang J. Rice transcription factor OsMADS57 regulates plant height by modulating gibberellin catabolism. RICE (NEW YORK, N.Y.) 2019; 12:38. [PMID: 31139953 PMCID: PMC6538746 DOI: 10.1186/s12284-019-0298-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 05/16/2019] [Indexed: 05/08/2023]
Abstract
BACKGROUND The MADS-box transcription factors mainly function in floral organ organogenesis and identity specification. Few research on their roles in vegetative growth has been reported. RESULTS Here we investigated the functions of OsMADS57 in plant vegetative growth in rice (Oryza sativa). Knockdown of OsMADS57 reduced the plant height, internode elongation and panicle exsertion in rice plants. Further study showed that the cell length was remarkably reduced in the uppermost internode in OsMADS57 knockdown plants at maturity. Moreover, OsMADS57 knockdown plants were more sensitive to gibberellic acid (GA3), and contained less bioactive GA3 than wild-type plants, which implied that OsMADS57 is involved in gibberellin (GA) pathway. Expectedly, the transcript levels of OsGA2ox3, encoding GAs deactivated enzyme, were significantly enhanced in OsMADS57 knockdown plants. The level of EUI1 transcripts involved in GA deactivation was also increased in OsMADS57 knockdown plants. More importantly, dual-luciferase reporter assay and electrophoretic mobility shift assay showed that OsMADS57 directly regulates the transcription of OsGA2ox3 as well as EUI1 through binding to the CArG-box motifs in their promoter regions. In addition, OsMADS57 also modulated the expression of multiple genes involved in GA metabolism or GA signaling pathway, indicating the key and complex regulatory role of OsMADS57 in GA pathway in rice. CONCLUSIONS These results indicated that OsMADS57 acts as an important transcriptional regulator that regulates stem elongation and panicle exsertion in rice via GA-mediated regulatory pathway.
Collapse
Affiliation(s)
- Yanli Chu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Ning Xu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Qi Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Bo Yu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Xingxing Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Rongrong Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Junli Huang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| |
Collapse
|
21
|
Performance and dynamic characteristics of microbial communities in multi-stage anaerobic reactors treating gibberellin wastewater. J Biosci Bioeng 2019; 127:318-325. [DOI: 10.1016/j.jbiosc.2018.05.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 11/28/2017] [Accepted: 05/24/2018] [Indexed: 01/19/2023]
|
22
|
Zhang T, Liang J, Wang M, Li D, Liu Y, Chen THH, Yang X. Genetic engineering of the biosynthesis of glycinebetaine enhances the fruit development and size of tomato. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 280:355-366. [PMID: 30824015 DOI: 10.1016/j.plantsci.2018.12.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 12/17/2018] [Accepted: 12/19/2018] [Indexed: 05/02/2023]
Abstract
Glycinebetaine has been widely considered as an effective protectant against abiotic stress in plants, and also found to promote plant growth under normal growing conditions, especially during the reproductive stage. Betaine aldehyde dehydrogenase (BADH) and choline oxidase (COD) are two key enzymes which have been used to confer glycinebetaine synthesis in plant which normally does not synthesis glycinebetaine. In this study, we used the tomato (Solanum lycopersicum, cv 'Moneymaker') plants of wild-type and the transgenic lines codA (L1, L2) and BADH (2, 46), which were transformed with codA and BADH, respectively, to study the impact of glycinebetaine on tomato fruit development. Our results showed that the codA and BADH transgenes induced the formation of enlarged flowers and fruits in transgenic tomato plants. In addition, the transgenic tomato plants had a higher photosynthetic rate, higher assimilates content, and higher leaf chlorophyll content than the wild-type plants. We also found that the enlargement of fruit size was related to the contents of phytohormones, such as auxin, brassinolide, gibberellin, and cytokinin. Additionally, qPCR results indicated that the expressions levels of certain genes related to fruit growth and development were also elevated in transgenic plants. Finally, transcriptome sequencing results revealed that the differences in the levels of gene expression in tomato fruit between the transgenic and wild-type plants were observed in multiple pathways, predominantly those of photosynthesis, DNA replication, plant hormone signal transduction, and biosynthesis. Taken together, our results suggest that glycinebetaine promotes tomato fruit development via multiple pathways. We propose that genetic engineering of glycinebetaine synthesis offers a novel approach to enhance the productivity of tomato and other crop plants.
Collapse
Affiliation(s)
- Tianpeng Zhang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, China
| | - Jianan Liang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, China
| | - Mengwei Wang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, China
| | - Daxing Li
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, China
| | - Yang Liu
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, China
| | - Tony H H Chen
- Department of Horticulture, ALS 4017, Oregon State University, Corvallis, OR, 97331, USA
| | - Xinghong Yang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, China.
| |
Collapse
|
23
|
Kour D, Rana KL, Yadav N, Yadav AN, Singh J, Rastegari AA, Saxena AK. Agriculturally and Industrially Important Fungi: Current Developments and Potential Biotechnological Applications. RECENT ADVANCEMENT IN WHITE BIOTECHNOLOGY THROUGH FUNGI 2019. [DOI: 10.1007/978-3-030-14846-1_1] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
Mushtaq S, Amjad M, Ziaf K, Afzal I. Gibberellins application timing modulates growth, physiology, and quality characteristics of two onion (Allium cepa L.) cultivars. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:25155-25161. [PMID: 29943247 DOI: 10.1007/s11356-018-2542-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 06/13/2018] [Indexed: 06/08/2023]
Abstract
Lack of scientific literature exists regarding the effects of gibberellic acid (GA3) application timings on various phenological and physiological aspects of seed crop of locally available onion cultivars. Therefore, current study was planned in Vegetable Research Area, University of Agriculture, Faisalabad to optimize the growth stage for GA3 application on seed production in two local onion cultivars (Phulkara and Dark Red) during 2013 and 2014. Application timings of gibberellins at 100 mg/L of H2O were as (G1) control (no spray), (G2) foliar application at 2-3 leaf stage, (G3) foliar application at 6-7 leaf stage, and (G4) foliar application at the time of flowering. Data on average of both years showed that tallest plants (66.15 cm) and maximum number of leaves per plant (84.56) were noted in cv. Phulkara when GA3 was applied at 2-3 leaf stage. Minimum number of days to initiate flowering (47.92) and maximum number of umbels per plant (15.45) were noted with GA3 application at 6-7 leaf stage in Phulkara and Dark Red, respectively. The highest seed yield per umbel (2.94 g) was recorded in cv. Dark Red when GA3 sprayed at 6-7 leaf stage, while GA3 application at the time of flowering in the cv. Phulkara produced seeds with highest seedling vigor index (586.79). Overall, it appears that seed yield and quality characters were promoted by the application of GA3 at different growth stages and could be valuable for seed production of onion.
Collapse
Affiliation(s)
- Salman Mushtaq
- Institute of Horticultural Sciences, University of Agriculture, Faisalabad, Pakistan.
| | - Muhammad Amjad
- Institute of Horticultural Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Khurram Ziaf
- Institute of Horticultural Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Irfan Afzal
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
25
|
Gomez MD, Barro-Trastoy D, Escoms E, Saura-Sánchez M, Sánchez I, Briones-Moreno A, Vera-Sirera F, Carrera E, Ripoll JJ, Yanofsky MF, Lopez-Diaz I, Alonso JM, Perez-Amador MA. Gibberellins negatively modulate ovule number in plants. Development 2018; 145:dev163865. [PMID: 29914969 PMCID: PMC6053663 DOI: 10.1242/dev.163865] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 06/04/2018] [Indexed: 01/06/2023]
Abstract
Ovule formation is a complex developmental process in plants, with a strong impact on the production of seeds. Ovule primordia initiation is controlled by a gene network, including components of the signaling pathways of auxin, brassinosteroids and cytokinins. By contrast, gibberellins (GAs) and DELLA proteins, the negative regulators of GA signaling, have never been shown to be involved in ovule initiation. Here, we provide molecular and genetic evidence that points to DELLA proteins as novel players in the determination of ovule number in Arabidopsis and in species of agronomic interest, such as tomato and rapeseed, adding a new layer of complexity to this important developmental process. DELLA activity correlates positively with ovule number, acting as a positive factor for ovule initiation. In addition, ectopic expression of a dominant DELLA in the placenta is sufficient to increase ovule number. The role of DELLA proteins in ovule number does not appear to be related to auxin transport or signaling in the ovule primordia. Possible crosstalk between DELLA proteins and the molecular and hormonal network controlling ovule initiation is also discussed.
Collapse
Affiliation(s)
- Maria D Gomez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas (CSIC), Valencia 46022, Spain
| | - Daniela Barro-Trastoy
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas (CSIC), Valencia 46022, Spain
| | - Ernesto Escoms
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas (CSIC), Valencia 46022, Spain
| | - Maite Saura-Sánchez
- IFEVA, Facultad de Agronomía, Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires C1417DSE, Argentina
| | - Ines Sánchez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas (CSIC), Valencia 46022, Spain
| | - Asier Briones-Moreno
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas (CSIC), Valencia 46022, Spain
| | - Francisco Vera-Sirera
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas (CSIC), Valencia 46022, Spain
| | - Esther Carrera
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas (CSIC), Valencia 46022, Spain
| | - Juan-José Ripoll
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California at San Diego, La Jolla, CA 92093, USA
| | - Martin F Yanofsky
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California at San Diego, La Jolla, CA 92093, USA
| | - Isabel Lopez-Diaz
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas (CSIC), Valencia 46022, Spain
| | - José M Alonso
- Department of Plant and Microbial Biology, Genetics Graduate Program, North Carolina State University, Raleigh, NC 27607, USA
| | - Miguel A Perez-Amador
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas (CSIC), Valencia 46022, Spain
| |
Collapse
|
26
|
Udayan A, Kathiresan S, Arumugam M. Kinetin and Gibberellic acid (GA3) act synergistically to produce high value polyunsaturated fatty acids in Nannochloropsis oceanica CASA CC201. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.03.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
27
|
Ouyang E, Lu Y, Ouyang J, Wang L, Wang X. Bacterial community analysis of anoxic/aeration (A/O) system in a combined process for gibberellin wastewater treatment. PLoS One 2017; 12:e0186743. [PMID: 29053751 PMCID: PMC5650175 DOI: 10.1371/journal.pone.0186743] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 10/08/2017] [Indexed: 12/29/2022] Open
Abstract
Gibberellin wastewater cannot be directly discharged without treatment due to its high concentrations of sulfate and organic compounds and strong acidity. Therefore, multi-stage anaerobic bioreactor + micro-aerobic+ anoxic/aeration (A/O) + biological contact oxidation combined processes are used to treat gibberellin wastewater. However, knowledge of the treatment effects of the A/O process and bacterial community structure in the aeration tank reactors of such systems is sparse. Therefore, this study was conducted to investigate the treatment effects and operation of the A/O process on gibberellin wastewater, as well as changes in the bacterial community structure of activated sludge in the aeration tank during treatment. Moreover, removal was examined based on evaluation of effluent after A/O treatment. Although influent chemical oxygen demand (COD), NH3-N and total phosphorus (TP) fluctuated, effluent COD, NH3-N and TP remained stable. Moreover, average COD, NH3-N and TP removal efficiency were 68.41%, 93.67% and 45.82%, respectively, during the A/O process. At the phylum level, Proteobacteria was the dominant phylum in all samples, followed by Chloroflexi, Bacteroidetes and Actinobacteria. Proteobacteria played an important role in the removal of organic matter. Chloroflexi was found to be responsible for the degradation of carbohydrates and Bacteroidetes also had been found to be responsible for the degradation of complex organic matters. Actinobacteria are able to degrade a variety of environmental chemicals. Additionally, Anaerolineaceae_uncultured was the major genus in samples collected on May 25, 2015, while Novosphingobium and Nitrospira were dominant in most samples. Nitrosomonas are regarded as the dominant ammonia-oxidizing bacteria, while Nitrospira are the main nitrite-oxidizing bacteria. Bacterial community structure varied considerably with time, and a partial Mantel test showed a highly significant positive correlation between bacterial community structure and DO. The bacterial community structure was also positively correlated with temperature and SO42-.
Collapse
Affiliation(s)
- Erming Ouyang
- School of Civil Engineering and Architecture, Nanchang University, Nanchang, China
| | - Yao Lu
- School of Civil Engineering and Architecture, Nanchang University, Nanchang, China
| | - Jiating Ouyang
- School of Civil Engineering and Architecture, Nanchang University, Nanchang, China
| | - Lele Wang
- School of Civil Engineering and Architecture, Nanchang University, Nanchang, China
| | - Xiaohui Wang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, China
- * E-mail:
| |
Collapse
|
28
|
Abstract
Most classical plant hormones are also produced by pathogenic and symbiotic fungi. The way in which these molecules favour the invasion of plant tissues and the development of fungi inside plant tissues is still largely unknown. In this review, we examine the different roles of such hormone production by pathogenic fungi. Converging evidence suggests that these fungal-derived molecules have potentially two modes of action: (i) they may perturb plant processes, either positively or negatively, to favour invasion and nutrient uptake; and (ii) they may also act as signals for the fungi themselves to engage appropriate developmental and physiological processes adapted to their environment. Indirect evidence suggests that abscisic acid, gibberellic acid and ethylene produced by fungi participate in pathogenicity. There is now evidence that auxin and cytokinins could be positive regulators required for virulence. Further research should establish whether or not fungal-derived hormones act like other fungal effectors.
Collapse
Affiliation(s)
- Emilie Chanclud
- Université Montpellier, UMR BGPI INRA/CIRAD/SupAgro, 34398, Montpellier, France
| | | |
Collapse
|
29
|
Xu C, Yu Y, Zhang Y, Li Y, Wei S. Gibberellins are involved in effect of near-null magnetic field on Arabidopsis flowering. Bioelectromagnetics 2016; 38:1-10. [DOI: 10.1002/bem.22004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 08/18/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Chunxiao Xu
- Beijing Key Laboratory of Bioelectromagnetism; Institute of Electrical Engineering; Chinese Academy of Sciences; Beijing China
| | - Yang Yu
- Beijing Key Laboratory of Bioelectromagnetism; Institute of Electrical Engineering; Chinese Academy of Sciences; Beijing China
| | - Yuxia Zhang
- Beijing Key Laboratory of Bioelectromagnetism; Institute of Electrical Engineering; Chinese Academy of Sciences; Beijing China
| | - Yue Li
- Beijing Key Laboratory of Bioelectromagnetism; Institute of Electrical Engineering; Chinese Academy of Sciences; Beijing China
| | - Shufeng Wei
- Beijing Key Laboratory of Bioelectromagnetism; Institute of Electrical Engineering; Chinese Academy of Sciences; Beijing China
| |
Collapse
|
30
|
Kuligowska K, Lütken H, Müller R. Towards development of new ornamental plants: status and progress in wide hybridization. PLANTA 2016; 244:1-17. [PMID: 26969022 DOI: 10.1007/s00425-016-2493-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 02/19/2016] [Indexed: 05/21/2023]
Abstract
The present review provides insights into the key findings of the hybridization process, crucial factors affecting the adaptation of new technologies within wide hybridization of ornamental plants and presents perspectives of further development of this strategy. Wide hybridization is one of the oldest breeding techniques that contributed enormously to the development of modern plant cultivars. Within ornamental breeding, it represents the main source of genetic variation. During the long history of wide hybridization, a number of methods were implemented allowing the evolution from a conventional breeding tool into a modern methodology. Nowadays, the research on model plants and crop species increases our understanding of reproductive isolation among distant species and partly explains the background of the traditional approaches previously used for overcoming hybridization barriers. Characterization of parental plants and hybrids is performed using molecular and cytological techniques that strongly facilitate breeding processes. Molecular markers and sequencing technologies are used for the assessment of genetic relationships among plants, as the genetic distance is typically depicted as one of the most important factors influencing cross-compatibility in hybridization processes. Furthermore, molecular marker systems are frequently applied for verification of hybrid state of the progeny. The flow cytometry and genomic in situ hybridization are used in the assessment of hybridization partners and characterization of hybrid progeny in relation to genome stabilization as well as genome recombination and introgression. In the future, new research and technologies are likely to provide more detailed information about genes and pathways responsible for interspecific reproductive isolation. Ultimately, this knowledge will enable development of strategies for obtaining compatible lines for hybrid production. Recent development in sequencing technologies and availability of sequence data will also facilitate creation of new molecular markers that will advance marker-assisted selection in hybridization process.
Collapse
Affiliation(s)
- Katarzyna Kuligowska
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Højbakkegård Allé 9-13, 2630, Tåstrup, Denmark.
| | - Henrik Lütken
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Højbakkegård Allé 9-13, 2630, Tåstrup, Denmark
| | - Renate Müller
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Højbakkegård Allé 9-13, 2630, Tåstrup, Denmark
| |
Collapse
|
31
|
Xie J, Tian J, Du Q, Chen J, Li Y, Yang X, Li B, Zhang D. Association genetics and transcriptome analysis reveal a gibberellin-responsive pathway involved in regulating photosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3325-38. [PMID: 27091876 DOI: 10.1093/jxb/erw151] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Gibberellins (GAs) regulate a wide range of important processes in plant growth and development, including photosynthesis. However, the mechanism by which GAs regulate photosynthesis remains to be understood. Here, we used multi-gene association to investigate the effect of genes in the GA-responsive pathway, as constructed by RNA sequencing, on photosynthesis, growth, and wood property traits, in a population of 435 Populus tomentosa By analyzing changes in the transcriptome following GA treatment, we identified many key photosynthetic genes, in agreement with the observed increase in measurements of photosynthesis. Regulatory motif enrichment analysis revealed that 37 differentially expressed genes related to photosynthesis shared two essential GA-related cis-regulatory elements, the GA response element and the pyrimidine box. Thus, we constructed a GA-responsive pathway consisting of 47 genes involved in regulating photosynthesis, including GID1, RGA, GID2, MYBGa, and 37 photosynthetic differentially expressed genes. Single nucleotide polymorphism (SNP)-based association analysis showed that 142 SNPs, representing 40 candidate genes in this pathway, were significantly associated with photosynthesis, growth, and wood property traits. Epistasis analysis uncovered interactions between 310 SNP-SNP pairs from 37 genes in this pathway, revealing possible genetic interactions. Moreover, a structural gene-gene matrix based on a time-course of transcript abundances provided a better understanding of the multi-gene pathway affecting photosynthesis. The results imply a functional role for these genes in mediating photosynthesis, growth, and wood properties, demonstrating the potential of combining transcriptome-based regulatory pathway construction and genetic association approaches to detect the complex genetic networks underlying quantitative traits.
Collapse
Affiliation(s)
- Jianbo Xie
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
| | - Jiaxing Tian
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
| | - Qingzhang Du
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
| | - Jinhui Chen
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
| | - Ying Li
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
| | - Xiaohui Yang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
| | - Bailian Li
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China Department of Forestry, North Carolina State University, Raleigh, NC 27695-8203, USA
| | - Deqiang Zhang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
| |
Collapse
|
32
|
Tian J, Song Y, Du Q, Yang X, Ci D, Chen J, Xie J, Li B, Zhang D. Population genomic analysis of gibberellin-responsive long non-coding RNAs in Populus. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2467-82. [PMID: 26912799 DOI: 10.1093/jxb/erw057] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Long non-coding RNAs (lncRNAs) participate in a wide range of biological processes, but lncRNAs in plants remain largely unknown; in particular, we lack a systematic identification of plant lncRNAs involved in hormone responses. Moreover, allelic variation in lncRNAs remains poorly characterized at a large scale. Here, we conducted high-throughput RNA-sequencing of leaves from control and gibberellin (GA)-treated Populus tomentosa and identified 7655 reliably expressed lncRNAs. Among the 7655 lncRNAs, the levels of 410 lncRNAs changed in response to GA. Seven GA-responsive lncRNAs were predicted to be putative targets of 18 miRNAs, and one GA-responsive lncRNA (TCONS_00264314) was predicted to be a target mimic of ptc-miR6459b. Computational analysis predicted 939 potential cis-regulated target genes and 965 potential trans-regulated target genes for GA-responsive lncRNAs. Functional annotation of these potential target genes showed that they participate in many different biological processes, including auxin signal transduction and synthesis of cellulose and pectin, indicating that GA-responsive lncRNAs may influence growth and wood properties. Finally, single nucleotide polymorphism (SNP)-based association analysis showed that 112 SNPs from 52 GA-responsive lncRNAs and 1014 SNPs from 296 potential target genes were significantly associated with growth and wood properties. Epistasis analysis also provided evidence for interactions between lncRNAs and their potential target genes. Our study provides a comprehensive view of P. tomentosa lncRNAs and offers insights into the potential functions and regulatory interactions of GA-responsive lncRNAs, thus forming the foundation for future functional analysis of GA-responsive lncRNAs in P. tomentosa.
Collapse
Affiliation(s)
- Jiaxing Tian
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, PR China Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, PR China
| | - Yuepeng Song
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, PR China Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, PR China
| | - Qingzhang Du
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, PR China Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, PR China
| | - Xiaohui Yang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, PR China Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, PR China
| | - Dong Ci
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, PR China Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, PR China
| | - Jinhui Chen
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, PR China Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, PR China
| | - Jianbo Xie
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, PR China Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, PR China
| | - Bailian Li
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, PR China Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, PR China. Department of Forestry, North Carolina State University, Raleigh, NC 27695-8203, USA
| | - Deqiang Zhang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, PR China Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, PR China.
| |
Collapse
|
33
|
Cho SH, Kang K, Lee SH, Lee IJ, Paek NC. OsWOX3A is involved in negative feedback regulation of the gibberellic acid biosynthetic pathway in rice (Oryza sativa). JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:1677-87. [PMID: 26767749 PMCID: PMC4783357 DOI: 10.1093/jxb/erv559] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The plant-specific WUSCHEL-related homeobox (WOX) nuclear proteins have important roles in the transcriptional regulation of many developmental processes. Among the rice (Oryza sativa) WOX proteins, a loss of OsWOX3A function in narrow leaf2 (nal2) nal3 double mutants (termed nal2/3) causes pleiotropic effects, such as narrow and curly leaves, opened spikelets, narrow grains, more tillers, and fewer lateral roots, but almost normal plant height. To examine OsWOX3A function in more detail, transgenic rice overexpressing OsWOX3A (OsWOX3A-OX) were generated; unexpectedly, all of them consistently exhibited severe dwarfism with very short and wide leaves, a phenotype that resembles that of gibberellic acid (GA)-deficient or GA-insensitive mutants. Exogenous GA3 treatment fully rescued the developmental defects of OsWOX3A-OX plants, suggesting that constitutive overexpression of OsWOX3A downregulates GA biosynthesis. Quantitative analysis of GA intermediates revealed significantly reduced levels of GA20 and bioactive GA1 in OsWOX3A-OX, possibly due to downregulation of the expression of KAO, which encodes ent-kaurenoic acid oxidase, a GA biosynthetic enzyme. Yeast one-hybrid and electrophoretic mobility shift assays revealed that OsWOX3A directly interacts with the KAO promoter. OsWOX3A expression is drastically and temporarily upregulated by GA3 and downregulated by paclobutrazol, a blocker of GA biosynthesis. These data indicate that OsWOX3A is a GA-responsive gene and functions in the negative feedback regulation of the GA biosynthetic pathway for GA homeostasis to maintain the threshold levels of endogenous GA intermediates throughout development.
Collapse
Affiliation(s)
- Sung-Hwan Cho
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea Present address: Division of Plant Science and Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Kiyoon Kang
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Sang-Hwa Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - In-Jung Lee
- Division of Plant Biosciences, Kyungpook National University, Daegu, 702-701, Republic of Korea
| | - Nam-Chon Paek
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| |
Collapse
|
34
|
Dai ZC, Fu W, Qi SS, Zhai DL, Chen SC, Wan LY, Huang P, Du DL. Different Responses of an Invasive Clonal Plant Wedelia trilobata and its Native Congener to Gibberellin: Implications for Biological Invasion. J Chem Ecol 2016; 42:85-94. [DOI: 10.1007/s10886-016-0670-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 12/06/2015] [Accepted: 01/29/2016] [Indexed: 11/24/2022]
|
35
|
Maita S, Sotomayor C. The effect of three plant bioregulators on pollen germination, pollen tube growth and fruit set in almond [Prunus dulcis (Mill.) D.A. Webb] cvs. Non Pareil and Carmel. ELECTRON J BIOTECHN 2015. [DOI: 10.1016/j.ejbt.2015.07.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
36
|
Żur I, Dubas E, Krzewska M, Janowiak F. Current insights into hormonal regulation of microspore embryogenesis. FRONTIERS IN PLANT SCIENCE 2015; 6:424. [PMID: 26113852 PMCID: PMC4462098 DOI: 10.3389/fpls.2015.00424] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 05/26/2015] [Indexed: 05/24/2023]
Abstract
Plant growth regulator (PGR) crosstalk and interaction with the plant's genotype and environmental factors play a crucial role in microspore embryogenesis (ME), controlling microspore-derived embryo differentiation and development as well as haploid/doubled haploid plant regeneration. The complexity of the PGR network which could exist at the level of biosynthesis, distribution, gene expression or signaling pathways, renders the creation of an integrated model of ME-control crosstalk impossible at present. However, the analysis of the published data together with the results received recently with the use of modern analytical techniques brings new insights into hormonal regulation of this process. This review presents a short historical overview of the most important milestones in the recognition of hormonal requirements for effective ME in the most important crop plant species and complements it with new concepts that evolved over the last decade of ME studies.
Collapse
Affiliation(s)
- Iwona Żur
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of SciencesKraków, Poland
| | | | | | | |
Collapse
|
37
|
Saito H, Oikawa T, Hamamoto S, Ishimaru Y, Kanamori-Sato M, Sasaki-Sekimoto Y, Utsumi T, Chen J, Kanno Y, Masuda S, Kamiya Y, Seo M, Uozumi N, Ueda M, Ohta H. The jasmonate-responsive GTR1 transporter is required for gibberellin-mediated stamen development in Arabidopsis. Nat Commun 2015; 6:6095. [PMID: 25648767 PMCID: PMC4347201 DOI: 10.1038/ncomms7095] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 12/14/2014] [Indexed: 12/20/2022] Open
Abstract
Plant hormones are transported across cell membranes during various physiological events. Recent identification of abscisic acid and strigolactone transporters suggests that transport of various plant hormones across membranes does not occur by simple diffusion but requires transporter proteins that are strictly regulated during development. Here, we report that a major glucosinolate transporter, GTR1/NPF2.10, is multifunctional and may be involved in hormone transport in Arabidopsis thaliana. When heterologously expressed in oocytes, GTR1 transports jasmonoyl-isoleucine and gibberellin in addition to glucosinolates. gtr1 mutants are severely impaired in filament elongation and anther dehiscence resulting in reduced fertility, but these phenotypes can be rescued by gibberellin treatment. These results suggest that GTR1 may be a multifunctional transporter for the structurally distinct compounds glucosinolates, jasmonoyl-isoleucine and gibberellin, and may positively regulate stamen development by mediating gibberellin supply. GTR1 is known to transport glucosinolates in Arabidopsis. Here, Saito et al. show that GTR1 also transports the plant hormones jasmonate and gibberellin when heterologously expressed in Xenopus oocytes, and that gtr1 mutant plants show a gibberellin-related fertility phenotype.
Collapse
Affiliation(s)
- Hikaru Saito
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B65 Nagatsuta-cho Midori-ku, Yokohama 226-8501, Japan
| | - Takaya Oikawa
- Graduate School of Science, Tohoku University, 6-3, Aramaki-Aza-Aoba, Aoba-ku, Sendai 980-0845, Japan
| | - Shin Hamamoto
- Graduate School of Engineering, Tohoku University, 6-6-07, Aobayama, Aoba-ku, Sendai 980-8579, Japan
| | - Yasuhiro Ishimaru
- Graduate School of Science, Tohoku University, 6-3, Aramaki-Aza-Aoba, Aoba-ku, Sendai 980-0845, Japan
| | - Miyu Kanamori-Sato
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B65 Nagatsuta-cho Midori-ku, Yokohama 226-8501, Japan
| | - Yuko Sasaki-Sekimoto
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Tomoya Utsumi
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B65 Nagatsuta-cho Midori-ku, Yokohama 226-8501, Japan
| | - Jing Chen
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B65 Nagatsuta-cho Midori-ku, Yokohama 226-8501, Japan
| | - Yuri Kanno
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho Tsurumi-ku, Yokohama 230-0045, Japan
| | - Shinji Masuda
- 1] Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan [2] Center for Biological Resources and Informatics, Tokyo Institute of Technology, 4259-B65 Nagatsuta-cho Midori-ku, Yokohama 226-8501, Japan
| | - Yuji Kamiya
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho Tsurumi-ku, Yokohama 230-0045, Japan
| | - Mitsunori Seo
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho Tsurumi-ku, Yokohama 230-0045, Japan
| | - Nobuyuki Uozumi
- Graduate School of Engineering, Tohoku University, 6-6-07, Aobayama, Aoba-ku, Sendai 980-8579, Japan
| | - Minoru Ueda
- Graduate School of Science, Tohoku University, 6-3, Aramaki-Aza-Aoba, Aoba-ku, Sendai 980-0845, Japan
| | - Hiroyuki Ohta
- 1] Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B65 Nagatsuta-cho Midori-ku, Yokohama 226-8501, Japan [2] Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| |
Collapse
|
38
|
Gallego-Giraldo C, Hu J, Urbez C, Gomez MD, Sun TP, Perez-Amador MA. Role of the gibberellin receptors GID1 during fruit-set in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 79:1020-1032. [PMID: 24961590 PMCID: PMC4403254 DOI: 10.1111/tpj.12603] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 06/17/2014] [Accepted: 06/19/2014] [Indexed: 05/18/2023]
Abstract
Gibberellins (GAs) play a critical role in fruit-set and fruit growth. Gibberellin is perceived by its nuclear receptors GA INSENSITIVE DWARF1s (GID1s), which then trigger degradation of downstream repressors DELLAs. To understand the role of the three GA receptor genes (GID1A, GID1B and GID1C) in Arabidopsis during fruit initiation, we have examined their temporal and spatial localization, in combination with analysis of mutant phenotypes. Distinct expression patterns are revealed for each GID1: GID1A is expressed throughout the whole pistil, while GID1B is expressed in ovules, and GID1C is expressed in valves. Functional study of gid1 mutant combinations confirms that GID1A plays a major role during fruit-set and growth, whereas GID1B and GID1C have specific roles in seed development and pod elongation, respectively. Therefore, in ovules, GA perception is mediated by GID1A and GID1B, while GID1A and GID1C are involved in GA perception in valves. To identify tissue-specific interactions between GID1s and DELLAs, we analyzed spatial expression patterns of four DELLA genes that have a role in fruit initiation (GAI, RGA, RGL1 and RGL2). Our data suggest that GID1A can interact with RGA and GAI in all tissues, whereas GID1C-RGL1 and GID1B-RGL2 interactions only occur in valves and ovules, respectively. These results uncover specific functions of each GID1-DELLA in the different GA-dependent processes that occur upon fruit-set. In addition, the distribution of GA receptors in valves along with lack of expression of GA biosynthesis genes in this tissue, strongly suggests transport of GAs from the developing seeds to promote fruit growth.
Collapse
Affiliation(s)
- Carolina Gallego-Giraldo
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas (CSIC), Ingeniero Fausto Elio s/n, 46022 Valencia, Spain
| | - Jianhong Hu
- Department of Biology, Duke University, 124 Science Dr., Durham, NC 27708, USA
| | - Cristina Urbez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas (CSIC), Ingeniero Fausto Elio s/n, 46022 Valencia, Spain
| | - Maria Dolores Gomez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas (CSIC), Ingeniero Fausto Elio s/n, 46022 Valencia, Spain
| | - Tai-ping Sun
- Department of Biology, Duke University, 124 Science Dr., Durham, NC 27708, USA
| | - Miguel A. Perez-Amador
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas (CSIC), Ingeniero Fausto Elio s/n, 46022 Valencia, Spain
| |
Collapse
|
39
|
Zhang D, Ren L, Yue JH, Wang L, Zhuo LH, Shen XH. GA4 and IAA were involved in the morphogenesis and development of flowers in Agapanthus praecox ssp. orientalis. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:966-76. [PMID: 24913054 DOI: 10.1016/j.jplph.2014.01.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Revised: 12/24/2013] [Accepted: 01/02/2014] [Indexed: 05/13/2023]
Abstract
The transition from vegetative to reproductive growth represents a major phase change in angiosperms. Hormones play important roles in this process. In this study, gibberellic acid (GA), cytokinins (CKs), indoleacetic acid (IAA), and abscisic acid (ABA) were analyzed during the flowering in Agapanthus praecox ssp. orientalis. Eleven types of endogenous gibberellins in addition to GA1 were detected in various organs. GA9 was detected with the highest concentrations, followed by GA5, GA8, and GA19. However, GA4 was the main bioactive GA that was involved in the regulation of flowering. Eight types of endogenous cytokinins were detected in A. praecox ssp. orientalis, and zeatin, zeatin riboside, zeatin-O-glucoside, and N(6)-isopentenyladenosine-5-monophosphate were present at higher levels throughout the study, of which zeatin plays an important role in the development of various organs. IAA increased by 581% in the shoot tips from the vegetative to inflorescence bud stages and had the most significant changes during flowering. Phytohormone immunolocalization analysis suggested that IAA involved in differentiation and development of each floral organs, GA and zeatin play important roles in floret primordia differentiation and ovule development. Using exogenous plant growth regulators proved that GA signaling regulate the scape elongation and stimulate early-flowering, and IAA signaling is involved in the pedicel and corolla elongation and delay flowering slightly.
Collapse
Affiliation(s)
- Di Zhang
- Department of Landscape Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Li Ren
- Department of Landscape Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jian-hua Yue
- Department of Landscape Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ling Wang
- Department of Ornamental Plants and Horticulture, College of Landscape Architecture, Northeast Forestry University, Harbin 150040, China
| | - Li-huan Zhuo
- Department of Ornamental Plants and Horticulture, College of Landscape Architecture, Northeast Forestry University, Harbin 150040, China
| | - Xiao-hui Shen
- Department of Landscape Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
40
|
Changes in metabolite profiles in Norway spruce shoot tips during short-day induced winter bud development and long-day induced bud flush. Metabolomics 2014. [PMID: 0 DOI: 10.1007/s11306-014-0646-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
41
|
Chen L, Hao L, Condon AG, Hu YG. Exogenous GA3 application can compensate the morphogenetic effects of the GA-responsive dwarfing gene Rht12 in bread wheat. PLoS One 2014; 9:e86431. [PMID: 24466090 PMCID: PMC3896480 DOI: 10.1371/journal.pone.0086431] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 12/13/2013] [Indexed: 11/28/2022] Open
Abstract
The most common dwarfing genes in wheat, Rht-B1b and Rht-D1b, classified as gibberellin-insensitive (GAI) dwarfing genes due to their reduced response to exogenous GA, have been verified as encoding negative regulators of gibberellin signaling. In contrast, the response of gibberellin-responsive (GAR) dwarfing genes, such as Rht12, to exogenous GA is still unclear and the role of them, if any, in GA biosynthesis or signaling is unknown. The responses of Rht12 to exogenous GA3 were investigated on seedling vigour, spike phenological development, plant height and other agronomic traits, using F2 ∶ 3 and F3 ∶ 4 lines derived from a cross between Ningchun45 and Karcagi-12 in three experiments. The application of exogenous GA3 significantly increased coleoptile length and seedling leaf 1 length and area. While there was no significant difference between the dwarf and the tall lines at the seedling stage in the responsiveness to GA3, plant height was significantly increased, by 41 cm (53%) averaged across the three experiments, in the GA3-treated Rht12 dwarf lines. Plant height of the tall lines was not affected significantly by GA3 treatment (<10 cm increased). Plant biomass and seed size of the GA3-treated dwarf lines was significantly increased compared with untreated dwarf plants while there was no such difference in the tall lines. GA3-treated Rht12 dwarf plants with the dominant Vrn-B1 developed faster than untreated plants and reached double ridge stage 57 days, 11 days and 50 days earlier and finally flowered earlier by almost 7 days while the GA3-treated tall lines flowering only 1-2 days earlier than the untreated tall lines. Thus, it is clear that exogenous GA3 can break the masking effect of Rht12 on Vrn-B1 and also restore other characters of Rht12 to normal. It suggested that Rht12 mutants may be deficient in GA biosynthesis rather than in GA signal transduction like the GA-insensitive dwarfs.
Collapse
Affiliation(s)
- Liang Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Liugen Hao
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | | | - Yin-Gang Hu
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
- Institute of Water Saving Agriculture in Arid Regions of China, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
42
|
Slater SMH, Yuan HY, Lulsdorf MM, Vandenberg A, Zaharia LI, Han X, Abrams SR. Comprehensive hormone profiling of the developing seeds of four grain legumes. PLANT CELL REPORTS 2013; 32:1939-52. [PMID: 24062013 DOI: 10.1007/s00299-013-1505-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 08/28/2013] [Accepted: 08/29/2013] [Indexed: 05/08/2023]
Abstract
KEY MESSAGE Developmental context and species-specific hormone requirements are of key importance in the advancement of in vitro protocols and manipulation of seed development. Improvement of in vitro tissue and cell culture protocols in grain legumes such as embryo rescue, interspecific hybridization, and androgenesis requires an understanding of the types, activity, and balance of hormones within developing seeds. Towards this goal, the concentration of auxin, cytokinin, gibberellin, and abscisic acid (ABA) and their precursors and derivatives were measured in the developing seeds of field pea (Pisum sativum L.), chickpea (Cicer arietinum L.), lentil (Lens culinaris Medik.), and faba bean (Vicia faba L.) from 4 days after anthesis until 8 days after reaching maximum fresh weight. The importance of developmental context (developmental time and space) is demonstrated in both the differences and similarities between species for hormone profiles, especially with regard to cytokinin and ABA biosynthesis during the embryo formation. Auxin and its conjugates are significant during the pattern formation stage of all legumes; however, IAA-Asparagine appears important in the Vicieae species and its concentrations are greater than IAA from the globular stage of embryo development on in multi-seed fruits. Finally, the significance of non-polar gibberellins during lentil seed development is highlighted.
Collapse
Affiliation(s)
- Susan M H Slater
- Crop Development Centre (CDC), University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada,
| | | | | | | | | | | | | |
Collapse
|
43
|
Wen W, Deng Q, Jia H, Wei L, Wei J, Wan H, Yang L, Cao W, Ma Z. Sequence variations of the partially dominant DELLA gene Rht-B1c in wheat and their functional impacts. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:3299-312. [PMID: 23918966 PMCID: PMC3733159 DOI: 10.1093/jxb/ert183] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Rht-B1c, allelic to the DELLA protein-encoding gene Rht-B1a, is a natural mutation documented in common wheat (Triticum aestivum). It confers variation to a number of traits related to cell and plant morphology, seed dormancy, and photosynthesis. The present study was conducted to examine the sequence variations of Rht-B1c and their functional impacts. The results showed that Rht-B1c was partially dominant or co-dominant for plant height, and exhibited an increased dwarfing effect. At the sequence level, Rht-B1c differed from Rht-B1a by one 2kb Veju retrotransposon insertion, three coding region single nucleotide polymorphisms (SNPs), one 197bp insertion, and four SNPs in the 1kb upstream sequence. Haplotype investigations, association analyses, transient expression assays, and expression profiling showed that the Veju insertion was primarily responsible for the extreme dwarfing effect. It was found that the Veju insertion changed processing of the Rht-B1c transcripts and resulted in DELLA motif primary structure disruption. Expression assays showed that Rht-B1c caused reduction of total Rht-1 transcript levels, and up-regulation of GATA-like transcription factors and genes positively regulated by these factors, suggesting that one way in which Rht-1 proteins affect plant growth and development is through GATA-like transcription factor regulation.
Collapse
Affiliation(s)
- Wen Wen
- The Applied Plant Genomics Laboratory of Crop Genomics and Bioinformatics Center, and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095 Jiangsu, China
| | - Qingyan Deng
- The Applied Plant Genomics Laboratory of Crop Genomics and Bioinformatics Center, and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095 Jiangsu, China
| | - Haiyan Jia
- The Applied Plant Genomics Laboratory of Crop Genomics and Bioinformatics Center, and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095 Jiangsu, China
| | - Lingzhu Wei
- The Applied Plant Genomics Laboratory of Crop Genomics and Bioinformatics Center, and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095 Jiangsu, China
| | - Jingbo Wei
- The Applied Plant Genomics Laboratory of Crop Genomics and Bioinformatics Center, and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095 Jiangsu, China
| | - Hongshen Wan
- The Applied Plant Genomics Laboratory of Crop Genomics and Bioinformatics Center, and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095 Jiangsu, China
| | - Liming Yang
- The Applied Plant Genomics Laboratory of Crop Genomics and Bioinformatics Center, and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095 Jiangsu, China
| | - Wenjin Cao
- The Applied Plant Genomics Laboratory of Crop Genomics and Bioinformatics Center, and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095 Jiangsu, China
| | - Zhengqiang Ma
- The Applied Plant Genomics Laboratory of Crop Genomics and Bioinformatics Center, and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095 Jiangsu, China
| |
Collapse
|
44
|
Poupin MJ, Timmermann T, Vega A, Zuñiga A, González B. Effects of the plant growth-promoting bacterium Burkholderia phytofirmans PsJN throughout the life cycle of Arabidopsis thaliana. PLoS One 2013; 8:e69435. [PMID: 23869243 PMCID: PMC3711820 DOI: 10.1371/journal.pone.0069435] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Accepted: 06/07/2013] [Indexed: 12/31/2022] Open
Abstract
Plant growth-promoting rhizobacteria (PGPR) induce positive effects in plants, such as increased growth or reduced stress susceptibility. The mechanisms behind PGPR/plant interaction are poorly understood, as most studies have described short-term responses on plants and only a few studies have analyzed plant molecular responses under PGPR colonization. Here, we studied the effects of the PGPR bacterial model Burkholderiaphytofirmans PsJN on the whole life cycle of Arabidopsis thaliana plants. We reported that at different plant developmental points, strain PsJN can be found in the rhizosphere and also colonizing their internal tissues. In early ontogeny, strain PsJN increased several growth parameters and accelerated growth rate of the plants. Also, an Arabidopsis transcriptome analysis revealed that 408 genes showed differential expression in PsJN-inoculated plants; some of these genes are involved in stress response and hormone pathways. Specifically, genes implicated in auxin and gibberellin pathways were induced. Quantitative transcriptional analyses of selected genes in different developmental stages revealed that the beginning of these changes could be evidenced early in development, especially among the down-regulated genes. The inoculation with heat-killed bacteria provoked a more severe transcriptional response in plants, but was not able to induce plant growth-promotion. Later in ontogeny, the growth rates of inoculated plants decreased with respect to the non-inoculated group and, interestingly, the inoculation accelerated the flowering time and the appearance of senescence signs in plants; these modifications correlate with the early up-regulation of flowering control genes. Then, we show that a single inoculation with a PGPR could affect the whole life cycle of a plant, accelerating its growth rate and shortening its vegetative period, both effects relevant for most crops. Thus, these findings provide novel and interesting aspects of these relevant biological interactions.
Collapse
Affiliation(s)
- María Josefina Poupin
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile.
| | | | | | | | | |
Collapse
|
45
|
Liao SC, Lin CS, Wang AY, Sung HY. Differential expression of genes encoding acid invertases in multiple shoots of bamboo in response to various phytohormones and environmental factors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:4396-4405. [PMID: 23586540 DOI: 10.1021/jf400776m] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The promoter regions of two cell wall invertase genes, Boβfruct1 and Boβfruct2, and a vacuolar invertase gene, Boβfruct3, in Bambusa oldhamii were cloned, and putative regulatory cis-elements were identified. The expression of these three genes in multiple shoots of bamboo that were cultured in vitro under different conditions was analyzed by real-time PCR. The two cell wall invertase genes were upregulated by indole-3-acetic acid and cytokinins but responded differently to other phytohormones and different temperatures. Boβfruct1 was also upregulated by sucrose and glucose. In contrast, the Boβfruct2 expression was induced by the depletion of sucrose, and this induction could be suppressed by glucose and sucrose. The expression of Boβfruct3 was light-dependent; however, abscisic acid (ABA) could induce its expression in the dark. ABA and light exhibited an additive effect on the expression of Boβfruct3. Our results suggest that these three Boβfruct genes have individual roles in the adaption of the plant to environmental changes. Boβfruct2 might also have an essential role in the immediate response of cells to sucrose availability and in the maintenance of sink activity. Moreover, Boβfruct3 might be one of the interacting nodes of the light and ABA signaling pathways.
Collapse
Affiliation(s)
- Shu-Chien Liao
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 106, Taiwan
| | | | | | | |
Collapse
|
46
|
Bose SK, Yadav RK, Mishra S, Sangwan RS, Singh AK, Mishra B, Srivastava AK, Sangwan NS. Effect of gibberellic acid and calliterpenone on plant growth attributes, trichomes, essential oil biosynthesis and pathway gene expression in differential manner in Mentha arvensis L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 66:150-8. [PMID: 23514759 DOI: 10.1016/j.plaphy.2013.02.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Accepted: 02/14/2013] [Indexed: 05/12/2023]
Abstract
Extensive research is going on throughout the world to find out new molecules from natural sources to be used as plant growth promoter. Mentha arvensis L. is the main source of menthol rich essential oil used commercially in various food, pharmaceutical and other preparations. Experiments were conducted on field grown plants for understanding the effect of calliterpenone (CA), a stereo-isomer of abbeokutone, in comparison to gibberellic acid (GA3) on growth attributes, trichomes, essential oil biosynthesis and expression of some oil biosynthetic pathway genes. The exogenous application of CA (1 μM, 10 μM and 100 μM) was found to be better in improving plant biomass and stolon yield, leaf area, branching and leaf stem ratio than with counterpart GA3 at the same concentrations. CA treated plants showed higher glandular trichome number, density and diameter and also correlated with enhanced oil biogenetic capacity as revealed by feeding labeled (14)C-sucrose for 72 h to excised shoots. Semi-quantitative PCR analysis of key pathway genes revealed differential up regulation under CA treatments. Transcript level of menthol dehydrogenase/menthone reductase was found highly up regulated in CA treated plants with increased content of menthone and menthol in oil. These findings demonstrate that CA positively regulated the yields by enhanced branching and higher density of trichomes resulting into higher accumulation of essential oil. The results suggest CA as a novel plant derived diterpenoid with growth promoting action and opens up new possibilities for improving the crop yields and essential oil biosynthesis in qualitative and quantitative manner.
Collapse
Affiliation(s)
- Subir K Bose
- Metabolic and Structural Biology Department, CSIR-Central Institute of Medicinal and Aromatic Plants (CIMAP), Lucknow, India
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Urbanová T, Tarkowská D, Novák O, Hedden P, Strnad M. Analysis of gibberellins as free acids by ultra performance liquid chromatography-tandem mass spectrometry. Talanta 2013; 112:85-94. [PMID: 23708542 DOI: 10.1016/j.talanta.2013.03.068] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 03/18/2013] [Accepted: 03/25/2013] [Indexed: 11/17/2022]
Abstract
A robust, reliable and high-throughput method for extraction and purification of gibberellins (GAs), a group of tetracyclic diterpenoid carboxylic acids that include endogenous growth hormones, from plant material was developed. The procedure consists of two solid-phase extraction steps (Oasis(®) MCX-HLB and Oasis(®) MAX) and gives selective enrichment and efficient clean-up of these compounds from complex plant extracts. The method was tested with plant extracts of Brassica napus and Arabidopsis thaliana, from which total recovery of internal standards of about 72% was achieved. A rapid baseline chromatographic separation of 20 non-derivatised GAs by ultra performance liquid chromatography is also presented where a reversed-phase chromatographic column Acquity CSH(®) and a mobile phase consisting of methanol and aqueous 10mM-ammonium formate is used. This method enables sensitive and precise quantitation of GAs by MS/MS in multiple-reaction monitoring mode (MRM) by a standard isotope dilution method. Optimal conditions, including final flow rate, desolvation temperature, desolvation gas flow, capillary and cone voltage for effective ionisation in the electrospray ion source were found. All studied GAs were determined as free acids giving dominant quasi-molecular ions of [M-H](-) with limits of detection ranging between 0.08 and 10 fmol and linear ranges over four orders of magnitude. Taking advantage of highly effective chromatographic separation of 20 GAs and very sensitive mass spectrometric detection, the presented bioanalytical method serves as a useful tool for plant biologists studying the physiological roles of these hormones in plant development.
Collapse
Affiliation(s)
- Terezie Urbanová
- Laboratory of Growth Regulators, Faculty of Sciences, Palacký University & Institute of Experimental Botany Academy of Sciences of the Czech Republic, v.v.i., Šlechtitelů 11, CZ-783 71 Olomouc, Czech Republic.
| | | | | | | | | |
Collapse
|
48
|
Sao S, Sahu PK. Influence of Fly Ash and Growth Regulator with Soil for Determination of Chlorophyll in <i>Arachis hypogaea</i> L. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/ajps.2013.49214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
49
|
Kay P, Groszmann M, Ross JJ, Parish RW, Swain SM. Modifications of a conserved regulatory network involving INDEHISCENT controls multiple aspects of reproductive tissue development in Arabidopsis. THE NEW PHYTOLOGIST 2013; 197:73-87. [PMID: 23126654 DOI: 10.1111/j.1469-8137.2012.04373.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 08/31/2012] [Indexed: 05/03/2023]
Abstract
Disrupting pollen tube growth and fertilization in Arabidopsis plants leads to reduced seed set and silique size, providing a powerful genetic system with which to identify genes with important roles in plant fertility. A transgenic Arabidopsis line with reduced pollen tube growth, seed set and silique growth was used as the progenitor in a genetic screen to isolate suppressors with increased seed set and silique size. This screen generated a new allele of INDEHISCENT (IND), a gene originally identified by its role in valve margin development and silique dehiscence (pod shatter). IND forms part of a regulatory network that involves several other transcriptional regulators and involves the plant hormones GA and auxin. Using GA and auxin mutants that alter various aspects of reproductive development, we have identified novel roles for IND, its paralogue HECATE3, and the MADS box proteins SHATTERPROOF1/2 in flower and fruit development. These results suggest that modified forms of the regulatory network originally described for the Arabidopsis valve margin, which include these genes and/or their recently evolved paralogs, function in multiple components of GA/auxin-regulated reproductive development.
Collapse
Affiliation(s)
- P Kay
- CSIRO Plant Industry, Canberra, ACT, 2601, Australia
- Department of Botany, La Trobe University, Bundoora, VIC, 3086, Australia
| | - M Groszmann
- CSIRO Plant Industry, Canberra, ACT, 2601, Australia
| | - J J Ross
- School of Plant Science, University of Tasmania, Hobart, TAS, 7001, Australia
| | - R W Parish
- Department of Botany, La Trobe University, Bundoora, VIC, 3086, Australia
| | - S M Swain
- CSIRO Plant Industry, Canberra, ACT, 2601, Australia
| |
Collapse
|
50
|
Ramos ML, Altieri E, Bulos M, Sala CA. Phenotypic characterization, genetic mapping and candidate gene analysis of a source conferring reduced plant height in sunflower. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2013; 126:251-263. [PMID: 22972203 DOI: 10.1007/s00122-012-1978-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 08/27/2012] [Indexed: 06/01/2023]
Abstract
Reduced height germplasm has the potential to increase stem strength, standability, and also yields potential of the sunflower crop (Helianthus annuus L. var. macrocarpus Ckll.). In this study, we report on the inheritance, mapping, phenotypic and molecular characterization of a reduced plant height trait in inbred lines derived from the source DDR. This trait is controlled by a semidominant allele, Rht1, which maps on linkage group 12 of the sunflower public consensus map. Phenotypic effects of this allele include shorter height and internode length, insensibility to exogenous gibberellin application, normal skotomorphogenetic response, and reduced seed set under self-pollination conditions. This later effect presumably is related to the reduced pollen viability observed in all DDR-derived lines studied. Rht1 completely cosegregated with a haplotype of the HaDella1 gene sequence. This haplotype consists of a point mutation converting a leucine residue in a proline within the conserved DELLA domain. Taken together, the phenotypic, genetic, and molecular results reported here indicate that Rht1 in sunflower likely encodes an altered DELLA protein. If the DELPA motif of the HaDELLA1 sequence in the Rht1-encoded protein determines by itself the observed reduction in height is a matter that remains to be investigated.
Collapse
Affiliation(s)
- María Laura Ramos
- Biotechnology Department, NIDERA S.A, Ruta 8 km 376, Casilla de Correo 6, 2600 Venado Tuerto, Santa Fe, Argentina
| | | | | | | |
Collapse
|