1
|
Wang X, Liu J, Shang E, Hawar A, Ito T, Sun B. Brassinosteroid signaling represses ZINC FINGER PROTEIN11 to regulate ovule development in Arabidopsis. THE PLANT CELL 2024; 36:koae273. [PMID: 39373565 PMCID: PMC11638486 DOI: 10.1093/plcell/koae273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/10/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Abstract
Brassinosteroid (BR) signaling and the C-class MADS-box gene AGAMOUS (AG) play important roles in ovule development in Arabidopsis (Arabidopsis thaliana). However, how BR signaling integrates with AG functions to control the female reproductive process remains elusive. Here, we showed that the regulatory role of BR signaling in proper ovule development is mediated by the transcriptional repressor gene ZINC FINGER PROTEIN 11 (ZFP11), which is a direct target of AG. ZFP11 expression initiates from the placenta upon AG induction and becomes prominent in the funiculus of ovule primordia. Plants harboring zfp11 mutations showed reduced placental length with decreased ovule numbers and some aborted ovules. During ovule development, the transcription factor BRASSINAZOLE-RESISTANT 1 (BZR1), which functions downstream of BR signaling, inhibits ZFP11 expression in the chalaza and nucellus. Weakened BR signaling leads to stunted integuments in ovules, resulting from the direct repression of INNER NO OUTER (INO) and WUSCHEL (WUS) by extended ZFP11 expression in the chalaza and nucellus, respectively. In addition, the zfp11 mutant shows reduced sensitivity to BR biosynthesis inhibitors and can rescue outer integument defects in brassinosteroid insensitive 1 (bri1) mutants. Thus, the precise spatial regulation of ZFP11, which is activated by AG in the placenta and suppressed by BR signaling in the central and distal regions of ovules, is essential for ensuring sufficient ovule numbers and proper ovule formation.
Collapse
Affiliation(s)
- Xin Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Jiaxin Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Erlei Shang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Amangul Hawar
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Toshiro Ito
- Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Bo Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| |
Collapse
|
2
|
Moschin S, Nigris S, Offer E, Babolin N, Chiappetta A, Bruno L, Baldan B. Reproductive development in Trithuria submersa (Hydatellaceae: Nymphaeales): the involvement of AGAMOUS-like genes. PLANTA 2024; 260:106. [PMID: 39327272 PMCID: PMC11427499 DOI: 10.1007/s00425-024-04537-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024]
Abstract
MAIN CONCLUSION In the early diverging angiosperm Trithuria submersa TsAG1 and TsAG2 are expressed in different flower organs, including bracts, while TsAG3 is more ovule-specific, probably functioning as a D-type gene. Species of Trithuria, the only genus of the family Hydatellaceae, represent ideal candidates to explore the biology and flower evolution of early diverging angiosperms. The life cycle of T. submersa is generally known, and the "reproductive units" are morphologically well described, but the availability of genetic and developmental data of T. submersa is still scarce. To fill this gap, a transcriptome analysis of the reproductive structures was performed and presented in this work. This analysis provided sequences of MADS-box transcription factors, a gene family known to be involved in flower and fruit development. In situ hybridization experiments on floral buds were performed to describe the spatiotemporal expression patterns of the AGAMOUS genes, revealing the existence of three AG genes with different expression domains in flower organs and in developing ovules. Trithuria may offer important clues to the evolution of reproductive function among early angiosperms and Nymphaeales in particular, and this study aims to broaden relevant knowledge regarding key genes of reproductive development in non-model angiosperms, shaping first flower appearance and evolution.
Collapse
Affiliation(s)
- Silvia Moschin
- Department of Biology, University of Padova, Padua, Italy.
- Botanical Garden of Padova, University of Padova, Padua, Italy.
| | - Sebastiano Nigris
- Department of Biology, University of Padova, Padua, Italy.
- Botanical Garden of Padova, University of Padova, Padua, Italy.
| | - Elisabetta Offer
- Department of Biology, University of Padova, Padua, Italy
- Botanical Garden of Padova, University of Padova, Padua, Italy
| | - Nicola Babolin
- Department of Biology, University of Padova, Padua, Italy
- Botanical Garden of Padova, University of Padova, Padua, Italy
- Department of Biosciences, University of Milano, Milan, Italy
| | - Adriana Chiappetta
- Department of Biology, Ecology, and Hearth Sciences (DiBEST), University of Calabria, Arcavacata Di Rende, CS, Italy
| | - Leonardo Bruno
- Department of Biology, Ecology, and Hearth Sciences (DiBEST), University of Calabria, Arcavacata Di Rende, CS, Italy
| | - Barbara Baldan
- Department of Biology, University of Padova, Padua, Italy
- Botanical Garden of Padova, University of Padova, Padua, Italy
- National Biodiversity Future Center, Palermo, Italy
| |
Collapse
|
3
|
Wu J, Li P, Zhu D, Ma H, Li M, Lai Y, Peng Y, Li H, Li S, Wei J, Bian X, Rahman A, Wu S. SlCRCa is a key D-class gene controlling ovule fate determination in tomato. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1966-1980. [PMID: 38561972 PMCID: PMC11182579 DOI: 10.1111/pbi.14317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/29/2024] [Accepted: 02/10/2024] [Indexed: 04/04/2024]
Abstract
Cell fate determination and primordium initiation on the placental surface are two key events for ovule formation in seed plants, which directly affect ovule density and seed yield. Despite ovules form in the marginal meristematic tissues of the carpels, angiosperm carpels evolved after the ovules. It is not clear how the development of the ovules and carpels is coordinated in angiosperms. In this study, we identify the S. lycopersicum CRABS CLAW (CRC) homologue SlCRCa as an essential determinant of ovule fate. We find that SlCRCa is not only expressed in the placental surface and ovule primordia but also functions as a D-class gene to block carpel fate and promote ovule fate in the placental surface. Loss of function of SlCRCa causes homeotic transformation of the ovules to carpels. In addition, we find low levels of the S. lycopersicum AINTEGUMENTA (ANT) homologue (SlANT2) favour the ovule initiation, whereas high levels of SlANT2 promote placental carpelization. SlCRCa forms heterodimer with tomato INNER NO OUTER (INO) and AGAMOUS (AG) orthologues, SlINO and TOMATO AGAMOUS1 (TAG1), to repress SlANT2 expression during the ovule initiation. Our study confirms that angiosperm basal ovule cells indeed retain certain carpel properties and provides mechanistic insights into the ovule initiation.
Collapse
Affiliation(s)
- Junqing Wu
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry UniversityFuzhouChina
| | - Pengxue Li
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry UniversityFuzhouChina
| | - Danyang Zhu
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry UniversityFuzhouChina
| | - Haochuan Ma
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry UniversityFuzhouChina
| | - Meng Li
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry UniversityFuzhouChina
| | - Yixuan Lai
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry UniversityFuzhouChina
| | - Yuxin Peng
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry UniversityFuzhouChina
| | - Haixiao Li
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry UniversityFuzhouChina
| | - Shuang Li
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry UniversityFuzhouChina
| | - Jinbo Wei
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry UniversityFuzhouChina
| | - Xinxin Bian
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry UniversityFuzhouChina
| | - Abidur Rahman
- Department of Plant Bio‐Sciences, Faculty of AgricultureIwate UniversityMoriokaJapan
- United Graduate School of Agricultural SciencesIwate UniversityMoriokaJapan
| | - Shuang Wu
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry UniversityFuzhouChina
| |
Collapse
|
4
|
Yu Y, Chu X, Ma X, Hu Z, Wang M, Li J, Yin H. Genome-Wide Analysis of MADS-Box Gene Family Reveals CjSTK as a Key Regulator of Seed Abortion in Camellia japonica. Int J Mol Sci 2024; 25:5770. [PMID: 38891958 PMCID: PMC11171818 DOI: 10.3390/ijms25115770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
The plant MADS-box transcription factor family is a major regulator of plant flower development and reproduction, and the AGAMOUS-LIKE11/SEEDSTICK (AGL11/STK) subfamily plays conserved functions in the seed development of flowering plants. Camellia japonica is a world-famous ornamental flower, and its seed kernels are rich in highly valuable fatty acids. Seed abortion has been found to be common in C. japonica, but little is known about how it is regulated during seed development. In this study, we performed a genome-wide analysis of the MADS-box gene the in C. japonica genome and identified 126 MADS-box genes. Through gene expression profiling in various tissue types, we revealed the C/D-class MADS-box genes were preferentially expressed in seed-related tissues. We identified the AGL11/STK-like gene, CjSTK, and showed that it contained a typical STK motif and exclusively expressed during seed development. We found a significant increase in the CjSTK expression level in aborted seeds compared with normally developing seeds. Furthermore, overexpression of CjSTK in Arabidopsis thaliana caused shorter pods and smaller seeds. Taken together, we concluded that the fine regulation of the CjSTK expression at different stages of seed development is critical for ovule formation and seed abortion in C. japonica. The present study provides evidence revealing the regulation of seed development in Camellia.
Collapse
Affiliation(s)
- Yifan Yu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (Y.Y.); (X.C.); (X.M.); (Z.H.); (M.W.); (J.L.)
- College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Xian Chu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (Y.Y.); (X.C.); (X.M.); (Z.H.); (M.W.); (J.L.)
- College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Xianjin Ma
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (Y.Y.); (X.C.); (X.M.); (Z.H.); (M.W.); (J.L.)
| | - Zhikang Hu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (Y.Y.); (X.C.); (X.M.); (Z.H.); (M.W.); (J.L.)
| | - Minyan Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (Y.Y.); (X.C.); (X.M.); (Z.H.); (M.W.); (J.L.)
| | - Jiyuan Li
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (Y.Y.); (X.C.); (X.M.); (Z.H.); (M.W.); (J.L.)
| | - Hengfu Yin
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (Y.Y.); (X.C.); (X.M.); (Z.H.); (M.W.); (J.L.)
| |
Collapse
|
5
|
Qin Z, Wu YN, Li S, Zhang Y. Signaling between sporophytic integuments and developing female gametophyte during ovule development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 335:111829. [PMID: 37574141 DOI: 10.1016/j.plantsci.2023.111829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/07/2023] [Accepted: 08/11/2023] [Indexed: 08/15/2023]
Abstract
Ovules are precursors of seeds and contain sporophytic integuments and gametophytic embryo sac. In Arabidopsis, embryo sac development requires highly synchronized morphogenesis of integument such that defects in integument growth often accompanies with a block in megagametogenesis, indicating that integument instructs the development of female gametophytes. In this mini review, we discuss signaling pathways through which integument cells mediate embryo sac development. We also propose ways to identify key signaling factors for the communication between integument and developing female gametophyte.
Collapse
Affiliation(s)
- Zheng Qin
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tian'jin 300071, China
| | - Ya-Nan Wu
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tian'jin 300071, China
| | - Sha Li
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Yan Zhang
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tian'jin 300071, China; College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
6
|
Lan J, Wang N, Wang Y, Jiang Y, Yu H, Cao X, Qin G. Arabidopsis TCP4 transcription factor inhibits high temperature-induced homeotic conversion of ovules. Nat Commun 2023; 14:5673. [PMID: 37704599 PMCID: PMC10499876 DOI: 10.1038/s41467-023-41416-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 09/04/2023] [Indexed: 09/15/2023] Open
Abstract
Abnormal high temperature (HT) caused by global warming threatens plant survival and food security, but the effects of HT on plant organ identity are elusive. Here, we show that Class II TEOSINTE BRANCHED 1/CYCLOIDEA/ PCF (TCP) transcription factors redundantly protect ovule identity under HT. The duodecuple tcp2/3/4/5/10/13/17/24/1/12/18/16 (tcpDUO) mutant displays HT-induced ovule conversion into carpelloid structures. Expression of TCP4 in tcpDUO complements the ovule identity conversion. TCP4 interacts with AGAMOUS (AG), SEPALLATA3 (SEP3), and the homeodomain transcription factor BELL1 (BEL1) to strengthen the association of BEL1 with AG-SEP3. The tcpDUO mutant synergistically interacts with bel1 and the ovule identity gene seedstick (STK) mutant stk in tcpDUO bel1 and tcpDUO stk. Our findings reveal the critical roles of Class II TCPs in maintaining ovule identity under HT and shed light on the molecular mechanisms by which ovule identity is determined by the integration of internal factors and environmental temperature.
Collapse
Affiliation(s)
- Jingqiu Lan
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ning Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Yutao Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Yidan Jiang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Hao Yu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Genji Qin
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
7
|
Zhang S, Wang L, Yao J, Wu N, Ahmad B, van Nocker S, Wu J, Abudureheman R, Li Z, Wang X. Control of ovule development in Vitis vinifera by VvMADS28 and interacting genes. HORTICULTURE RESEARCH 2023; 10:uhad070. [PMID: 37293531 PMCID: PMC10244803 DOI: 10.1093/hr/uhad070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 04/08/2023] [Indexed: 06/10/2023]
Abstract
Seedless grapes are increasingly popular throughout the world, and the development of seedless varieties is a major breeding goal. In this study, we demonstrate an essential role for the grapevine MADS-box gene VvMADS28 in morphogenesis of the ovule. We found that VvMADS28 mRNA accumulated in the ovules of a seeded cultivar, 'Red Globe', throughout the course of ovule and seed development, especially within the integument/seed coat. In contrast, in the seedless cultivar 'Thompson Seedless', VvMADS28 was expressed only weakly in ovules, and this was associated with increased levels of histone H3 lysine 27 trimethylation (H3K27me3) within the VvMADS28 promoter region. RNAi-mediated transient suppression of VvMADS28 expression in 'Red Globe' led to reduced seed size associated with inhibition of episperm and endosperm cell development. Heterologous overexpression of VvMADS28 in transgenic tomatoes interfered with sepal development and resulted in smaller fruit but did not obviously affect seed size. Assays in yeast cells showed that VvMADS28 is subject to regulation by the transcription factor VvERF98, and that VvMADS28 could interact with the Type I/ Mβ MADS-domain protein VvMADS5. Moreover, through DNA-affinity purification-sequencing (DAP-seq), we found that VvMADS28 protein specifically binds to the promoter of the grapevine WUSCHEL (VvWUS) gene, suggesting that maintenance of the VvMADS28-VvMADS5 dimer and VvWUS expression homeostasis influences seed development. Taken together, our results provide insight into regulatory mechanisms of ovule and seed development associated with VvMADS28.
Collapse
Affiliation(s)
- Songlin Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Li Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Jin Yao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Na Wu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Bilal Ahmad
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Agriculture Genomics Institute, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Steve van Nocker
- Department of Horticulture, Michigan State University, East Lansing, MI 48823, USA
| | - Jiuyun Wu
- Turpan Research Institute of Agricultural Sciences, Xinjiang Academy of Agricultural Sciences, Turpan 838000, Xinjiang, China
| | - Riziwangguli Abudureheman
- Turpan Research Institute of Agricultural Sciences, Xinjiang Academy of Agricultural Sciences, Turpan 838000, Xinjiang, China
| | - Zhi Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiping Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Turpan Research Institute of Agricultural Sciences, Xinjiang Academy of Agricultural Sciences, Turpan 838000, Xinjiang, China
| |
Collapse
|
8
|
Wang H, Lu Y, Zhang T, Liu Z, Cao L, Chang Q, Liu Y, Lu X, Yu S, Li H, Jiang J, Liu G, Sederoff HW, Sederoff RR, Zhang Q, Zheng Z. The double flower variant of yellowhorn is due to a LINE1 transposon-mediated insertion. PLANT PHYSIOLOGY 2023; 191:1122-1137. [PMID: 36494195 PMCID: PMC9922402 DOI: 10.1093/plphys/kiac571] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
As essential organs of reproduction in angiosperms, flowers, and the genetic mechanisms of their development have been well characterized in many plant species but not in the woody tree yellowhorn (Xanthoceras sorbifolium). Here, we focused on the double flower phenotype in yellowhorn, which has high ornamental value. We found a candidate C-class gene, AGAMOUS1 (XsAG1), through bovine serum albumin sequencing and genetics analysis with a Long Interpersed Nuclear Elements 1 (LINE1) transposable element fragment (Xsag1-LINE1-1) inserted into its second intron that caused a loss-of-C-function and therefore the double flower phenotype. In situ hybridization of XsAG1 and analysis of the expression levels of other ABC genes were used to identify differences between single- and double-flower development processes. These findings enrich our understanding of double flower formation in yellowhorn and provide evidence that transposon insertions into genes can reshape plant traits in forest trees.
Collapse
|
9
|
Chen JJ, Wang W, Qin WQ, Men SZ, Li HL, Mitsuda N, Ohme-Takagi M, Wu AM. Transcription factors KNAT3 and KNAT4 are essential for integument and ovule formation in Arabidopsis. PLANT PHYSIOLOGY 2023; 191:463-478. [PMID: 36342216 PMCID: PMC9806662 DOI: 10.1093/plphys/kiac513] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Integuments form important protective cell layers surrounding the developing ovules in gymno- and angiosperms. Although several genes have been shown to influence the development of integuments, the transcriptional regulatory mechanism is still poorly understood. In this work, we report that the Class II KNOTTED1-LIKE HOMEOBOX (KNOX II) transcription factors KNOTTED1-LIKE HOMEBOX GENE 3 (KNAT3) and KNAT4 regulate integument development in Arabidopsis (Arabidopsis thaliana). KNAT3 and KNAT4 were co-expressed in inflorescences and especially in young developing ovules. The loss-of-function double mutant knat3 knat4 showed an infertility phenotype, in which both inner and outer integuments of the ovule are arrested at an early stage and form an amorphous structure as in the bell1 (bel1) mutant. The expression of chimeric KNAT3- and KNAT4-EAR motif repression domain (SRDX repressors) resulted in severe seed abortion. Protein-protein interaction assays demonstrated that KNAT3 and KNAT4 interact with each other and also with INNER NO OUTER (INO), a key transcription factor required for the outer integument formation. Transcriptome analysis showed that the expression of genes related with integument development is influenced in the knat3 knat4 mutant. The knat3 knat4 mutant also had a lower indole-3-acetic acid (IAA) content, and some auxin signaling pathway genes were downregulated. Moreover, transactivation analysis indicated that KNAT3/4 and INO activate the auxin signaling gene IAA INDUCIBLE 14 (IAA14). Taken together, our study identified KNAT3 and KNAT4 as key factors in integument development in Arabidopsis.
Collapse
Affiliation(s)
- Jia-Jun Chen
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| | - Wei Wang
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå 90183, Sweden
| | - Wen-Qi Qin
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| | - Shu-Zhen Men
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Hui-Ling Li
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| | - Nobutaka Mitsuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Masaru Ohme-Takagi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Ai-Min Wu
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
10
|
Petrella R, Gabrieli F, Cavalleri A, Schneitz K, Colombo L, Cucinotta M. Pivotal role of STIP in ovule pattern formation and female germline development in Arabidopsis thaliana. Development 2022; 149:276792. [DOI: 10.1242/dev.201184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 08/30/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
In spermatophytes the sporophytic (diploid) and the gametophytic (haploid) generations co-exist in ovules, and the coordination of their developmental programs is of pivotal importance for plant reproduction. To achieve efficient fertilization, the haploid female gametophyte and the diploid ovule structures must coordinate their development to form a functional and correctly shaped ovule. WUSCHEL-RELATED HOMEOBOX (WOX) genes encode a family of transcription factors that share important roles in a wide range of processes throughout plant development. Here, we show that STIP is required for the correct patterning and curvature of the ovule in Arabidopsis thaliana. The knockout mutant stip-2 is characterized by a radialized ovule phenotype due to severe defects in outer integument development. In addition, alteration of STIP expression affects the correct differentiation and progression of the female germline. Finally, our results reveal that STIP is required to tightly regulate the key ovule factors INNER NO OUTER, PHABULOSA and WUSCHEL, and they define a novel genetic interplay in the regulatory networks determining ovule development.
Collapse
Affiliation(s)
- Rosanna Petrella
- Università degli Studi di Milano 1 Dipartimento di Bioscienze , , Via Celoria 26, 20133 Milan , Italy
| | - Flavio Gabrieli
- Università degli Studi di Milano 1 Dipartimento di Bioscienze , , Via Celoria 26, 20133 Milan , Italy
| | - Alex Cavalleri
- Università degli Studi di Milano 1 Dipartimento di Bioscienze , , Via Celoria 26, 20133 Milan , Italy
| | - Kay Schneitz
- , Technical University of Munich 2 Plant Developmental Biology, School of Life Sciences , 85354 Freising , Germany
| | - Lucia Colombo
- Università degli Studi di Milano 1 Dipartimento di Bioscienze , , Via Celoria 26, 20133 Milan , Italy
| | - Mara Cucinotta
- Università degli Studi di Milano 1 Dipartimento di Bioscienze , , Via Celoria 26, 20133 Milan , Italy
| |
Collapse
|
11
|
Zhang S, Yao J, Wang L, Wu N, van Nocker S, Li Z, Gao M, Wang X. Role of grapevine SEPALLATA-related MADS-box gene VvMADS39 in flower and ovule development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:1565-1579. [PMID: 35830211 DOI: 10.1111/tpj.15907] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 06/30/2022] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
Seedlessness is one of the most important breeding goals for table grapes; thus, understanding the molecular genetic regulation of seed development and abortion is critical for the development of seedless cultivars. In the present study, we characterized VvMADS39, a class E MADS-box gene of grapevine (Vitis vinifera) orthologous to Arabidopsis SEP2. Heterologous overexpression of VvMADS39 in tomato reduced the fruit and seed size and seed number. Targeted mutagenesis of the homologous SlMADS39 in tomato induced various floral and fruit defects. It could reasonable to suppose that active VvMADS39 expression in "Thompson Seedless" may restrict cellular expansion, resulting in the development of smaller fruits and seeds, VvMADS39 may play a role in the regulation of ovule development in grapevine and contributes to seedless fruit formation. In contrast, VvMADS39 suppression in "Red Globe" was associated with enhanced histone H3 lysine 27 trimethylation in the promoter region of VvMADS39, allowing normal ovule and fruit development; Meanwhile, VvMADS39 interacts with VvAGAMOUS, and the activity of the VvMADS39-VvAGAMOUS dimer to induce integument development requires the activation and maintenance of VvINO expression. The synergistic cooperation between VvMADS39 and related proteins plays an important role in maintaining floral meristem characteristics, and fruit and ovule development.
Collapse
Affiliation(s)
- Songlin Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jin Yao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Li Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- College of Horticulture, Hebei Agricultural University, Baoding, 071000, China
| | - Na Wu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Steve van Nocker
- Department of Horticulture, Michigan State University, East Lansing, Michigan, USA
| | - Zhi Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Min Gao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiping Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
12
|
Yu SX, Jiang YT, Lin WH. Ovule initiation: the essential step controlling offspring number in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:1469-1486. [PMID: 35713236 DOI: 10.1111/jipb.13314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Seed is the offspring of angiosperms. Plants produce large numbers of seeds to ensure effective reproduction and survival in varying environments. Ovule is a fundamentally important organ and is the precursor of the seed. In Arabidopsis and other plants characterized by multi-ovulate ovaries, ovule initiation determines the maximal ovule number, thus greatly affecting seed number per fruit and seed yield. Investigating the regulatory mechanism of ovule initiation has both scientific and economic significance. However, the genetic and molecular basis underlying ovule initiation remains unclear due to technological limitations. Very recently, rules governing the multiple ovules initiation from one placenta have been identified, the individual functions and crosstalk of phytohormones in regulating ovule initiation have been further characterized, and new regulators of ovule boundary are reported, therefore expanding the understanding of this field. In this review, we present an overview of current knowledge in ovule initiation and summarize the significance of ovule initiation in regulating the number of plant offspring, as well as raise insights for the future study in this field that provide potential routes for the improvement of crop yield.
Collapse
Affiliation(s)
- Shi-Xia Yu
- The Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Shanghai Collaborative Innovation Center of Agri-Seeds/Joint Center for Single Cell Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yu-Tong Jiang
- The Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wen-Hui Lin
- The Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Shanghai Collaborative Innovation Center of Agri-Seeds/Joint Center for Single Cell Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
13
|
Rivarola Sena AC, Andres-Robin A, Vialette AC, Just J, Launay-Avon A, Borrega N, Dubreucq B, Scutt CP. Custom methods to identify conserved genetic modules applied to novel transcriptomic data from Amborella trichopoda. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2487-2498. [PMID: 35134938 DOI: 10.1093/jxb/erac044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
We have devised a procedure for the inter-species comparison of transcriptomic data and used this procedure to reconstruct the expression dynamics of major genetic modules that were present at least 149 million years ago in the most recent common ancestor of living angiosperms. We began by using laser-assisted microdissection to generate novel transcriptomic data from female flower tissues of Amborella trichopoda, the likely sister to all other living angiosperms. We then employed a gene-expression clustering method, followed by a custom procedure to compare genetic modules on the basis of gene orthology between Amborella and the molecular-genetic model angiosperm Arabidopsis thaliana. Using this protocol, we succeeded in identifying nine major genetic modules that appear to have conserved their expression dynamics from an early stage in angiosperm evolution. The genes of these modules, representing over 5000 orthogroups, include around one third of those known to control female reproductive development in Arabidopsis. Our study constitutes a proof of concept for the comparison of transcriptomic data between widely diverged plant species and represents a first step in the large-scale analysis of gene expression dynamics in a macro-evolutionary context.
Collapse
Affiliation(s)
- Ana C Rivarola Sena
- Laboratoire Reproduction et Développement des Plantes, Univ. Lyon, ENS de Lyon, UCB Lyon-1, CNRS, INRA, Lyon, France
| | - Amélie Andres-Robin
- Laboratoire Reproduction et Développement des Plantes, Univ. Lyon, ENS de Lyon, UCB Lyon-1, CNRS, INRA, Lyon, France
| | - Aurelie C Vialette
- Laboratoire Reproduction et Développement des Plantes, Univ. Lyon, ENS de Lyon, UCB Lyon-1, CNRS, INRA, Lyon, France
| | - Jérémy Just
- Laboratoire Reproduction et Développement des Plantes, Univ. Lyon, ENS de Lyon, UCB Lyon-1, CNRS, INRA, Lyon, France
| | - Alexandra Launay-Avon
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
- Université de Paris, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
| | - Néro Borrega
- UMR 1318 INRAe-AgroParisTech, Route de Saint Cyr, 78026 Versailles cedex, France
| | - Bertrand Dubreucq
- UMR 1318 INRAe-AgroParisTech, Route de Saint Cyr, 78026 Versailles cedex, France
| | - Charles P Scutt
- Laboratoire Reproduction et Développement des Plantes, Univ. Lyon, ENS de Lyon, UCB Lyon-1, CNRS, INRA, Lyon, France
| |
Collapse
|
14
|
Zhang W, Zhou Q, Lin J, Ma X, Dong F, Yan H, Zhong W, Lu Y, Yao Y, Shen X, Huang L, Zhang W, Ming R. Transcriptome analyses shed light on floral organ morphogenesis and bract color formation in Bougainvillea. BMC PLANT BIOLOGY 2022; 22:97. [PMID: 35246031 PMCID: PMC8895829 DOI: 10.1186/s12870-022-03478-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Bougainvillea is a popular ornamental plant with brilliant color and long flowering periods. It is widely distributed in the tropics and subtropics. The primary ornamental part of the plant is its colorful and unusual bracts, rich in the stable pigment betalain. The developmental mechanism of the bracts is not clear, and the pathway of betalain biosynthesis is well characterized in Bougainvillea. RESULTS At the whole-genome level, we found 23,469 protein-coding genes by assembling the RNA-Seq and Iso-Seq data of floral and leaf tissues. Genome evolution analysis revealed that Bougainvillea is related to spinach; the two diverged approximately 52.7 million years ago (MYA). Transcriptome analysis of floral organs revealed that flower development of Bougainvillea was regulated by the ABCE flower development genes; A-class, B-class, and E-class genes exhibited high expression levels in bracts. Eight key genes of the betalain biosynthetic pathway were identified by homologous alignment, all of which were upregulated concurrently with bract development and betalain accumulation during the bract initiation stage of development. We found 47 genes specifically expressed in stamens, including seven highly expressed genes belonging to the pentose and glucuronate interconversion pathways. BgSEP2b, BgSWEET11, and BgRD22 are hub genes and interacted with many transcription factors and genes in the carpel co-expression network. CONCLUSIONS We assembled protein-coding genes of Bougainvilea, identified the floral development genes, and constructed the gene co-expression network of petal, stamens, and carpel. Our results provide fundamental information about the mechanism of flower development and pigment accumulation in Bougainvillea, and will facilitate breeding of cultivars with high ornamental value.
Collapse
Affiliation(s)
- Wenping Zhang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, 350002, Fuzhou, Fujian, China
| | - Qun Zhou
- Xiamen Botanical Garden, 361000, Xiamen, Fujian, China
| | - Jishan Lin
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, 350002, Fuzhou, Fujian, China
| | - Xinyi Ma
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, 350002, Fuzhou, Fujian, China
- College of Life Sciences, Fujian Agriculture and Forestry University, 350002, Fuzhou, Fujian, China
| | - Fei Dong
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, 350002, Fuzhou, Fujian, China
- College of Life Sciences, Fujian Agriculture and Forestry University, 350002, Fuzhou, Fujian, China
| | - Hansong Yan
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, 350002, Fuzhou, Fujian, China
| | - Weimin Zhong
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, 350002, Fuzhou, Fujian, China
| | - Yijing Lu
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, 350002, Fuzhou, Fujian, China
- College of Crop Sciences, Fujian Agriculture and Forestry University, 350002, Fuzhou, Fujian, China
| | - Yuan Yao
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, 350002, Fuzhou, Fujian, China
- College of Life Sciences, Fujian Agriculture and Forestry University, 350002, Fuzhou, Fujian, China
| | - Xueting Shen
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, 350002, Fuzhou, Fujian, China
| | - Lixian Huang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, 350002, Fuzhou, Fujian, China
| | - Wanqi Zhang
- Xiamen Botanical Garden, 361000, Xiamen, Fujian, China.
| | - Ray Ming
- Department of Plant Biology, University of Illinois at Urbana-Champaign, 61801, Urbana, IL, USA.
| |
Collapse
|
15
|
Zhao N, Zhao M, Tian Y, Wang Y, Han C, Fan M, Guo H, Bai MY. Interaction between BZR1 and EIN3 mediates signalling crosstalk between brassinosteroids and ethylene. THE NEW PHYTOLOGIST 2021; 232:2308-2323. [PMID: 34449890 DOI: 10.1111/nph.17694] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
Plant growth and development are coordinated by multiple environmental and endogenous signals. Brassinosteroid (BR) and ethylene (ET) have overlapping functions in a wide range of developmental processes. However, the relationship between the BR and ET signalling pathways has remained unclear. Here, we show that BR and ET interdependently promote apical hook development and cell elongation through a direct interaction between BR-activated BRASSINOZALE-RESISTANT1 (BZR1) and ET-activated ETHYLENE INSENSITIVE3 (EIN3). Genetic analysis showed that BR signalling is required for ET promotion of apical hook development in the dark and cell elongation under light, and ET quantitatively enhances BR-potentiated growth. BZR1 interacts with EIN3 to co-operatively increase the expression of HOOKLESS1 and PACLOBUTRAZOL RESISTANCE FACTORs (PREs). Furthermore, we found that BR promotion of hook development requires gibberellin (GA), and GA restores the hookless phenotype of BR-deficient materials by activating EIN3/EIL1. Our findings shed light on the molecular mechanism underlying the regulation of plant development by BR, ET and GA signals through the direct interaction of master transcriptional regulators.
Collapse
Affiliation(s)
- Na Zhao
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Min Zhao
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Yanchen Tian
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Yichuan Wang
- Department of Biology, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Chao Han
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Min Fan
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Hongwei Guo
- Department of Biology, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Ming-Yi Bai
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| |
Collapse
|
16
|
Qadir M, Wang X, Shah SRU, Zhou XR, Shi J, Wang H. Molecular Network for Regulation of Ovule Number in Plants. Int J Mol Sci 2021; 22:ijms222312965. [PMID: 34884791 PMCID: PMC8657818 DOI: 10.3390/ijms222312965] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 11/16/2022] Open
Abstract
In seed-bearing plants, the ovule ("small egg") is the organ within the gynoecium that develops into a seed after fertilization. The gynoecium located in the inner compartment of the flower turns into a fruit. The number of ovules in the ovary determines the upper limit or the potential of seed number per fruit in plants, greatly affecting the final seed yield. Ovule number is an important adaptive characteristic for plant evolution and an agronomic trait for crop improvement. Therefore, understanding the mechanism and pathways of ovule number regulation becomes a significant research aspect in plant science. This review summarizes the ovule number regulators and their regulatory mechanisms and pathways. Specially, an integrated molecular network for ovule number regulation is constructed, in which phytohormones played a central role, followed by transcription factors, enzymes, other protein and micro-RNA. Of them, AUX, BR and CK are positive regulator of ovule number, whereas GA acts negatively on it. Interestingly, many ovule number regulators have conserved functions across several plant taxa, which should be the targets of genetic improvement via breeding or gene editing. Many ovule number regulators identified to date are involved in the diverse biological process, such as ovule primordia formation, ovule initiation, patterning, and morphogenesis. The relations between ovule number and related characteristics/traits especially of gynoecium/fruit size, ovule fertility, and final seed number, as well as upcoming research questions, are also discussed. In summary, this review provides a general overview of the present finding in ovule number regulation, which represents a more comprehensive and in-depth cognition on it.
Collapse
Affiliation(s)
- Muslim Qadir
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chines Academy of Agricultural Sciences, Wuhan 430062, China; (M.Q.); (X.W.)
- Department of Plant Breeding and Genetics, Faculty of Agriculture, Lasbela University of Agriculture Water and Marine Sciences (LUAWMS), Lasbela 74200, Pakistan;
| | - Xinfa Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chines Academy of Agricultural Sciences, Wuhan 430062, China; (M.Q.); (X.W.)
| | - Syed Rehmat Ullah Shah
- Department of Plant Breeding and Genetics, Faculty of Agriculture, Lasbela University of Agriculture Water and Marine Sciences (LUAWMS), Lasbela 74200, Pakistan;
- Department of Soil and Environment, Swedish University of Agricultural Sciences, P.O. Box 7080, SE-75007 Uppsala, Sweden
| | - Xue-Rong Zhou
- Commonwealth Scientific Industrial Research Organization (CSIRO) Agriculture Food, Canberra, ACT 2601, Australia;
| | - Jiaqin Shi
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chines Academy of Agricultural Sciences, Wuhan 430062, China; (M.Q.); (X.W.)
- Correspondence: (J.S.); (H.W.)
| | - Hanzhong Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chines Academy of Agricultural Sciences, Wuhan 430062, China; (M.Q.); (X.W.)
- Correspondence: (J.S.); (H.W.)
| |
Collapse
|
17
|
Comparative Study of Ovule Development between Wild (Passiflora foetida L.) and Cultivated (P. edulis Sims) Species of Passiflora L. Provide Insights into Its Differential Developmental Patterns. JOURNAL OF ZOOLOGICAL AND BOTANICAL GARDENS 2021. [DOI: 10.3390/jzbg2030036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The ovules inside the ovary of a plant are the precursors of seeds and they are important for the perpetuation of the plants. The genus Passiflora L., produce fruits with numerous seeds and they have economic and medicinal value. The edible portion of the Passiflora are the seeds surrounded by pulp. Being the edible parts of a fruit, it is important to investigate the early development of ovules in Passiflora that lead to the formation of seeds after pollination. Wild relatives of the domesticated crops are increasingly being investigated for possible genetic resources that can be used for crop improvement programs. The present study was designed to investigate the comparative ovule development between a wild (Passiflora foetida L.) and a cultivated (Passiflora edulis Sims) species of Passiflora with an aim that it may provide important information about the common and diverging regulatory mechanisms during ovule development between the wild and the cultivated species. We also investigated the pollen morphology between the wild and cultivated species using light and scanning electron microscopy. Our results show that wild type P. foetida ovule growth is faster when compared with that of cultivated P. edulis. Furthermore, wild species harbour ovules of large size (0.14 mm2) but less in number (6) as compared to cultivated ones which show smaller size (0.05 mm2) of ovules but relatively more in number (21). The differences in ovary wall thickness were also stark between the two species. The ovary wall thickness was 0.10 mm in the wild type whereas it was 0.74 mm in cultivated species. Notable differences were also observed in diameter where the wild type (2.45 mm) reported smaller diameter than cultivated species (3.25 mm). We observed little difference in the pollen morphology between the two species.
Collapse
|
18
|
Zumajo-Cardona C, Ambrose BA. Deciphering the evolution of the ovule genetic network through expression analyses in Gnetum gnemon. ANNALS OF BOTANY 2021; 128:217-230. [PMID: 33959756 PMCID: PMC8324035 DOI: 10.1093/aob/mcab059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 04/30/2021] [Indexed: 05/16/2023]
Abstract
BACKGROUND AND AIMS The ovule is a synapomorphy of all seed plants (gymnosperms and angiosperms); however, there are some striking differences in ovules among the major seed plant lineages, such as the number of integuments or the orientation of the ovule. The genetics involved in ovule development have been well studied in the model species Arabidopsis thaliana, which has two integuments and anatropous orientation. This study is approached from what is known in arabidopsis, focusing on the expression patterns of homologues of four genes known to be key for the proper development of the integuments in arabidopsis: AINTEGUMENTA (ANT), BELL1, (BEL1), KANADIs (KANs) and UNICORN (UCN). METHODS We used histology to describe the morphoanatomical development from ovules to seeds in Gnetum gnemon. We carried out spatiotemporal expression analyses in G. gnemon, a gymnosperm, which has a unique ovule morphology with an integument covering the nucellus, two additional envelopes where the outermost becomes fleshy as the seed matures, and an orthotropous orientation. KEY RESULTS Our anatomical and developmental descriptions provide a framework for expression analyses in the ovule of G. gnemon. Our expression results show that although ANT, KAN and UCN homologues are expressed in the inner integument, their spatiotemporal patterns differ from those found in angiosperms. Furthermore, all homologues studied here are expressed in the nucellus, revealing major differences in seed plants. Finally, no expression of the studied homologues was detected in the outer envelopes. CONCLUSIONS Altogether, these analyses provide significant comparative data that allows us to better understand the functional evolution of these gene lineages, providing a compelling framework for evolutionary and developmental studies of seeds. Our findings suggest that these genes were most likely recruited from the sporangium development network and became restricted to the integuments of angiosperm ovules.
Collapse
Affiliation(s)
- Cecilia Zumajo-Cardona
- New York Botanical Garden, Bronx, NY, USA
- The Graduate Center, City University of New York, New York, NY, USA
| | - Barbara A Ambrose
- The Graduate Center, City University of New York, New York, NY, USA
- For correspondence. E-mail
| |
Collapse
|
19
|
Rudall PJ. Evolution and patterning of the ovule in seed plants. Biol Rev Camb Philos Soc 2021; 96:943-960. [PMID: 33432779 DOI: 10.1111/brv.12684] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/23/2020] [Accepted: 01/04/2021] [Indexed: 02/06/2023]
Abstract
The ovule and its developmental successor, the seed, together represent a highly characteristic feature of seed plants that has strongly enhanced the reproductive and dispersal potential of this diverse group of taxa. Ovules encompass multiple tissues that perform various roles within a highly constrained space, requiring a complex cascade of genes that generate localized cell proliferation and programmed cell death during different developmental stages. Many heritable morphological differences among lineages reflect relative displacement of these tissues, but others, such as the second (outer) integuments of angiosperms and Gnetales, represent novel and apparently profound and independent innovations. Recent studies, mostly on model taxa, have considerably enhanced our understanding of gene expression in the ovule. However, understanding its evolutionary history requires a comparative and phylogenetic approach that is problematic when comparing extant angiosperms not only with phylogenetically distant extant gymnosperms but also with taxa known only from fossils. This paper reviews ovule characters across a phylogenetically broad range of seed plants in a dynamic developmental context. It discusses both well-established and recent theories of ovule and seed evolution and highlights potential gaps in comparative data that will usefully enhance our understanding of evolutionary transitions and developmental mechanisms.
Collapse
Affiliation(s)
- Paula J Rudall
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AB, U.K
| |
Collapse
|
20
|
Zeng D, Que C, Teixeira da Silva JA, Xu S, Li D. Comparative Transcriptomic and Metabolic Analyses Reveal the Molecular Mechanism of Ovule Development in the Orchid, Cymbidium sinense. FRONTIERS IN PLANT SCIENCE 2021; 12:814275. [PMID: 35126436 PMCID: PMC8813969 DOI: 10.3389/fpls.2021.814275] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 12/27/2021] [Indexed: 05/04/2023]
Abstract
Ovule development is pivotal to plant reproduction and seed development. Cymbidium sinense (Orchidaceae) has high ornamental value due to its pleasant aroma and elegant floral morphology. The regulatory mechanism underlying ovule development in orchids, especially C. sinense, is largely unknown and information on the C. sinense genome is very scarce. In this study, a combined analysis was performed on the transcriptome and non-targeted metabolomes of 18 C. sinense 'Qi Jian Hei Mo' ovule samples. Transcriptome analysis assembled gene-related information related to six growth stages of C. sinense ovules (S1-S6, equivalent to 30, 35, 42, 46, 53, and 60 days after pollination). Illumina sequencing technology was used to obtain the complete set of transcriptome sequences of the 18 samples. A total of 81,585 unigene sequences were obtained after assembly, 24,860 (30.47%) of which were functionally annotated. Using transcriptome sequencing technology, a total of 9845 differentially expressed unigenes (DEUs) were identified in C. sinense ovules that were assigned to specific metabolic pathways according to the Kyoto Encyclopedia of Genes and Genomes (KEGG). DEUs associated with transcription factors (TFs) and phytohormones were identified and analyzed. The TFs homeobox and MADS-box were associated with C. sinense ovule development. In particular, the phytohormones associated with DEUs such as indole-3-acetic acid (IAA), cytokinin (CK), gibberellin (GA), abscisic acid (ABA), brassinosteroid (BR), and jasmonate (JA), may have important regulatory effects on C. sinense ovule development. Metabolomic analysis showed an inconsistent number of KEGG annotations of differential metabolites across comparisons (S2_vs_S4, S2_vs_S5, and S4_vs_S5 contained 23, 26, and 3 annotations, respectively) in C. sinense ovules. This study provides a valuable foundation for further understanding the regulation of orchid ovule development and formation, and establishes a theoretical background for future practical applications during orchid cultivation.
Collapse
Affiliation(s)
- Danqi Zeng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, China
| | - Caixia Que
- Guangdong Provincial Research Center for Standardization of Production Engineering Technology of Orchids, Shunde Polytechnic, Foshan, China
| | | | - Shutao Xu
- College of Innovative Design, City University of Macau, Taipa, Macao SAR, China
| | - Dongmei Li
- Guangdong Provincial Research Center for Standardization of Production Engineering Technology of Orchids, Shunde Polytechnic, Foshan, China
- *Correspondence: Dongmei Li,
| |
Collapse
|
21
|
Yu SX, Zhou LW, Hu LQ, Jiang YT, Zhang YJ, Feng SL, Jiao Y, Xu L, Lin WH. Asynchrony of ovule primordia initiation in Arabidopsis. Development 2020; 147:226107. [PMID: 33234714 PMCID: PMC7774900 DOI: 10.1242/dev.196618] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/06/2020] [Indexed: 12/27/2022]
Abstract
Plant ovule initiation determines the maximum of ovule number and has a great impact on the seed number per fruit. The detailed processes of ovule initiation have not been accurately described, although two connected processes, gynoecium and ovule development, have been investigated. Here, we report that ovules initiate asynchronously. The first group of ovule primordia grows out, the placenta elongates, the boundaries of existing ovules enlarge and a new group of primordia initiates from the boundaries. The expression pattern of different marker genes during ovule development illustrates that this asynchronicity continues throughout whole ovule development. PIN-FORMED1 polar distribution and auxin response maxima correlate with ovule primordia asynchronous initiation. We have established computational modeling to show how auxin dynamics influence ovule primordia initiation. Brassinosteroid signaling positively regulates ovule number by promoting placentae size and ovule primordia initiation through strengthening auxin response. Transcriptomic analysis demonstrates numerous known regulators of ovule development and hormone signaling, and many new genes are identified that are involved in ovule development. Taken together, our results illustrate that the ovule primordia initiate asynchronously and the hormone signals are involved in the asynchrony. Summary: Ovule primordia initiation, which determines the maximum ovule number and subsequent seed number in Arabidopsis, is asynchronous and is regulated by PIN1 polar distribution and the auxin response.
Collapse
Affiliation(s)
- Shi-Xia Yu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Joint Center for Single Cell Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lv-Wen Zhou
- Faculty of Mechanical Engineering and Mechanics, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Li-Qin Hu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Joint Center for Single Cell Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yu-Tong Jiang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Joint Center for Single Cell Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan-Jie Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Joint Center for Single Cell Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shi-Liang Feng
- Faculty of Mechanical Engineering and Mechanics, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yuling Jiao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and National Center for Plant Gene Research, Beijing 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Xu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.,National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Wen-Hui Lin
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Joint Center for Single Cell Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
22
|
Cucinotta M, Di Marzo M, Guazzotti A, de Folter S, Kater MM, Colombo L. Gynoecium size and ovule number are interconnected traits that impact seed yield. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2479-2489. [PMID: 32067041 PMCID: PMC7210752 DOI: 10.1093/jxb/eraa050] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 01/24/2020] [Indexed: 05/02/2023]
Abstract
Angiosperms form the largest group of land plants and display an astonishing diversity of floral structures. The development of flowers greatly contributed to the evolutionary success of the angiosperms as they guarantee efficient reproduction with the help of either biotic or abiotic vectors. The female reproductive part of the flower is the gynoecium (also called pistil). Ovules arise from meristematic tissue within the gynoecium. Upon fertilization, these ovules develop into seeds while the gynoecium turns into a fruit. Gene regulatory networks involving transcription factors and hormonal communication regulate ovule primordium initiation, spacing on the placenta, and development. Ovule number and gynoecium size are usually correlated and several genetic factors that impact these traits have been identified. Understanding and fine-tuning the gene regulatory networks influencing ovule number and pistil length open up strategies for crop yield improvement, which is pivotal in light of a rapidly growing world population. In this review, we present an overview of the current knowledge of the genes and hormones involved in determining ovule number and gynoecium size. We propose a model for the gene regulatory network that guides the developmental processes that determine seed yield.
Collapse
Affiliation(s)
- Mara Cucinotta
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria, Milan, Italy
| | - Maurizio Di Marzo
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria, Milan, Italy
| | - Andrea Guazzotti
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria, Milan, Italy
| | - Stefan de Folter
- Unidad de Genómica Avanzada (UGA-Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politecnico Nacional (CINVESTAV-IPN), Km. 9.6 Libramiento Norte, Carretera Irapuato-Leon, CP 36824 Irapuato, Gto., Mexico
| | - Martin M Kater
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria, Milan, Italy
| | - Lucia Colombo
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria, Milan, Italy
| |
Collapse
|
23
|
Hojsgaard D. Apomixis Technology: Separating the Wheat from the Chaff. Genes (Basel) 2020; 11:E411. [PMID: 32290084 PMCID: PMC7231277 DOI: 10.3390/genes11040411] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/03/2020] [Accepted: 04/08/2020] [Indexed: 02/06/2023] Open
Abstract
Projections indicate that current plant breeding approaches will be unable to incorporate the global crop yields needed to deliver global food security. Apomixis is a disruptive innovation by which a plant produces clonal seeds capturing heterosis and gene combinations of elite phenotypes. Introducing apomixis into hybrid cultivars is a game-changing development in the current plant breeding paradigm that will accelerate the generation of high-yield cultivars. However, apomixis is a developmentally complex and genetically multifaceted trait. The central problem behind current constraints to apomixis breeding is that the genomic configuration and molecular mechanism that initiate apomixis and guide the formation of a clonal seed are still unknown. Today, not a single explanation about the origin of apomixis offer full empirical coverage, and synthesizing apomixis by manipulating individual genes has failed or produced little success. Overall evidence suggests apomixis arise from a still unknown single event molecular mechanism with multigenic effects. Disentangling the genomic basis and complex genetics behind the emergence of apomixis in plants will require the use of novel experimental approaches benefiting from Next Generation Sequencing technologies and targeting not only reproductive genes, but also the epigenetic and genomic configurations associated with reproductive phenotypes in homoploid sexual and apomictic carriers. A comprehensive picture of most regulatory changes guiding apomixis emergence will be central for successfully installing apomixis into the target species by exploiting genetic modification techniques.
Collapse
Affiliation(s)
- Diego Hojsgaard
- Department of Systematics, Biodiversity and Evolution of Plants, Albrecht-von-Haller Institute for Plant Sciences, Georg-August-University of Göttingen, Untere Karspüle 2, D-37073-1 Göttingen, Germany
| |
Collapse
|
24
|
Negrutiu I, Frohlich MW, Hamant O. Flowering Plants in the Anthropocene: A Political Agenda. TRENDS IN PLANT SCIENCE 2020; 25:349-368. [PMID: 31964603 DOI: 10.1016/j.tplants.2019.12.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 11/30/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
Flowering plants are the foundation of human civilization, providing biomass for food, fuel, and materials to satisfy human needs, dependent on fertile soil, adequate water, and favorable weather. Conversely, failure of any of these inputs has caused catastrophes. Today, human appropriation of biomass is threatening planetary boundaries, inducing social and political unrest worldwide. Human societies are bound to rethink agriculture and forestry to restore and safeguard natural resources while improving the overall quality of life. Here, we explore why and how. Through an evolutionary and quantitative analysis of agriculture, and bridging plant and Earth sciences, we anticipate the advent of a research and policy framework, integrating plant science in all sectors: the economy, local and global governance, and geopolitics.
Collapse
Affiliation(s)
- Ioan Negrutiu
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, UCB Lyon 1, ENS de Lyon, INRAE, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France.
| | - Michael W Frohlich
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, UCB Lyon 1, ENS de Lyon, INRAE, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France; Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, TW9 3DS, UK
| | - Olivier Hamant
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, UCB Lyon 1, ENS de Lyon, INRAE, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France.
| |
Collapse
|
25
|
Zumajo-Cardona C, Ambrose BA. Phylogenetic analyses of key developmental genes provide insight into the complex evolution of seeds. Mol Phylogenet Evol 2020; 147:106778. [PMID: 32165160 DOI: 10.1016/j.ympev.2020.106778] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 02/06/2020] [Accepted: 02/26/2020] [Indexed: 11/30/2022]
Abstract
Gene duplication plays a decisive role in organismal diversification and in the appearance of novel structures. In plants the megagametophyte covered by the integuments, which after fertilization becomes the seed constitutes a novel structure: the ovule. In Arabidopsis thaliana, genetic mechanisms regulating ovule development, including the genetics underlying ovule initiation, ovule patterning and integument development, have been identified. Among seed plants, integuments are not only a novelty in evolution, but integuments also present an enormous morphological variation. This study is focused on the evolution of gene families that play a role in the proper morphological development of the integuments, BELL1 (BEL1), KANADIs (KAN1, KAN2, and KAN4/ATS), UNICORN (UCN) and SHORT INTEGUMENTS1 (SIN1). In Arabidopsis, BEL1 establishes the initiation of integument development. KAN1 and 2 act in the proper development of the outer integument. While ABERRANT TESTA SHAPE (ATS), is involved in the correct separation of both integuments. UCN acts in planar growth of the outer integument repressing ATS. SIN1 is involved in cell elongation in the integuments. The results of our analyses show that each of these genes has a different evolutionary history and that while gymnosperms appear to have a simpler ovule morphology, they have more homologues of these candidate genes than angiosperms. In addition, we present the conserved and novel motifs for each of these genes among seed plants and their selection constraints, which may be related to functional changes and to the diversity of ovule morphologies.
Collapse
Affiliation(s)
- Cecilia Zumajo-Cardona
- New York Botanical Garden, Bronx, NY 10458, USA; The Graduate Center, City University of New York, New York, NY 10016, USA
| | | |
Collapse
|
26
|
Wei SJ, Chai S, Zhu RM, Duan CY, Zhang Y, Li S. HUA ENHANCER1 Mediates Ovule Development. FRONTIERS IN PLANT SCIENCE 2020; 11:397. [PMID: 32351522 PMCID: PMC7174553 DOI: 10.3389/fpls.2020.00397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 03/19/2020] [Indexed: 05/03/2023]
Abstract
Ovules are female reproductive organs of angiosperms, containing sporophytic integuments and gametophytic embryo sacs. After fertilization, embryo sacs develop into embryos and endosperm whereas integuments into seed coat. Ovule development is regulated by transcription factors (TF) whose expression is often controlled by microRNAs. Mutations of Arabidopsis DICER-LIKE 1 (DCL1), a microRNA processing protein, caused defective ovule development and reduced female fertility. However, it was not clear whether other microRNA processing proteins participate in this process and how defective ovule development influenced female fertility. We report that mutations of HUA ENHANCER1 (HEN1) and HYPONASTIC LEAVES 1 (HYL1) interfered with integument growth. The sporophytic defect caused abnormal embryo sac development and inability of mutant ovules to attract pollen tubes, leading to reduced female fertility. We show that the role of HEN1 in integument growth is cell-autonomous. Although AUXIN RESPONSE FACTOR 6 (ARF6) and ARF8 were ectopically expressed in mutant ovules, consistent with the reduction of microRNA167 in hen1, introducing arf6;arf8 did not suppress ovule defects of hen1, suggesting the involvement of more microRNAs in this process. Results presented indicate that the microRNA processing machinery is critical for ovule development and seed production through multiple microRNAs and their targets.
Collapse
|
27
|
Wilkinson LG, Yang X, Burton RA, Würschum T, Tucker MR. Natural Variation in Ovule Morphology Is Influenced by Multiple Tissues and Impacts Downstream Grain Development in Barley ( Hordeum vulgare L.). FRONTIERS IN PLANT SCIENCE 2019; 10:1374. [PMID: 31737006 PMCID: PMC6834768 DOI: 10.3389/fpls.2019.01374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 10/04/2019] [Indexed: 05/14/2023]
Abstract
The ovule plays a critical role in cereal yield as it is the site of fertilization and the progenitor of the grain. The ovule primordium is generally comprised of three domains, the funiculus, chalaza, and nucellus, which give rise to distinct tissues including the integuments, nucellar projection, and embryo sac. The size and arrangement of these domains varies significantly between model eudicots, such as Arabidopsis thaliana, and agriculturally important monocotyledonous cereal species, such as Hordeum vulgare (barley). However, the amount of variation in ovule development among genotypes of a single species, and its functional significance, remains unclear. To address this, wholemount clearing was used to examine the details of ovule development in barley. Nine sporophytic and gametophytic features were examined at ovule maturity in a panel of 150 European two-row spring barley genotypes, and compared with grain traits from the preceding and same generation. Correlations were identified between ovule traits and features of grain they produced, which in general highlighted a negative correlation between nucellus area, ovule area, and grain weight. We speculate that the amount of ovule tissue, particularly the size of the nucellus, may affect the timing of maternal resource allocation to the fertilized embryo sac, thereby influencing subsequent grain development.
Collapse
Affiliation(s)
- Laura G Wilkinson
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA, Australia
| | - Xiujuan Yang
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA, Australia
| | - Rachel A Burton
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA, Australia
| | - Tobias Würschum
- State Plant Breeding Institute, University of Hohenheim, Stuttgart, Germany
| | - Matthew R Tucker
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA, Australia
| |
Collapse
|
28
|
Yuan Z, Fang Y, Zhang T, Fei Z, Han F, Liu C, Liu M, Xiao W, Zhang W, Wu S, Zhang M, Ju Y, Xu H, Dai H, Liu Y, Chen Y, Wang L, Zhou J, Guan D, Yan M, Xia Y, Huang X, Liu D, Wei H, Zheng H. The pomegranate (Punica granatum L.) genome provides insights into fruit quality and ovule developmental biology. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1363-1374. [PMID: 29271050 PMCID: PMC5999313 DOI: 10.1111/pbi.12875] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 11/26/2017] [Accepted: 12/18/2017] [Indexed: 05/18/2023]
Abstract
Pomegranate (Punica granatum L.) has an ancient cultivation history and has become an emerging profitable fruit crop due to its attractive features such as the bright red appearance and the high abundance of medicinally valuable ellagitannin-based compounds in its peel and aril. However, the limited genomic resources have restricted further elucidation of genetics and evolution of these interesting traits. Here, we report a 274-Mb high-quality draft pomegranate genome sequence, which covers approximately 81.5% of the estimated 336-Mb genome, consists of 2177 scaffolds with an N50 size of 1.7 Mb and contains 30 903 genes. Phylogenomic analysis supported that pomegranate belongs to the Lythraceae family rather than the monogeneric Punicaceae family, and comparative analyses showed that pomegranate and Eucalyptus grandis share the paleotetraploidy event. Integrated genomic and transcriptomic analyses provided insights into the molecular mechanisms underlying the biosynthesis of ellagitannin-based compounds, the colour formation in both peels and arils during pomegranate fruit development, and the unique ovule development processes that are characteristic of pomegranate. This genome sequence provides an important resource to expand our understanding of some unique biological processes and to facilitate both comparative biology studies and crop breeding.
Collapse
Affiliation(s)
- Zhaohe Yuan
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaNanjing Forestry UniversityNanjingChina
- College of ForestryNanjing Forestry UniversityNanjingChina
| | - Yanming Fang
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaNanjing Forestry UniversityNanjingChina
- College of Biology and the EnvironmentNanjing Forestry UniversityNanjingChina
| | - Taikui Zhang
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaNanjing Forestry UniversityNanjingChina
- College of ForestryNanjing Forestry UniversityNanjingChina
| | - Zhangjun Fei
- Boyce Thompson InstituteCornell UniversityIthacaNYUSA
- USDA Robert W. Holley Center for Agriculture and HealthIthacaNYUSA
| | | | - Cuiyu Liu
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaNanjing Forestry UniversityNanjingChina
- College of ForestryNanjing Forestry UniversityNanjingChina
| | - Min Liu
- Biomarker Technologies CorporationBeijingChina
| | - Wei Xiao
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaNanjing Forestry UniversityNanjingChina
- College of ForestryNanjing Forestry UniversityNanjingChina
| | | | - Shan Wu
- Boyce Thompson InstituteCornell UniversityIthacaNYUSA
| | - Mengwei Zhang
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaNanjing Forestry UniversityNanjingChina
- College of ForestryNanjing Forestry UniversityNanjingChina
| | - Youhui Ju
- Biomarker Technologies CorporationBeijingChina
| | - Huili Xu
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaNanjing Forestry UniversityNanjingChina
- College of ForestryNanjing Forestry UniversityNanjingChina
| | - He Dai
- Biomarker Technologies CorporationBeijingChina
| | - Yujun Liu
- College of Biological Sciences and BiotechnologyBeijing Forestry UniversityBeijingChina
| | - Yanhui Chen
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
| | - Lili Wang
- Biomarker Technologies CorporationBeijingChina
| | - Jianqing Zhou
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaNanjing Forestry UniversityNanjingChina
- College of ForestryNanjing Forestry UniversityNanjingChina
| | - Dian Guan
- Biomarker Technologies CorporationBeijingChina
| | - Ming Yan
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaNanjing Forestry UniversityNanjingChina
- College of ForestryNanjing Forestry UniversityNanjingChina
| | - Yanhua Xia
- Biomarker Technologies CorporationBeijingChina
| | - Xianbin Huang
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaNanjing Forestry UniversityNanjingChina
- College of ForestryNanjing Forestry UniversityNanjingChina
| | | | - Hongmin Wei
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaNanjing Forestry UniversityNanjingChina
- College of ForestryNanjing Forestry UniversityNanjingChina
| | | |
Collapse
|
29
|
Coen O, Magnani E. Seed coat thickness in the evolution of angiosperms. Cell Mol Life Sci 2018; 75:2509-2518. [PMID: 29730767 PMCID: PMC6003975 DOI: 10.1007/s00018-018-2816-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 04/10/2018] [Accepted: 04/13/2018] [Indexed: 10/26/2022]
Abstract
The seed habit represents a remarkable evolutionary advance in plant sexual reproduction. Since the Paleozoic, seeds carry a seed coat that protects, nourishes and facilitates the dispersal of the fertilization product(s). The seed coat architecture evolved to adapt to different environments and reproductive strategies in part by modifying its thickness. Here, we review the great natural diversity observed in seed coat thickness among angiosperms and its molecular regulation in Arabidopsis.
Collapse
Affiliation(s)
- Olivier Coen
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, University of Paris-Saclay, Route de St-Cyr (RD10), 78026, Versailles Cedex, France
- Ecole Doctorale 567 Sciences du Végétal, University Paris-Sud, University of Paris-Saclay, bat 360, 91405, Orsay Cedex, France
| | - Enrico Magnani
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, University of Paris-Saclay, Route de St-Cyr (RD10), 78026, Versailles Cedex, France.
| |
Collapse
|
30
|
Ramkumar TR, Kanchan M, Upadhyay SK, Sembi JK. Identification and characterization of WUSCHEL-related homeobox ( WOX ) gene family in economically important orchid species Phalaenopsis equestris and Dendrobium catenatum. PLANT GENE 2018; 14:37-45. [DOI: 10.1016/j.plgene.2018.04.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
|
31
|
Integument Development in Arabidopsis Depends on Interaction of YABBY Protein INNER NO OUTER with Coactivators and Corepressors. Genetics 2017; 207:1489-1500. [PMID: 28971961 DOI: 10.1534/genetics.117.300140] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 09/28/2017] [Indexed: 01/28/2023] Open
Abstract
Arabidopsis thaliana INNER NO OUTER (INO) is a YABBY protein that is essential for the initiation and development of the outer integument of ovules. Other YABBY proteins have been shown to be involved in both negative and positive regulation of expression of putative target genes. YABBY proteins have also been shown to interact with the corepressor LEUNIG (LUG) in several systems. In support of a repressive role for INO, we confirm that INO interacts with LUG and also find that INO directly interacts with SEUSS (SEU), a known corepressive partner of LUG. Further, we find that INO can directly interact with ADA2b/PROPORZ1 (PRZ1), a transcriptional coactivator that is known to interact with the histone acetyltransferase GENERAL CONTROL NONREPRESSIBLE PROTEIN 5 (GCN5, also known as HAG1). Mutations in LUG, SEU, and ADA2b/PRZ1 all lead to pleiotropic effects including a deficiency in the extension of the outer integument. Additive and synergistic effects of ada2b/prz1 and lug mutations on outer integument formation indicate that these two genes function independently to promote outer integument growth. The ino mutation is epistatic to both lug and ada2b/prz1 in the outer integument, and all three proteins are present in the nuclei of a common set of outer integument cells. This is consistent with a model where INO utilizes these coregulator proteins to activate and repress separate sets of target genes. Other Arabidopsis YABBY proteins were shown to also form complexes with ADA2b/PRZ1, and have been previously shown to interact with SEU and LUG. Thus, interaction with these corepressors and coactivator may represent a general mechanism to explain the positive and negative activities of YABBY proteins in transcriptional regulation. The LUG, SEU, and ADA2b/PRZ1 proteins would also separately be recruited to targets of other transcription factors, consistent with their roles as general coregulators, explaining the pleiotropic effects not associated with YABBY function.
Collapse
|
32
|
3D Imaging of Whole-Mount Ovules at Cellular Resolution to Study Female Germline Development in Rice. Methods Mol Biol 2017; 1669:37-45. [PMID: 28936647 DOI: 10.1007/978-1-4939-7286-9_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Recent advances in fluorescence-based staining of cellular compartments coupled with confocal microscopy imaging have allowed the visualization of three-dimensional (3D) structures with cellular resolution in various intact plant tissues and species. Such approaches are of particular interest for the analysis of the reproductive lineage in plants including the meiotic precursor cells deeply embedded within the ovary of the gynoecium enclosed in the flower. Yet, their relative inaccessibility and the lack of optical clarity of plant tissues prevent robust staining and imaging across several cell layers. Several whole-mount tissue staining and clearing techniques are available. One of them specifically allows staining of cellular boundaries in thick tissue samples while providing extreme optical clarity, using an acidic treatment followed by a modified Pseudo-Schiff propidium iodide (mPS-PI) method. While commonly used for Arabidopsis tissues, its application to other species like the model crop rice required protocol adaptations for obtaining robust staining that we present here. The procedure comprises six steps: (a) Material sampling; (b) Material fixation; (c) Tissue preparation; (d) Staining; (e) Sample mounting; and (d) Microscopy imaging. Particularly, we use ethanol and acetic anhydride as fixative reagents. A modified enzymatic treatment proved essential for starch degradation influencing optical clarity hence allowing acquisition of images at high resolution. This improved protocol is efficient for analyzing the megaspore mother cells in rice (Oryza sativa) ovary but is broadly applicable to other crop tissues of complex composition, without the need for tissue sectioning.
Collapse
|
33
|
Wang L, Hu X, Jiao C, Li Z, Fei Z, Yan X, Liu C, Wang Y, Wang X. Transcriptome analyses of seed development in grape hybrids reveals a possible mechanism influencing seed size. BMC Genomics 2016; 17:898. [PMID: 27829355 PMCID: PMC5103508 DOI: 10.1186/s12864-016-3193-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 10/22/2016] [Indexed: 11/30/2022] Open
Abstract
Background Seedlessness in grape (Vitis vinifera) is of considerable commercial importance for both the table grape and processing industries. Studies to date of grape seed development have been made certain progress, but many key genes have yet to be identified and characterized. Results In this study we analyzed the seed transcriptomes of progeny derived from the V. vinifera seeded maternal parent ‘Red Globe’ and the seedless paternal parent ‘Centennial seedless’ to identify genes associated with seedlessness. A total of 6,607 differentially expressed genes (DEGs) were identified and examined from multiple perspectives, including expression patterns, Gene Ontology (GO) annotations, pathway enrichment, inferred hormone influence and epigenetic regulation. The expression data of hormone-related genes and hormone level measurement reveals the differences during seed development between seedless and seeded progeny. Based on both our results and previous studies of A. thaliana seed development, we generated network maps of grape seed-related DEGs, with particular reference to hormone balance, seed coat and endosperm development, and seed identity complexes. Conclusion In summary, the major differences identified during seed development of seedless and seeded progeny were associated with hormone and epigenetic regulation, the development of the seed coat and endosperm, and the formation of seed identity complexes. Overall the data provides insights into the possible molecular mechanism controlling grape seed size, which is of great importance for both basic research and future translation applications in the grape industry. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3193-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Li Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China.,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaoyan Hu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China.,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chen Jiao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China.,Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY, 14853, USA
| | - Zhi Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China.,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhangjun Fei
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY, 14853, USA
| | - Xiaoxiao Yan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China.,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chonghuai Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Yuejin Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China.,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiping Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China. .,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
34
|
Yang L, Wu Y, Yu M, Mao B, Zhao B, Wang J. Genome-wide transcriptome analysis of female-sterile rice ovule shed light on its abortive mechanism. PLANTA 2016; 244:1011-1028. [PMID: 27357232 DOI: 10.1007/s00425-016-2563-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/23/2016] [Indexed: 05/03/2023]
Abstract
The comprehensive transcriptome analysis of rice female-sterile line and wild-type line ovule provides an important clue for exploring the regulatory network of the formation of rice fertile female gametophyte. Ovules are the female reproductive tissues of rice (Oryza sativa L.) and play a major role in sexual reproduction. To investigate the potential mechanism of rice female gametophyte fertility, we used RNA sequencing, combined with genetic subtraction, to compare the transcriptome of the ovules of a high-frequency female-sterile line (fsv1) and a rice wild-type line (Gui 99) during ovule development. Ovules were harvested at three developmental stages: ovule containing megaspore mother cell in meiosis process (stage 1), ovule containing functional megaspore in mitosis process (stage 2), and ovule containing mature female gametophyte (stage 3). Six cDNA libraries generated a total of 42.2 million high-quality clean reads that aligned with 30,204 genes. The comparison between the fsv1 and Gui 99 ovules identified a large number of differentially expressed genes (DEGs), i.e., 45, 495, and 932 DEGs at the three ovule developmental stages, respectively. From the comparison of the two rice lines, Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and MapMan analyses indicated that a large number of DEGs associated with starch and sucrose metabolism, plant hormone signal transduction, protein modification and degradation, oxidative phosphorylation, and receptor kinase. These DEGs might play roles in ovule development and fertile female gametophyte formation. Many transcription factor genes and epigenetic-related genes also exhibit different expression patterns and significantly different expression levels in two rice lines during ovule development, which might provide important information regarding the abortive mechanism of the female gametophyte in rice.
Collapse
Affiliation(s)
- Liyu Yang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Ya Wu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Meiling Yu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Bigang Mao
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, 410125, China
| | - Bingran Zhao
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, 410125, China.
| | - Jianbo Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
35
|
Vandenbussche M, Chambrier P, Rodrigues Bento S, Morel P. Petunia, Your Next Supermodel? FRONTIERS IN PLANT SCIENCE 2016; 7:72. [PMID: 26870078 PMCID: PMC4735711 DOI: 10.3389/fpls.2016.00072] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 01/15/2016] [Indexed: 05/24/2023]
Abstract
Plant biology in general, and plant evo-devo in particular would strongly benefit from a broader range of available model systems. In recent years, technological advances have facilitated the analysis and comparison of individual gene functions in multiple species, representing now a fairly wide taxonomic range of the plant kingdom. Because genes are embedded in gene networks, studying evolution of gene function ultimately should be put in the context of studying the evolution of entire gene networks, since changes in the function of a single gene will normally go together with further changes in its network environment. For this reason, plant comparative biology/evo-devo will require the availability of a defined set of 'super' models occupying key taxonomic positions, in which performing gene functional analysis and testing genetic interactions ideally is as straightforward as, e.g., in Arabidopsis. Here we review why petunia has the potential to become one of these future supermodels, as a representative of the Asterid clade. We will first detail its intrinsic qualities as a model system. Next, we highlight how the revolution in sequencing technologies will now finally allows exploitation of the petunia system to its full potential, despite that petunia has already a long history as a model in plant molecular biology and genetics. We conclude with a series of arguments in favor of a more diversified multi-model approach in plant biology, and we point out where the petunia model system may further play a role, based on its biological features and molecular toolkit.
Collapse
|
36
|
Ingram G, Gutierrez-Marcos J. Peptide signalling during angiosperm seed development. JOURNAL OF EXPERIMENTAL BOTANY 2015. [PMID: 26195729 DOI: 10.1093/jxb/erv336] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Cell-cell communication is pivotal for the coordination of various features of plant development. Recent studies in plants have revealed that, as in animals, secreted signal peptides play critical roles during reproduction. However, the precise signalling mechanisms in plants are not well understood. In this review, we discuss the known and putative roles of secreted peptides present in the seeds of angiosperms as key signalling factors involved in coordinating different aspects of seed development.
Collapse
Affiliation(s)
- Gwyneth Ingram
- Laboratoire Reproduction et Développement des Plantes, UMR 5667 CNRS/UMR 0879 INRA, ENS de Lyon, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | | |
Collapse
|
37
|
Mizzotti C, Ezquer I, Paolo D, Rueda-Romero P, Guerra RF, Battaglia R, Rogachev I, Aharoni A, Kater MM, Caporali E, Colombo L. SEEDSTICK is a master regulator of development and metabolism in the Arabidopsis seed coat. PLoS Genet 2014; 10:e1004856. [PMID: 25521508 PMCID: PMC4270456 DOI: 10.1371/journal.pgen.1004856] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 10/28/2014] [Indexed: 11/19/2022] Open
Abstract
The role of secondary metabolites in the determination of cell identity has been an area of particular interest over recent years, and studies strongly indicate a connection between cell fate and the regulation of enzymes involved in secondary metabolism. In Arabidopsis thaliana, the maternally derived seed coat plays pivotal roles in both the protection of the developing embryo and the first steps of germination. In this regard, a characteristic feature of seed coat development is the accumulation of proanthocyanidins (PAs - a class of phenylpropanoid metabolites) in the innermost layer of the seed coat. Our genome-wide transcriptomic analysis suggests that the ovule identity factor SEEDSTICK (STK) is involved in the regulation of several metabolic processes, providing a strong basis for a connection between cell fate determination, development and metabolism. Using phenotypic, genetic, biochemical and transcriptomic approaches, we have focused specifically on the role of STK in PA biosynthesis. Our results indicate that STK exerts its effect by direct regulation of the gene encoding BANYULS/ANTHOCYANIDIN REDUCTASE (BAN/ANR), which converts anthocyanidins into their corresponding 2,3-cis-flavan-3-ols. Our study also demonstrates that the levels of H3K9ac chromatin modification directly correlate with the active state of BAN in an STK-dependent way. This is consistent with the idea that MADS-domain proteins control the expression of their target genes through the modification of chromatin states. STK might thus recruit or regulate histone modifying factors to control their activity. In addition, we show that STK is able to regulate other BAN regulators. Our study demonstrates for the first time how a floral homeotic gene controls tissue identity through the regulation of a wide range of processes including the accumulation of secondary metabolites. Plant secondary metabolites accumulate in seeds to protect the developing embryo. Using an RNA sequencing approach in conjunction with enrichment analyses we identified the homeotic MADS-domain gene SEEDSTICK (STK) as a regulator of metabolic processes during seed development. We analyzed the role of STK as a key regulator of the production of proanthocyanidins, compounds which are important for the pigmentation of the seed. STK directly regulates a network of metabolic genes, and is also implicated in changes occurring in the chromatin landscape. Our work demonstrates that a key homeotic transcription factor not only determines the identity of ovules but also controls metabolic processes that occur subsequent to the initial identity determination process, thus suggesting a link between identity determination and cell-specific (metabolic) processes.
Collapse
Affiliation(s)
- Chiara Mizzotti
- Dipartimento di BioScienze, Università degli Studi di Milano, Milan, Italy
| | - Ignacio Ezquer
- Dipartimento di BioScienze, Università degli Studi di Milano, Milan, Italy
- Consiglio Nazionale delle Ricerche, Istituto di Biofisica, Milan, Italy
| | - Dario Paolo
- Dipartimento di BioScienze, Università degli Studi di Milano, Milan, Italy
| | - Paloma Rueda-Romero
- Centro de Biotecnología y Genómica de Plantas-UPM-INIA, ETSI Agrónomos, Universidad Politécnica de Madrid, Campus de Montegancedo, Madrid, Spain
| | | | | | - Ilana Rogachev
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Asaph Aharoni
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Martin M. Kater
- Dipartimento di BioScienze, Università degli Studi di Milano, Milan, Italy
| | | | - Lucia Colombo
- Dipartimento di BioScienze, Università degli Studi di Milano, Milan, Italy
- Consiglio Nazionale delle Ricerche, Istituto di Biofisica, Milan, Italy
- * E-mail:
| |
Collapse
|
38
|
Wang L, Yin X, Cheng C, Wang H, Guo R, Xu X, Zhao J, Zheng Y, Wang X. Evolutionary and expression analysis of a MADS-box gene superfamily involved in ovule development of seeded and seedless grapevines. Mol Genet Genomics 2014; 290:825-46. [DOI: 10.1007/s00438-014-0961-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 11/17/2014] [Indexed: 11/28/2022]
|
39
|
Costanzo E, Trehin C, Vandenbussche M. The role of WOX genes in flower development. ANNALS OF BOTANY 2014; 114:1545-53. [PMID: 24973416 PMCID: PMC4204783 DOI: 10.1093/aob/mcu123] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 04/29/2014] [Indexed: 05/21/2023]
Abstract
BACKGROUND WOX (Wuschel-like homeobOX) genes form a family of plant-specific HOMEODOMAIN transcription factors, the members of which play important developmental roles in a diverse range of processes. WOX genes were first identified as determining cell fate during embryo development, as well as playing important roles in maintaining stem cell niches in the plant. In recent years, new roles have been identified in plant architecture and organ development, particularly at the flower level. SCOPE In this review, the role of WOX genes in flower development and flower architecture is highlighted, as evidenced from data obtained in the last few years. The roles played by WOX genes in different species and different flower organs are compared, and differential functional recruitment of WOX genes during flower evolution is considered. CONCLUSIONS This review compares available data concerning the role of WOX genes in flower and organ architecture among different species of angiosperms, including representatives of monocots and eudicots (rosids and asterids). These comparative data highlight the usefulness of the WOX gene family for evo-devo studies of floral development.
Collapse
Affiliation(s)
- Enrico Costanzo
- Laboratory of Reproduction and Development of Plants, UMR5667 (ENS de Lyon, CNRS, INRA, UCBL), Ecole Normale Supérieure de Lyon, Lyon, France Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Christophe Trehin
- Laboratory of Reproduction and Development of Plants, UMR5667 (ENS de Lyon, CNRS, INRA, UCBL), Ecole Normale Supérieure de Lyon, Lyon, France
| | - Michiel Vandenbussche
- Laboratory of Reproduction and Development of Plants, UMR5667 (ENS de Lyon, CNRS, INRA, UCBL), Ecole Normale Supérieure de Lyon, Lyon, France
| |
Collapse
|
40
|
Tucker MR, Koltunow AMG. Traffic monitors at the cell periphery: the role of cell walls during early female reproductive cell differentiation in plants. CURRENT OPINION IN PLANT BIOLOGY 2014; 17:137-45. [PMID: 24507505 DOI: 10.1016/j.pbi.2013.11.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 11/14/2013] [Accepted: 11/27/2013] [Indexed: 05/05/2023]
Abstract
The formation of female gametes in plants occurs within the ovule, a floral organ that is also the precursor of the seed. Unlike animals, plants lack a typical germline separated from the soma early in development and rely on positional signals, including phytohormones, mobile mRNAs and sRNAs, to direct diploid somatic precursor cells onto a reproductive program. In addition, signals moving between plant cells must overcome the architectural limitations of a cell wall which surrounds the plasma membrane. Recent studies have addressed the molecular and histological signatures of young ovule cells and indicate that dynamic cell wall changes occur over a short developmental window. These changes in cell wall properties impact signal flow and ovule cell identity, thereby aiding the establishment of boundaries between reproductive and somatic ovule domains.
Collapse
Affiliation(s)
- Matthew R Tucker
- Australian Research Council (ARC) Centre of Excellence in Plant Cell Walls, University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia.
| | - Anna M G Koltunow
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Plant Industry, Hartley Grove, Waite Campus, Urrbrae, SA 5064, Australia
| |
Collapse
|
41
|
Dreni L, Kater MM. MADS reloaded: evolution of the AGAMOUS subfamily genes. THE NEW PHYTOLOGIST 2014; 201:717-732. [PMID: 24164649 DOI: 10.1111/nph.12555] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 09/02/2013] [Indexed: 05/03/2023]
Abstract
AGAMOUS subfamily proteins are encoded by MADS-box family genes. They have been shown to play key roles in the determination of reproductive floral organs such as stamens, carpels and ovules. However, they also play key roles in ensuring a fixed number of floral organs by controlling floral meristem determinacy. Recently, an enormous amount of sequence data for nonmodel species have become available together with functional data on AGAMOUS subfamily members in many species. Here, we give a detailed overview of the most important information about this interesting gene subfamily and provide new insights into its evolution.
Collapse
Affiliation(s)
- Ludovico Dreni
- Department of Biosciences, Università degli Studi di Milano, via Celoria 26, 20133, Milan, Italy
| | - Martin M Kater
- Department of Biosciences, Università degli Studi di Milano, via Celoria 26, 20133, Milan, Italy
| |
Collapse
|
42
|
Fu WQ, Zhao ZG, Ge XH, Ding L, Li ZY. Anatomy and transcript profiling of gynoecium development in female sterile Brassica napus mediated by one alien chromosome from Orychophragmus violaceus. BMC Genomics 2014; 15:61. [PMID: 24456102 PMCID: PMC3930543 DOI: 10.1186/1471-2164-15-61] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 01/21/2014] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The gynoecium is one of the most complex organs of angiosperms specialized for seed production and dispersal, but only several genes important for ovule or embryo sac development were identified by using female sterile mutants. The female sterility in oilseed rape (Brassica napus) was before found to be related with one alien chromosome from another crucifer Orychophragmus violaceus. Herein, the developmental anatomy and comparative transcript profiling (RNA-seq) for the female sterility were performed to reveal the genes and possible metabolic pathways behind the formation of the damaged gynoecium. RESULTS The ovules in the female sterile Brassica napus with two copies of the alien chromosomes (S1) initiated only one short integument primordium which underwent no further development and the female gametophyte development was blocked after the tetrad stage but before megagametogenesis initiation. Using Brassica_ 95k_ unigene as the reference genome, a total of 28,065 and 27,653 unigenes were identified to be transcribed in S1 and donor B. napus (H3), respectively. Further comparison of the transcript abundance between S1 and H3 revealed that 4540 unigenes showed more than two fold expression differences. Gene ontology and pathway enrichment analysis of the Differentially Expressed Genes (DEGs) showed that a number of important genes and metabolism pathways were involved in the development of gynoecium, embryo sac, ovule, integuments as well as the interactions between pollen and pistil. CONCLUSIONS DEGs for the ovule development were detected to function in the metabolism pathways regulating brassinosteroid (BR) biosynthesis, adaxial/abaxial axis specification, auxin transport and signaling. A model was proposed to show the possible roles and interactions of these pathways for the sterile gynoecium development. The results provided new information for the molecular mechanisms behind the gynoecium development at early stage in B. napus.
Collapse
Affiliation(s)
| | | | | | | | - Zai-yun Li
- National Key Lab of Crop Genetic Improvement, National Center of Crop Molecular Breeding Technology, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, P, R, China.
| |
Collapse
|
43
|
Arnaud N, Pautot V. Ring the BELL and tie the KNOX: roles for TALEs in gynoecium development. FRONTIERS IN PLANT SCIENCE 2014; 5:93. [PMID: 24688486 PMCID: PMC3960571 DOI: 10.3389/fpls.2014.00093] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 02/25/2014] [Indexed: 05/17/2023]
Abstract
Carpels are leaf-like structures that bear ovules, and thus play a crucial role in the plant life cycle. In angiosperms, carpels are the last organs produced by the floral meristem and they differentiate a specialized meristematic tissue from which ovules develop. Members of the three-amino-acid-loop-extension (TALE) class of homeoproteins constitute major regulators of meristematic activity. This family contains KNOTTED-like (KNOX) and BEL1-like (BLH or BELL) homeodomain proteins, which function as heterodimers. KNOX proteins can have different BELL partners, leading to multiple combinations with distinct activities, and thus regulate many aspects of plant morphogenesis, including gynoecium development. TALE proteins act primarily through direct regulation of hormonal pathways and key transcriptional regulators. This review focuses on the contribution of TALE proteins to gynoecium development and connects TALE transcription factors to carpel gene regulatory networks.
Collapse
Affiliation(s)
- Nicolas Arnaud
- UMR 1318 INRA-AgroParisTech, INRA Centre de Versailles-Grignon, Institut Jean-Pierre Bourgin Versailles, France
| | - Véronique Pautot
- UMR 1318 INRA-AgroParisTech, INRA Centre de Versailles-Grignon, Institut Jean-Pierre Bourgin Versailles, France
| |
Collapse
|
44
|
Pabón-Mora N, Wong GKS, Ambrose BA. Evolution of fruit development genes in flowering plants. FRONTIERS IN PLANT SCIENCE 2014; 5:300. [PMID: 25018763 PMCID: PMC4071287 DOI: 10.3389/fpls.2014.00300] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 06/07/2014] [Indexed: 05/18/2023]
Abstract
The genetic mechanisms regulating dry fruit development and opercular dehiscence have been identified in Arabidopsis thaliana. In the bicarpellate silique, valve elongation and differentiation is controlled by FRUITFULL (FUL) that antagonizes SHATTERPROOF1-2 (SHP1/SHP2) and INDEHISCENT (IND) at the dehiscence zone where they control normal lignification. SHP1/2 are also repressed by REPLUMLESS (RPL), responsible for replum formation. Similarly, FUL indirectly controls two other factors ALCATRAZ (ALC) and SPATULA (SPT) that function in the proper formation of the separation layer. FUL and SHP1/2 belong to the MADS-box family, IND and ALC belong to the bHLH family and RPL belongs to the homeodomain family, all of which are large transcription factor families. These families have undergone numerous duplications and losses in plants, likely accompanied by functional changes. Functional analyses of homologous genes suggest that this network is fairly conserved in Brassicaceae and less conserved in other core eudicots. Only the MADS box genes have been functionally characterized in basal eudicots and suggest partial conservation of the functions recorded for Brassicaceae. Here we do a comprehensive search of SHP, IND, ALC, SPT, and RPL homologs across core-eudicots, basal eudicots, monocots and basal angiosperms. Based on gene-tree analyses we hypothesize what parts of the network for fruit development in Brassicaceae, in particular regarding direct and indirect targets of FUL, might be conserved across angiosperms.
Collapse
Affiliation(s)
- Natalia Pabón-Mora
- Instituto de Biología, Universidad de AntioquiaMedellín, Colombia
- The New York Botanical GardenBronx, NY, USA
- *Correspondence: Natalia Pabón-Mora, Instituto de Biología, Universidad de Antioquia, Calle 70 No 52-21, AA 1226 Medellín, Colombia e-mail:
| | - Gane Ka-Shu Wong
- Department of Biological Sciences, University of AlbertaEdmonton, AB, Canada
- Department of Medicine, University of AlbertaEdmonton, AB, Canada
- BGI-Shenzhen, Beishan Industrial ZoneShenzhen, China
| | | |
Collapse
|
45
|
|
46
|
Cheng C, Xu X, Singer SD, Li J, Zhang H, Gao M, Wang L, Song J, Wang X. Effect of GA3 treatment on seed development and seed-related gene expression in grape. PLoS One 2013; 8:e80044. [PMID: 24224035 PMCID: PMC3818301 DOI: 10.1371/journal.pone.0080044] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 09/27/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The phytohormone gibberellic acid (GA3) is widely used in the table grape industry to induce seedlessness in seeded varieties. However, there is a paucity of information concerning the mechanisms by which GAs induce seedlessness in grapes. METHODOLOGY/PRINCIPAL FINDINGS In an effort to systematically analyze the cause of this GA3-induced seed abortion, we conducted an in depth characterization of two seeded grape cultivars ('Kyoho' and 'Red Globe'), along with a seedless cultivar ('Thompson Seedless'), following treatment with GA3. In a similar fashion to the seedless control, which exhibited GA3-induced abortion of the seeds 9 days after full bloom (DAF), both 'Kyoho' and 'Red Globe' seeded varieties exhibited complete abortion of the seeds 15 DAF when treated with GA3. Morphological analyses indicated that while fertilization appeared to occur normally following GA3 treatment, as well as in the untreated seedless control cultivar, seed growth eventually ceased. In addition, we found that GA3 application had an effect on redox homeostasis, which could potentially cause cell damage and subsequent seed abortion. Furthermore, we carried out an analysis of antioxidant enzyme activities, as well as transcript levels from various genes believed to be involved in seed development, and found several differences between GA3-treated and untreated controls. CONCLUSION Therefore, it seems that the mechanisms driving GA3-induced seedlessness are similar in both seeded and seedless cultivars, and that the observed abortion of seeds may result at least in part from a GA3-induced increase in cell damage caused by reactive oxygen species, a decrease in antioxidant enzymatic activities, and an alteration of the expression of genes related to seed development.
Collapse
Affiliation(s)
- Chenxia Cheng
- College of Horticulture, State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaozhao Xu
- College of Horticulture, State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Stacy D. Singer
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Jun Li
- College of Horticulture, State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Hongjing Zhang
- College of Horticulture, State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Min Gao
- College of Horticulture, State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Li Wang
- College of Horticulture, State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Junyang Song
- College of Horticulture, State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiping Wang
- College of Horticulture, State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
47
|
Enugutti B, Kirchhelle C, Schneitz K. On the genetic control of planar growth during tissue morphogenesis in plants. PROTOPLASMA 2013; 250:651-61. [PMID: 22983223 DOI: 10.1007/s00709-012-0452-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 09/05/2012] [Indexed: 05/15/2023]
Abstract
Tissue morphogenesis requires extensive intercellular communication. Plant organs are composites of distinct radial cell layers. A typical layer, such as the epidermis, is propagated by stereotypic anticlinal cell divisions. It is presently unclear what mechanisms coordinate cell divisions relative to the plane of a layer, resulting in planar growth and maintenance of the layer structure. Failure in the regulation of coordinated growth across a tissue may result in spatially restricted abnormal growth and the formation of a tumor-like protrusion. Therefore, one way to approach planar growth control is to look for genetic mutants that exhibit localized tumor-like outgrowths. Interestingly, plants appear to have evolved quite robust genetic mechanisms that govern these aspects of tissue morphogenesis. Here we provide a short summary of the current knowledge about the genetics of tumor formation in plants and relate it to the known control of coordinated cell behavior within a tissue layer. We further portray the integuments of Arabidopsis thaliana as an excellent model system to study the regulation of planar growth. The value of examining this process in integuments was established by the recent identification of the Arabidopsis AGC VIII kinase UNICORN as a novel growth suppressor involved in the regulation of planar growth and the inhibition of localized ectopic growth in integuments and other floral organs. An emerging insight is that misregulation of central determinants of adaxial-abaxial tissue polarity can lead to the formation of spatially restricted multicellular outgrowths in several tissues. Thus, there may exist a link between the mechanisms regulating adaxial-abaxial tissue polarity and planar growth in plants.
Collapse
Affiliation(s)
- Balaji Enugutti
- Entwicklungsbiologie der Pflanzen, Wissenschaftszentrum Weihenstephan, Technische Universität München, Emil-Ramann-Strasse 4, 85354, Freising, Germany.
| | | | | |
Collapse
|
48
|
Tran F, Penniket C, Patel RV, Provart NJ, Laroche A, Rowland O, Robert LS. Developmental transcriptional profiling reveals key insights into Triticeae reproductive development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 74:971-88. [PMID: 23581995 DOI: 10.1111/tpj.12206] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 03/15/2013] [Accepted: 03/22/2013] [Indexed: 05/25/2023]
Abstract
Despite their importance, there remains a paucity of large-scale gene expression-based studies of reproductive development in species belonging to the Triticeae. As a first step to address this deficiency, a gene expression atlas of triticale reproductive development was generated using the 55K Affymetrix GeneChip(®) wheat genome array. The global transcriptional profiles of the anther/pollen, ovary and stigma were analyzed at concurrent developmental stages, and co-expressed as well as preferentially expressed genes were identified. Data analysis revealed both novel and conserved regulatory factors underlying Triticeae floral development and function. This comprehensive resource rests upon detailed gene annotations, and the expression profiles are readily accessible via a web browser.
Collapse
Affiliation(s)
- Frances Tran
- Agriculture and Agri-Food Canada, Eastern Cereal and Oilseed Research Centre, 960 Carling Avenue, Ottawa, ON K1A 0C6, Canada
| | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Genes of the AGAMOUS subfamily have been shown to play crucial roles in reproductive organ identity determination, fruit, and seed development. They have been deeply studied in eudicot species and especially in Arabidopsis. Recently, the AGAMOUS subfamily of rice has been studied for their role in flower development and an enormous amount of data has been generated. In this review, we provide an overview of these data and discuss the conservation of gene functions between rice and Arabidopsis.
Collapse
Affiliation(s)
- Ludovico Dreni
- Department of Biosciences, Università degli Studi di Milano, via Celoria 26, 20133 Milan, Italy
| | | | | |
Collapse
|
50
|
Duszynska D, McKeown PC, Juenger TE, Pietraszewska-Bogiel A, Geelen D, Spillane C. Gamete fertility and ovule number variation in selfed reciprocal F1 hybrid triploid plants are heritable and display epigenetic parent-of-origin effects. THE NEW PHYTOLOGIST 2013; 198:71-81. [PMID: 23368793 DOI: 10.1111/nph.12147] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Accepted: 12/08/2012] [Indexed: 05/10/2023]
Abstract
Polyploidy and hybridization play major roles in plant evolution and reproduction. To investigate the reproductive effects of polyploidy and hybridization in Arabidopsis thaliana, we analyzed fertility of reciprocal pairs of F1 hybrid triploids, generated by reciprocally crossing 89 diploid accessions to a tetraploid Ler-0 line. All F1 hybrid triploid genotypes exhibited dramatically reduced ovule fertility, while variation in ovule number per silique was observed across different F1 triploid genotypes. These two reproductive traits were negatively correlated suggesting a trade-off between increased ovule number and ovule fertility. Furthermore, the ovule fertility of the F1 hybrid triploids displayed both hybrid dysgenesis and hybrid advantage (heterosis) effects. Strikingly, both reproductive traits (ovule fertility, ovule number) displayed epigenetic parent-of-origin effects between genetically identical reciprocal F1 hybrid triploid pairs. In some F1 triploid genotypes, the maternal genome excess F1 hybrid triploid was more fertile, whilst for other accessions the paternal genome excess F1 hybrid triploid was more fertile. Male gametogenesis was not significantly disrupted in F1 triploids. Fertility variation in the F1 triploid A. thaliana is mainly the result of disrupted ovule development. Overall, we demonstrate that in F1 triploid plants both ovule fertility and ovule number are subject to parent-of-origin effects that are genome dosage-dependent.
Collapse
Affiliation(s)
- Dorota Duszynska
- Plant and AgriBiosciences Centre (PABC), School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Peter C McKeown
- Plant and AgriBiosciences Centre (PABC), School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Thomas E Juenger
- Section of Integrative Biology & Institute for Cellular and Molecular Biology, University of Texas, 1 University Station C0930, Austin, TX, USA
| | - Anna Pietraszewska-Bogiel
- Plant and AgriBiosciences Centre (PABC), School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
- Molecular Cytology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Science Park 904, 1098XH, Amsterdam, the Netherlands
| | - Danny Geelen
- Department of Plant Production, Faculty of Bioscience Engineering, University of Ghent, 9000, Ghent, Belgium
| | - Charles Spillane
- Plant and AgriBiosciences Centre (PABC), School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|