1
|
Strazzer P, Verbree B, Bliek M, Koes R, Quattrocchio FM. The Amsterdam petunia germplasm collection: A tool in plant science. FRONTIERS IN PLANT SCIENCE 2023; 14:1129724. [PMID: 37025133 PMCID: PMC10070740 DOI: 10.3389/fpls.2023.1129724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/24/2023] [Indexed: 06/19/2023]
Abstract
Petunia hybrida is a plant model system used by many researchers to investigate a broad range of biological questions. One of the reasons for the success of this organism as a lab model is the existence of numerous mutants, involved in a wide range of processes, and the ever-increasing size of this collection owing to a highly active and efficient transposon system. We report here on the origin of petunia-based research and describe the collection of petunia lines housed in the University of Amsterdam, where many of the existing genotypes are maintained.
Collapse
|
2
|
Liang Y, Xu H, Cheng T, Fu Y, Huang H, Qian W, Wang J, Zhou Y, Qian P, Yin Y, Xu P, Zou W, Chen B. Gene activation guided by nascent RNA-bound transcription factors. Nat Commun 2022; 13:7329. [PMID: 36443367 PMCID: PMC9705438 DOI: 10.1038/s41467-022-35041-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 11/16/2022] [Indexed: 11/29/2022] Open
Abstract
Technologies for gene activation are valuable tools for the study of gene functions and have a wide range of potential applications in bioengineering and medicine. In contrast to existing methods based on recruiting transcriptional modulators via DNA-binding proteins, we developed a strategy termed Narta (nascent RNA-guided transcriptional activation) to achieve gene activation by recruiting artificial transcription factors (aTFs) to transcription sites through nascent RNAs of the target gene. Using Narta, we demonstrate robust activation of a broad range of exogenous and endogenous genes in various cell types, including zebrafish embryos, mouse and human cells. Importantly, the activation is reversible, tunable and specific. Moreover, Narta provides better activation potency of some expressed genes than CRISPRa and, when used in combination with CRISPRa, has an enhancing effect on gene activation. Quantitative imaging illustrated that nascent RNA-directed aTFs could induce the high-density assembly of coactivators at transcription sites, which may explain the larger transcriptional burst size induced by Narta. Overall, our work expands the gene activation toolbox for biomedical research.
Collapse
Affiliation(s)
- Ying Liang
- grid.13402.340000 0004 1759 700XDepartment of Cell Biology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China ,grid.13402.340000 0004 1759 700XLiangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Haiyue Xu
- grid.13402.340000 0004 1759 700XDepartment of Cell Biology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China ,grid.13402.340000 0004 1759 700XLiangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Tao Cheng
- grid.13402.340000 0004 1759 700XWomen’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yujuan Fu
- grid.13402.340000 0004 1759 700XDepartment of Cell Biology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hanwei Huang
- grid.13402.340000 0004 1759 700XDepartment of Cell Biology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenchang Qian
- grid.13402.340000 0004 1759 700XCenter of Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Junyan Wang
- grid.13402.340000 0004 1759 700XDepartment of Cell Biology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuenan Zhou
- grid.13402.340000 0004 1759 700XDepartment of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Pengxu Qian
- grid.13402.340000 0004 1759 700XCenter of Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Yafei Yin
- grid.13402.340000 0004 1759 700XDepartment of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Pengfei Xu
- grid.13402.340000 0004 1759 700XWomen’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Zou
- grid.13402.340000 0004 1759 700XThe Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China ,grid.13402.340000 0004 1759 700XInsititute of Translational Medicine, Zhejiang University, Hangzhou, China
| | - Baohui Chen
- grid.13402.340000 0004 1759 700XDepartment of Cell Biology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China ,grid.13402.340000 0004 1759 700XLiangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China ,grid.13402.340000 0004 1759 700XInstitute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China ,grid.13402.340000 0004 1759 700XZhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Hangzhou, China
| |
Collapse
|
3
|
Zhu T, Liu B, Liu N, Xu J, Song X, Li S, Sui S. Gibberellin-related genes regulate dwarfing mechanism in wintersweet. FRONTIERS IN PLANT SCIENCE 2022; 13:1010896. [PMID: 36226291 PMCID: PMC9549245 DOI: 10.3389/fpls.2022.1010896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
Chimonanthus praecox (wintersweet) is an important cut flower and pot plant with a high ornamental and economic value in China. The development of dwarf wintersweet varieties has become an important research topic for the wintersweet industry. The lack of natural dwarf germplasm has hindered research into the molecular mechanisms of developing dwarf wintersweet, limiting its cultivation. After a long-term investigation and collection of germplasm resources of C. praecox, we obtained the germplasm of a dwarf C. praecox (dw). Here, the dwarf and normal C. praecox (NH) were used to identify the types of hormones regulating dw formation using phenotypic identification and endogenous hormone determination. Differentially expressed genes in the dw and NH groups were screened using transcriptome analysis. The functions of key genes in the dwarf trait were verified by heterologous expression. It was found that the internode length and cell number were significantly reduced in dw than in NH, and the thickness of the xylem and pith was significantly decreased. The dwarfness of dw could be recovered by exogenous gibberellic acid (GA) application, and endogenous GA levels showed that the GA4 content of dw was substantially lower than that of NH. Transcriptome differential gene analysis showed that the elevated expression of the CpGA2ox gene in the GA synthesis pathway and that of CpGAI gene in the signal transduction pathway might be the key mechanisms leading to dwarfing. Combined with the results of weighted gene co-expression network analysis, we selected the CpGAI gene for analysis and functional verification. These results showed that CpGAI is a nuclear transcriptional activator. Overexpression of CpGAI in Populus tomentosa Carr. showed that CpGAI could lead to the dwarfing in poplar. We analyzed the dwarfing mechanism of C. praecox, and the results provided a reference for dwarf breeding of wintersweet.
Collapse
Affiliation(s)
- Ting Zhu
- Key Laboratory of Horticulture Science for Southern Mountainous Regions of Ministry of Education, Chongqing Engineering Research Center for Floriculture, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Bin Liu
- Key Laboratory of Horticulture Science for Southern Mountainous Regions of Ministry of Education, Chongqing Engineering Research Center for Floriculture, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Ning Liu
- Key Laboratory of Horticulture Science for Southern Mountainous Regions of Ministry of Education, Chongqing Engineering Research Center for Floriculture, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Jie Xu
- Key Laboratory of Horticulture Science for Southern Mountainous Regions of Ministry of Education, Chongqing Engineering Research Center for Floriculture, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Xingrong Song
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Shuangjiang Li
- Key Laboratory of Horticulture Science for Southern Mountainous Regions of Ministry of Education, Chongqing Engineering Research Center for Floriculture, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Shunzhao Sui
- Key Laboratory of Horticulture Science for Southern Mountainous Regions of Ministry of Education, Chongqing Engineering Research Center for Floriculture, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| |
Collapse
|
4
|
Li S, Cerri M, Strazzer P, Li Y, Spelt C, Bliek M, Vandenbussche M, Martínez-Calvó E, Lai B, Reale L, Koes R, Quattrocchio FM. An ancient RAB5 governs the formation of additional vacuoles and cell shape in petunia petals. Cell Rep 2021; 36:109749. [PMID: 34592147 DOI: 10.1016/j.celrep.2021.109749] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 06/11/2021] [Accepted: 09/02/2021] [Indexed: 10/20/2022] Open
Abstract
Homologous ("canonical") RAB5 proteins regulate endosomal trafficking to lysosomes in animals and to the central vacuole in plants. Epidermal petal cells contain small vacuoles (vacuolinos) that serve as intermediate stations for proteins on their way to the central vacuole. Here, we show that transcription factors required for vacuolino formation in petunia induce expression of RAB5a. RAB5a defines a previously unrecognized clade of canonical RAB5s that is evolutionarily and functionally distinct from ARA7-type RAB5s, which act in trafficking to the vacuole. Loss of RAB5a reduces cell height and abolishes vacuolino formation, which cannot be rescued by the ARA7 homologs, whereas constitutive RAB5a (over)expression alters the conical cell shape and promotes homotypic vacuolino fusion, resulting in oversized vacuolinos. These findings provide a rare example of how gene duplication and neofunctionalization increased the complexity of membrane trafficking during evolution and suggest a mechanism by which cells may form multiple vacuoles with distinct content and function.
Collapse
Affiliation(s)
- Shuangjiang Li
- Plant Development and (Epi)Genetics, Swammerdam Institute for Life Science, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands
| | - Martina Cerri
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy
| | - Pamela Strazzer
- Plant Development and (Epi)Genetics, Swammerdam Institute for Life Science, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands
| | - Yanbang Li
- Plant Development and (Epi)Genetics, Swammerdam Institute for Life Science, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands
| | - Cornelis Spelt
- Plant Development and (Epi)Genetics, Swammerdam Institute for Life Science, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands
| | - Mattijs Bliek
- Plant Development and (Epi)Genetics, Swammerdam Institute for Life Science, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands
| | - Michiel Vandenbussche
- Laboratoire Reproduction et Développement des Plantes (RDP), ENS de Lyon/CNRS/INRA/UCBL, 46 Allée d'Italie, 69364 Lyon, France
| | - Enric Martínez-Calvó
- Plant Development and (Epi)Genetics, Swammerdam Institute for Life Science, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands
| | - Biao Lai
- Plant Development and (Epi)Genetics, Swammerdam Institute for Life Science, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands
| | - Lara Reale
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy
| | - Ronald Koes
- Plant Development and (Epi)Genetics, Swammerdam Institute for Life Science, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands.
| | - Francesca M Quattrocchio
- Plant Development and (Epi)Genetics, Swammerdam Institute for Life Science, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands
| |
Collapse
|
5
|
Cheloha RW, Li Z, Bousbaine D, Woodham AW, Perrin P, Volarić J, Ploegh HL. Internalization of Influenza Virus and Cell Surface Proteins Monitored by Site-Specific Conjugation of Protease-Sensitive Probes. ACS Chem Biol 2019; 14:1836-1844. [PMID: 31348637 DOI: 10.1021/acschembio.9b00493] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Commonly used methods to monitor internalization of cell surface structures involve application of fluorescently or otherwise labeled antibodies against the target of interest. Genetic modification of the protein of interest, for example through creation of fusions with fluorescent or enzymatically active protein domains, is another approach to follow trafficking behavior. The former approach requires indirect methods, such as multiple rounds of cell staining, to distinguish between a target that remains surface-disposed and an internalized and/or recycled species. The latter approach necessitates the creation of fusions whose behavior may not accurately reflect that of their unmodified counterparts. Here, we report a method for the characterization of protein internalization in real time through sortase-mediated, site-specific labeling of single-domain antibodies or viral proteins with a newly developed, cathepsin-sensitive quenched-fluorophore probe. Quenched probes of this type have been used to measure enzyme activity in complex environments and for different cell types, but not as a sensor of protein movement into living cells. This approach allows a quantitative assessment of the movement of proteins into protease-containing endosomes in real time in living cells. We demonstrate considerable variation in the rate of endosomal delivery for different cell surface receptors. We were also able to characterize the kinetics of influenza virus delivery to cathepsin-positive compartments, showing highly coordinated arrival in endosomal compartments. This approach should be useful for identifying proteins expressed on cells of interest for targeted endosomal delivery of payloads, such as antibody-drug conjugates or antigens that require processing.
Collapse
Affiliation(s)
- Ross W. Cheloha
- Boston Children’s Hospital and Harvard Medical School, 1 Blackfan Circle, Boston, Massachusetts 02115, United States
| | - Zeyang Li
- Boston Children’s Hospital and Harvard Medical School, 1 Blackfan Circle, Boston, Massachusetts 02115, United States
- Massachusetts Institute of Technology, 455 Main St, Cambridge, Massachusetts 02142, United States
| | - Djenet Bousbaine
- Boston Children’s Hospital and Harvard Medical School, 1 Blackfan Circle, Boston, Massachusetts 02115, United States
- Massachusetts Institute of Technology, 455 Main St, Cambridge, Massachusetts 02142, United States
| | - Andrew W. Woodham
- Boston Children’s Hospital and Harvard Medical School, 1 Blackfan Circle, Boston, Massachusetts 02115, United States
| | - Priscillia Perrin
- Massachusetts Institute of Technology, 455 Main St, Cambridge, Massachusetts 02142, United States
| | - Jana Volarić
- Boston Children’s Hospital and Harvard Medical School, 1 Blackfan Circle, Boston, Massachusetts 02115, United States
| | - Hidde L. Ploegh
- Boston Children’s Hospital and Harvard Medical School, 1 Blackfan Circle, Boston, Massachusetts 02115, United States
| |
Collapse
|
6
|
Lai B, Du LN, Hu B, Wang D, Huang XM, Zhao JT, Wang HC, Hu GB. Characterization of a novel litchi R2R3-MYB transcription factor that involves in anthocyanin biosynthesis and tissue acidification. BMC PLANT BIOLOGY 2019; 19:62. [PMID: 30732564 PMCID: PMC6367832 DOI: 10.1186/s12870-019-1658-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 01/24/2019] [Indexed: 05/24/2023]
Abstract
BACKGROUND Maturation of litchi (Litchi chinensis) fruit is characterized by dramatic changes in pigments in the pericarp and flavor compounds in the aril. Among them, the biosynthesis of anthocyanins is most noticeable. Previous studies showed that LcMYB1 and LcbHLH transcription factors participated in regulating the anthocyanin biosynthesis in litchi. However, the roles of other MYB factors remain unclear. RESULTS In this study, we cloned and characterized the function of LcMYB5, a novel R2R3-MYB identified from litchi transcriptome. Although LcMYB5 was constitutively expressed in litchi tissues and its expressions was not correlated with tissue coloration, overexpression of LcMYB5 resulted in enhanced biosynthesis of anthocyanins in tobacco and petunia concurrent with the up-regulation of their endogenous bHLHs and key structural genes in anthocyanin precursor biosynthesis. These results indicate that LcMYB5 is an R2R3 transcriptional factor regulates anthocyanin biosynthesis either by directly activating the expression of key structural genes such as DFR or by indirectly up regulating the expressions of endogenous bHLH regulators. More interestingly, the pH values in petals and leaves from transgenic lines were significant lower than those in both untransformed tobacco and petunia, indicating LcMYB5 is also associated with pH regulation. The expressions of LcMYB5 and its bHLH partner LcbHLH1 were consistent with the expression of putative tissue acidification gene LcPH1, and the changes in malic acid provided further evidence for the close relationship between LcMYB5 and tissue acidification. CONCLUSIONS Taking together, our study indicated that LcMYB5 is involved in not only anthocyanin biosynthesis but also tissue acidification.
Collapse
Affiliation(s)
- Biao Lai
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Fuling, 408100 China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/ Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642 China
| | - Li-Na Du
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Fuling, 408100 China
| | - Bing Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/ Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642 China
| | - Dan Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/ Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642 China
| | - Xu-Ming Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/ Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642 China
| | - Jie-Tang Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/ Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642 China
| | - Hui-Cong Wang
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Fuling, 408100 China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/ Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642 China
| | - Gui-bing Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/ Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642 China
| |
Collapse
|
7
|
Verstraelen P, Van Dyck M, Verschuuren M, Kashikar ND, Nuydens R, Timmermans JP, De Vos WH. Image-Based Profiling of Synaptic Connectivity in Primary Neuronal Cell Culture. Front Neurosci 2018; 12:389. [PMID: 29997468 PMCID: PMC6028601 DOI: 10.3389/fnins.2018.00389] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 05/22/2018] [Indexed: 12/04/2022] Open
Abstract
Neurological disorders display a broad spectrum of clinical manifestations. Yet, at the cellular level, virtually all these diseases converge into a common phenotype of dysregulated synaptic connectivity. In dementia, synapse dysfunction precedes neurodegeneration and cognitive impairment by several years, making the synapse a crucial entry point for the development of diagnostic and therapeutic strategies. Whereas high-resolution imaging and biochemical fractionations yield detailed insight into the molecular composition of the synapse, standardized assays are required to quickly gauge synaptic connectivity across large populations of cells under a variety of experimental conditions. Such screening capabilities have now become widely accessible with the advent of high-throughput, high-content microscopy. In this review, we discuss how microscopy-based approaches can be used to extract quantitative information about synaptic connectivity in primary neurons with deep coverage. We elaborate on microscopic readouts that may serve as a proxy for morphofunctional connectivity and we critically analyze their merits and limitations. Finally, we allude to the potential of alternative culture paradigms and integrative approaches to enable comprehensive profiling of synaptic connectivity.
Collapse
Affiliation(s)
- Peter Verstraelen
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Michiel Van Dyck
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Marlies Verschuuren
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | | | - Rony Nuydens
- Janssen Research and Development, Janssen Pharmaceutica N.V., Beerse, Belgium
| | - Jean-Pierre Timmermans
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Winnok H. De Vos
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
- Cell Systems and Imaging, Department of Molecular Biotechnology, Ghent University, Ghent, Belgium
| |
Collapse
|
8
|
Yan YW, Mao DD, Yang L, Qi JL, Zhang XX, Tang QL, Li YP, Tang RJ, Luan S. Magnesium Transporter MGT6 Plays an Essential Role in Maintaining Magnesium Homeostasis and Regulating High Magnesium Tolerance in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2018; 9:274. [PMID: 29593754 PMCID: PMC5857585 DOI: 10.3389/fpls.2018.00274] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 02/16/2018] [Indexed: 05/23/2023]
Abstract
Magnesium (Mg) is one of the essential nutrients for all living organisms. Plants acquire Mg from the environment and distribute within their bodies in the ionic form via Mg2+-permeable transporters. In Arabidopsis, the plasma membrane-localized magnesium transporter MGT6 mediates Mg2+ uptake under Mg-limited conditions, and therefore is important for the plant adaptation to low-Mg environment. In this study, we further assessed the physiological function of MGT6 using a knockout T-DNA insertional mutant allele. We found that MGT6 was required for normal plant growth during various developmental stages when the environmental Mg2+ was low. Interestingly, in addition to the hypersensitivity to Mg2+ limitation, mgt6 mutants displayed dramatic growth defects when external Mg2+ was in excess. Compared with wild-type plants, mgt6 mutants generally contained less Mg2+ under both low and high external Mg2+ conditions. Reciprocal grafting experiments further underpinned a role of MGT6 in a shoot-based mechanism for detoxifying excessive Mg2+ in the environment. Moreover, we found that mgt6 mgt7 double mutant showed more severe phenotypes compared with single mutants under both low- and high-Mg2+ stress conditions, suggesting that these two MGT-type transporters play an additive role in controlling plant Mg2+ homeostasis under a wide range of external Mg2+ concentrations.
Collapse
Affiliation(s)
- Yu-Wei Yan
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute of Sichuan Agricultural University, Chengdu, China
| | - Dan-Dan Mao
- Nanjing University–Nanjing Forestry University Joint Institute for Plant Molecular Biology, State Key Laboratory for Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China
- College of Life Sciences, Hunan Normal University, Changsha, China
| | - Lei Yang
- Nanjing University–Nanjing Forestry University Joint Institute for Plant Molecular Biology, State Key Laboratory for Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China
| | - Jin-Liang Qi
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
- Nanjing University–Nanjing Forestry University Joint Institute for Plant Molecular Biology, State Key Laboratory for Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China
| | - Xin-Xin Zhang
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Harbin, China
| | - Qing-Lin Tang
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Southwest University, Chongqing, China
| | - Yang-Ping Li
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute of Sichuan Agricultural University, Chengdu, China
| | - Ren-Jie Tang
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
9
|
Khidr YA, Flachowsky H, Haselmair-Gosch C, Thill J, Miosic S, Hanke MV, Stich K, Halbwirth H. Evaluation of a MdMYB10/ GFP43 fusion gene for its suitability to act as reporter gene in promoter studies in Fragaria vesca L. 'Rügen'. PLANT CELL, TISSUE AND ORGAN CULTURE 2017; 130:345-356. [PMID: 28781398 PMCID: PMC5515962 DOI: 10.1007/s11240-017-1229-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 04/27/2017] [Indexed: 06/07/2023]
Abstract
A Malus domestica MdMYB10 transcription factor gene was previously used as visible marker for successful plant transformation. We combined the MdMYB10 transcription factor gene with a GFP gene to test its viability as a non-destructive, visual, double reporter system for functional promoter studies in transgenic strawberry plants. The GFP gene was fused to MdMYB10 to provide evidence for promoter activity in red colored cells of transformed plant tissue and to exclude artefacts resulting from stress response or due to other environmental cues. To test this system in a first approach, we evaluated the MdMYB10-GFP43 construct in transgenic strawberries in combination with two constitutive promoters of varying strength, the strong CaMV 35S promoter and a weak flavonoid 3'-hydroxylase (F3'H) promoter isolated from the ornamental plant Cosmos sulphureus. Agrobacterium tumefaciens mediated transformation of Fragaria vesca with the MdMYB10-GFP43 construct combined with the CaMV 35S or F3'H promoter sequences resulted in the regeneration of 6 and 4 transgenic lines, respectively. A complete red coloration of all plant organs was found in four out of six transgenic lines harboring the 35S-MdMYB10-GFP43 construct. Less red coloration of plant organs was found for lines transformed with the F3'H-MdMYB10-GFP43 construct. The MdMYB10 gene shows only limited suitability as a reporter gene for promoter studies in strawberries because weak promoter activity is difficult to distinguish, particularly in tissues showing a strongly colored background such as green leaves. GFP specific fluorescence signals were detectable neither in tissue strongly expressing MdMYB10 nor in green tissue of any transgenic line. The reason for this remained unclear but it can be excluded that it was due to incorrect splicing.
Collapse
Affiliation(s)
- Yehia A. Khidr
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Fruit Crops, Pillnitzer Platz 3a, 01326 Dresden, Germany
- Plant Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, P.O. Box 32897, 5th Zone, Sadat, Egypt
| | - Henryk Flachowsky
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Fruit Crops, Pillnitzer Platz 3a, 01326 Dresden, Germany
| | - Christian Haselmair-Gosch
- Technische Universität Wien, Institute of Chemical, Environmental and Biological Engineering, Getreidemarkt 9, 1060 Vienna, Austria
| | - Jana Thill
- Technische Universität Wien, Institute of Chemical, Environmental and Biological Engineering, Getreidemarkt 9, 1060 Vienna, Austria
| | - Silvija Miosic
- Technische Universität Wien, Institute of Chemical, Environmental and Biological Engineering, Getreidemarkt 9, 1060 Vienna, Austria
| | - Magda-Viola Hanke
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Fruit Crops, Pillnitzer Platz 3a, 01326 Dresden, Germany
| | - Karl Stich
- Technische Universität Wien, Institute of Chemical, Environmental and Biological Engineering, Getreidemarkt 9, 1060 Vienna, Austria
| | - Heidi Halbwirth
- Technische Universität Wien, Institute of Chemical, Environmental and Biological Engineering, Getreidemarkt 9, 1060 Vienna, Austria
| |
Collapse
|
10
|
Kim RJ, Kim HJ, Shim D, Suh MC. Molecular and biochemical characterizations of the monoacylglycerol lipase gene family of Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 85:758-71. [PMID: 26932457 DOI: 10.1111/tpj.13146] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 02/09/2016] [Accepted: 02/15/2016] [Indexed: 05/23/2023]
Abstract
Monoacylglycerol lipase (MAGL) catalyzes the last step of triacylglycerol breakdown, which is the hydrolysis of monoacylglycerol (MAG) to fatty acid and glycerol. Arabidopsis harbors over 270 genes annotated as 'lipase', the largest class of acyl lipid metabolism genes that have not been characterized experimentally. In this study, computational modeling suggested that 16 Arabidopsis putative MAGLs (AtMAGLs) have a three-dimensional structure that is similar to a human MAGL. Heterologous expression and enzyme assays indicated that 11 of the 16 encoded proteins indeed possess MAG lipase activity. Additionally, AtMAGL4 displayed hydrolase activity with lysophosphatidylcholine and lysophosphatidylethanolamine (LPE) substrates and AtMAGL1 and 2 utilized LPE as a substrate. All recombinant AtMAGLs preferred MAG substrates with unsaturated fatty acids over saturated fatty acids and AtMAGL8 exhibited the highest hydrolase activities with MAG containing 20:1 fatty acids. Except for AtMAGL4, -14 and -16, all AtMAGLs showed similar activity with both sn-1 and sn-2 MAG isomers. Spatial, temporal and stress-induced expression of the 16 AtMAGL genes was analyzed by transcriptome analyses. AtMAGL:eYFP fusion proteins provided initial evidence that AtMAGL1, -3, -6, -7, -8, -11, -13, -14 and -16 are targeted to the endoplasmic reticulum and/or Golgi network, AtMAGL10, -12 and -15 to the cytosol and AtMAGL2, -4 and -5 to the chloroplasts. Furthermore, AtMAGL8 was associated with the surface of oil bodies in germinating seeds and leaves accumulating oil bodies. This study provides the broad characterization of one of the least well-understood groups of Arabidopsis lipid-related enzymes and will be useful for better understanding their roles in planta.
Collapse
Affiliation(s)
- Ryeo Jin Kim
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, 500-757, Korea
| | - Hae Jin Kim
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, 500-757, Korea
| | - Donghwan Shim
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, 500-757, Korea
| | - Mi Chung Suh
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, 500-757, Korea
| |
Collapse
|
11
|
Lévesque-Lemay M, Chabot D, Hubbard K, Chan JK, Miller S, Robert LS. Tapetal oleosins play an essential role in tapetosome formation and protein relocation to the pollen coat. THE NEW PHYTOLOGIST 2016; 209:691-704. [PMID: 26305561 DOI: 10.1111/nph.13611] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 07/19/2015] [Indexed: 05/07/2023]
Abstract
The Arabidopsis pollen grain is covered by a lipidic pollen coat representing select constituents released upon the programmed cell death of the anther secretory tapetum. These constituents originate primarily from two specialized tapetal organelles, elaioplasts and tapetosomes. Tapetosomes are distinctive Brassicaceae organelles derived from the endoplasmic reticulum that store triacylglycerols, flavonoids, alkanes, and proteins. The tapetosome triacylglycerols are found within lipid droplets surrounded by the highly variable tapetal oleosins that eventually generate the most abundant proteins of the pollen coat. Many questions remain regarding the sub-cellular targeting of tapetal oleosins as well as their role in tapetosome formation. Translational fusions of different tapetal oleosins or their derived domains to marker proteins were introduced into Arabidopsis thaliana to investigate their localization, processing and function. Arabidopsis tapetal oleosins were shown to be proteolytically cleaved following tapetum degeneration and different protein domains were targeted to the pollen coat despite vast differences in composition and size. Importantly, specific fusions were discovered to affect distinct aspects of tapetosome formation. This report not only highlighted the critical role of individual tapetal oleosin domains in Arabidopsis tapetosome formation, but revealed translational fusions to be a valuable tool in deciphering this evidently complex developmental process.
Collapse
Affiliation(s)
- Madeleine Lévesque-Lemay
- Agriculture and AgriFood Canada, Eastern Cereal and Oilseed Research Centre, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada
| | - Denise Chabot
- Agriculture and AgriFood Canada, Eastern Cereal and Oilseed Research Centre, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada
| | - Keith Hubbard
- Agriculture and AgriFood Canada, Eastern Cereal and Oilseed Research Centre, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada
| | - John K Chan
- Agriculture and AgriFood Canada, Eastern Cereal and Oilseed Research Centre, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada
| | - Shea Miller
- Agriculture and AgriFood Canada, Eastern Cereal and Oilseed Research Centre, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada
| | - Laurian S Robert
- Agriculture and AgriFood Canada, Eastern Cereal and Oilseed Research Centre, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada
| |
Collapse
|
12
|
Wilson SM, Ho YY, Lampugnani ER, Van de Meene AML, Bain MP, Bacic A, Doblin MS. Determining the subcellular location of synthesis and assembly of the cell wall polysaccharide (1,3; 1,4)-β-D-glucan in grasses. THE PLANT CELL 2015; 27:754-71. [PMID: 25770111 PMCID: PMC4558670 DOI: 10.1105/tpc.114.135970] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 02/17/2015] [Accepted: 02/20/2015] [Indexed: 05/05/2023]
Abstract
The current dogma for cell wall polysaccharide biosynthesis is that cellulose (and callose) is synthesized at the plasma membrane (PM), whereas matrix phase polysaccharides are assembled in the Golgi apparatus. We provide evidence that (1,3;1,4)-β-D-glucan (mixed-linkage glucan [MLG]) does not conform to this paradigm. We show in various grass (Poaceae) species that MLG-specific antibody labeling is present in the wall but absent over Golgi, suggesting it is assembled at the PM. Antibodies to the MLG synthases, cellulose synthase-like F6 (CSLF6) and CSLH1, located CSLF6 to the endoplasmic reticulum, Golgi, secretory vesicles, and the PM and CSLH1 to the same locations apart from the PM. This pattern was recreated upon expression of VENUS-tagged barley (Hordeum vulgare) CSLF6 and CSLH1 in Nicotiana benthamiana leaves and, consistent with our biochemical analyses of native grass tissues, shown to be catalytically active with CSLF6 and CSLH1 in PM-enriched and PM-depleted membrane fractions, respectively. These data support a PM location for the synthesis of MLG by CSLF6, the predominant enzymatically active isoform. A model is proposed to guide future experimental approaches to dissect the molecular mechanism(s) of MLG assembly.
Collapse
Affiliation(s)
- Sarah M Wilson
- ARC Centre of Excellence in Plant Cell Walls, School of Botany, The University of Melbourne, Victoria 3010, Australia
| | - Yin Ying Ho
- ARC Centre of Excellence in Plant Cell Walls, School of Botany, The University of Melbourne, Victoria 3010, Australia
| | - Edwin R Lampugnani
- ARC Centre of Excellence in Plant Cell Walls, School of Botany, The University of Melbourne, Victoria 3010, Australia
| | - Allison M L Van de Meene
- ARC Centre of Excellence in Plant Cell Walls, School of Botany, The University of Melbourne, Victoria 3010, Australia
| | - Melissa P Bain
- ARC Centre of Excellence in Plant Cell Walls, School of Botany, The University of Melbourne, Victoria 3010, Australia
| | - Antony Bacic
- ARC Centre of Excellence in Plant Cell Walls, School of Botany, The University of Melbourne, Victoria 3010, Australia Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia
| | - Monika S Doblin
- ARC Centre of Excellence in Plant Cell Walls, School of Botany, The University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
13
|
Rogers KW, Blässle A, Schier AF, Müller P. Measuring protein stability in living zebrafish embryos using fluorescence decay after photoconversion (FDAP). J Vis Exp 2015:52266. [PMID: 25650549 DOI: 10.3791/52266] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Protein stability influences many aspects of biology, and measuring the clearance kinetics of proteins can provide important insights into biological systems. In FDAP experiments, the clearance of proteins within living organisms can be measured. A protein of interest is tagged with a photoconvertible fluorescent protein, expressed in vivo and photoconverted, and the decrease in the photoconverted signal over time is monitored. The data is then fitted with an appropriate clearance model to determine the protein half-life. Importantly, the clearance kinetics of protein populations in different compartments of the organism can be examined separately by applying compartmental masks. This approach has been used to determine the intra- and extracellular half-lives of secreted signaling proteins during zebrafish development. Here, we describe a protocol for FDAP experiments in zebrafish embryos. It should be possible to use FDAP to determine the clearance kinetics of any taggable protein in any optically accessible organism.
Collapse
Affiliation(s)
| | - Alexander Blässle
- Systems Biology of Development Group, Friedrich Miescher Laboratory of the Max Planck Society
| | | | - Patrick Müller
- Systems Biology of Development Group, Friedrich Miescher Laboratory of the Max Planck Society;
| |
Collapse
|
14
|
New insights on plant cell elongation: a role for acetylcholine. Int J Mol Sci 2014; 15:4565-82. [PMID: 24642879 PMCID: PMC3975414 DOI: 10.3390/ijms15034565] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 03/07/2014] [Accepted: 03/11/2014] [Indexed: 12/04/2022] Open
Abstract
We investigated the effect of auxin and acetylcholine on the expression of the tomato expansin gene LeEXPA2, a specific expansin gene expressed in elongating tomato hypocotyl segments. Since auxin interferes with clathrin-mediated endocytosis, in order to regulate cellular and developmental responses we produced protoplasts from tomato elongating hypocotyls and followed the endocytotic marker, FM4-64, internalization in response to treatments. Tomato protoplasts were observed during auxin and acetylcholine treatments after transient expression of chimerical markers of volume-control related compartments such as vacuoles. Here we describe the contribution of auxin and acetylcholine to LeEXPA2 expression regulation and we support the hypothesis that a possible subcellular target of acetylcholine signal is the vesicular transport, shedding some light on the characterization of this small molecule as local mediator in the plant physiological response.
Collapse
|
15
|
Faraco M, Spelt C, Bliek M, Verweij W, Hoshino A, Espen L, Prinsi B, Jaarsma R, Tarhan E, de Boer AH, Di Sansebastiano GP, Koes R, Quattrocchio FM. Hyperacidification of vacuoles by the combined action of two different P-ATPases in the tonoplast determines flower color. Cell Rep 2014; 6:32-43. [PMID: 24388746 DOI: 10.1016/j.celrep.2013.12.009] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 10/14/2013] [Accepted: 12/04/2013] [Indexed: 10/25/2022] Open
Abstract
The acidification of endomembrane compartments is essential for enzyme activities, sorting, trafficking, and trans-membrane transport of various compounds. Vacuoles are mildly acidic in most plant cells because of the action of V-ATPase and/or pyrophosphatase proton pumps but are hyperacidified in specific cells by mechanisms that remained unclear. Here, we show that the blue petal color of petunia ph mutants is due to a failure to hyperacidify vacuoles. We report that PH1 encodes a P3B-ATPase, hitherto known as Mg2(+) transporters in bacteria only, that resides in the vacuolar membrane (tonoplast). In vivo nuclear magnetic resonance and genetic data show that PH1 is required and, together with the tonoplast H(+) P3A-ATPase PH5, sufficient to hyperacidify vacuoles. PH1 has no H(+) transport activity on its own but can physically interact with PH5 and boost PH5 H(+) transport activity. Hence, the hyperacidification of vacuoles in petals, and possibly other tissues, relies on a heteromeric P-ATPase pump.
Collapse
Affiliation(s)
- Marianna Faraco
- Department of Molecular Cell Biology, Graduate School of Experimental Plant Sciences, VU University, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands
| | - Cornelis Spelt
- Department of Molecular Cell Biology, Graduate School of Experimental Plant Sciences, VU University, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands
| | - Mattijs Bliek
- Department of Molecular Cell Biology, Graduate School of Experimental Plant Sciences, VU University, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands
| | - Walter Verweij
- Department of Molecular Cell Biology, Graduate School of Experimental Plant Sciences, VU University, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands
| | - Atsushi Hoshino
- Department of Molecular Cell Biology, Graduate School of Experimental Plant Sciences, VU University, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands; National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, 444-8585 Aichi, Japan; Department of Basic Biology, The Graduate University for Advanced Studies (Sokendai), 444-8585 Okazaki, Japan
| | - Luca Espen
- Dipartimento Scienze Agrarie e Ambientali, Produzione, Territorio, Agroenergia, Università degli Studi di Milano, Via G. Celoria 2, 20133 Milano, Italy
| | - Bhakti Prinsi
- Dipartimento Scienze Agrarie e Ambientali, Produzione, Territorio, Agroenergia, Università degli Studi di Milano, Via G. Celoria 2, 20133 Milano, Italy
| | - Rinse Jaarsma
- Department of Molecular Cell Biology, Graduate School of Experimental Plant Sciences, VU University, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands
| | - Eray Tarhan
- Department of Molecular Cell Biology, Graduate School of Experimental Plant Sciences, VU University, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands
| | - Albertus H de Boer
- Department of Molecular Cell Biology, Graduate School of Experimental Plant Sciences, VU University, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands
| | | | - Ronald Koes
- Department of Molecular Cell Biology, Graduate School of Experimental Plant Sciences, VU University, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands.
| | - Francesca M Quattrocchio
- Department of Molecular Cell Biology, Graduate School of Experimental Plant Sciences, VU University, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands.
| |
Collapse
|
16
|
Gibson KH, Vorkel D, Meissner J, Verbavatz JM. Fluorescing the electron: strategies in correlative experimental design. Methods Cell Biol 2014; 124:23-54. [PMID: 25287835 DOI: 10.1016/b978-0-12-801075-4.00002-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Correlative light and electron microscopy (CLEM) encompasses a growing number of imaging techniques aiming to combine the benefits of light microscopy, which allows routine labeling of molecules and live-cell imaging of fluorescently tagged proteins with the resolution and ultrastructural detail provided by electron microscopy (EM). Here we review three different strategies that are commonly used in CLEM and we illustrate each approach with one detailed example of their application. The focus is on different options for sample preparation with their respective benefits as well as on the imaging workflows that can be used. The three strategies cover: (1) the combination of live-cell imaging with the high resolution of EM (time-resolved CLEM), (2) the need to identify a fluorescent cell of interest for further exploration by EM (cell sorting), and (3) the subcellular correlation of a fluorescent feature in a cell with its associated ultrastructural features (spatial CLEM). Finally, we discuss future directions for CLEM exploring the possibilities for combining super-resolution microscopy with EM.
Collapse
Affiliation(s)
- Kimberley H Gibson
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Daniela Vorkel
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Jana Meissner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Jean-Marc Verbavatz
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|