1
|
Jin J, Zhao M, Yu K, Zhang M, Wang J, Hu Y, Guo D, Wang K, Wang Q, Cui J, Liu Y, Jing T, Schwab W, Song C. Squalene acts as a feedback signaling molecule in facilitating bidirectional communication between tea plants. SCIENCE ADVANCES 2025; 11:eads4888. [PMID: 39951519 PMCID: PMC11827622 DOI: 10.1126/sciadv.ads4888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 01/14/2025] [Indexed: 02/16/2025]
Abstract
Plants respond to environmental stimuli by releasing volatile organic compounds (VOCs), which play diverse roles in plant-to-plant interactions. Previous studies have primarily focused on how receiving plants respond. However, little is known about how these receivers communicate back to the emitter plants and their subsequent impacts. Our findings indicated increased plant tolerance when neighboring plants were present, suggesting bidirectional plant communication. Furthermore, we established a model to explore the role of signals from receiver plants, identifying squalene as a crucial feedback signal enhancing the cold tolerance in emitter plants by up-regulating CsCBF5 expression. Further analysis using yeast one-hybrid analysis coupled with inhibition of brassinosteroid pathways suggested that squalene-induced castasterone (CS) accumulation directly activated CsCBF5 expression modulated by CsBES1/BZR1. Overall, these results demonstrated the role of the squalene-CS-BES1/BZR1-CBF5 pathway in the bidirectional communication between plants, expanding our understanding of plant interactions.
Collapse
Affiliation(s)
- Jieyang Jin
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Anhui Agricultural University, 230036 Hefei, Anhui, P. R. China
| | - Mingyue Zhao
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Anhui Agricultural University, 230036 Hefei, Anhui, P. R. China
| | - Keke Yu
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Anhui Agricultural University, 230036 Hefei, Anhui, P. R. China
| | - Mengting Zhang
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Anhui Agricultural University, 230036 Hefei, Anhui, P. R. China
| | - Jingming Wang
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Anhui Agricultural University, 230036 Hefei, Anhui, P. R. China
| | - Yutong Hu
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Anhui Agricultural University, 230036 Hefei, Anhui, P. R. China
| | - Danyang Guo
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Anhui Agricultural University, 230036 Hefei, Anhui, P. R. China
| | - Kai Wang
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Anhui Agricultural University, 230036 Hefei, Anhui, P. R. China
| | - Qiang Wang
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Anhui Agricultural University, 230036 Hefei, Anhui, P. R. China
| | - Jilai Cui
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Anhui Agricultural University, 230036 Hefei, Anhui, P. R. China
- College of Life Science, Xinyang Normal University, 237 Nanhu R., Xinyang, Henan 464000, People’s Republic of China
| | - Yuantao Liu
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Anhui Agricultural University, 230036 Hefei, Anhui, P. R. China
| | - Tingting Jing
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Anhui Agricultural University, 230036 Hefei, Anhui, P. R. China
| | - Wilfried Schwab
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Anhui Agricultural University, 230036 Hefei, Anhui, P. R. China
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354 Freising, Germany
| | - Chuankui Song
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Anhui Agricultural University, 230036 Hefei, Anhui, P. R. China
| |
Collapse
|
2
|
Satake A, Hagiwara T, Nagano AJ, Yamaguchi N, Sekimoto K, Shiojiri K, Sudo K. Plant Molecular Phenology and Climate Feedbacks Mediated by BVOCs. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:605-627. [PMID: 38382906 DOI: 10.1146/annurev-arplant-060223-032108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Climate change profoundly affects the timing of seasonal activities of organisms, known as phenology. The impact of climate change is not unidirectional; it is also influenced by plant phenology as plants modify atmospheric composition and climatic processes. One important aspect of this interaction is the emission of biogenic volatile organic compounds (BVOCs), which link the Earth's surface, atmosphere, and climate. BVOC emissions exhibit significant diurnal and seasonal variations and are therefore considered essential phenological traits. To understand the dynamic equilibrium arising from the interplay between plant phenology and climate, this review presents recent advances in comprehending the molecular mechanisms underpinning plant phenology and its interaction with climate. We provide an overview of studies investigating molecular phenology, genome-wide gene expression analyses conducted in natural environments, and how these studies revolutionize the concept of phenology, shifting it from observable traits to dynamic molecular responses driven by gene-environment interactions. We explain how this knowledge can be scaled up to encompass plant populations, regions, and even the globe by establishing connections between molecular phenology, changes in plant distribution, species composition, and climate.
Collapse
Affiliation(s)
- Akiko Satake
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan;
| | - Tomika Hagiwara
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan;
| | - Atsushi J Nagano
- Faculty of Agriculture, Ryukoku University, Otsu, Japan
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Nobutoshi Yamaguchi
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Kanako Sekimoto
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Japan
| | | | - Kengo Sudo
- Graduate School of Environmental Studies, Nagoya University, Nagoya, Japan
- Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan
| |
Collapse
|
3
|
Jin J, Zhao M, Jing T, Zhang M, Lu M, Yu G, Wang J, Guo D, Pan Y, Hoffmann TD, Schwab W, Song C. Volatile compound-mediated plant-plant interactions under stress with the tea plant as a model. HORTICULTURE RESEARCH 2023; 10:uhad143. [PMID: 37691961 PMCID: PMC10483893 DOI: 10.1093/hr/uhad143] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/15/2023] [Indexed: 09/12/2023]
Abstract
Plants respond to environmental stimuli via the release of volatile organic compounds (VOCs), and neighboring plants constantly monitor and respond to these VOCs with great sensitivity and discrimination. This sensing can trigger increased plant fitness and reduce future plant damage through the priming of their own defenses. The defense mechanism in neighboring plants can either be induced by activation of the regulatory or transcriptional machinery, or it can be delayed by the absorption and storage of VOCs for the generation of an appropriate response later. Despite much research, many key questions remain on the role of VOCs in interplant communication and plant fitness. Here we review recent research on the VOCs induced by biotic (i.e. insects and pathogens) and abiotic (i.e. cold, drought, and salt) stresses, and elucidate the biosynthesis of stress-induced VOCs in tea plants. Our focus is on the role of stress-induced VOCs in complex ecological environments. Particularly, the roles of VOCs under abiotic stress are highlighted. Finally, we discuss pertinent questions and future research directions for advancing our understanding of plant interactions via VOCs.
Collapse
Affiliation(s)
- Jieyang Jin
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Mingyue Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Tingting Jing
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Mengting Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Mengqian Lu
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Guomeng Yu
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Jingming Wang
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Danyang Guo
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Yuting Pan
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Timothy D Hoffmann
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354 Freising, Germany
| | - Wilfried Schwab
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354 Freising, Germany
| | - Chuankui Song
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036, Hefei, Anhui, China
| |
Collapse
|
4
|
Escobar-Bravo R, Lin PA, Waterman JM, Erb M. Dynamic environmental interactions shaped by vegetative plant volatiles. Nat Prod Rep 2023; 40:840-865. [PMID: 36727645 PMCID: PMC10132087 DOI: 10.1039/d2np00061j] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Indexed: 02/03/2023]
Abstract
Covering: up to November 2022Plants shape terrestrial ecosystems through physical and chemical interactions. Plant-derived volatile organic compounds in particular influence the behavior and performance of other organisms. In this review, we discuss how vegetative plant volatiles derived from leaves, stems and roots are produced and released into the environment, how their production and release is modified by abiotic and biotic factors, and how they influence other organisms. Vegetative plant volatiles are derived from different biosynthesis and degradation pathways and are released via distinct routes. Both biosynthesis and release are regulated by other organisms as well as abiotic factors. In turn, vegetative plant volatiles modify the physiology and the behavior of a wide range of organisms, from microbes to mammals. Several concepts and frameworks can help to explain and predict the evolution and ecology of vegetative plant volatile emission patterns of specific pathways: multifunctionality of specialized metabolites, chemical communication displays and the information arms race, and volatile physiochemistry. We discuss how these frameworks can be leveraged to understand the evolution and expression patterns of vegetative plant volatiles. The multifaceted roles of vegetative plant volatiles provide fertile grounds to understand ecosystem dynamics and harness their power for sustainable agriculture.
Collapse
Affiliation(s)
| | - Po-An Lin
- Department of Entomology, National Taiwan University, Taipei, Taiwan
| | - Jamie M Waterman
- Institute of Plant Sciences, University of Bern, Bern, Switzerland.
| | - Matthias Erb
- Institute of Plant Sciences, University of Bern, Bern, Switzerland.
| |
Collapse
|
5
|
Shi S, Zhang S, Wu J, Liu X, Zhang Z. Identification of long non-coding RNAs involved in floral scent of Rosa hybrida. FRONTIERS IN PLANT SCIENCE 2022; 13:996474. [PMID: 36267940 PMCID: PMC9577252 DOI: 10.3389/fpls.2022.996474] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Long non-coding RNAs (lncRNAs) were found to play important roles in transcriptional, post-transcriptional, and epigenetic gene regulation in various biological processes. However, lncRNAs and their regulatory roles remain poorly studied in horticultural plants. Rose is economically important not only for their wide use as garden and cut flowers but also as important sources of natural fragrance for perfume and cosmetics industry, but presently little was known about the regulatory mechanism of the floral scent production. In this paper, a RNA-Seq analysis with strand-specific libraries, was performed to rose flowers in different flowering stages. The scented variety 'Tianmidemeng' (Rosa hybrida) was used as plant material. A total of 13,957 lncRNAs were identified by mining the RNA-Seq data, including 10,887 annotated lncRNAs and 3070 novel lncRNAs. Among them, 10,075 lncRNAs were predicted to possess a total of 29,622 target genes, including 54 synthase genes and 24 transcription factors related to floral scent synthesis. 425 lncRNAs were differentially expressed during the flowering process, among which 19 were differentially expressed among all the three flowering stages. Using weighted correlation network analysis (WGCNA), we correlate the differentially-expressed lncRNAs to synthesis of individual floral scent compounds. Furthermore, regulatory function of one of candidate lncRNAs for floral scent synthesis was verified using VIGS method in the rose. In this study, we were able to show that lncRNAs may play important roles in floral scent production in the rose. This study also improves our understanding of how plants regulate their secondary metabolism by lncRNAs.
Collapse
Affiliation(s)
- Shaochuan Shi
- Vegetable Research Institute, Shandong Academy of Agricultural Science, Jinan, China
| | - Shiya Zhang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Jie Wu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Xintong Liu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Zhao Zhang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| |
Collapse
|
6
|
Genetic and Biochemical Aspects of Floral Scents in Roses. Int J Mol Sci 2022; 23:ijms23148014. [PMID: 35887360 PMCID: PMC9321236 DOI: 10.3390/ijms23148014] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 12/12/2022] Open
Abstract
Floral scents possess high ornamental and economic values to rose production in the floricultural industry. In the past two decades, molecular bases of floral scent production have been studied in the rose as well as their genetic inheritance. Some significant achievements have been acquired, such as the comprehensive rose genome and the finding of a novel geraniol synthase in plants. In this review, we summarize the composition of floral scents in modern roses, focusing on the recent advances in the molecular mechanisms of floral scent production and emission, as well as the latest developments in molecular breeding and metabolic engineering of rose scents. It could provide useful information for both studying and improving the floral scent production in the rose.
Collapse
|
7
|
Mostafa S, Wang Y, Zeng W, Jin B. Floral Scents and Fruit Aromas: Functions, Compositions, Biosynthesis, and Regulation. FRONTIERS IN PLANT SCIENCE 2022; 13:860157. [PMID: 35360336 PMCID: PMC8961363 DOI: 10.3389/fpls.2022.860157] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/09/2022] [Indexed: 05/27/2023]
Abstract
Floral scents and fruit aromas are crucial volatile organic compounds (VOCs) in plants. They are used in defense mechanisms, along with mechanisms to attract pollinators and seed dispersers. In addition, they are economically important for the quality of crops, as well as quality in the perfume, cosmetics, food, drink, and pharmaceutical industries. Floral scents and fruit aromas share many volatile organic compounds in flowers and fruits. Volatile compounds are classified as terpenoids, phenylpropanoids/benzenoids, fatty acid derivatives, and amino acid derivatives. Many genes and transcription factors regulating the synthesis of volatiles have been discovered. In this review, we summarize recent progress in volatile function, composition, biosynthetic pathway, and metabolism regulation. We also discuss unresolved issues and research perspectives, providing insight into improvements and applications of plant VOCs.
Collapse
Affiliation(s)
- Salma Mostafa
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
- Department of Floriculture, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Yun Wang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Wen Zeng
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Biao Jin
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| |
Collapse
|
8
|
Chemical and Sensorial Characterization of Scented and Non-Scented Alstroemeria Hybrids. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8010065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Floral scent plays an important ecological role attracting pollinators. Its composition has been elucidated for a vast diversity of species and is dominated by volatile organic compounds (VOCs) such as monoterpenoids, sesquiterpenoids, phenylpropanoids and benzenoid compounds. Considering that floral scent is also an important character for the ornamental plant market, this study was aimed at characterizing and comparing the molecular composition of scented and non-scented alstroemeria flowers. Confirmation of floral scent was performed through sensorial analysis, while GC-MS analysis detected monoterpenes and esters as major volatile organic compounds (VOCs). A total of 19 and 17 VOCs were detected in the scented hybrids 13M07 and 14E07, respectively. The non-scented hybrid 13B01 shared 14 VOCs with the scented hybrids, although it showed different relative concentrations. Comparison between scented and non-scented hybrids suggests that diversity and amounts of VOCs are likely due to the ecological role of scent, while the human perception of floral scent is not strictly related to the VOC profile.
Collapse
|
9
|
Zhang C, Liu H, Hu S, Zong Y, Xia H, Li H. Transcriptomic profiling of the floral fragrance biosynthesis pathway of Liriodendron and functional characterization of the LtuDXR gene. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 314:111124. [PMID: 34895551 DOI: 10.1016/j.plantsci.2021.111124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 11/02/2021] [Accepted: 11/18/2021] [Indexed: 06/14/2023]
Abstract
Floral fragrance, which has the function of attracting pollinators, is a class of volatile secondary metabolites mainly released by the secretory tissue of petals. Terpenoids are key components of floral volatile substances. Previous studies have shown that there are significant differences in the concentration and composition of volatile floral fragrances, especially terpenoids, between Liriodendron chinense and L. tulipifera. At present, the mechanism by which the synthesis of floral fragrance is regulated in Liriodendron remains unexplored. In this study, we analyzed the differentially expressed genes (DEGs) of L. chinense and L. tulipifera, and identified 130 DEGs related to terpenoid synthesis. A KEGG enrichment analysis of DEGs related to terpenoid biosynthesis revealed that the monoterpenoid biosynthesis pathway was the most significant. We cloned the LtuDXR gene from L. tulipifera using RACE technology. RT-qPCR results showed that the expression of the LtuDXR gene was the highest in the early florescence petals, indicating that the LtuDXR gene may play a role in the synthesis of volatile terpenoids. Subcellular localization showed that the LtuDXR protein is mainly localized in the chloroplast. Overexpression of LtuDXR in Arabidopsis thaliana significantly increased the plant height, DXR enzyme activity, and carotenoid content. In this study, we identified and functionally characterized LtuDXR, which is involved in terpenoid synthesis in Liriodendron. Our work lays the foundation for further exploration of the molecular mechanism by which terpenoid biosynthesis is regulated in Liriodendron.
Collapse
Affiliation(s)
- Chengge Zhang
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Huanhuan Liu
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Shan Hu
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Yaxian Zong
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Hui Xia
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Huogen Li
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China.
| |
Collapse
|
10
|
Segundo-Ortin M, Calvo P. Consciousness and cognition in plants. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2021; 13:e1578. [PMID: 34558231 DOI: 10.1002/wcs.1578] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 12/17/2022]
Abstract
Unlike animal behavior, behavior in plants is traditionally assumed to be completely determined either genetically or environmentally. Under this assumption, plants are usually considered to be noncognitive organisms. This view nonetheless clashes with a growing body of empirical research that shows that many sophisticated cognitive capabilities traditionally assumed to be exclusive to animals are exhibited by plants too. Yet, if plants can be considered cognitive, even in a minimal sense, can they also be considered conscious? Some authors defend that the quest for plant consciousness is worth pursuing, under the premise that sentience can play a role in facilitating plant's sophisticated behavior. The goal of this article is not to provide a positive argument for plant cognition and consciousness, but to invite a constructive, empirically informed debate about it. After reviewing the empirical literature concerning plant cognition, we introduce the reader to the emerging field of plant neurobiology. Research on plant electrical and chemical signaling can help shed light into the biological bases for plant sentience. To conclude, we shall present a series of approaches to scientifically investigate plant consciousness. In sum, we invite the reader to consider the idea that if consciousness boils down to some form of biological adaptation, we should not exclude a priori the possibility that plants have evolved their own phenomenal experience of the world. This article is categorized under: Cognitive Biology > Evolutionary Roots of Cognition Philosophy > Consciousness Neuroscience > Cognition.
Collapse
Affiliation(s)
- Miguel Segundo-Ortin
- Department of Philosophy and Religious Studies, Faculty of Humanities, Utrecht University, Utrecht, The Netherlands
| | - Paco Calvo
- Minimal Intelligence Laboratory, Universidad de Murcia, Murcia, Spain
| |
Collapse
|
11
|
Unraveling Sorghum Allelopathy in Agriculture: Concepts and Implications. PLANTS 2021; 10:plants10091795. [PMID: 34579328 PMCID: PMC8470078 DOI: 10.3390/plants10091795] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 01/30/2023]
Abstract
Allelopathy is an ecological phenomenon that involves the production and release of biomolecules from different crops, cultivated plants, and bacteria or fungi into the soil rhizosphere and impacts other organisms in the vicinity. Sorghum possesses vital allelopathic characteristics due to which it produces and releases different biomolecules from its root hairs, stems, and grains. Several studies have reported that sorghum acts as an allelopathic crop, decreasing the growth and eco-physiological attributes of surrounding plants and weeds growing simultaneously or subsequently in the field. Sorghum allelopathy has been exploited in the context of green manure, crop rotations, cover crops, and intercropping or mulching, whereas plant aqueous extracts or powder might be an alternate method of weed control. A diverse group of allelochemicals, including benzoic acid, p-hydroxybenzoic acid, vanillic acid, ferulic acid, chlorogenic acid, m-coumaric acid, p-coumaric acid, gallic acid, caffeic acid, p-hydroxibenzaldehyde, dhurrin, sorgoleone, m-hydroxybenzoic acid and protocatechuic acid, have been isolated and identified from different plant tissues of sorghum and root exudates. These allelochemicals, especially sorgoleone, have been investigated in terms of their mode(s) of action, specific activity and selectivity, release in the rhizosphere and uptake and translocation in sensitive species. The present review describes the importance of sorghum allelopathy as an ecological tool in managing weeds, highlighting the most recent advances in the allelochemicals present in sorghum, their modes of action, and their fate in the ecosystem. Further research should focus on the evaluation and selection of sorghum cultivars with high allelopathic potential, so that sorghum allelopathy can be better utilized for weed control and yield enhancement.
Collapse
|
12
|
Yu Z, Zhang G, Teixeira da Silva JA, Zhao C, Duan J. The methyl jasmonate-responsive transcription factor DobHLH4 promotes DoTPS10, which is involved in linalool biosynthesis in Dendrobium officinale during floral development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 309:110952. [PMID: 34134848 DOI: 10.1016/j.plantsci.2021.110952] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/16/2021] [Accepted: 05/20/2021] [Indexed: 05/22/2023]
Abstract
Linalool is an aromatic monoterpene produced in the Chinese medicinal plant Dendrobium officinale, but little information is available on the regulation of linalool biosynthesis. Here, a novel basic helix-loop-helix (bHLH) transcription factor, DobHLH4 from D. officinale, was identified and functionally characterized. The expression profile of DobHLH4 was positively correlated with that of DoTPS10 (R2 = 0.985, p < 0.01), which encodes linalool synthase that is responsible for linalool production, during floral development. DobHLH4 was highly expressed in petals, and was significantly induced by methyl jasmonate. Analysis of subcellular localization showed that DobHLH4 was located in the nucleus. Yeast one-hybrid and dual-luciferase assays indicated that DobHLH4 bound directly to the DoTPS10 promoter harboring the G-box element, and up-regulated DoTPS10 expression. A yeast two-hybrid screen confirmed that DobHLH4 physically interacted with DoJAZ1, suggesting that DobHLH4 might function in the jasmonic acid-mediated accumulation of linalool. Furthermore, transient overexpression of DobHLH4 in D. officinale petals significantly increased linalool production by triggering linalool biosynthetic pathway genes, especially DoTPS10. We suggest a hypothetical model that depicts how jasmonic acid signaling may regulate DoTPS10 by interacting with DobHLH4 and DoJAZ1. In doing so, the formation of linalool is controlled. Our results indicate that DobHLH4 is a positive regulator of linalool biosynthesis and may be a promising target for in vitro-based metabolic engineering to produce linalool.
Collapse
Affiliation(s)
- Zhenming Yu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Guihua Zhang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | | | - Conghui Zhao
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Jun Duan
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, China.
| |
Collapse
|
13
|
Ninkovic V, Markovic D, Rensing M. Plant volatiles as cues and signals in plant communication. PLANT, CELL & ENVIRONMENT 2021; 44:1030-1043. [PMID: 33047347 PMCID: PMC8048923 DOI: 10.1111/pce.13910] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/05/2020] [Accepted: 10/05/2020] [Indexed: 05/05/2023]
Abstract
Volatile organic compounds are important mediators of mutualistic interactions between plants and their physical and biological surroundings. Volatiles rapidly indicate competition or potential threat before these can take place, and they regulate and coordinate adaptation responses in neighbouring plants, fine-tuning them to match the exact stress encountered. Ecological specificity and context-dependency of plant-plant communication mediated by volatiles represent important factors that determine plant performance in specific environments. In this review, we synthesise the recent progress made in understanding the role of plant volatiles as mediators of plant interactions at the individual and community levels, highlighting the complexity of the plant receiver response to diverse volatile cues and signals and addressing how specific responses shape plant growth and survival. Finally, we outline the knowledge gaps and provide directions for future research. The complex dialogue between the emitter and receiver based on either volatile cues or signals determines the outcome of information exchange, which shapes the communication pattern between individuals at the community level and determines their ecological implications at other trophic levels.
Collapse
Affiliation(s)
- Velemir Ninkovic
- Department of EcologySwedish University of Agricultural SciencesUppsalaSweden
| | - Dimitrije Markovic
- Department of Crop Production EcologySwedish University of Agricultural SciencesUppsalaSweden
- Faculty of Agriculture, University of Banja LukaBanja LukaBosnia and Herzegovina
| | - Merlin Rensing
- Department of EcologySwedish University of Agricultural SciencesUppsalaSweden
| |
Collapse
|
14
|
The ecological consequences of herbivore-induced plant responses on plant-pollinator interactions. Emerg Top Life Sci 2020; 4:33-43. [PMID: 32537636 DOI: 10.1042/etls20190121] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 12/17/2022]
Abstract
Plant induced responses to herbivory have long been found to function as plant direct and indirect defenses and to be major drivers of herbivore community and population dynamics. While induced defenses are generally understood as cost-saving strategies that allow plants to allocate valuable resources into defense expression, it recently became clear that, in particular, induced metabolic changes can come with significant ecological costs. In particular, interactions with mutualist pollinators can be significantly compromised by herbivore-induced changes in floral morphology and metabolism. We review recent findings on the evidence for ecological conflict between defending against herbivores and attracting pollinators while using similar modes of information transfer (e.g. visual, olfactory, tactile). Specifically, we discuss plant traits and mechanisms through which plants mediate interactions between antagonists and mutualist and present functional hypotheses for how plants can overcome the resulting conflicts.
Collapse
|
15
|
Scognamiglio M, Schneider B. Identification of Potential Allelochemicals From Donor Plants and Their Synergistic Effects on the Metabolome of Aegilops geniculata. FRONTIERS IN PLANT SCIENCE 2020; 11:1046. [PMID: 32849675 PMCID: PMC7419652 DOI: 10.3389/fpls.2020.01046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/25/2020] [Indexed: 06/11/2023]
Abstract
The need for plants to defend themselves, communicate, and somehow contribute to the social life in their ecosystems has triggered the evolution of an astonishing number of diverse chemicals, some of which involved in plant-plant interactions. In the present study, specific aspects of allelopathy are investigated. A combination of bioassays and metabolomics was used in order to study the chemical interactions occurring between three donor species of Mediterranean area (Arbutus unedo, Medicago minima, Myrtus communis) and a receiving species (Aegilops geniculata). The biochemical changes occurring in the receiving plant upon the treatments with the donor extracts were studied. Oxidative stress and altered water balance were found to be the major changes in the receiving plant. Putative allelochemicals synthesized by the donor plants were also identified and it was shown that their activity was enhanced by co-occurring metabolites. This study provides evidence that metabolite mixtures are to be taken into consideration for allelopathic activity. Furthermore, not only it reports the chemicals responsible for the activity in the specific system, but it also shows that the response of the receiving plant to the treatment with extracts from donor plants is comparable to the response to other stresses.
Collapse
|
16
|
Koski MH. The role of sensory drive in floral evolution. THE NEW PHYTOLOGIST 2020; 227:1012-1024. [PMID: 32112572 DOI: 10.1111/nph.16510] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 02/17/2020] [Indexed: 05/25/2023]
Abstract
Sensory drive theory posits that the evolution of communication signals is shaped by the sensory systems of receivers and the habitat conditions under which signals are received. It has inspired an enormous body of research, advancing our understanding of signal evolution and speciation in animals. In plants, the extreme diversification of floral signals has fascinated biologists for over a century. While processes involved in sensory drive probably play out in plant-pollinator communication, the theory has not been formally synthesized in this context. However, it has untapped potential to explain mechanisms underlying variation in pollinator preferences across populations, and how environmental conditions impact floral signal transmission and perception. Here I develop a framework of sensory drive for plant-pollinator interactions, identifying similarities and differences from its original conception. I then summarize studies that shed light on how the primary processes of sensory drive - habitat transmission, perceptual tuning, and signal matching - apply to the evolution of floral color and scent. Throughout, I propose research avenues and approaches to assess how sensory drive shapes floral diversity. This framework will be important for explaining patterns of extant floral diversity and examining how altered signaling conditions under global change will impact the evolutionary trajectory of floral traits.
Collapse
Affiliation(s)
- Matthew H Koski
- Department of Biological Sciences, Clemson University, Clemson, SC, 29631, USA
| |
Collapse
|
17
|
Composition and Biosynthesis of Scent Compounds from Sterile Flowers of an Ornamental Plant Clematis florida cv. 'Kaiser'. Molecules 2020; 25:molecules25071711. [PMID: 32276485 PMCID: PMC7180759 DOI: 10.3390/molecules25071711] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 12/16/2022] Open
Abstract
Clematisflorida is a popular ornamental vine species known for diverse colors and shapes of its flowers but not for scent. Here we investigated the composition and biosynthesis of floral scent in ‘Kaiser’, a fragrant cultivar of C. florida that has sterile flowers. Volatile profiling revealed that flowers of ‘Kaiser’ emit more than 20 compounds, with monoterpenes being most abundant. Among the three floral organs, namely sepals, transformed-petals, and ovaries, ovaries had the highest rates of total volatile emission. To determine the molecular mechanism underlying floral scent biosynthesis in ‘Kaiser’, we sequenced a flower transcriptome and searched the transcriptome for terpene synthase genes (TPSs), which are key genes for terpene biosynthesis. Among the TPS genes identified, three were putative intact full-length genes and were designated CfTPS1, CfTPS2, and CfTPS3. Phylogenetic analysis placed CfTPS1, CfTPS2, and CfTPS3 to the TPS-g, TPS-b, and TPS-a subfamily, respectively. Through in vitro enzyme assays with Escherichia coli-expressed recombinant proteins, both CfTPS1 and CfTPS2 were demonstrated to catalyze the conversion of geranyl diphosphate to linalool, the most abundant constituent of C. florida floral scent. In addition, CfTPS1 and CfTPS2 produced the sesquiterpene nerolidol from (E,E)-farnesyl diphosphate. CfTPS3 showed sesquiterpene synthase activity and produced multiple products in vitro. All three CfTPS genes showed higher levels of expression in sepals than those in transformed-petals and ovaries. Our results show that despite being sterile, the flowers of ‘Kaiser’ have normal mechanisms for floral scent biosynthesis that make the flowers fragrant.
Collapse
|
18
|
Muria-Gonzalez MJ, Yeng Y, Breen S, Mead O, Wang C, Chooi YH, Barrow RA, Solomon PS. Volatile Molecules Secreted by the Wheat Pathogen Parastagonospora nodorum Are Involved in Development and Phytotoxicity. Front Microbiol 2020; 11:466. [PMID: 32269554 PMCID: PMC7111460 DOI: 10.3389/fmicb.2020.00466] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 03/04/2020] [Indexed: 12/01/2022] Open
Abstract
Septoria nodorum blotch is a major disease of wheat caused by the fungus Parastagonospora nodorum. Recent studies have demonstrated that secondary metabolites, including polyketides and non-ribosomal peptides, produced by the pathogen play important roles in disease and development. However, there is currently no knowledge on the composition or biological activity of the volatile organic compounds (VOCs) secreted by P. nodorum. To address this, we undertook a series of growth and phytotoxicity assays and demonstrated that P. nodorum VOCs inhibited bacterial growth, were phytotoxic and suppressed self-growth. Mass spectrometry analysis revealed that 3-methyl-1-butanol, 2-methyl-1-butanol, 2-methyl-1-propanol, and 2-phenylethanol were dominant in the VOC mixture and phenotypic assays using these short chain alcohols confirmed that they were phytotoxic. Further analysis of the VOCs also identified the presence of multiple sesquiterpenes of which four were identified via mass spectrometry and nuclear magnetic resonance as β-elemene, α-cyperone, eudesma-4,11-diene and acora-4,9-diene. Subsequent reverse genetics studies were able to link these molecules to corresponding sesquiterpene synthases in the P. nodorum genome. However, despite extensive testing, these molecules were not involved in either of the growth inhibition or phytotoxicity phenotypes previously observed. Plant assays using mutants of the pathogen lacking the synthetic genes revealed that the identified sesquiterpenes were not required for disease formation on wheat leaves. Collectively, these data have significantly extended our knowledge of the VOCs in fungi and provided the basis for further dissecting the roles of sesquiterpenes in plant disease.
Collapse
Affiliation(s)
| | - Yeannie Yeng
- Research School of Biology, ACT, Australian National University, Canberra, ACT, Australia
- Department of Oral Biology and Biomedical Sciences, MAHSA University, Selangor, Malaysia
| | - Susan Breen
- Research School of Biology, ACT, Australian National University, Canberra, ACT, Australia
| | - Oliver Mead
- Research School of Biology, ACT, Australian National University, Canberra, ACT, Australia
| | - Chen Wang
- Research School of Biology, ACT, Australian National University, Canberra, ACT, Australia
| | - Yi-Heng Chooi
- School of Molecular Sciences, University of Western Australia, Perth, WA, Australia
| | - Russell A. Barrow
- Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW, Australia
- Plus 3 Australia Pty Ltd., Hawker, ACT, Australia
| | - Peter S. Solomon
- Research School of Biology, ACT, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
19
|
Rebolleda-Gómez M, Wood CW. Unclear Intentions: Eavesdropping in Microbial and Plant Systems. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00385] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
20
|
Fricke U, Lucas-Barbosa D, Douma JC. No evidence of flowering synchronization upon floral volatiles for a short lived annual plant species: revisiting an appealing hypothesis. BMC Ecol 2019; 19:29. [PMID: 31391049 PMCID: PMC6685148 DOI: 10.1186/s12898-019-0245-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 07/19/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Self-incompatible plants require simultaneous flowering mates for crosspollination and reproduction. Though the presence of flowering conspecifics and pollination agents are important for reproductive success, so far no cues that signal the flowering state of potential mates have been identified. Here, we empirically tested the hypothesis that plant floral volatiles induce flowering synchrony among self-incompatible conspecifics by acceleration of flowering and flower opening rate of non-flowering conspecifics. We exposed Brassica rapa Maarssen, a self-incompatible, in rather dense patches growing annual, to (1) flowering or non-flowering conspecifics or to (2) floral volatiles of conspecifics by isolating plants in separate containers with a directional airflow. In the latter, odors emitted by non-flowering conspecifics were used as control. RESULTS Date of first bud, duration of first flower bud, date of first flower, maximum number of open flowers and flower opening rate were not affected by the presence of conspecific flowering neighbors nor by floral volatiles directly. CONCLUSIONS This study presents a compelling approach to empirically test the role of flower synchronization by floral volatiles and challenges the premises that are underlying this hypothesis. We argue that the life history of the plant as well as its interaction with pollinators and insect herbivores, as well as the distance over which volatiles may serve as synchronization cue, set constraints on the fitness benefits of synchronized flowering which needs to be taken into account when testing the role of floral volatiles in synchronized flowering.
Collapse
Affiliation(s)
- Ute Fricke
- Centre for Crop Systems Analysis, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.,Laboratory of Entomology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.,Department of Animal Ecology and Tropical Biology, Biocentre, University of Würzburg, Würzburg, Germany
| | - Dani Lucas-Barbosa
- Laboratory of Entomology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.,Laboratory of Bio-Communication & Ecology, ETH Zurich, Zurich, Switzerland
| | - Jacob C Douma
- Centre for Crop Systems Analysis, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands. .,Laboratory of Entomology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
| |
Collapse
|
21
|
Westneat DF, Potts LJ, Sasser KL, Shaffer JD. Causes and Consequences of Phenotypic Plasticity in Complex Environments. Trends Ecol Evol 2019; 34:555-568. [PMID: 30871734 DOI: 10.1016/j.tree.2019.02.010] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 02/11/2019] [Accepted: 02/18/2019] [Indexed: 10/27/2022]
Abstract
Phenotypic plasticity is a ubiquitous and necessary adaptation of organisms to variable environments, but most environments have multiple dimensions that vary. Many studies have documented plasticity of a trait with respect to variation in multiple environmental factors. Such multidimensional phenotypic plasticity (MDPP) exists at all levels of organismal organization, from the whole organism to within cells. This complexity in plasticity cannot be explained solely by scaling up ideas from models of unidimensional plasticity. MDPP generates new questions about the mechanism and function of plasticity and its role in speciation and population persistence. Here we review empirical and theoretical approaches to plasticity in response to multidimensional environments and we outline new opportunities along with some difficulties facing future research.
Collapse
Affiliation(s)
- David F Westneat
- Department of Biology, 101 T.H. Morgan Building, University of Kentucky, Lexington, KY 40506-0225, USA.
| | - Leslie J Potts
- Department of Entomology, S-225 Agricultural Science Center North, University of Kentucky, Lexington, KY 40546-0091, USA
| | - Katherine L Sasser
- Department of Biology, 101 T.H. Morgan Building, University of Kentucky, Lexington, KY 40506-0225, USA
| | - James D Shaffer
- Department of Biology, 101 T.H. Morgan Building, University of Kentucky, Lexington, KY 40506-0225, USA
| |
Collapse
|
22
|
Barônio GJ, Oliveira DC. Eavesdropping on gall-plant interactions: the importance of the signaling function of induced volatiles. PLANT SIGNALING & BEHAVIOR 2019; 14:1665454. [PMID: 31538533 PMCID: PMC6804696 DOI: 10.1080/15592324.2019.1665454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The galling insect manipulates the host plant tissue to its own benefit, building the gall structure where it spends during most of its life cycle. These specialist herbivore insects can induce and manipulate plant structure and metabolism throughout gall development and may affect plant volatile emission. Consequently, volatile emission from altered metabolism contribute to eavesdropping cueing. Eavesdropping can be part of adaptive strategies used by evolution for both galling insects and the entire-associated community in order to cue some interaction response. This is in contrast to some herbivores associated with delayed induced responses, altering plant metabolites during the short time while they feed. Due to the different lifestyles of the galling organism, which are associated with different plant tissues and organs (e.g leaves, flowers or fruits), a distinct diversity of organisms may eavesdrop on induced volatiles interacting with the galls. Furthermore, the eavesdropping cues may be defined according to the phenological coupling between galling organism and host plant, which results from the development of a gall structure. For instance, when plants release volatile-induced defenses after galling insects' activity, another interactor may perceive these volatiles and change its behavior and interactions with host plants and galls. Thus, natural enemies could be attracted by different volatiles emitted by the gall tissues. Considering the duration of the life cycle of the galling organism and the gall, the temporal extent of gall-induced volatiles may include more persistent volatile cues and eavesdropping effects than the volatiles induced by non-galling herbivores. Accordingly, from chemical ecology perspective we expect that galling herbivore-induced volatiles may exhibit robust effects on neighboring-plant interactions including those ones during different plant developmental or phenological periods. Information about multitrophic interactions between insects and plants supports the additional understanding of direct and indirect effects, and allows insight into new hypotheses.
Collapse
Affiliation(s)
- Gudryan J. Barônio
- Programa de Pós-Graduação em Ciência Florestal, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brasil
- Instituto de Biologia, Universidade Federal de Uberlândia, Uberlândia, MG, Brasil
- CONTACT Gudryan J. Barônio Programa de Pós-Graduação em Ciência Florestal, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Campus JK, Rodovia MGT 367 - Km 583, nº 5.000, Alto da Jacuba, CEP 39100-000, Diamantina, MG, Brasil
| | | |
Collapse
|
23
|
Silva RF, Rabeschini GBP, Peinado GLR, Cosmo LG, Rezende LHG, Murayama RK, Pareja M. The Ecology of Plant Chemistry and Multi-Species Interactions in Diversified Agroecosystems. FRONTIERS IN PLANT SCIENCE 2018; 9:1713. [PMID: 30524464 PMCID: PMC6262048 DOI: 10.3389/fpls.2018.01713] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 11/05/2018] [Indexed: 05/27/2023]
Abstract
Over the past few years, our knowledge of how ecological interactions shape the structure and dynamics of natural communities has rapidly advanced. Plant chemical traits play key roles in these processes because they mediate a diverse range of direct and indirect interactions in a community-wide context. Many chemically mediated interactions have been extensively studied in industrial cropping systems, and thus have focused on simplified, pairwise and linear interactions that rarely incorporate a community perspective. A contrasting approach considers the agroecosystem as a functioning whole, in which food production occurs. It offers an opportunity to better understand how plant chemical traits mediate complex interactions which can enhance or hinder ecosystem functions. In this paper, we argue that studying chemically mediated interactions in agroecosystems is essential to comprehend how agroecosystem services emerge and how they can be guaranteed through ecosystem management. First, we discuss how plant chemical traits affect and are affected by ecological interactions. We then explore research questions and future directions on how studying chemical mediation in complex agroecosystems can help us understand the emergence and management of ecosystem services, specifically biological control and pollination.
Collapse
Affiliation(s)
- Rodolfo F Silva
- Programa de Pós-Graduação em Ecologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - Gabriela B P Rabeschini
- Programa de Pós-Graduação em Ecologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | | | - Leandro G Cosmo
- Programa de Pós-Graduação em Ecologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - Luiz H G Rezende
- Programa de Pós-Graduação em Ecologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - Rafael K Murayama
- Programa de Pós-Graduação em Ecologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - Martín Pareja
- Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| |
Collapse
|
24
|
Shi S, Duan G, Li D, Wu J, Liu X, Hong B, Yi M, Zhang Z. Two-dimensional analysis provides molecular insight into flower scent of Lilium 'Siberia'. Sci Rep 2018; 8:5352. [PMID: 29599431 PMCID: PMC5876372 DOI: 10.1038/s41598-018-23588-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 03/16/2018] [Indexed: 11/10/2022] Open
Abstract
Lily is a popular flower around the world not only because of its elegant appearance, but also due to its appealing scent. Little is known about the regulation of the volatile compound biosynthesis in lily flower scent. Here, we conducted an approach combining two-dimensional analysis and weighted gene co-expression network analysis (WGCNA) to explore candidate genes regulating flower scent production. In the approach, changes of flower volatile emissions and corresponding gene expression profiles at four flower developmental stages and four circadian times were both captured by GC-MS and RNA-seq methods. By overlapping differentially-expressed genes (DEGs) that responded to flower scent changes in flower development and circadian rhythm, 3,426 DEGs were initially identified to be candidates for flower scent production, of which 1,270 were predicted as transcriptional factors (TFs). The DEGs were further correlated to individual flower volatiles by WGCNA. Finally, 37, 41 and 90 genes were identified as candidate TFs likely regulating terpenoids, phenylpropanoids and fatty acid derivatives productions, respectively. Moreover, by WGCNA several genes related to auxin, gibberellins and ABC transporter were revealed to be responsible for flower scent production. Thus, this strategy provides an important foundation for future studies on the molecular mechanisms involved in floral scent production.
Collapse
Affiliation(s)
- Shaochuan Shi
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Guangyou Duan
- Energy Plant Research Center, School of Life Sciences, Qilu Normal University, Jinan, China
| | - Dandan Li
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Jie Wu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Xintong Liu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Bo Hong
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Mingfang Yi
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China.
| | - Zhao Zhang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China.
| |
Collapse
|
25
|
Floral Scent Chemistry of Luculia yunnanensis (Rubiaceae), a Species Endemic to China with Sweetly Fragrant Flowers. Molecules 2017; 22:molecules22060879. [PMID: 28587077 PMCID: PMC6152718 DOI: 10.3390/molecules22060879] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/22/2017] [Accepted: 05/23/2017] [Indexed: 11/17/2022] Open
Abstract
Luculia plants are famed ornamentals with sweetly fragrant flowers. Luculia yunnanensis Hu is an endemic plant from Yunnan Province, China. Headspace-solid phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) was used to identify the volatile organic compounds (VOCs) of the different flower development stages of L. yunnanensis for the evaluation of floral volatile polymorphism. The results showed that a total of 40 compounds were identified at four different stages. The main aroma-active compounds were 3-carene, α-cubebene, α-copaene, δ-cadinene, and isoledene. Floral scent emission had the tendency to ascend first and descend in succession, reaching its peak level at the initial-flowering stage. The richest diversity of floral volatiles was detected at the full-flowering stage. Principal component analysis (PCA) indicated that the composition and its relative content of floral scent differed at the whole flower development stage. In comparison with the other two species of Luculia (L. pinceana and L. gratissima), the composition and its relative content of floral scent were also different among the tree species.
Collapse
|
26
|
Hirata H, Ohnishi T, Watanabe N. Biosynthesis of floral scent 2-phenylethanol in rose flowers. Biosci Biotechnol Biochem 2016; 80:1865-73. [DOI: 10.1080/09168451.2016.1191333] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Abstract
Plants emit chemically diverse volatile compounds for attracting pollinators or putting up a chemical defense against herbivores. 2-Phenylethanol (2PE) is one of the abundantly emitted scent compounds in rose flowers. Feeding experiments with l-[2H8]phenylalanine into rose flowers and subsequent analysis using gas chromatography–mass spectrometry analysis revealed the hypothetical biosynthetic intermediates to [2H8]-2PE, and the biochemical and genetic analyses elucidated the principal pathway to [2H8]-2PE. We recently found season-specific 2PE pathway producing [2H7]-2PE from l-[2H8]phenylalanine. This is a unique example where the dominant pathway to a specific compound changes with the seasons. This review focuses on the biosynthesis of floral volatiles and their regulation to adapt to the changes in the environment.
Collapse
Affiliation(s)
- Hiroshi Hirata
- Graduate School of Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Toshiyuki Ohnishi
- Graduate School of Agriculture, Shizuoka University, Shizuoka, Japan
- Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Naoharu Watanabe
- Graduate School of Science and Technology, Shizuoka University, Shizuoka, Japan
- Graduate School of Engineering, Shizuoka University, Hamamatsu, Japan
| |
Collapse
|
27
|
Sun P, Schuurink RC, Caissard JC, Hugueney P, Baudino S. My Way: Noncanonical Biosynthesis Pathways for Plant Volatiles. TRENDS IN PLANT SCIENCE 2016; 21:884-894. [PMID: 27475252 DOI: 10.1016/j.tplants.2016.07.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/30/2016] [Accepted: 07/07/2016] [Indexed: 05/24/2023]
Abstract
Plant volatiles are crucial for various interactions with other organisms and their surrounding environment. A large number of these volatiles belong to the terpenoid and benzenoid/phenylpropanoid classes, which have long been considered to be exclusively synthesized from a few canonical pathways. However, several alternative pathways producing these plant volatiles have been discovered recently. This review summarizes the current knowledge about new pathways for these two major groups of plant volatiles, which open new perspectives for applications in metabolic engineering.
Collapse
Affiliation(s)
- Pulu Sun
- Université de Lyon, UJM-Saint-Étienne, CNRS, BVpam FRE 3727, F-42023 Saint-Étienne, France; Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Robert C Schuurink
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Jean-Claude Caissard
- Université de Lyon, UJM-Saint-Étienne, CNRS, BVpam FRE 3727, F-42023 Saint-Étienne, France
| | | | - Sylvie Baudino
- Université de Lyon, UJM-Saint-Étienne, CNRS, BVpam FRE 3727, F-42023 Saint-Étienne, France.
| |
Collapse
|
28
|
Dicke M. Plant phenotypic plasticity in the phytobiome: a volatile issue. CURRENT OPINION IN PLANT BIOLOGY 2016; 32:17-23. [PMID: 27267277 DOI: 10.1016/j.pbi.2016.05.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 05/20/2016] [Accepted: 05/24/2016] [Indexed: 05/09/2023]
Abstract
Plants live in a diverse and dynamic phytobiome, consisting of a microbiome as well as a macrobiome. They respond to arthropod herbivory with the emission of herbivore-induced plant volatiles (HIPV) that are public information and can be used by any member of the phytobiome. Other members of the phytobiome, which do not directly participate in the interaction, may both modulate the induction of HIPV in the plant, as well as respond to the volatiles. The use of HIPV by individual phytobiome members may have beneficial as well as detrimental consequences for the plant. The collective result of phytobiome-modulated HIPV emission on the responses of phytobiome members and the resulting phytobiome dynamics will determine whether and under which circumstances HIPV emission has a net benefit to the plant or not. Only when we understand HIPV emission in the total phytobiome context can we understand the evolutionary consequences of HIPV emission by plants.
Collapse
Affiliation(s)
- Marcel Dicke
- Laboratory of Entomology, Wageningen University, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands.
| |
Collapse
|