1
|
Pan C, Liao Y, Shi B, Zhang M, Zhou Y, Wu J, Wu H, Qian M, Bai S, Teng Y, Ni J. Blue light-induced MiBBX24 and MiBBX27 simultaneously promote peel anthocyanin and flesh carotenoid biosynthesis in mango. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109315. [PMID: 39608340 DOI: 10.1016/j.plaphy.2024.109315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/07/2024] [Accepted: 11/18/2024] [Indexed: 11/30/2024]
Abstract
Blue light simultaneously enhances anthocyanin and carotenoid biosynthesis in mango (Mangifera indica L.) fruit peel and flesh, respectively, but the mechanism remains unclear. In this study, two blue light-triggered zinc-finger transcription factors, MiBBX24 and MiBBX27, that positively regulate anthocyanin and carotenoid biosynthesis in mango fruit were identified. Both MiBBXs transcriptionally activate the expression of MiMYB1, a positive regulator of anthocyanin biosynthesis. Furthermore, both MiBBXs also trigger the expression of a phytoene synthase gene (MiPSY), which is essential for carotenoid biosynthesis. Ectopic expression of MiBBX24 or MiBBX27 in Arabidopsis increased anthocyanin contents, and their positive effects on anthocyanin accumulation in mango peel were confirmed through transient overexpression and virus-induced silencing. Transient expression of MiBBX24 or MiBBX27 in tomato (Solanum lycopersicum) and mango fruit flesh increased the carotenoid content, while the virus-induced silencing of MiBBX24 or MiBBX27 in the mango fruit flesh decreased carotenoid accumulation. Overall, our study results reveal that MiBBX24 and MiBBX27 simultaneously promote the biosynthesis of anthocyanin and carotenoids biosynthesis in mango fruit peel and flesh under blue light, indicating that BBX-mediated dual effects on physiological functions contribute to mango fruit pigment accumulation. Furthermore, we herein shed new light on the simultaneous transcriptional regulatory effects of a single factor on the biosynthesis of different plant pigments.
Collapse
Affiliation(s)
- Chen Pan
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; Hainan Institute of Zhejiang University, Sanya, Hainan 572000, PR China; Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Hangzhou, Zhejiang 310058, PR China; The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of China, Hangzhou, Zhejiang 310058, PR China.
| | - Yifei Liao
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; Hainan Institute of Zhejiang University, Sanya, Hainan 572000, PR China; Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Hangzhou, Zhejiang 310058, PR China; The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of China, Hangzhou, Zhejiang 310058, PR China.
| | - Baojing Shi
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; Hainan Institute of Zhejiang University, Sanya, Hainan 572000, PR China; Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Hangzhou, Zhejiang 310058, PR China; The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of China, Hangzhou, Zhejiang 310058, PR China.
| | - Manman Zhang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; Hainan Institute of Zhejiang University, Sanya, Hainan 572000, PR China; Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Hangzhou, Zhejiang 310058, PR China; The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of China, Hangzhou, Zhejiang 310058, PR China.
| | - Yi Zhou
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; Hainan Institute of Zhejiang University, Sanya, Hainan 572000, PR China; Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Hangzhou, Zhejiang 310058, PR China; The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of China, Hangzhou, Zhejiang 310058, PR China.
| | - Jiahao Wu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; Hainan Institute of Zhejiang University, Sanya, Hainan 572000, PR China; Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Hangzhou, Zhejiang 310058, PR China; The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of China, Hangzhou, Zhejiang 310058, PR China.
| | - Hongxia Wu
- National Key Laboratory for Tropical Crop Breeding, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524013, PR China.
| | - Minjie Qian
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, Hainan 572025, PR China.
| | - Songling Bai
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Hangzhou, Zhejiang 310058, PR China; The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of China, Hangzhou, Zhejiang 310058, PR China.
| | - Yuanwen Teng
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; Hainan Institute of Zhejiang University, Sanya, Hainan 572000, PR China; Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Hangzhou, Zhejiang 310058, PR China; The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of China, Hangzhou, Zhejiang 310058, PR China.
| | - Junbei Ni
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; Hainan Institute of Zhejiang University, Sanya, Hainan 572000, PR China; Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Hangzhou, Zhejiang 310058, PR China; The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of China, Hangzhou, Zhejiang 310058, PR China.
| |
Collapse
|
2
|
Yuan M, Sheng Y, Bao J, Wu W, Nie G, Wang L, Cao J. AaMYC3 bridges the regulation of glandular trichome density and artemisinin biosynthesis in Artemisia annua. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:315-332. [PMID: 39189077 PMCID: PMC11772365 DOI: 10.1111/pbi.14449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 07/10/2024] [Accepted: 07/31/2024] [Indexed: 08/28/2024]
Abstract
Artemisinin, the well-known natural product for treating malaria, is biosynthesised and stored in the glandular-secreting trichomes (GSTs) of Artemisia annua. While numerous efforts have clarified artemisinin metabolism and regulation, the molecular association between artemisinin biosynthesis and GST development remains elusive. Here, we identified AaMYC3, a bHLH transcription factor of A. annua, induced by jasmonic acid (JA), which simultaneously regulates GST density and artemisinin biosynthesis. Overexpressing AaMYC3 led to a substantial increase in GST density and artemisinin accumulation. Conversely, in the RNAi-AaMYC3 lines, both GST density and artemisinin content were markedly reduced. Through RNA-seq and analyses conducted both in vivo and in vitro, AaMYC3 not only directly activates AaHD1 transcription, initiating GST development, but also up-regulates the expression of artemisinin biosynthetic genes, including CYP71AV1 and ALDH1, thereby promoting artemisinin production. Furthermore, AaMYC3 acts as a co-activator, interacting with AabHLH1 and AabHLH113, to trigger the transcription of two crucial enzymes in the artemisinin biosynthesis pathway, ADS and DBR2, ultimately boosting yield. Our findings highlight a critical connection between GST initiation and artemisinin biosynthesis in A. annua, providing a new target for molecular design breeding of traditional Chinese medicine.
Collapse
Affiliation(s)
- Mingyuan Yuan
- State Key Laboratory of Pharmaceutical BiotechnologySchool of Life Sciences, Nanjing UniversityNanjing210023China
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of SciencesShanghai200032China
| | - Yinguo Sheng
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of SciencesShanghai200032China
| | - Jingjing Bao
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of SciencesShanghai200032China
| | - Wenkai Wu
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of SciencesShanghai200032China
| | - Guibin Nie
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of SciencesShanghai200032China
| | - Lingjian Wang
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of SciencesShanghai200032China
| | - Junfeng Cao
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of SciencesShanghai200032China
- School of Life Sciences, Centre for Cell & Developmental Biology, State Key Laboratory of AgrobiotechnologyThe Chinese University of Hong KongShatinHong Kong
| |
Collapse
|
3
|
Yin Q, Xiang L, Han X, Zhang Y, Lyu R, Yuan L, Chen S. The evolutionary advantage of artemisinin production by Artemisia annua. TRENDS IN PLANT SCIENCE 2025; 30:213-226. [PMID: 39362811 DOI: 10.1016/j.tplants.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/27/2024] [Accepted: 09/12/2024] [Indexed: 10/05/2024]
Abstract
Artemisinin, a potent antimalarial compound, is predominantly derived from Artemisia annua. The uniqueness of artemisinin production in A. annua lies in its complex biochemical pathways and genetic composition, distinguishing it from other plant species, even within the Asteraceae family. In this review, we investigate the potential of A. annua for artemisinin production, drawing evidence from natural populations and mutants. Leveraging high-quality whole-genome sequence analyses, we offer insights into the evolution of artemisinin biosynthesis. We also highlight current understanding of the protective functions of artemisinin in A. annua in response to both biotic and abiotic stresses. In addition, we explore the mechanisms used by A. annua to mitigate the phytotoxicity generated by artemisinin catabolism.
Collapse
Affiliation(s)
- Qinggang Yin
- Artemisinin Research Center, Institute of Chinese Materia Medica, State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, China Academy of Chinese Medical Sciences, Beijing 100700, China; Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA; The Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY 40546, USA
| | - Li Xiang
- Artemisinin Research Center, Institute of Chinese Materia Medica, State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiaoyan Han
- China National Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yujun Zhang
- Artemisinin Research Center, Institute of Chinese Materia Medica, State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ruiqing Lyu
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA; The Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY 40546, USA
| | - Ling Yuan
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA; The Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY 40546, USA.
| | - Shilin Chen
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
4
|
Su S, Xuan X, Tan J, Yu Z, Jiao Y, Zhang Z, Ramakrishnan M. Analysis of the CHS Gene Family Reveals Its Functional Responses to Hormones, Salinity, and Drought Stress in Moso Bamboo ( Phyllostachys edulis). PLANTS (BASEL, SWITZERLAND) 2025; 14:161. [PMID: 39861515 PMCID: PMC11769273 DOI: 10.3390/plants14020161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025]
Abstract
Chalcone synthase (CHS), the first key structural enzyme in the flavonoid biosynthesis pathway, plays a crucial role in regulating plant responses to abiotic stresses and hormone signaling. However, its molecular functions remain largely unknown in Phyllostachys edulis, which is one of the most economically and ecologically important bamboo species and the most widely distributed one in China. This study identified 17 CHS genes in Phyllostachys edulis and classified them into seven subgroups, showing a closer evolutionary relationship to CHS genes from rice. Further analysis of PeCHS genes across nine scaffolds revealed that most expansion occurred through tandem duplications. Collinearity analysis indicated strong evolutionary conservation among CHS genes. Motif and gene structure analyses confirmed high structural similarity, suggesting shared functional characteristics. Additionally, cis-acting element analysis demonstrated that PeCHS genes are involved in hormonal regulation and abiotic stress responses. RNA-Seq expression profiles in different bamboo shoot tissues and heights, under various hormone treatments (gibberellin (GA), naphthaleneacetic acid (NAA), abscisic acid (ABA), and salicylic acid (SA)), as well as salinity and drought stress, revealed diverse response patterns among PeCHS genes, with significant differential expression, particularly under hormone treatments. Notably, PeCHS14 consistently maintained high expression levels, suggesting its key role in stress response mechanisms. qRT-PCR analysis further validated the expression differences in five PeCHS genes under GA and ABA treatments. Subcellular localization analysis demonstrated that PeCHS14 and PeCHS15 proteins are localized in the nucleus. This study provides a foundation for investigating the potential functions of PeCHS genes and identifies candidate genes for future research on the responses of Phyllostachys edulis to abiotic stresses and hormone signaling.
Collapse
Affiliation(s)
- Shiying Su
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Lin’an, Hangzhou 311300, China; (S.S.); (X.X.); (J.T.); (Z.Y.); (Y.J.)
| | - Xueyun Xuan
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Lin’an, Hangzhou 311300, China; (S.S.); (X.X.); (J.T.); (Z.Y.); (Y.J.)
| | - Jiaqi Tan
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Lin’an, Hangzhou 311300, China; (S.S.); (X.X.); (J.T.); (Z.Y.); (Y.J.)
| | - Zhen Yu
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Lin’an, Hangzhou 311300, China; (S.S.); (X.X.); (J.T.); (Z.Y.); (Y.J.)
| | - Yang Jiao
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Lin’an, Hangzhou 311300, China; (S.S.); (X.X.); (J.T.); (Z.Y.); (Y.J.)
| | - Zhijun Zhang
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Lin’an, Hangzhou 311300, China; (S.S.); (X.X.); (J.T.); (Z.Y.); (Y.J.)
| | - Muthusamy Ramakrishnan
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
5
|
Liu S, Xu H, Wang G, Jin B, Cao F, Wang L. Tree Longevity: Multifaceted Genetic Strategies and Beyond. PLANT, CELL & ENVIRONMENT 2025; 48:244-259. [PMID: 39254418 DOI: 10.1111/pce.15146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/22/2024] [Accepted: 08/24/2024] [Indexed: 09/11/2024]
Abstract
Old trees are remarkable for their ability to endure for centuries or even millennia, acting as recordkeepers of historical climate and custodians of genetic diversity. The secret to their longevity has long been a subject of fascination. Despite the challenges associated with studying old trees, such as massive size, slow growth rate, long lifespan and often remote habitat, accumulating studies have investigated the mechanisms underlying tree aging and longevity over the past decade. The recent publication of high-quality genomes of long-lived tree species, coupled with research on stem cell function and secondary metabolites in longevity, has brought us closer to unlocking the secrets of arboreal longevity. This review provides an overview of the global distribution of old trees and examines the environmental and anthropogenic factors that shape their presence. We summarize the contributions of physiological characteristics, stem cell activity, and immune system responses to their extraordinary longevity. We also explore the genetic and epigenetic 'longevity code', which consists of resistance and defense genes, DNA repair genes and patterns of DNA methylation modification. Further, we highlight key areas for future research that could enhance our understanding of the mechanisms underlying tree longevity.
Collapse
Affiliation(s)
- Sian Liu
- College of Horticulture and Landscape, Yangzhou University, Yangzhou, China
| | - Huimin Xu
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Guibin Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Biao Jin
- College of Horticulture and Landscape, Yangzhou University, Yangzhou, China
| | - Fuliang Cao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Li Wang
- College of Horticulture and Landscape, Yangzhou University, Yangzhou, China
| |
Collapse
|
6
|
He Y, Zhang W, Zuo X, Li J, Xing M, Zhang Y, You J, Zhao W, Chen X. Dynamic transcriptomics unveils parallel transcriptional regulation in artemisinin and phenylpropanoid biosynthesis pathways under cold stress in Artemisia annua. Sci Rep 2024; 14:31213. [PMID: 39732992 DOI: 10.1038/s41598-024-82551-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 12/06/2024] [Indexed: 12/30/2024] Open
Abstract
Cold stress, a major abiotic factor, positively modulates the synthesis of artemisinin in Artemisia annua and influences the biosynthesis of other secondary metabolites. To elucidate the changes in the synthesis of secondary metabolites under low-temperature conditions, we conducted dynamic transcriptomic and metabolite quantification analyses of A. annua leaves. The accumulation of total organic carbon (TOC) in leaves under cold stress provided ample precursors for secondary metabolite synthesis. Short-term exposure to low temperature induced a transient increase in jasmonic acid synthesis, which positively regulates the artemisinin biosynthetic pathway, contributing to artemisinin accumulation. Additionally, transcripts of genes encoding key enzymes and transcription factors in both the phenylpropanoid and artemisinin biosynthetic pathways, including PAL, C4H, ADS, and DBR2, exhibited similar expression patterns, suggesting a coordinated effect between these pathways. Prolonged exposure to low temperature sustained high levels of phenylpropanoid synthesis, leading to significant increases in lignin, flavonoids, and anthocyanin. Conversely, the final stage of the artemisinin biosynthetic pathway is inhibited under these conditions, resulting in elevated levels of dihydroartemisinic acid and artemisinic acid. Collectively, our study provides insights into the parallel transcriptional regulation of artemisinin and phenylpropanoid biosynthetic pathways in A. annua under cold stress.
Collapse
Affiliation(s)
- Yunxiao He
- National & Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Sciences, Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Wenjing Zhang
- National & Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Sciences, Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Xianghua Zuo
- National & Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Sciences, Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Jiangnan Li
- National & Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Sciences, Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Ming Xing
- National & Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Sciences, Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Yujiao Zhang
- National & Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Sciences, Jilin University, Changchun, Jilin Province, People's Republic of China
- Yanbian Korean Autonomous Prefecture Academy of Agricultural Sciences, Yanbian, Jilin Province, People's Republic of China
| | - Jian You
- National & Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Sciences, Jilin University, Changchun, Jilin Province, People's Republic of China.
| | - Wei Zhao
- National & Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Sciences, Jilin University, Changchun, Jilin Province, People's Republic of China.
| | - Xia Chen
- National & Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Sciences, Jilin University, Changchun, Jilin Province, People's Republic of China.
| |
Collapse
|
7
|
Qamar F, Mishra A, Ashrafi K, Saifi M, Dash PK, Kumar S, Abdin MZ. Increased artemisinin production in Artemisia annua L. by co-overexpression of six key biosynthetic enzymes. Int J Biol Macromol 2024; 281:136291. [PMID: 39368573 DOI: 10.1016/j.ijbiomac.2024.136291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 10/02/2024] [Accepted: 10/02/2024] [Indexed: 10/07/2024]
Abstract
Malaria remains a global health issue, especially in resource-limited regions. Artemisinin, a key antimalarial compound from Artemisia annua, is crucial for treatment, but low natural yields hinder large-scale production. In this study, we employed advanced transgenic technology to co-overexpress six key biosynthetic enzymes-Isopentenyl Diphosphate Isomerase (IDI), Farnesyl Pyrophosphate Synthase (FPS), Amorpha 4,11-diene Synthase (ADS), cytochrome P450 monooxygenase (CYP71AV1), cytochrome P450 oxidoreductase (AACPR) and artemisinic aldehyde D11 reductase (DBR2)-in A. annua to significantly enhance artemisinin production. Our innovative approach utilized a co-expression strategy to optimize the artemisinin biosynthetic pathway, leading to a remarkable up to 200 % increase in artemisinin content in T1 transgenic plants compared to non-transgenic controls. The stability and efficacy of this transformation were confirmed in subsequent generations (T2), achieving a potential 232 % increase in artemisinin levels. Additionally, we optimized transgene expression to maintain plant growth and development, and performed untargeted metabolite analysis using GC-MS, which revealed significant changes in metabolite composition among T2 lines, indicating effective diversion of farnesyl diphosphate into the artemisinin pathway. This metabolic engineering breakthrough offers a promising and scalable solution for enhancing artemisinin production, representing a major advancement in the field of plant biotechnology and a potential strategy for more cost-effective malaria treatment.
Collapse
Affiliation(s)
- Firdaus Qamar
- Centre for Transgenic Plant Development, Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Anuradha Mishra
- Centre for Transgenic Plant Development, Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Kudsiya Ashrafi
- Centre for Transgenic Plant Development, Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Monica Saifi
- Centre for Transgenic Plant Development, Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Prasanta K Dash
- National Institute for Plant Biotechnology, LBS Centre, Pusa Campus, New Delhi 110012, India
| | - Shashi Kumar
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - M Z Abdin
- Centre for Transgenic Plant Development, Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
8
|
Boorboori MR, Zhang H. The effect of cadmium on soil and plants, and the influence of Serendipita indica (Piriformospora indica) in mitigating cadmium stress. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:426. [PMID: 39316191 DOI: 10.1007/s10653-024-02231-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/11/2024] [Indexed: 09/25/2024]
Abstract
Due to environmental pollution, the risk of cadmium stress for crops is soaring, so researchers are exploring inexpensive solutions to enhance cultivated crops in contaminated soil. Using microorganisms to reduce cadmium risk has been one of the most effective strategies in recent decades. Serendipita indica (Piriformospora indica) is one of the best endophyte fungi that, in addition to reducing heavy metal stress for crops, can significantly reduce the threat of other abiotic stresses. As part of this research, cadmium in soil has been investigated, as well as its effects on plants' morphophysiological and biochemical characteristics. The present review has also attempted to identify the role of Serendipita indica in improving the growth and performance of crops, as well as its possible effect on reducing the risk of cadmium. The results showed that Serendipita indica enhance the growth and productivity of plants in contaminated environments by improving soil quality, reducing cadmium absorption, improving the activity of antioxidant enzymes and secondary metabolites, raising water and mineral absorption, and altering morphophysiological structures.
Collapse
Affiliation(s)
- Mohammad Reza Boorboori
- College of Environment and Surveying and Mapping Engineering, Suzhou University, Suzhou, 234000, China.
| | - Haiyang Zhang
- College of Environment and Surveying and Mapping Engineering, Suzhou University, Suzhou, 234000, China.
| |
Collapse
|
9
|
Wang Y, Cui T, Niu K, Ma H. Co-expression analyses reveal key Cd stress response-related metabolites and transcriptional regulators in Kentucky bluegrass. CHEMOSPHERE 2024; 363:142937. [PMID: 39059638 DOI: 10.1016/j.chemosphere.2024.142937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Kentucky bluegrass (Poa pratensis) is known for its high cadmium (Cd) tolerance and accumulation, and it is therefore considered to have the potential for phytoremediation of Cd-contaminated soil. However, the mechanisms underlying the accumulation and tolerance of Cd in Kentucky bluegrass are largely unknown. In this study, we examined variances in the transcriptome and metabolome of a Cd-tolerant variety (Midnight, M) and a Cd-sensitive variety (Rugby II, R) to pinpoint crucial regulatory genes and metabolites associated with Cd response. We also validated the role of the key metabolite, l-phenylalanine, in Cd transport and alleviation of Cd stress by applying it to the Cd-tolerant variety M. Metabolites of the M and R varieties under Cd stress were subjected to co-expression analysis. The results showed that shikimate-phenylpropanoid pathway metabolites (phenolic acids, phenylpropanoids, and polyketides) were highly induced by Cd treatment and were more abundant in the Cd-tolerant variety. Gene co-expression network analysis was employed to further identify genes closely associated with key metabolites. The calcium regulatory genes, zinc finger proteins (ZAT6 and PMA), MYB transcription factors (MYB78, MYB62, and MYB33), ONAC077, receptor-like protein kinase 4, CBL-interacting protein kinase 1, and protein phosphatase 2A were highly correlated with the metabolism of phenolic acids, phenylpropanoids, and polyketides. Exogenous l-phenylalanine can significantly increase the Cd concentration in the leaves (22.27%-55.00%) and roots (7.69%-35.16%) of Kentucky bluegrass. The use of 1 mg/L of l-phenylalanine has been demonstrated to lower malondialdehyde levels and higher total phenols, flavonoids, and anthocyanins levels, while also significantly enhancing the uptake of Cd and its translocation from roots to shoots. Our results provide insights into the response mechanisms to Cd stress and offer a novel l-phenylalanine-based phytoremediation strategy for Cd-containing soil.
Collapse
Affiliation(s)
- Yong Wang
- College of Pratacultural Science, Gansu Agricultural University, Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Center for Grazingland Ecosystem Sustainability, Lanzhou, Gansu, 730070, China
| | - Ting Cui
- College of Pratacultural Science, Gansu Agricultural University, Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Center for Grazingland Ecosystem Sustainability, Lanzhou, Gansu, 730070, China
| | - Kuiju Niu
- College of Pratacultural Science, Gansu Agricultural University, Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Center for Grazingland Ecosystem Sustainability, Lanzhou, Gansu, 730070, China
| | - Huiling Ma
- College of Pratacultural Science, Gansu Agricultural University, Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Center for Grazingland Ecosystem Sustainability, Lanzhou, Gansu, 730070, China.
| |
Collapse
|
10
|
Liu Y, Luo J, Peng L, Zhang Q, Rong X, Luo Y, Li J. Flavonoids: Potential therapeutic agents for cardiovascular disease. Heliyon 2024; 10:e32563. [PMID: 38975137 PMCID: PMC11225753 DOI: 10.1016/j.heliyon.2024.e32563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 07/09/2024] Open
Abstract
Flavonoids are found in the roots, stems, leaves, and fruits of many plant taxa. They are related to plant growth and development, pigment formation, and protection against environmental stress. Flavonoids function as antioxidants and exert anti-inflammatory effects in the cardiovascular system by modulating classical inflammatory response pathways, such as the TLR4-NF-ĸB, PI3K-AKT, and Nrf2/HO-1 signalling pathways. There is increasing evidence for the therapeutic effects of flavonoids on hypertension, atherosclerosis, and other diseases. The potential clinical value of flavonoids for diseases of the cardiovascular system has been widely explored. For example, studies have evaluated the roles of flavonoids in the regulation of blood pressure via endothelium-dependent and non-endothelium-dependent pathways and in the regulation of myocardial systolic and diastolic functions by influencing calcium homeostasis and smooth muscle-related protein expression. Flavonoids also have hypoglycaemic, hypolipidemic, anti-platelet, autophagy, and antibacterial effects. In this paper, the role and mechanism of flavonoids in cardiovascular diseases were reviewed in order to provide reference for the clinical application of flavonoids in the future.
Collapse
Affiliation(s)
- Yingxue Liu
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jing Luo
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lin Peng
- Department of Bone and Joint Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Qi Zhang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xi Rong
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yuhao Luo
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jiafu Li
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Southwest Medical University, China
| |
Collapse
|
11
|
He L, Sui Y, Che Y, Liu L, Liu S, Wang X, Cao G. New Insights into the Genetic Basis of Lysine Accumulation in Rice Revealed by Multi-Model GWAS. Int J Mol Sci 2024; 25:4667. [PMID: 38731885 PMCID: PMC11083390 DOI: 10.3390/ijms25094667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Lysine is an essential amino acid that cannot be synthesized in humans. Rice is a global staple food for humans but has a rather low lysine content. Identification of the quantitative trait nucleotides (QTNs) and genes underlying lysine content is crucial to increase lysine accumulation. In this study, five grain and three leaf lysine content datasets and 4,630,367 single nucleotide polymorphisms (SNPs) of 387 rice accessions were used to perform a genome-wide association study (GWAS) by ten statistical models. A total of 248 and 71 common QTNs associated with grain/leaf lysine content were identified. The accuracy of genomic selection/prediction RR-BLUP models was up to 0.85, and the significant correlation between the number of favorable alleles per accession and lysine content was up to 0.71, which validated the reliability and additive effects of these QTNs. Several key genes were uncovered for fine-tuning lysine accumulation. Additionally, 20 and 30 QTN-by-environment interactions (QEIs) were detected in grains/leaves. The QEI-sf0111954416 candidate gene LOC_Os01g21380 putatively accounted for gene-by-environment interaction was identified in grains. These findings suggested the application of multi-model GWAS facilitates a better understanding of lysine accumulation in rice. The identified QTNs and genes hold the potential for lysine-rich rice with a normal phenotype.
Collapse
Affiliation(s)
- Liqiang He
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Yao Sui
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Yanru Che
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Lihua Liu
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Shuo Liu
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Xiaobing Wang
- Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, China
| | - Guangping Cao
- Hainan Key Laboratory of Crop Genetics and Breeding, Institute of Food Crops, Hainan Academy of Agricultural Sciences, Haikou 571100, China
| |
Collapse
|
12
|
Cao J, Chen Z, Wang L, Yan N, Lin J, Hou L, Zhao Y, Huang C, Wen T, Li C, Rahman SU, Liu Z, Qiao J, Zhao J, Wang J, Shi Y, Qin W, Si T, Wang Y, Tang K. Graphene enhances artemisinin production in the traditional medicinal plant Artemisia annua via dynamic physiological processes and miRNA regulation. PLANT COMMUNICATIONS 2024; 5:100742. [PMID: 37919898 PMCID: PMC10943550 DOI: 10.1016/j.xplc.2023.100742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/09/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
We investigated the effects of graphene on the model herb Artemisia annua, which is renowned for producing artemisinin, a widely used pharmacological compound. Seedling growth and biomass were promoted when A. annua was cultivated with low concentrations of graphene, an effect which was attributed to a 1.4-fold increase in nitrogen uptake, a 15%-22% increase in chlorophyll fluorescence, and greater abundance of carbon cycling-related bacteria. Exposure to 10 or 20 mg/L graphene resulted in a ∼60% increase in H2O2, and graphene could act as a catalyst accelerator, leading to a 9-fold increase in catalase (CAT) activity in vitro and thereby maintaining reactive oxygen species (ROS) homeostasis. Importantly, graphene exposure led to an 80% increase in the density of glandular secreting trichomes (GSTs), in which artemisinin is biosynthesized and stored. This contributed to a 5% increase in artemisinin content in mature leaves. Interestingly, expression of miR828 was reduced by both graphene and H2O2 treatments, resulting in induction of its target gene AaMYB17, a positive regulator of GST initiation. Subsequent molecular and genetic assays showed that graphene-induced H2O2 inhibits micro-RNA (miRNA) biogenesis through Dicers and regulates the miR828-AaMYB17 module, thus affecting GST density. Our results suggest that graphene may contribute to yield improvement in A. annua via dynamic physiological processes together with miRNA regulation, and it may thus represent a new cultivation strategy for increasing yield capacity through nanobiotechnology.
Collapse
Affiliation(s)
- Junfeng Cao
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhiwen Chen
- Engineering Research Center of Coal-based Ecological Carbon Sequestration Technology of the Ministry of Education, Key Laboratory of Graphene Forestry Application of National Forest and Grass Administration, Shanxi Datong University, Datong 037009, China; National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology/CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Luyao Wang
- Hainan Institute, Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya 572000, China; College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Ning Yan
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Jialing Lin
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology/CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Lipan Hou
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology/CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yongyan Zhao
- Hainan Institute, Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya 572000, China; College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Chaochen Huang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology/CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Tingting Wen
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology/CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chenyi Li
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology/CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Saeed Ur Rahman
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zehui Liu
- Engineering Research Center of Coal-based Ecological Carbon Sequestration Technology of the Ministry of Education, Key Laboratory of Graphene Forestry Application of National Forest and Grass Administration, Shanxi Datong University, Datong 037009, China
| | - Jun Qiao
- Engineering Research Center of Coal-based Ecological Carbon Sequestration Technology of the Ministry of Education, Key Laboratory of Graphene Forestry Application of National Forest and Grass Administration, Shanxi Datong University, Datong 037009, China
| | - Jianguo Zhao
- Engineering Research Center of Coal-based Ecological Carbon Sequestration Technology of the Ministry of Education, Key Laboratory of Graphene Forestry Application of National Forest and Grass Administration, Shanxi Datong University, Datong 037009, China
| | - Jie Wang
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Yannan Shi
- Institute of Millet Crops, Hebei Academy of Agriculture & Forestry Sciences/Hebei Branch of China National Sorghum Improvement Center, Shijiazhuang 050035, China
| | - Wei Qin
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tong Si
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Yuliang Wang
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kexuan Tang
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
13
|
Shi M, Zhang S, Zheng Z, Maoz I, Zhang L, Kai G. Molecular regulation of the key specialized metabolism pathways in medicinal plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:510-531. [PMID: 38441295 DOI: 10.1111/jipb.13634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 03/21/2024]
Abstract
The basis of modern pharmacology is the human ability to exploit the production of specialized metabolites from medical plants, for example, terpenoids, alkaloids, and phenolic acids. However, in most cases, the availability of these valuable compounds is limited by cellular or organelle barriers or spatio-temporal accumulation patterns within different plant tissues. Transcription factors (TFs) regulate biosynthesis of these specialized metabolites by tightly controlling the expression of biosynthetic genes. Cutting-edge technologies and/or combining multiple strategies and approaches have been applied to elucidate the role of TFs. In this review, we focus on recent progress in the transcription regulation mechanism of representative high-value products and describe the transcriptional regulatory network, and future perspectives are discussed, which will help develop high-yield plant resources.
Collapse
Affiliation(s)
- Min Shi
- Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Zhejiang Provincial Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Siwei Zhang
- Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Zhejiang Provincial Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Zizhen Zheng
- Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Zhejiang Provincial Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Itay Maoz
- Department of Postharvest Science, Agricultural Research Organization, Volcani Center, Rishon, LeZion, 7505101, Israel
| | - Lei Zhang
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Guoyin Kai
- Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Zhejiang Provincial Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| |
Collapse
|
14
|
Hassani D, Lu Y, Ni B, Zhu RL, Zhao Q. The endomembrane system: how does it contribute to plant secondary metabolism? TRENDS IN PLANT SCIENCE 2023; 28:1222-1236. [PMID: 37211450 DOI: 10.1016/j.tplants.2023.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 04/19/2023] [Accepted: 04/25/2023] [Indexed: 05/23/2023]
Abstract
New organelle acquisition through neofunctionalization of the endomembrane system (ES) with respect to plant secondary metabolism is a key evolutionary strategy for plant adaptation, which is overlooked due to the complexity of angiosperms. Bryophytes produce a broad range of plant secondary metabolites (PSMs), and their simple cellular structures, including unique organelles, such as oil bodies (OBs), highlight them as suitable model to investigate the contribution of the ES to PSMs. In this opinion, we review latest findings on the contribution of the ES to PSM biosynthesis, with a specific focus on OBs, and propose that the ES provides organelles and trafficking routes for PSM biosynthesis, transportation, and storage. Therefore, future research on ES-derived organelles and trafficking routes will provide essential knowledge for synthetic applications.
Collapse
Affiliation(s)
- Danial Hassani
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Yi Lu
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Bing Ni
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Rui-Liang Zhu
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Qiong Zhao
- School of Life Sciences, East China Normal University, Shanghai, China; Institute of Eco-Chongming, Shanghai, China.
| |
Collapse
|
15
|
Xie Z, Mi Y, Kong L, Gao M, Chen S, Chen W, Meng X, Sun W, Chen S, Xu Z. Cannabis sativa: origin and history, glandular trichome development, and cannabinoid biosynthesis. HORTICULTURE RESEARCH 2023; 10:uhad150. [PMID: 37691962 PMCID: PMC10485653 DOI: 10.1093/hr/uhad150] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/18/2023] [Indexed: 09/12/2023]
Abstract
Is Cannabis a boon or bane? Cannabis sativa has long been a versatile crop for fiber extraction (industrial hemp), traditional Chinese medicine (hemp seeds), and recreational drugs (marijuana). Cannabis faced global prohibition in the twentieth century because of the psychoactive properties of ∆9-tetrahydrocannabinol; however, recently, the perspective has changed with the recognition of additional therapeutic values, particularly the pharmacological potential of cannabidiol. A comprehensive understanding of the underlying mechanism of cannabinoid biosynthesis is necessary to cultivate and promote globally the medicinal application of Cannabis resources. Here, we comprehensively review the historical usage of Cannabis, biosynthesis of trichome-specific cannabinoids, regulatory network of trichome development, and synthetic biology of cannabinoids. This review provides valuable insights into the efficient biosynthesis and green production of cannabinoids, and the development and utilization of novel Cannabis varieties.
Collapse
Affiliation(s)
- Ziyan Xie
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Yaolei Mi
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Lingzhe Kong
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Maolun Gao
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Shanshan Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Weiqiang Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiangxiao Meng
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Wei Sun
- College of Life Science, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Shilin Chen
- College of Life Science, Northeast Forestry University, Harbin 150040, China
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhichao Xu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
16
|
Lu J, Tong P, Xu Y, Liu S, Jin B, Cao F, Wang L. SA-responsive transcription factor GbMYB36 promotes flavonol accumulation in Ginkgo biloba. FORESTRY RESEARCH 2023; 3:19. [PMID: 39526279 PMCID: PMC11524253 DOI: 10.48130/fr-2023-0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/25/2023] [Indexed: 11/16/2024]
Abstract
Flavonoids are abundant secondary metabolites in Ginkgo biloba and have a wide range of medicinal values. Salicylic acid (SA) can induce flavonoid accumulation in plants, but the detailed regulatory mechanism remains unclear. Here, we established the optimal media for ginkgo callus induction and subculture, and found that exogenous SA greatly increased the content of flavonol, including quercetin, kaempferol, isorhamnetin. Transcriptome changes in SA-treated calli showed that most structural genes involved in flavonoid biosynthesis were upregulated. Particularly, overexpression of GbF3'H in ginkgo calli significantly increased the content of flavonol, suggesting the vital role of GbF3'H in flavonoid biosynthesis. We further identified that a R2R3-MYB, GbMYB36, were significantly upregulated in SA treated calli. Transient overexpression and a LUC assay indicate that GbMYB36 act as an activator, and improve flavonoid biosynthesis through regulating the expression of GbF3'H. Our findings provide insight into the molecular basis of SA-induced flavonoid biosynthesis in ginkgo.
Collapse
Affiliation(s)
- Jinkai Lu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Peixi Tong
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Yuan Xu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Sian Liu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Biao Jin
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Fuliang Cao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Li Wang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
17
|
Zhao Y, Cartabia A, Garcés-Ruiz M, Herent MF, Quetin-Leclercq J, Ortiz S, Declerck S, Lalaymia I. Arbuscular mycorrhizal fungi impact the production of alkannin/shikonin and their derivatives in Alkanna tinctoria Tausch. grown in semi-hydroponic and pot cultivation systems. Front Microbiol 2023; 14:1216029. [PMID: 37637105 PMCID: PMC10447974 DOI: 10.3389/fmicb.2023.1216029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction Alkanna tinctoria Tausch. is a medicinal plant well-known to produce important therapeutic compounds, such as alkannin/shikonin and their derivatives (A/Sd). It associates with arbuscular mycorrhizal fungi (AMF), which are known, amongst others beneficial effects, to modulate the plant secondary metabolites (SMs) biosynthesis. However, to the best of our knowledge, no study on the effects of AMF strains on the growth and production of A/Sd in A. tinctoria has been reported in the literature. Methods Here, three experiments were conducted. In Experiment 1, plants were associated with the GINCO strain Rhizophagus irregularis MUCL 41833 and, in Experiment 2, with two strains of GINCO (R. irregularis MUCL 41833 and Rhizophagus aggregatus MUCL 49408) and two native strains isolated from wild growing A. tinctoria (R. irregularis and Septoglomus viscosum) and were grown in a semi-hydroponic (S-H) cultivation system. Plants were harvested after 9 and 37 days in Experiment 1 and 9 days in Experiment 2. In Experiment 3, plants were associated with the two native AMF strains and with R. irregularis MUCL 41833 and were grown for 85 days in pots under greenhouse conditions. Quantification and identification of A/Sd were performed by HPLC-PDA and by HPLC-HRMS/MS, respectively. LePGT1, LePGT2, and GHQH genes involved in the A/Sd biosynthesis were analyzed through RT-qPCR. Results In Experiment 1, no significant differences were noticed in the production of A/Sd. Conversely, in Experiments 2 and 3, plants associated with the native AMF R. irregularis had the highest content of total A/Sd expressed as shikonin equivalent. In Experiment 1, a significantly higher relative expression of both LePGT1 and LePGT2 was observed in plants inoculated with R. irregularis MUCL 41833 compared with control plants after 37 days in the S-H cultivation system. Similarly, a significantly higher relative expression of LePGT2 in plants inoculated with R. irregularis MUCL 41833 was noticed after 9 versus 37 days in the S-H cultivation system. In Experiment 2, a significant lower relative expression of LePGT2 was observed in native AMF R. irregularis inoculated plants compared to the control. Discussion Overall, our study showed that the native R. irregularis strain increased A/Sd production in A. tinctoria regardless of the growing system used, further suggesting that the inoculation of native/best performing AMF is a promising method to improve the production of important SMs.
Collapse
Affiliation(s)
- Yanyan Zhao
- Mycology, Earth and Life Institute, Université catholique de Louvain – UCLouvain, Louvain-la-Neuve, Belgium
| | - Annalisa Cartabia
- Mycology, Earth and Life Institute, Université catholique de Louvain – UCLouvain, Louvain-la-Neuve, Belgium
| | - Mónica Garcés-Ruiz
- Mycology, Earth and Life Institute, Université catholique de Louvain – UCLouvain, Louvain-la-Neuve, Belgium
| | - Marie-France Herent
- Pharmacognosy Research Group, Louvain Drug Research Institute (LDRI), Université catholique de Louvain – UCLouvain, Brussels, Belgium
| | - Joëlle Quetin-Leclercq
- Pharmacognosy Research Group, Louvain Drug Research Institute (LDRI), Université catholique de Louvain – UCLouvain, Brussels, Belgium
| | - Sergio Ortiz
- Pharmacognosy Research Group, Louvain Drug Research Institute (LDRI), Université catholique de Louvain – UCLouvain, Brussels, Belgium
- UMR 7200, Laboratoire d’Innovation Thérapeutique, Université de Strasbourg, CNRS, Strasbourg Drug Discovery and Development Institute (IMS), Illkirch-Graffenstaden, France
| | - Stéphane Declerck
- Mycology, Earth and Life Institute, Université catholique de Louvain – UCLouvain, Louvain-la-Neuve, Belgium
| | - Ismahen Lalaymia
- Mycology, Earth and Life Institute, Université catholique de Louvain – UCLouvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
18
|
Wan H, Liu Y, Wang T, Jiang P, Wen W, Nie J. Comparative transcriptome and metabolome analysis identifies a citrus ERF transcription factor CsERF003 as flavonoid activator. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 334:111762. [PMID: 37295731 DOI: 10.1016/j.plantsci.2023.111762] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/08/2023] [Accepted: 06/06/2023] [Indexed: 06/12/2023]
Abstract
Transcription factor (TF) modulation is a promising strategy for plant flavonoid improvement. Here, we observed evident decreases in some major flavones and flavonols and the expression of some key related genes in a 'Newhall' navel orange mutant (MT) relative to the wild type (WT). A consistently downregulated ERF TF CsERF003 in MT could increase the contents of major flavonoids and the precursor phenylalanine when transiently overexpressed in citrus fruit. Overexpression of CsERF003 in 'Micro-Tom' tomato (OE) resulted in a darker and redder fruit color than wild type 'Micro-Tom' (WTm). Two major flavonoids, naringeninchalcone and kaempferolrutinoside, were averagely induced by 7.99- and 36.83-fold in OEs, respectively, while little change was observed in other polyphenols, such as caffeic acid, ferulic acid, and gallic acid. Key genes involved in the initiation of phenylpropanoid (PAL, 4CH, and 4CL) and flavonoid (CHS and CHI) biosynthesis were up-regulated, while most genes participating in the biosynthesis of other polyphenols, such as HCT and CCR, were down-regulated in OEs. Therefore, it could be concluded that carbon flux floods into the phenylpropanoid biosynthetic pathway and is then specifically directed for flavonoid biosynthesis. CsERF003 may be a potentially promising gene for fruit quality improvement and engineering of natural flavonoid components.
Collapse
Affiliation(s)
- Haoliang Wan
- College of Horticulture, Qingdao Agricultural University/Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao, 266109, China; National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yihui Liu
- College of Horticulture, Qingdao Agricultural University/Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao, 266109, China
| | - Tongtong Wang
- College of Horticulture, Qingdao Agricultural University/Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao, 266109, China
| | - Peng Jiang
- Qingdao Agriculture Products Quality and Safety Center, Qingdao, 266035, China
| | - Weiwei Wen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jiyun Nie
- College of Horticulture, Qingdao Agricultural University/Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao, 266109, China.
| |
Collapse
|
19
|
Selma S, Ntelkis N, Nguyen TH, Goossens A. Engineering the plant metabolic system by exploiting metabolic regulation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:1149-1163. [PMID: 36799285 DOI: 10.1111/tpj.16157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 05/31/2023]
Abstract
Plants are the most sophisticated biofactories and sources of food and biofuels present in nature. By engineering plant metabolism, the production of desired compounds can be increased and the nutritional or commercial value of the plant species can be improved. However, this can be challenging because of the complexity of the regulation of multiple genes and the involvement of different protein interactions. To improve metabolic engineering (ME) capabilities, different tools and strategies for rerouting the metabolic pathways have been developed, including genome editing and transcriptional regulation approaches. In addition, cutting-edge technologies have provided new methods for understanding uncharacterized biosynthetic pathways, protein degradation mechanisms, protein-protein interactions, or allosteric feedback, enabling the design of novel ME approaches.
Collapse
Affiliation(s)
- Sara Selma
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Nikolaos Ntelkis
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Trang Hieu Nguyen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Alain Goossens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
20
|
Liu X, Bulley SM, Varkonyi-Gasic E, Zhong C, Li D. Kiwifruit bZIP transcription factor AcePosF21 elicits ascorbic acid biosynthesis during cold stress. PLANT PHYSIOLOGY 2023; 192:982-999. [PMID: 36823691 PMCID: PMC10231468 DOI: 10.1093/plphys/kiad121] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/05/2023] [Accepted: 01/27/2023] [Indexed: 06/01/2023]
Abstract
Cold stress seriously affects plant development, resulting in heavy agricultural losses. L-ascorbic acid (AsA, vitamin C) is an antioxidant implicated in abiotic stress tolerance and metabolism of reactive oxygen species (ROS). Understanding whether and how cold stress elicits AsA biosynthesis to reduce oxidative damage is important for developing cold-resistant plants. Here, we show that the accumulation of AsA in response to cold stress is a common mechanism conserved across the plant kingdom, from single-cell algae to angiosperms. We identified a basic leucine zipper domain (bZIP) transcription factor (TF) of kiwifruit (Actinidia eriantha Benth.), AcePosF21, which was triggered by cold and is involved in the regulation of kiwifruit AsA biosynthesis and defense responses against cold stress. AcePosF21 interacted with the R2R3-MYB TF AceMYB102 and directly bound to the promoter of the gene encoding GDP-L-galactose phosphorylase 3 (AceGGP3), a key conduit for regulating AsA biosynthesis, to up-regulate AceGGP3 expression and produce more AsA, which neutralized the excess ROS induced by cold stress. On the contrary, VIGS or CRISPR-Cas9-mediated editing of AcePosF21 decreased AsA content and increased the generation of ROS in kiwifruit under cold stress. Taken together, we illustrated a model for the regulatory mechanism of AcePosF21-mediated regulation of AceGGP3 expression and AsA biosynthesis to reduce oxidative damage by cold stress, which provides valuable clues for manipulating the cold resistance of kiwifruit.
Collapse
Affiliation(s)
- Xiaoying Liu
- Wuhan Botanical Garden, Chinese Academy of Sciences, Jiufeng 1 Road, Wuhan 430074, Hubei, China
- College of Life Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Sean M Bulley
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand
| | - Erika Varkonyi-Gasic
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand
| | - Caihong Zhong
- Wuhan Botanical Garden, Chinese Academy of Sciences, Jiufeng 1 Road, Wuhan 430074, Hubei, China
| | - Dawei Li
- Wuhan Botanical Garden, Chinese Academy of Sciences, Jiufeng 1 Road, Wuhan 430074, Hubei, China
| |
Collapse
|
21
|
Xiao S, Ming Y, Hu Q, Ye Z, Si H, Liu S, Zhang X, Wang W, Yu Y, Kong J, Klosterman SJ, Lindsey K, Zhang X, Aierxi A, Zhu L. GhWRKY41 forms a positive feedback regulation loop and increases cotton defence response against Verticillium dahliae by regulating phenylpropanoid metabolism. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:961-978. [PMID: 36632704 PMCID: PMC10106861 DOI: 10.1111/pbi.14008] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 12/19/2022] [Accepted: 12/24/2022] [Indexed: 05/04/2023]
Abstract
Despite the established significance of WRKY proteins and phenylpropanoid metabolism in plant immunity, how WRKY proteins modulate aspects of the phenylpropanoid pathway remains undetermined. To understand better the role of WRKY proteins in plant defence, we identified a cotton (Gossypium hirsutum) protein, GhWRKY41, that is, universally and rapidly induced in three disease-resistant cotton cultivars following inoculation with the plant pathogenic fungus, Verticillium dahliae. We show that overexpression of GhWRKY41 in transgenic cotton and Arabidopsis enhances resistance to V. dahliae, while knock-down increases cotton more susceptibility to the fungus. GhWRKY41 physically interacts with itself and directly activates its own transcription. A genome-wide chromatin immunoprecipitation and high-throughput sequencing (ChIP-seq), in combination with RNA sequencing (RNA-seq) analyses, revealed that 43.1% of GhWRKY41-binding genes were up-regulated in cotton upon inoculation with V. dahliae, including several phenylpropanoid metabolism master switches, receptor kinases, and disease resistance-related proteins. We also show that GhWRKY41 homodimer directly activates the expression of GhC4H and Gh4CL, thereby modulating the accumulation of lignin and flavonoids. This finding expands our understanding of WRKY-WRKY protein interactions and provides important insights into the regulation of the phenylpropanoid pathway in plant immune responses by a WRKY protein.
Collapse
Affiliation(s)
- Shenghua Xiao
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
- State Key Lab for Conservation and Utilization of Subtropical Agri‐Biological Resources, College of AgricultureGuangxi UniversityNanningChina
| | - Yuqing Ming
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
- Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanHubeiChina
| | - Qin Hu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
- State Key Lab for Conservation and Utilization of Subtropical Agri‐Biological Resources, College of AgricultureGuangxi UniversityNanningChina
| | - Zhengxiu Ye
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Huan Si
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Shiming Liu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
- Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanHubeiChina
| | - Xiaojun Zhang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
- Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanHubeiChina
| | - Weiran Wang
- Institute of Economic CropsXinjiang Academy of Agricultural SciencesXinjiangChina
| | - Yu Yu
- Xinjiang Academy of Agricultural & Reclamation SciencesShiheziChina
| | - Jie Kong
- Institute of Economic CropsXinjiang Academy of Agricultural SciencesXinjiangChina
| | - Steven J. Klosterman
- United States Department of AgricultureAgricultural Research ServiceSalinasCAUSA
| | | | - Xianlong Zhang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
- Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanHubeiChina
| | - Alifu Aierxi
- Institute of Economic CropsXinjiang Academy of Agricultural SciencesXinjiangChina
| | - Longfu Zhu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
- Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanHubeiChina
| |
Collapse
|
22
|
Li Y, Qin W, Liu H, Chen T, Yan X, He W, Peng B, Shao J, Fu X, Li L, Hao X, Kai G, Tang K. Increased artemisinin production by promoting glandular secretory trichome formation and reconstructing the artemisinin biosynthetic pathway in Artemisia annua. HORTICULTURE RESEARCH 2023; 10:uhad055. [PMID: 37213685 PMCID: PMC10199714 DOI: 10.1093/hr/uhad055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/24/2023] [Indexed: 05/23/2023]
Affiliation(s)
- Yongpeng Li
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R & D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Laboratory of Medicinal Plant Biotechnology, School of Pharmaceutical Sciences, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Wei Qin
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R & D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hang Liu
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R & D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tiantian Chen
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R & D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xin Yan
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R & D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Weizhi He
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R & D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bowen Peng
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R & D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jin Shao
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R & D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xueqing Fu
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R & D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ling Li
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R & D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | | | | | | |
Collapse
|
23
|
Lan HN, Liu RY, Liu ZH, Li X, Li BZ, Yuan YJ. Biological valorization of lignin to flavonoids. Biotechnol Adv 2023; 64:108107. [PMID: 36758651 DOI: 10.1016/j.biotechadv.2023.108107] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/12/2023] [Accepted: 01/31/2023] [Indexed: 02/10/2023]
Abstract
Lignin is the most affluent natural aromatic biopolymer on the earth, which is the promising renewable source for valuable products to promote the sustainability of biorefinery. Flavonoids are a class of plant polyphenolic secondary metabolites containing the benzene ring structure with various biological activities, which are largely applied in health food, pharmaceutical, and medical fields. Due to the aromatic similarity, microbial conversion of lignin derived aromatics to flavonoids could facilitate flavonoid biosynthesis and promote the lignin valorization. This review thereby prospects a novel valorization route of lignin to high-value natural products and demonstrates the potential advantages of microbial bioconversion of lignin to flavonoids. The biodegradation of lignin polymers is summarized to identify aromatic monomers as momentous precursors for flavonoid synthesis. The biosynthesis pathways of flavonoids in both plants and strains are introduced and compared. After that, the key branch points and important intermediates are clearly discussed in the biosynthesis pathways of flavonoids. Moreover, the most significant enzyme reactions including Claisen condensation, cyclization and hydroxylation are demonstrated in the biosynthesis pathways of flavonoids. Finally, current challenges and potential future strategies are also discussed for transforming lignin into various flavonoids. The holistic microbial conversion routes of lignin to flavonoids could make a sustainable production of flavonoids and improve the feasibility of lignin valorization.
Collapse
Affiliation(s)
- Hai-Na Lan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Ruo-Ying Liu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Zhi-Hua Liu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Xia Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Bing-Zhi Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China.
| | - Ying-Jin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| |
Collapse
|
24
|
Feng Z, Sun L, Dong M, Fan S, Shi K, Qu Y, Zhu L, Shi J, Wang W, Liu Y, Song L, Weng Y, Liu X, Ren H. Novel players in organogenesis and flavonoid biosynthesis in cucumber glandular trichomes. PLANT PHYSIOLOGY 2023:kiad236. [PMID: 37099480 PMCID: PMC10400037 DOI: 10.1093/plphys/kiad236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/24/2023] [Accepted: 04/25/2023] [Indexed: 06/19/2023]
Abstract
Glandular trichomes (GTs) are outgrowths of plant epidermal cells that secrete and store specialized secondary metabolites that protect plants against biotic and abiotic stresses and have economic importance for human use. While extensive work has been done to understand the molecular mechanisms of trichome organogenesis in Arabidopsis (Arabidopsis thaliana), which forms unicellular, non-glandular trichomes (NGTs), little is known about the mechanisms of GT development or regulation of secondary metabolites in plants with multicellular GTs. Here, we identified and functionally characterized genes associated with GT organogenesis and secondary metabolism in GTs of cucumber (Cucumis sativus). We developed a method for effective separation and isolation of cucumber GTs and NGTs. Transcriptomic and metabolomic analyses showed that flavonoid accumulation in cucumber GTs is positively associated with increased expression of related biosynthesis genes. We identified 67 GT development-related genes, the functions of 7 of which were validated by virus-induced gene silencing. We further validated the role of cucumber ECERIFERUM1 (CsCER1) in GT organogenesis by overexpression and RNA interference transgenic approaches. We further show that the transcription factor TINY BRANCHED HAIR (CsTBH) serves as a central regulator of flavonoid biosynthesis in cucumber glandular trichomes. Work from this study provides insight into the development of secondary metabolite biosynthesis in multi-cellular glandular trichomes.
Collapse
Affiliation(s)
- Zhongxuan Feng
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Lei Sun
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Mingming Dong
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Shanshan Fan
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Kexin Shi
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yixin Qu
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Liyan Zhu
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Jinfeng Shi
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Wujun Wang
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yihan Liu
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Liyan Song
- Agricultural and Rural Bureau of Qingxian in Hebei Province, Qingxian 062650, China
| | - Yiqun Weng
- USDA-ARS, Vegetable Crops Research Unit, Horticulture Department, University of Wisconsin, 1575 Linden Dr., Madison, WI 53706, USA
| | - Xingwang Liu
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
- Sanya Institute of China Agricultural University, Sanya, Hainan 572019, China
- Engineering Research Center of Breeding and Propagation of Horticultural Crops, Ministry on Education, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Huazhong Ren
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
- Sanya Institute of China Agricultural University, Sanya, Hainan 572019, China
- Engineering Research Center of Breeding and Propagation of Horticultural Crops, Ministry on Education, College of Horticulture, China Agricultural University, Beijing 100193, China
| |
Collapse
|
25
|
Li Y, Li H, Wang S, Li J, Bacha SAS, Xu G, Li J. Metabolomic and transcriptomic analyses of the flavonoid biosynthetic pathway in blueberry ( Vaccinium spp.). FRONTIERS IN PLANT SCIENCE 2023; 14:1082245. [PMID: 37152168 PMCID: PMC10157174 DOI: 10.3389/fpls.2023.1082245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 03/29/2023] [Indexed: 05/09/2023]
Abstract
As a highly economic small fruit crop, blueberry is enjoyed by most people in terms of color, taste, and rich nutrition. To better understand its coloring mechanism on the process of ripening, an integrative analysis of the metabolome and transcriptome profiles was performed in three blueberry varieties at three developmental stages. In this study, 41 flavonoid metabolites closely related to the coloring in blueberry samples were analyzed. It turned out that the most differential metabolites in the ripening processes were delphinidin-3-O-arabinoside (dpara), peonidin-3-O-glucoside (pnglu), and delphinidin-3-O-galactoside (dpgal), while the most differential metabolites among different varieties were flavonols. Furthermore, to obtain more accurate and comprehensive transcripts of blueberry during the developmental stages, PacBio and Illumina sequencing technology were combined to obtain the transcriptome of the blueberry variety Misty, for the very first time. Finally, by applying the gene coexpression network analysis, the darkviolet and bisque4 modules related to flavonoid synthesis were determined, and the key genes related to two flavonoid 3', 5'-hydroxylase (F3'5'H) genes in the darkviolet module and one bHLH transcription factor in the bisque4 module were predicted. It is believed that our findings could provide valuable information for the future study on the molecular mechanism of flavonoid metabolites and flavonoid synthesis pathways in blueberries.
Collapse
Affiliation(s)
- Yinping Li
- Laboratory of Quality and Safety Risk Assessment for Fruit, Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning, China
| | - Haifei Li
- Laboratory of Quality and Safety Risk Assessment for Fruit, Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning, China
| | - Shiyao Wang
- Department of Applied Biosciences, Toyo University, Ora-gun, Japan
| | - Jing Li
- Laboratory of Quality and Safety Risk Assessment for Fruit, Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning, China
| | - Syed Asim Shah Bacha
- Laboratory of Quality and Safety Risk Assessment for Fruit, Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning, China
| | - Guofeng Xu
- Laboratory of Quality and Safety Risk Assessment for Fruit, Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning, China
| | - Jing Li
- Laboratory of Quality and Safety Risk Assessment for Fruit, Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning, China
| |
Collapse
|
26
|
Kajla M, Roy A, Singh IK, Singh A. Regulation of the regulators: Transcription factors controlling biosynthesis of plant secondary metabolites during biotic stresses and their regulation by miRNAs. FRONTIERS IN PLANT SCIENCE 2023; 14:1126567. [PMID: 36938003 PMCID: PMC10017880 DOI: 10.3389/fpls.2023.1126567] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Biotic stresses threaten to destabilize global food security and cause major losses to crop yield worldwide. In response to pest and pathogen attacks, plants trigger many adaptive cellular, morphological, physiological, and metabolic changes. One of the crucial stress-induced adaptive responses is the synthesis and accumulation of plant secondary metabolites (PSMs). PSMs mitigate the adverse effects of stress by maintaining the normal physiological and metabolic functioning of the plants, thereby providing stress tolerance. This differential production of PSMs is tightly orchestrated by master regulatory elements, Transcription factors (TFs) express differentially or undergo transcriptional and translational modifications during stress conditions and influence the production of PSMs. Amongst others, microRNAs, a class of small, non-coding RNA molecules that regulate gene expression post-transcriptionally, also play a vital role in controlling the expression of many such TFs. The present review summarizes the role of stress-inducible TFs in synthesizing and accumulating secondary metabolites and also highlights how miRNAs fine-tune the differential expression of various stress-responsive transcription factors during biotic stress.
Collapse
Affiliation(s)
- Mohini Kajla
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
| | - Amit Roy
- Excellent Team for Mitigation (ETM), Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - Indrakant K. Singh
- Department of Zoology, Deshbandhu College, University of Delhi, New Delhi, India
| | - Archana Singh
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
- Jagdish Chandra Bose Center for Plant Genomics, Hansraj College, University of Delhi, Delhi, India
- Delhi School of Climate Change and Sustainability, Institution of Eminence, Maharishi Karnad Bhawan, University of Delhi, Delhi, India
| |
Collapse
|
27
|
Feng Y, Liu L, Yu J, Chen R, Hu C, Wang H, Li D, Wang Z, Zhao Z. Combined transcriptomic and metabolomic analyses reveal the mechanism of debagged ‘Fuji’ apple sunburn. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
28
|
Liu H, Li L, Fu X, Li Y, Chen T, Qin W, Yan X, Wu Z, Xie L, Kayani SL, Hassani D, Sun X, Tang K. AaMYB108 is the core factor integrating light and jasmonic acid signaling to regulate artemisinin biosynthesis in Artemisia annua. THE NEW PHYTOLOGIST 2023; 237:2224-2237. [PMID: 36564967 DOI: 10.1111/nph.18702] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Artemisinin, a sesquiterpene compound synthesized and stored in the glandular trichome of Artemisia annua leaves, has been used to treat malaria. Previous studies have shown that both light and jasmonic acid (JA) can promote the biosynthesis of artemisinin, and the promotion of artemisinin by JA is dependent on light. However, the specific molecular mechanism remains unclear. Here, we report a MYB transcription factor, AaMYB108, identified from transcriptome analysis of light and JA treatment, as a positive regulator of artemisinin biosynthesis in A. annua. AaMYB108 promotes artemisinin biosynthesis by interacting with a previously characterized positive regulator of artemisinin, AaGSW1. Then, we found that AaMYB108 interacted with AaCOP1 and AaJAZ8, respectively. The function of AaMYB108 was influenced by AaCOP1 and AaJAZ8. Through the treatment of AaMYB108 transgenic plants with light and JA, it was found that the promotion of artemisinin by light and JA depends on the presence of AaMYB108. Taken together, our results reveal the molecular mechanism of JA regulating artemisinin biosynthesis depending on light in A. annua. This study provides new insights into the integration of light and phytohormone signaling to regulate terpene biosynthesis in plants.
Collapse
Affiliation(s)
- Hang Liu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Frontiers Science Center for Transformative Molecules, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ling Li
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Frontiers Science Center for Transformative Molecules, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xueqing Fu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Frontiers Science Center for Transformative Molecules, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yongpeng Li
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Frontiers Science Center for Transformative Molecules, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tiantian Chen
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Frontiers Science Center for Transformative Molecules, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wei Qin
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Frontiers Science Center for Transformative Molecules, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xin Yan
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Frontiers Science Center for Transformative Molecules, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhangkuanyu Wu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Frontiers Science Center for Transformative Molecules, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lihui Xie
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Frontiers Science Center for Transformative Molecules, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Sadaf-Llyas Kayani
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Frontiers Science Center for Transformative Molecules, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Danial Hassani
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Frontiers Science Center for Transformative Molecules, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaofen Sun
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Frontiers Science Center for Transformative Molecules, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kexuan Tang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Frontiers Science Center for Transformative Molecules, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
29
|
Hassani D, Taheri A, Fu X, Qin W, Hang L, Ma Y, Tang K. Elevation of artemisinin content by co-transformation of artemisinin biosynthetic pathway genes and trichome-specific transcription factors in Artemisia annua. FRONTIERS IN PLANT SCIENCE 2023; 14:1118082. [PMID: 36895880 PMCID: PMC9988928 DOI: 10.3389/fpls.2023.1118082] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Artemisinin, derived from Artemisia annua, is currently used as the first-line treatment for malaria. However, wild-type plants have a low artemisinin biosynthesis rate. Although yeast engineering and plant synthetic biology have shown promising results, plant genetic engineering is considered the most feasible strategy, but it is also constrained by the stability of progeny development. Here we constructed three independent unique overexpressing vectors harboring three mainstream artemisinin biosynthesis enzymes HMGR, FPS, and DBR2, as well as two trichomes-specific transcription factors AaHD1 and AaORA. The simultaneous co-transformation of these vectors by Agrobacterium resulted in the successful increase of the artemisinin content in T0 transgenic lines by up to 3.2-fold (2.72%) leaf dry weight compared to the control plants. We also investigated the stability of transformation in progeny T1 lines. The results indicated that the transgenic genes were successfully integrated, maintained, and overexpressed in some of the T1 progeny plants' genomes, potentially increasing the artemisinin content by up to 2.2-fold (2.51%) leaf dry weight. These results indicated that the co-overexpression of multiple enzymatic genes and transcription factors via the constructed vectors provided promising results, which could be used to achieve the ultimate goal of a steady supply of artemisinin at affordable prices around the world.
Collapse
Affiliation(s)
- Danial Hassani
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Ayat Taheri
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xueqing Fu
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Qin
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Liu Hang
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yanan Ma
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Kexuan Tang
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
30
|
Zhang N, Yang H, Han T, Kim HS, Marcelis LFM. Towards greenhouse cultivation of Artemisia annua: The application of LEDs in regulating plant growth and secondary metabolism. FRONTIERS IN PLANT SCIENCE 2023; 13:1099713. [PMID: 36743532 PMCID: PMC9889874 DOI: 10.3389/fpls.2022.1099713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/30/2022] [Indexed: 06/18/2023]
Abstract
Artemisinin is a sesquiterpene lactone produced in glandular trichomes of Artemisia annua, and is extensively used in the treatment of malaria. Growth and secondary metabolism of A. annua are strongly regulated by environmental conditions, causing unstable supply and quality of raw materials from field grown plants. This study aimed to bring A. annua into greenhouse cultivation and to increase artemisinin production by manipulating greenhouse light environment using LEDs. A. annua plants were grown in a greenhouse compartment for five weeks in vegetative stage with either supplemental photosynthetically active radiation (PAR) (blue, green, red or white) or supplemental radiation outside PAR wavelength (far-red, UV-B or both). The colour of supplemental PAR hardly affected plant morphology and biomass, except that supplemental green decreased plant biomass by 15% (both fresh and dry mass) compared to supplemental white. Supplemental far-red increased final plant height by 23% whereas it decreased leaf area, plant fresh and dry weight by 30%, 17% and 7%, respectively, compared to the treatment without supplemental radiation. Supplemental UV-B decreased plant leaf area and dry weight (both by 7%). Interestingly, supplemental green and UV-B increased leaf glandular trichome density by 11% and 9%, respectively. However, concentrations of artemisinin, arteannuin B, dihydroartemisinic acid and artemisinic acid only exhibited marginal differences between the light treatments. There were no interactive effects of far-red and UV-B on plant biomass, morphology, trichome density and secondary metabolite concentrations. Our results illustrate the potential of applying light treatments in greenhouse production of A. annua to increase trichome density in vegetative stage. However, the trade-off between light effects on plant growth and trichome initiation needs to be considered. Moreover, the underlying mechanisms of light spectrum regulation on artemisinin biosynthesis need further clarification to enhance artemisinin yield in greenhouse production of A. annua.
Collapse
Affiliation(s)
- Ningyi Zhang
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University, Wageningen, Netherlands
| | - Haohong Yang
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University, Wageningen, Netherlands
| | - Tianqi Han
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University, Wageningen, Netherlands
| | - Hyoung Seok Kim
- Smart Farm Convergence Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Republic of Korea
| | - Leo F. M. Marcelis
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University, Wageningen, Netherlands
| |
Collapse
|
31
|
Fang X, Wang H, Zhou X, Zhang J, Xiao H. Transcriptome reveals insights into biosynthesis of ginseng polysaccharides. BMC PLANT BIOLOGY 2022; 22:594. [PMID: 36529733 PMCID: PMC9761977 DOI: 10.1186/s12870-022-03995-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Ginseng polysaccharides, have been used to treat various diseases as an important active ingredient. Nevertheless, the biosynthesis of ginseng polysaccharides is poorly understood. To elucidate the biosynthesis mechanism of ginseng polysaccharides, combined the transcriptome analysis and polysaccharides content determination were performed on the roots, stems, and leaves collected from four cultivars of ginseng. RESULTS The results indicated that the total contents of nine monosaccharides were highest in the roots. Moreover, the total content of nine monosaccharides in the roots of the four cultivars were different but similar in stems and leaves. Glucose (Glc) was the most component of all monosaccharides. In total, 19 potential enzymes synthesizing of ginseng polysaccharides were identified, and 17 enzymes were significantly associated with polysaccharides content. Among these genes, the expression of phosphoglucomutase (PGM), glucose-6-phosphate isomerase (GPI), UTP-glucose-1-phosphate uridylyltransferase (UGP2), fructokinase (scrK), mannose-1-phosphate guanylyltransferase (GMPP), phosphomannomutase (PMM), UDP-glucose 4-epimerase (GALE), beta-fructofuranosidase (sacA), and sucrose synthase (SUS) were correlated with that of MYB, AP2/ERF, bZIP, and NAC transcription factors (TFs). These TFs may regulate the expression of genes involved in ginseng polysaccharides synthesis. CONCLUSION Our findings could provide insight into a better understanding of the regulatory mechanism of polysaccharides biosynthesis, and would drive progress in genetic improvement and plantation development of ginseng.
Collapse
Affiliation(s)
- Xiaoxue Fang
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, 130024, Changchun, China
| | - Huaying Wang
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, 130024, Changchun, China
| | - Xinteng Zhou
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, 130024, Changchun, China
| | - Jing Zhang
- Forestry Survey and Design Institute of Jilin Province, 130022, Changchun, China
| | - Hongxing Xiao
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, 130024, Changchun, China.
| |
Collapse
|
32
|
Su L, Lv A, Wen W, Fan N, Li J, Gao L, Zhou P, An Y. MsMYB741 is involved in alfalfa resistance to aluminum stress by regulating flavonoid biosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:756-771. [PMID: 36097968 DOI: 10.1111/tpj.15977] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
Aluminum (Al) toxicity severely restricts plant growth in acidic soils (pH < 5.0). In this study, an R2R3-MYB transcription factor (TF) gene, MsMYB741, was cloned from alfalfa. Its function and gene regulatory pathways were studied via overexpression and RNA interference of MsMYB741 in alfalfa seedlings. Results showed that root elongation increased as a result of MsMYB741 overexpression (MsMYB741-OE) and decreased with MsMYB741 RNA interference (MsMYB741-RNAi) in alfalfa seedlings compared with the wild-type under Al stress. These were attributed to the reduced Al content in MsMYB741-OE lines, and increased Al content in MsMYB741-RNAi lines. MsMYB741 positively activated the expression of phenylalanine ammonia-lyase 1 (MsPAL1) and chalcone isomerase (MsCHI) by binding to MYB and ABRE elements in their promoters, respectively, which directly affected flavonoid accumulation in roots and secretion from root tips in plants under Al stress, eventually affecting Al accumulation in alfalfa. Additionally, MsABF2 TF directly activated the expression of MsMYB741 by binding to the ABRE element in its promoter. Taken together, our results indicate that MsMYB741 transcriptionally activates MsPAL1 and MsCHI expression to increase flavonoid accumulation in roots and secretion from root tips, leading to increased resistance of alfalfa to Al stress.
Collapse
Affiliation(s)
- Liantai Su
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Aimin Lv
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Wuwu Wen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Nana Fan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiaojiao Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Li Gao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Peng Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuan An
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Urban Agriculture, Ministry of Agriculture, Shanghai, 201101, China
| |
Collapse
|
33
|
Zhang F, Li X, Wu Q, Lu P, Kang Q, Zhao M, Wang A, Dong Q, Sun M, Yang Z, Gao Z. Selenium Application Enhances the Accumulation of Flavones and Anthocyanins in Bread Wheat ( Triticum aestivum L.) Grains. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13431-13444. [PMID: 36198089 DOI: 10.1021/acs.jafc.2c04868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Selenium (Se) biofortification in wheat reduces the risk of Se deficiency in humans. Se biofortification increases the concentration of Se and anthocyanins in wheat grains. However, it is unknown whether Se biofortification can enhance flavonoids other than anthocyanins and the mechanism underlying flavonoid accumulation in wheat grains. Here, foliar application of selenite solution in wheat was conducted 10 days after flowering. Metabolite profiling and transcriptome sequencing were performed in Se-treated grains. A significant increase in the total contents of Se, anthocyanins, and flavonoids was observed in Se-treated mature grains. Twenty-seven significantly increased flavonoids were identified in Se-treated immature grains. The significant accumulation of flavones (tricin, tricin derivatives, and chrysoeriol derivatives) was detected, and six anthocyanins, dihydroquercetin (the precursor for anthocyanin biosynthesis) and catechins were also increased. Integrated analysis of metabolites and transcriptome revealed that Se application enhanced the biosynthesis of flavones, dihydroquercetin, anthocyanins, and catechins by increasing the expression levels of seven key structural genes in flavonoid biosynthesis (two TaF3Hs, two TaDFRs, one TaF3'5'H, one TaOMT, and one TaANR). Our findings shed new light on the molecular mechanism underlying the enhancement in flavonoid accumulation by Se supplementation and pave the way for further enhancing the nutritional value of wheat grains.
Collapse
Affiliation(s)
- Fengjie Zhang
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
| | - Xueyin Li
- College of Life Sciences, Shanxi Agricultural University, Taigu 030801, China
| | - Qiangqiang Wu
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
| | - Ping Lu
- College of Life Sciences, Shanxi Agricultural University, Taigu 030801, China
| | - Qingfang Kang
- College of Life Sciences, Shanxi Agricultural University, Taigu 030801, China
| | - Mengyao Zhao
- College of Life Sciences, Shanxi Agricultural University, Taigu 030801, China
| | - Aiping Wang
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
| | - Qi Dong
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
| | - Min Sun
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
| | - Zhenping Yang
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
| | - Zhiqiang Gao
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
| |
Collapse
|
34
|
Zhao L, Zhu Y, Jia H, Han Y, Zheng X, Wang M, Feng W. From Plant to Yeast-Advances in Biosynthesis of Artemisinin. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27206888. [PMID: 36296479 PMCID: PMC9609949 DOI: 10.3390/molecules27206888] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/28/2022]
Abstract
Malaria is a life-threatening disease. Artemisinin-based combination therapy (ACT) is the preferred choice for malaria treatment recommended by the World Health Organization. At present, the main source of artemisinin is extracted from Artemisia annua; however, the artemisinin content in A. annua is only 0.1-1%, which cannot meet global demand. Meanwhile, the chemical synthesis of artemisinin has disadvantages such as complicated steps, high cost and low yield. Therefore, the application of the synthetic biology approach to produce artemisinin in vivo has magnificent prospects. In this review, the biosynthesis pathway of artemisinin was summarized. Then we discussed the advances in the heterologous biosynthesis of artemisinin using microorganisms (Escherichia coli and Saccharomyces cerevisiae) as chassis cells. With yeast as the cell factory, the production of artemisinin was transferred from plant to yeast. Through the optimization of the fermentation process, the yield of artemisinic acid reached 25 g/L, thereby producing the semi-synthesis of artemisinin. Moreover, we reviewed the genetic engineering in A. annua to improve the artemisinin content, which included overexpressing artemisinin biosynthesis pathway genes, blocking key genes in competitive pathways, and regulating the expression of transcription factors related to artemisinin biosynthesis. Finally, the research progress of artemisinin production in other plants (Nicotiana, Physcomitrella, etc.) was discussed. The current advances in artemisinin biosynthesis may help lay the foundation for the remarkable up-regulation of artemisinin production in A. annua through gene editing or molecular design breeding in the future.
Collapse
Affiliation(s)
- Le Zhao
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Co-Construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P. R. China, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yunhao Zhu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Co-Construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P. R. China, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Haoyu Jia
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yongguang Han
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Xiaoke Zheng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Co-Construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P. R. China, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Min Wang
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
- Beijing Key Laboratory of Plant Research and Development, Beijing Technology and Business University, Beijing 100048, China
- Correspondence: (M.W.); (W.F.); Tel.: +86-134-2629-2115 (M.W.); +86-371-60190296 (W.F.)
| | - Weisheng Feng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Co-Construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P. R. China, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Correspondence: (M.W.); (W.F.); Tel.: +86-134-2629-2115 (M.W.); +86-371-60190296 (W.F.)
| |
Collapse
|
35
|
Wang C, Li J, Zhou T, Zhang Y, Jin H, Liu X. Transcriptional regulation of proanthocyanidin biosynthesis pathway genes and transcription factors in Indigofera stachyodes Lindl. roots. BMC PLANT BIOLOGY 2022; 22:438. [PMID: 36096752 PMCID: PMC9469613 DOI: 10.1186/s12870-022-03794-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Proanthocyanidins (PAs) have always been considered as important medicinal value component. In order to gain insights into the PA biosynthesis regulatory network in I. stachyodes roots, we analyzed the transcriptome of the I. stachyodes in Leaf, Stem, RootI (one-year-old root), and RootII (two-year-old root). RESULTS In this study, a total of 110,779 non-redundant unigenes were obtained, of which 63,863 could be functionally annotated. Simultaneously, 75 structural genes that regulate PA biosynthesis were identified, of these 6 structural genes (IsF3'H1, IsANR2, IsLAR2, IsUGT72L1-3, IsMATE2, IsMATE3) may play an important role in the synthesis of PAs in I. stachyodes roots. Furthermore, co-expression network analysis revealed that 34 IsMYBs, 18 IsbHLHs, 15 IsWRKYs, 9 IsMADSs, and 3 IsWIPs hub TFs are potential regulators for PA accumulation. Among them, IsMYB24 and IsMYB79 may be closely involved in the PA biosynthesis in I. stachyodes roots. CONCLUSIONS The biosynthesis of PAs in I. stachyodes roots is mainly produced by the subsequent pathway of cyanidin. Our work provides new insights into the molecular pathways underlying PA accumulation and enhances our global understanding of transcriptome dynamics throughout different tissues.
Collapse
Affiliation(s)
- Chongmin Wang
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Jun Li
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China.
| | - Tao Zhou
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Yongping Zhang
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Haijun Jin
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Xiaoqing Liu
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| |
Collapse
|
36
|
Response of Anthocyanin Accumulation in Pepper (Capsicum annuum) Fruit to Light Days. Int J Mol Sci 2022; 23:ijms23158357. [PMID: 35955513 PMCID: PMC9369206 DOI: 10.3390/ijms23158357] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 12/02/2022] Open
Abstract
Light is the key factor affecting the synthesis of anthocyanins in pepper. In this study, pepper fruit under different light days was used as experimental material to explore the synthesis of anthocyanins in purple pepper. A total of 38 flavonoid metabolites were identified in the purple pepper germplasm HNUCA21 by liquid chromatography–tandem mass spectrometry (LC-MS/MS), of which 30 belong to anthocyanins. The detected anthocyanin with the highest content was Delphinidin-3-O-glucoside (17.13 µg/g), which reached the maximum after 168 h of light treatment. Through weighted gene co-expression network analysis (WGCNA), the brown module was identified to be related to the early synthesis of anthocyanins. This module contains many structural genes related to flavonoid synthesis, including chalcone synthase (CHS 107871256, 107864266), chalcone isomerase (CHI 107871144, 107852750), dihydroflavonol 4-reductase (DFR 107860031), flavonoid 3′ 5′-hydroxylase (F3’5’H 107848667), flavonoid 3′-monooxygenase (F3M 107862334), leucoanthocyanidin dioxygenase (LDOX 107866341), and trans-cinnamate 4-monooxygenase (TCM 107875406, 107875407). The module also contained some genes related to anthocyanin transport function, such as glutathione S-transferase (GST 107861273), anthocyanidin 3-O-glucosyltransferase (UDPGT 107861697, 107843659), and MATE (107863234, 107844661), as well as some transcription factors, such as EGL1 (107865400), basic helix-loop-helix 104 (bHLH104 107864591), and WRKY44 (107843538, 107843524). The co-expression regulatory network indicated the involvement of CHS, DFR, CHI, and EGL1, as well as two MATE and two WRKY44 genes in anthocyanin synthesis. The identified genes involved in early, middle, and late light response provided a reference for the further analysis of the regulatory mechanism of anthocyanin biosynthesis in pepper.
Collapse
|
37
|
Ražná K, Harenčár Ľ, Kučka M. The Involvement of microRNAs in Plant Lignan Biosynthesis—Current View. Cells 2022; 11:cells11142151. [PMID: 35883592 PMCID: PMC9323225 DOI: 10.3390/cells11142151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 02/01/2023] Open
Abstract
Lignans, as secondary metabolites synthesized within a phenylpropanoid pathway, play various roles in plants, including their involvement in growth and plant defense processes. The health and nutritional benefits of lignans are unquestionable, and many studies have been devoted to these attributes. Although the regulatory role of miRNAs in the biosynthesis of secondary metabolites has been widely reported, there is no systematic review available on the miRNA-based regulatory mechanism of lignans biosynthesis. However, the genetic background of lignan biosynthesis in plants is well characterized. We attempted to put together a regulatory mosaic based on current knowledge describing miRNA-mediated regulation of genes, enzymes, or transcription factors involved in this biosynthesis process. At the same time, we would like to underline the fact that further research is necessary to improve our understanding of the miRNAs regulating plant lignan biosynthesis by exploitation of current approaches for functional identification of miRNAs.
Collapse
|
38
|
Li Y, Chen T, Liu H, Qin W, Yan X, Wu-Zhang K, Peng B, Zhang Y, Yao X, Fu X, Li L, Tang K. The truncated AaActin1 promoter is a candidate tool for metabolic engineering of artemisinin biosynthesis in Artemisia annua L. JOURNAL OF PLANT PHYSIOLOGY 2022; 274:153712. [PMID: 35644103 DOI: 10.1016/j.jplph.2022.153712] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/04/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Malaria is a devastating parasitic disease with high levels of morbidity and mortality worldwide. Artemisinin, the active substance against malaria, is a sesquiterpenoid produced by Artemisia annua. To improve artemisinin content in the native A. annua plants, considerable efforts have been attempted, with genetic transformation serving as an effective strategy. Although, the most frequently-used cauliflower mosaic virus (CaMV) 35S (CaMV35S) promoter has proved to be efficient in A. annua transgenic studies, it appears to show weak activity in peltate glandular secretory trichomes (GSTs) of A. annua plants. Here, we characterized the 1727 bp fragment upstream from the translation start codon (ATG) of AaActin1, however, found it was inactive in tobacco. After removal of the 5' intron, the truncated AaActin1 promoter (tpACT) showed 69% and 50% activity of CaMV35S promoter in transiently transformed tobacco and stably transformed A. annua, respectively. β-glucuronidase (GUS) staining analysis showed that the tpACT promoter was capable of directing the constant expression of a foreign gene in peltate GSTs of transgenic A. annua, representing higher activity than CaMV35S promoter. Collectively, our study provided a novel promoter available for metabolic engineering of artemisinin biosynthesis in A. annua.
Collapse
Affiliation(s)
- Yongpeng Li
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tiantian Chen
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hang Liu
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei Qin
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xin Yan
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kuanyu Wu-Zhang
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bowen Peng
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yaojie Zhang
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinghao Yao
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xueqing Fu
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ling Li
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kexuan Tang
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
39
|
Zhang Q, Liang M, Zeng J, Yang C, Qin J, Qiang W, Lan X, Chen M, Lin M, Liao Z. Engineering tropane alkaloid production and glyphosate resistance by overexpressing AbCaM1 and G2-EPSPS in Atropa belladonna. Metab Eng 2022; 72:237-246. [PMID: 35390492 DOI: 10.1016/j.ymben.2022.03.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 03/16/2022] [Accepted: 03/26/2022] [Indexed: 11/27/2022]
Abstract
Atropa belladonna is an important industrial crop for producing anticholinergic tropane alkaloids (TAs). Using glyphosate as selection pressure, transgenic homozygous plants of A. belladonna are generated, in which a novel calmodulin gene (AbCaM1) and a reported EPSPS gene (G2-EPSPS) are co-overexpressed. AbCaM1 is highly expressed in secondary roots of A. belladonna and has calcium-binding activity. Three transgenic homozygous lines were generated and their glyphosate tolerance and TAs' production were evaluated in the field. Transgenic homozygous lines produced TAs at much higher levels than wild-type plants. In the leaves of T2GC02, T2GC05, and T2GC06, the hyoscyamine content was 8.95-, 10.61-, and 9.96 mg/g DW, the scopolamine content was 1.34-, 1.50- and 0.86 mg/g DW, respectively. Wild-type plants of A. belladonna produced hyoscyamine and scopolamine respectively at the levels of 2.45 mg/g DW and 0.30 mg/g DW in leaves. Gene expression analysis indicated that AbCaM1 significantly up-regulated seven key TA biosynthesis genes. Transgenic homozygous lines could tolerate a commercial recommended dose of glyphosate in the field. In summary, new varieties of A. belladonna not only produce pharmaceutical TAs at high levels but tolerate glyphosate, facilitating industrial production of TAs and weed management at a much lower cost.
Collapse
Affiliation(s)
- Qiaozhuo Zhang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Mengjiao Liang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Junlan Zeng
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Chunxian Yang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Jianbo Qin
- Chongqing Academy of Science and Technology, Chongqing, 401123, China
| | - Wei Qiang
- College of Life Sciences, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, China
| | - Xiaozhong Lan
- TAAHC-SWU Medicinal Plant Joint R&D Centre, Xizang Agricultural and Husbandry College, Nyingchi of Tibet, 860000, China
| | - Min Chen
- College of Pharmaceutical Sciences, Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Ministry of Education), Southwest University, Chongqing, 400715, China
| | - Min Lin
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing, 400712, China
| | - Zhihua Liao
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing, 400715, China; Chongqing Academy of Science and Technology, Chongqing, 401123, China.
| |
Collapse
|
40
|
Liu HR, Shen C, Hassani D, Fang WQ, Wang ZY, Lu Y, Zhu RL, Zhao Q. Vacuoles in Bryophytes: Properties, Biogenesis, and Evolution. FRONTIERS IN PLANT SCIENCE 2022; 13:863389. [PMID: 35747879 PMCID: PMC9209779 DOI: 10.3389/fpls.2022.863389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
Vacuoles are the most conspicuous organelles in plants for their indispensable functions in cell expansion, solute storage, water balance, etc. Extensive studies on angiosperms have revealed that a set of conserved core molecular machineries orchestrate the formation of vacuoles from multiple pathways. Usually, vacuoles in seed plants are classified into protein storage vacuoles and lytic vacuoles for their distinctive morphology and physiology function. Bryophytes represent early diverged non-vascular land plants, and are of great value for a better understanding of plant science. However, knowledge about vacuole morphology and biogenesis is far less characterized in bryophytes. In this review, first we summarize known knowledge about the morphological and metabolic constitution properties of bryophytes' vacuoles. Then based on known genome information of representative bryophytes, we compared the conserved molecular machinery for vacuole biogenesis among different species including yeast, mammals, Arabidopsis and bryophytes and listed out significant changes in terms of the presence/absence of key machinery genes which participate in vacuole biogenesis. Finally, we propose the possible conserved and diverged mechanism for the biogenesis of vacuoles in bryophytes compared with seed plants.
Collapse
Affiliation(s)
- Hao-ran Liu
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Chao Shen
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Danial Hassani
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Wan-qi Fang
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Zhi-yi Wang
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Yi Lu
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Rui-liang Zhu
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Qiong Zhao
- School of Life Sciences, East China Normal University, Shanghai, China
- Institute of Eco-Chongming, Shanghai, China
| |
Collapse
|
41
|
Lin M, Zhou Z, Mei Z. Integrative Analysis of Metabolome and Transcriptome Identifies Potential Genes Involved in the Flavonoid Biosynthesis in Entada phaseoloides Stem. FRONTIERS IN PLANT SCIENCE 2022; 13:792674. [PMID: 35620699 PMCID: PMC9127681 DOI: 10.3389/fpls.2022.792674] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 03/21/2022] [Indexed: 06/15/2023]
Abstract
Entada phaseoloides stem is known for its high medicinal benefits and ornamental value. Flavonoids are one of the main active constituents in E. phaseoloides stem. However, the regulatory mechanism of flavonoids accumulation in E. phaseoloides is lacking. Here, phytochemical compounds and transcripts from stems at different developmental stages in E. phaseoloides were investigated by metabolome and transcriptome analysis. The metabolite profiling of the oldest stem was obviously different from young and older stem tissues. A total of 198 flavonoids were detected, and flavones, flavonols, anthocyanins, isoflavones, and flavanones were the main subclasses. The metabolome data showed that the content of acacetin was significantly higher in the young stem and older stem than the oldest stem. Rutin and myricitrin showed significantly higher levels in the oldest stem. A total of 143 MYBs and 143 bHLHs were identified and classified in the RNA-seq data. Meanwhile, 34 flavonoid biosynthesis structural genes were identified. Based on the expression pattern of structural genes involved in flavonoid biosynthesis, it indicated that flavonol, anthocyanin, and proanthocyanin biosynthesis were first active during the development of E. phaseoloides stem, and the anthocyanin or proanthocyanin biosynthesis branch was dominant; the flavone biosynthesis branch was active at the late developmental stage of the stem. Through the correlation analysis of transcriptome and metabolome data, the potential candidate genes related to regulating flavonoid synthesis and transport were identified. Among them, the MYBs, bHLH, and TTG1 are coregulated biosynthesis of flavonols and structural genes, bHLH and transporter genes are coregulated biosynthesis of anthocyanins. In addition, the WDR gene TTG1-like (AN11) may regulate dihydrochalcones and flavonol biosynthesis in specific combinations with IIIb bHLH and R2R3-MYB proteins. Furthermore, the transport gene protein TRANSPARENT TESTA 12-like gene is positively regulated the accumulation of rutin, and the homolog of ABC transporter B family member gene is positively correlated with the content of flavone acacetin. This study offered candidate genes involved in flavonoid biosynthesis, information of flavonoid composition and characteristics of flavonoids accumulation, improved our understanding of the MYBs and bHLHs-related regulation networks of flavonoid biosynthesis in E. phaseoloides stem, and provided references for the metabolic engineering of flavonoid biosynthesis in E. phaseoloides stem.
Collapse
Affiliation(s)
- Min Lin
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
- Institute of Ethnomedicine, South-Central University for Nationalities, Wuhan, China
| | - Zhuqing Zhou
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
- Institute of Ethnomedicine, South-Central University for Nationalities, Wuhan, China
| | - Zhinan Mei
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
- Institute of Ethnomedicine, South-Central University for Nationalities, Wuhan, China
| |
Collapse
|
42
|
Shu G, Tang Y, Yuan M, Wei N, Zhang F, Yang C, Lan X, Chen M, Tang K, Xiang L, Liao Z. Molecular insights into AabZIP1-mediated regulation on artemisinin biosynthesis and drought tolerance in Artemisia annua. Acta Pharm Sin B 2022; 12:1500-1513. [PMID: 35530156 PMCID: PMC9069397 DOI: 10.1016/j.apsb.2021.09.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/30/2021] [Accepted: 09/19/2021] [Indexed: 12/27/2022] Open
Abstract
Artemisia annua is the main natural source of artemisinin production. In A. annua, extended drought stress severely reduces its biomass and artemisinin production while short-term water-withholding or abscisic acid (ABA) treatment can increase artemisinin biosynthesis. ABA-responsive transcription factor AabZIP1 and JA signaling AaMYC2 have been shown in separate studies to promote artemisinin production by targeting several artemisinin biosynthesis genes. Here, we found AabZIP1 promote the expression of multiple artemisinin biosynthesis genes including AaDBR2 and AaALDH1, which AabZIP1 does not directly activate. Subsequently, it was found that AabZIP1 up-regulates AaMYC2 expression through direct binding to its promoter, and that AaMYC2 binds to the promoter of AaALDH1 to activate its transcription. In addition, AabZIP1 directly transactivates wax biosynthesis genes AaCER1 and AaCYP86A1. The biosynthesis of artemisinin and cuticular wax and the tolerance of drought stress were significantly increased by AabZIP1 overexpression, whereas they were significantly decreased in RNAi-AabZIP1 plants. Collectively, we have uncovered the AabZIP1-AaMYC2 transcriptional module as a point of cross-talk between ABA and JA signaling in artemisinin biosynthesis, which may have general implications. We have also identified AabZIP1 as a promising candidate gene for the development of A. annua plants with high artemisinin content and drought tolerance in metabolic engineering breeding.
Collapse
|
43
|
Hu H, Fei X, He B, Luo Y, Qi Y, Wei A. Integrated Analysis of Metabolome and Transcriptome Data for Uncovering Flavonoid Components of Zanthoxylum bungeanum Maxim. Leaves Under Drought Stress. Front Nutr 2022; 8:801244. [PMID: 35187022 PMCID: PMC8855068 DOI: 10.3389/fnut.2021.801244] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/03/2021] [Indexed: 12/30/2022] Open
Abstract
Zanthoxylum bungeanum Maxim. leaves (ZBLs) are rich in flavonoids and have become popular in nutrition, foods and medicine. However, the flavonoid components in ZBLs and the mechanism of flavonoid biosynthesis under drought stress have received little attention. Here, we performed an integrative analysis of the metabolome and transcriptome of ZBLs from HJ (Z. bungeanum cv. “Hanjiao”) and FJ (Z. bungeanum cv. “Fengjiao”) at four drought stages. A total of 231 individual flavonoids divided into nine classes were identified and flavones and flavonols were considered the most abundant flavonoid components in ZBLs. The total flavonoid content of ZBLs was higher in FJ; it increased in FJ under drought stress but decreased in HJ. Nine-quadrant analysis identified five and eight differentially abundant flavonoids in FJ and HJ leaves, respectively, under drought stress. Weighted gene correlation network analysis (WGCNA) identified nine structural genes and eight transcription factor genes involved in the regulation of flavonoid biosynthesis. Moreover, qRT-PCR results verified the accuracy of the transcriptome data and the reliability of the candidate genes. Taken together, our results reveal the flavonoid components of ZBLs and document changes in flavonoid metabolism under drought stress, providing valuable information for nutrition value and food utilization of ZBLs.
Collapse
Affiliation(s)
- Haichao Hu
- College of Forestry, Northwest Agriculture and Forestry University, Xianyang, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Xianyang, China
| | - Xitong Fei
- College of Forestry, Northwest Agriculture and Forestry University, Xianyang, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Xianyang, China
| | - Beibei He
- College of Horticulture, Northwest Agriculture and Forestry University, Xianyang, China
| | - Yingli Luo
- College of Forestry, Northwest Agriculture and Forestry University, Xianyang, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Xianyang, China
| | - Yichen Qi
- College of Forestry, Northwest Agriculture and Forestry University, Xianyang, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Xianyang, China
| | - Anzhi Wei
- College of Forestry, Northwest Agriculture and Forestry University, Xianyang, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Xianyang, China
- *Correspondence: Anzhi Wei
| |
Collapse
|
44
|
Li Y, Chen T, Wang W, Liu H, Yan X, Wu-Zhang K, Qin W, Xie L, Zhang Y, Peng B, Yao X, Wang C, Kayani SI, Fu X, Li L, Tang K. A high-efficiency Agrobacterium-mediated transient expression system in the leaves of Artemisia annua L. PLANT METHODS 2021; 17:106. [PMID: 34654448 PMCID: PMC8520255 DOI: 10.1186/s13007-021-00807-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The Agrobacterium-mediated transient transformation, which proved effective in diverse plant species, has been widely applied for high-throughput gene function studies due to its simplicity, rapidity, and high efficiency. Despite the efforts have made on Artemisia annua transient expression, achieving high-throughput gene functional characterization basing on a fast and easy-manipulated transient transformation system in A. annua remains challenging. RESULTS The first pair of true leaves of A. annua is an ideal candidate for Agrobacterium injection. EHA105 was the optimal strain that can be used for the development of the transient expression system. The supplementation of Triton X-100 at a concentration of 0.005% greatly improved the transient expression frequency. According to the histochemical β-Glucuronidase (GUS) staining assay, high transient expression level of the reporter gene (GUS) maintained at least a week. Dual-luciferase (Dual-LUC) transient assays showed that the activity of cauliflower mosaic virus 35S (CaMV35S) promoter and its derivates varied between A. annua and tobacco. In A. annua, the CaMV35S promoter had comparable activity with double CaMV35S promoter, while in tobacco, CaMV35S exhibited approximately 50% activity of double CaMV35S promoter. Otherwise, despite the CaMV35S promoter and double CaMV35S promoter from GoldenBraid Kit 2.0 displayed high activity strength in tobacco, they demonstrated a very low activity in transiently expressed A. annua. The activity of UBQ10 promoter and endogenous UBQb promoter was investigated as well. Additionally, using our transient expression system, the transactivation of AaGSW1 and AaORA on AaCYP71AV1 promoter was confirmed. Dual-LUC assays demonstrated that AaHD8 activated the expression of two glandular secreting trichomes-specific lipid transfer protein genes AaLTP1 and AaLTP2, indicating that AaLTP1 and AaLTP2 might serve as downstream components of AaHD8-involved glandular trichome initiation and cuticle formation, as well as artemisinin secretion in A. annua. CONCLUSIONS A simple, rapid, good-reproducibility, high-efficiency and low-cost transient transformation system in A. annua was developed. Our method offered a new way for gene functional characterization studies such as gene subcellular localization, promoter activity and transcription activation assays in A. annua, avoiding the aberrant phenotypes resulting from gene expression in a heterologous system.
Collapse
Affiliation(s)
- Yongpeng Li
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tiantian Chen
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wei Wang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Hang Liu
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xin Yan
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kuanyu Wu-Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wei Qin
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lihui Xie
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yaojie Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Bowen Peng
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xinghao Yao
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chen Wang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Sadaf-Ilyas Kayani
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xueqing Fu
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ling Li
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kexuan Tang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
45
|
Li X, Li Y, Zhao M, Hu Y, Meng F, Song X, Tigabu M, Chiang VL, Sederoff R, Ma W, Zhao X. Molecular and Metabolic Insights into Anthocyanin Biosynthesis for Leaf Color Change in Chokecherry ( Padus virginiana). Int J Mol Sci 2021; 22:ijms221910697. [PMID: 34639038 PMCID: PMC8509056 DOI: 10.3390/ijms221910697] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/27/2021] [Accepted: 09/30/2021] [Indexed: 12/30/2022] Open
Abstract
Chokecherry (Padus virginiana L.) is an important landscaping tree with high ornamental value because of its colorful purplish-red leaves (PRL). The quantifications of anthocyanins and the mechanisms of leaf color change in this species remain unknown. The potential biosynthetic and regulatory mechanisms and the accumulation patterns of anthocyanins in P. virginiana that determine three leaf colors were investigated by combined analysis of the transcriptome and the metabolome. The difference of chlorophyll, carotenoid and anthocyanin content correlated with the formation of P. virginiana leaf color. Using enrichment and correlation network analysis, we found that anthocyanin accumulation differed in different colored leaves and that the accumulation of malvidin 3-O-glucoside (violet) and pelargonidin 3-O-glucoside (orange-red) significantly correlated with the leaf color change from green to purple-red. The flavonoid biosynthesis genes (PAL, CHS and CHI) and their transcriptional regulators (MYB, HD-Zip and bHLH) exhibited specific increased expression during the purple-red periods. Two genes encoding enzymes in the anthocyanin biosynthetic pathway, UDP glucose-flavonoid 3-O-glucosyl-transferase (UFGT) and anthocyanidin 3-O-glucosyltransferase (BZ1), seem to be critical for suppressing the formation of the aforesaid anthocyanins. In PRL, the expression of the genes encoding for UGFT and BZ1 enzymes was substantially higher than in leaves of other colors and may be related with the purple-red color change. These results may facilitate genetic modification or selection for further improvement in ornamental qualities of P. virginiana.
Collapse
Affiliation(s)
- Xiang Li
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin 150040, China; (X.L.); (Y.L.); (M.Z.); (Y.H.); (F.M.); (X.S.); (V.L.C.)
| | - Yan Li
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin 150040, China; (X.L.); (Y.L.); (M.Z.); (Y.H.); (F.M.); (X.S.); (V.L.C.)
| | - Minghui Zhao
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin 150040, China; (X.L.); (Y.L.); (M.Z.); (Y.H.); (F.M.); (X.S.); (V.L.C.)
| | - Yanbo Hu
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin 150040, China; (X.L.); (Y.L.); (M.Z.); (Y.H.); (F.M.); (X.S.); (V.L.C.)
| | - Fanjuan Meng
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin 150040, China; (X.L.); (Y.L.); (M.Z.); (Y.H.); (F.M.); (X.S.); (V.L.C.)
| | - Xingshun Song
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin 150040, China; (X.L.); (Y.L.); (M.Z.); (Y.H.); (F.M.); (X.S.); (V.L.C.)
| | - Mulualem Tigabu
- Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, 230 53 Alnarp, Sweden;
| | - Vincent L. Chiang
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin 150040, China; (X.L.); (Y.L.); (M.Z.); (Y.H.); (F.M.); (X.S.); (V.L.C.)
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA;
| | - Ronald Sederoff
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA;
| | - Wenjun Ma
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
- Correspondence: (W.M.); (X.Z.); Tel.: +86-451-82192225 (X.Z.)
| | - Xiyang Zhao
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin 150040, China; (X.L.); (Y.L.); (M.Z.); (Y.H.); (F.M.); (X.S.); (V.L.C.)
- College of Forestry and Grassland, Jilin Agricultural University, Changchun 130118, China
- Correspondence: (W.M.); (X.Z.); Tel.: +86-451-82192225 (X.Z.)
| |
Collapse
|
46
|
Feng Z, Bartholomew ES, Liu Z, Cui Y, Dong Y, Li S, Wu H, Ren H, Liu X. Glandular trichomes: new focus on horticultural crops. HORTICULTURE RESEARCH 2021; 8:158. [PMID: 34193839 PMCID: PMC8245418 DOI: 10.1038/s41438-021-00592-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/07/2021] [Accepted: 05/10/2021] [Indexed: 05/31/2023]
Abstract
Plant glandular trichomes (GTs) are epidermal outgrowths with the capacity to biosynthesize and secrete specialized metabolites, that are of great scientific and practical significance. Our understanding of the developmental process of GTs is limited, and no single plant species serves as a unique model. Here, we review the genetic mechanisms of GT initiation and development and provide a summary of the biosynthetic pathways of GT-specialized metabolites in nonmodel plant species, especially horticultural crops. We discuss the morphology and classification of GT types. Moreover, we highlight technological advancements in methods employed for investigating GTs. Understanding the molecular basis of GT development and specialized metabolites not only offers useful avenues for research in plant breeding that will lead to the improved production of desirable metabolites, but also provides insights for plant epidermal development research.
Collapse
Affiliation(s)
- Zhongxuan Feng
- Engineering Research Center of the Ministry of Education for Horticultural Crops Breeding and Propagation, College of Horticulture, China Agricultural University, 100193, Beijing, P. R. China
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, 100193, Beijing, P. R. China
| | - Ezra S Bartholomew
- Engineering Research Center of the Ministry of Education for Horticultural Crops Breeding and Propagation, College of Horticulture, China Agricultural University, 100193, Beijing, P. R. China
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, 100193, Beijing, P. R. China
| | - Ziyu Liu
- Library of China Agricultural University, China Agricultural University, 100193, Beijing, P. R. China
| | - Yuanyuan Cui
- Engineering Research Center of the Ministry of Education for Horticultural Crops Breeding and Propagation, College of Horticulture, China Agricultural University, 100193, Beijing, P. R. China
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, 100193, Beijing, P. R. China
| | - Yuming Dong
- Engineering Research Center of the Ministry of Education for Horticultural Crops Breeding and Propagation, College of Horticulture, China Agricultural University, 100193, Beijing, P. R. China
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, 100193, Beijing, P. R. China
| | - Sen Li
- Engineering Research Center of the Ministry of Education for Horticultural Crops Breeding and Propagation, College of Horticulture, China Agricultural University, 100193, Beijing, P. R. China
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, 100193, Beijing, P. R. China
| | - Haoying Wu
- Engineering Research Center of the Ministry of Education for Horticultural Crops Breeding and Propagation, College of Horticulture, China Agricultural University, 100193, Beijing, P. R. China
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, 100193, Beijing, P. R. China
| | - Huazhong Ren
- Engineering Research Center of the Ministry of Education for Horticultural Crops Breeding and Propagation, College of Horticulture, China Agricultural University, 100193, Beijing, P. R. China.
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, 100193, Beijing, P. R. China.
- State Key Laboratory of Vegetable Germplasm Innovation, Tianjin, China.
| | - Xingwang Liu
- Engineering Research Center of the Ministry of Education for Horticultural Crops Breeding and Propagation, College of Horticulture, China Agricultural University, 100193, Beijing, P. R. China.
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, 100193, Beijing, P. R. China.
| |
Collapse
|
47
|
Li Y, Qin W, Fu X, Zhang Y, Hassani D, Kayani SI, Xie L, Liu H, Chen T, Yan X, Peng B, Wu-Zhang K, Wang C, Sun X, Li L, Tang K. Transcriptomic analysis reveals the parallel transcriptional regulation of UV-B-induced artemisinin and flavonoid accumulation in Artemisia annua L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 163:189-200. [PMID: 33857913 DOI: 10.1016/j.plaphy.2021.03.052] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/24/2021] [Indexed: 05/09/2023]
Abstract
UV-B radiation is a pivotal photomorphogenic signal and positively regulates plant growth and metabolite biosynthesis. In order to elucidate the transcriptional regulation mechanism underlying UV-B-induced artemisinin and flavonoid biosynthesis in Artemisia annua, the transcriptional responses of A. annua L. leaves to UV-B radiation were analyzed using the Illumina transcriptome sequencing. A total of 10705 differentially expressed genes (DEGs) including 533 transcription factors (TFs), were identified. Based on the expression trends of the differentially expressed TFs as well as artemisinin and flavonoid biosynthesis genes, we speculated that TFs belonging to 6 clusters were most likely to be involved in the regulation of artemisinin and/or flavonoid biosynthesis. The regulatory relationship between TFs and artemisinin/flavonoid biosynthetic genes was further studied. Dual-LUC assays results showed that AaMYB6 is a positive regulator of AaLDOX which belongs to flavonoid biosynthesis pathway. In addition, we identified an R2R3 MYB TF, AaMYB4 which potentially mediated both artemisinin and flavonoid biosynthesis pathways by activating the expression of AaADS and AaDBR2 in artemisinin biosynthesis pathway and AaUFGT in flavonoid biosynthesis pathway. Overall, our findings would provide an insight into the elucidation of the parallel transcriptional regulation of artemisinin and flavonoid biosynthesis in A. annua L. under UV-B radiation.
Collapse
Affiliation(s)
- Yongpeng Li
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wei Qin
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xueqing Fu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yaojie Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Danial Hassani
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Sadaf-Ilyas Kayani
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lihui Xie
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hang Liu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tiantian Chen
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xin Yan
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Bowen Peng
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kuanyu Wu-Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chen Wang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaofen Sun
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ling Li
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kexuan Tang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
48
|
Chen R, Bu Y, Ren J, Pelot KA, Hu X, Diao Y, Chen W, Zerbe P, Zhang L. Discovery and modulation of diterpenoid metabolism improves glandular trichome formation, artemisinin production and stress resilience in Artemisia annua. THE NEW PHYTOLOGIST 2021; 230:2387-2403. [PMID: 33740256 DOI: 10.1111/nph.17351] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 03/11/2021] [Indexed: 05/27/2023]
Abstract
Plants synthesize diverse diterpenoids with numerous functions in organ development and stress resistance. However, the role of diterpenoids in glandular trichome (GT) development and GT-localized biosynthesis in plants remains unknown. Here, the identification of 10 diterpene synthases (diTPSs) revealed the diversity of diterpenoid biosynthesis in Artemisia annua. Protein-protein interactions (PPIs) between AaKSL1 and AaCPS2 in the plastids highlighted their potential functions in modulating metabolic flux to gibberellins (GAs) or ent-isopimara-7,15-diene-derived metabolites (IDMs) through metabolic engineering. A phenotypic analysis of transgenic plants suggested a complex repertoire of diterpenoids in Artemisia annua with important roles in GT formation, artemisinin accumulation and stress resilience. Metabolic engineering of diterpenoids simultaneously increased the artemisinin yield and stress resistance. Transcriptome and metabolic profiling suggested that bioactive GA4 /GA1 promote GT formation. Collectively, these results expand our knowledge of diterpenoids and show the potential of diterpenoids to simultaneously improve both the GT-localized metabolite yield and stress resistance, in planta.
Collapse
Affiliation(s)
- Ruibing Chen
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Yuejuan Bu
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Junze Ren
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Kyle A Pelot
- Department of Plant Biology, University of California, Davis, CA, 95616, USA
| | - Xiangyang Hu
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Yong Diao
- School of Medicine, Huaqiao University, Quanzhou, 362021, China
| | - Wansheng Chen
- Department of Pharmacy, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Philipp Zerbe
- Department of Plant Biology, University of California, Davis, CA, 95616, USA
| | - Lei Zhang
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai, 200433, China
- Biomedical Innovation R&D Center, School of Medicine, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
49
|
Su X, Liu Y, Han L, Wang Z, Cao M, Wu L, Jiang W, Meng F, Guo X, Yu N, Gui S, Xing S, Peng D. A candidate gene identified in converting platycoside E to platycodin D from Platycodon grandiflorus by transcriptome and main metabolites analysis. Sci Rep 2021; 11:9810. [PMID: 33963244 PMCID: PMC8105318 DOI: 10.1038/s41598-021-89294-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 04/23/2021] [Indexed: 02/06/2023] Open
Abstract
Platycodin D and platycoside E are two triterpenoid saponins in Platycodon grandiflorus, differing only by two glycosyl groups structurally. Studies have shown β-Glucosidase from bacteria can convert platycoside E to platycodin D, indicating the potential existence of similar enzymes in P. grandiflorus. An L9(34) orthogonal experiment was performed to establish a protocol for calli induction as follows: the optimal explant is stems with nodes and the optimum medium formula is MS + NAA 1.0 mg/L + 6-BA 0.5 mg/L to obtain callus for experimental use. The platycodin D, platycoside E and total polysaccharides content between callus and plant organs varied wildly. Platycodin D and total polysaccharide content of calli was found higher than that of leaves. While, platycoside E and total polysaccharide content of calli was found lower than that of leaves. Associating platycodin D and platycoside E content with the expression level of genes involved in triterpenoid saponin biosynthesis between calli and leaves, three contigs were screened as putative sequences of β-Glucosidase gene converting platycoside E to platycodin D. Besides, we inferred that some transcription factors can regulate the expression of key enzymes involved in triterpernoid saponins and polysaccharides biosynthesis pathway of P. grandiflorus. Totally, a candidate gene encoding enzyme involved in converting platycoside E to platycodin D, and putative genes involved in polysaccharide synthesis in P. grandiflorus had been identified. This study will help uncover the molecular mechanism of triterpenoid saponins biosynthesis in P. grandiflorus.
Collapse
Affiliation(s)
- Xinglong Su
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.,Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, 230012, China
| | - Yingying Liu
- College of Humanities and International Education Exchange, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Lu Han
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Zhaojian Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.,Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, 230012, China
| | - Mengyang Cao
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.,Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, 230012, China
| | - Liping Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Weimin Jiang
- College of Life Sciences and Environment, Hengyang Normal University, Hengyang, 421008, Hunan, China
| | - Fei Meng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Xiaohu Guo
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Nianjun Yu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Shuangying Gui
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.,Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Shihai Xing
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.,Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, 230012, China.,Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, 230012, China.
| | - Daiyin Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.,Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, 230012, China.,Synergetic Innovation Center of Anhui Authentic Chinese Medicine Quality Improvement, Hefei, 230038, China.
| |
Collapse
|
50
|
Liang Z, Liang H, Guo Y, Yang D. Cyanidin 3- O-galactoside: A Natural Compound with Multiple Health Benefits. Int J Mol Sci 2021; 22:ijms22052261. [PMID: 33668383 PMCID: PMC7956414 DOI: 10.3390/ijms22052261] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/18/2021] [Accepted: 02/21/2021] [Indexed: 12/16/2022] Open
Abstract
Cyanidin 3-O-galactoside (Cy3Gal) is one of the most widespread anthocyanins that positively impacts the health of animals and humans. Since it is available from a wide range of natural sources, such as fruits (apples and berries in particular), substantial studies were performed to investigate its biosynthesis, chemical stability, natural occurrences and content, extraction methods, physiological functions, as well as potential applications. In this review, we focus on presenting the previous studies on the abovementioned aspects of Cy3Gal. As a conclusion, Cy3Gal shares a common biosynthesis pathway and analogous stability with other anthocyanins. Galactosyltransferase utilizing uridine diphosphate galactose (UDP-galactose) and cyanidin as substrates is unique for Cy3Gal biosynthesis. Extraction employing different methods reveals chokeberry as the most practical natural source for mass-production of this compound. The antioxidant properties and other health effects, including anti-inflammatory, anticancer, antidiabetic, anti-toxicity, cardiovascular, and nervous protective capacities, are highlighted in purified Cy3Gal and in its combination with other polyphenols. These unique properties of Cy3Gal are discussed and compared with other anthocyanins with related structure for an in-depth evaluation of its potential value as food additives or health supplement. Emphasis is laid on the description of its physiological functions confirmed via various approaches.
Collapse
Affiliation(s)
- Zhongxin Liang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Z.L.); (H.L.); (Y.G.)
| | - Hongrui Liang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Z.L.); (H.L.); (Y.G.)
| | - Yizhan Guo
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Z.L.); (H.L.); (Y.G.)
| | - Dong Yang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Z.L.); (H.L.); (Y.G.)
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
- Xinghua Industrial Research Centre for Food Science and Human Health, China Agricultural University, Xinghua 225700, China
- Correspondence: ; Tel.: +86-10-6273-7129
| |
Collapse
|