1
|
Permanes SR, Leclerc M, Mammeri Y. Spatiotemporal modeling of host-pathogen interactions using level-set method. Comput Biol Med 2025; 193:110340. [PMID: 40412088 DOI: 10.1016/j.compbiomed.2025.110340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 02/26/2025] [Accepted: 05/03/2025] [Indexed: 05/27/2025]
Abstract
Phenotyping host-pathogen interactions is crucial for understanding infectious diseases in plants. Traditionally, this process has relied on visual assessments or manual measurements, which can be subjective and labor-intensive. Recent advances in image processing and mathematical modeling enable the precise and high-throughput phenotyping of plant symptoms. Among many challenges, considering local deformations of symptoms and host tissues is difficult in plant pathology. In this study, we address this question using a level-set method. We propose an innovative approach in plant pathology that allows one to reconstruct the continuous deformation of leaf and lesion contours from daily image sequences of inoculated leaves. We consider pea stipules inoculated by the fungal pathogen Peyronellaea pinodes as an example pathosystem. After extracting lesion and stipule contours from daily visible images, we use the level-set method to track their deformations within image sequences. The visual assessment of model adequacy, along with the Jaccard Index and relative error metrics, demonstrated strong overall performance. Results showed a gradual decrease in model accuracy over time for leaf contours, while lesion contours exhibited a higher relative error on the first targeted date. These findings highlight the robustness of our method while identifying specific challenges in early lesion detection. We finish by discussing the interest in this method based on partial differential equations for the study of host-pathogen interactions, especially the development of original phenotyping methods in plant pathology.
Collapse
Affiliation(s)
- Sheila Rae Permanes
- Laboratoire Amiénois de Mathématique Fondamentale et Appliquée, CNRS UMR 7352, Université de Picardie Jules Verne, 80069 Amiens, France; Department of Mathematics, Caraga State University, Butuan City, Philippines.
| | - Melen Leclerc
- INRAE, Institut Agro, Université de Rennes, IGEPP, 35650 Le Rheu, France.
| | - Youcef Mammeri
- Université Jean Monnet, Institut Camille Jordan UMR5208, CNRS, Ecole Centrale de Lyon, INSA Lyon, Universite Claude Bernard Lyon 1, 42023 Saint-Etienne, France.
| |
Collapse
|
2
|
Baek I, Lim S, Jang JH, Hong SM, Prom LK, Kirubakaran S, Cohen SP, Lakshman D, Kim MS, Meinhardt LW, Park S, Ahn E. Pathogen-specific stomatal responses in cacao leaves to Phytophthora megakarya and Rhizoctonia solani. Sci Rep 2025; 15:10584. [PMID: 40148497 PMCID: PMC11950177 DOI: 10.1038/s41598-025-94859-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 03/17/2025] [Indexed: 03/29/2025] Open
Abstract
Cacao is a globally significant crop, but its production is severely threatened by diseases, particularly Black Pod Rot (BPR) caused by Phytophthora spp. Understanding plant-pathogen interactions, especially stomatal responses, is crucial for disease management. Machine learning offers a powerful, yet largely untapped, approach to analyze and interpret complex plant responses in plant biology and pathology, particularly in the context of plant-pathogen interactions. This study explores the use of machine learning to analyze and interpret complex stomatal responses in cacao leaves during pathogen interactions. We investigated the impact of the black pod rot pathogen (Phytophthora megakarya) and a non-pathogenic fungus (Rhizoctonia solani) on stomatal aperture in two cacao genotypes (SCA6 and Pound7) under varying light conditions. Image analysis revealed diverse stomatal responses, including no change, opening, and closure, that were influenced by the interplay of genotype, pathogen isolate, and light conditions. Notably, SCA6 exhibited stomatal opening in response to P. megakarya specifically under a 12-hour light/dark cycle, suggesting a light-dependent activation of pathogen virulence factors. In contrast, Pound7 displayed stomatal closure in response to both P. megakarya and R. solani, indicating the potential recognition of conserved Pathogen-Associated Molecular Patterns (PAMPs) and a broader defense response. To further analyze these interactions, we employed machine learning techniques to predict stomatal area size. Our analysis identified key morphological features, with size-related traits being the strongest predictors. Shape-related traits also played a significant role when size-related traits were excluded from the prediction. This study demonstrates the power of combining image analysis and machine learning for discerning subtle, multivariate traits in stomatal dynamics during plant-pathogen interactions, paving the way for future applications in high-throughput disease phenotyping and the development of resistant crop varieties.
Collapse
Affiliation(s)
- Insuck Baek
- Environmental Microbial and Food Safety Laboratory, Agricultural Research Service, United States, Department of Agriculture, Beltsville, MD, 20705, USA
| | - Seunghyun Lim
- Sustainable Perennial Crops Laboratory, Agricultural Research Service, United States, Department of Agriculture, Beltsville, MD, 20705, USA
| | - Jae Hee Jang
- Sustainable Perennial Crops Laboratory, Agricultural Research Service, United States, Department of Agriculture, Beltsville, MD, 20705, USA
| | - Seok Min Hong
- Environmental Microbial and Food Safety Laboratory, Agricultural Research Service, United States, Department of Agriculture, Beltsville, MD, 20705, USA
- Department of Civil Urban Earth and Environmental Engineering, Ulsan National Institute of Science and Technology, UNIST-gil 50, Ulsan, 44919, Republic of Korea
| | - Louis K Prom
- Insect Control and Cotton Disease Research, Agricultural Research Service, Southern Plains Agricultural Research Center, United States, Department of Agriculture, College Station, TX, 77845, USA
| | - Silvas Kirubakaran
- Grape Genetics Research Unit, Agricultural Research Service, United States, Department of Agriculture, Geneva, NY, 14456, USA
| | - Stephen P Cohen
- Sustainable Perennial Crops Laboratory, Agricultural Research Service, United States, Department of Agriculture, Beltsville, MD, 20705, USA
| | - Dilip Lakshman
- Molecular Plant Pathology Laboratory, Agricultural Research Service, United States, Department of Agriculture, Beltsville, MD, 20705, USA
| | - Moon S Kim
- Environmental Microbial and Food Safety Laboratory, Agricultural Research Service, United States, Department of Agriculture, Beltsville, MD, 20705, USA
| | - Lyndel W Meinhardt
- Sustainable Perennial Crops Laboratory, Agricultural Research Service, United States, Department of Agriculture, Beltsville, MD, 20705, USA
| | - Sunchung Park
- Sustainable Perennial Crops Laboratory, Agricultural Research Service, United States, Department of Agriculture, Beltsville, MD, 20705, USA
| | - Ezekiel Ahn
- Sustainable Perennial Crops Laboratory, Agricultural Research Service, United States, Department of Agriculture, Beltsville, MD, 20705, USA.
| |
Collapse
|
3
|
Gonzalez ME, Castagno LN, Sannazzaro AI, Rios C, Gudesblat GE, Altabe SG, Bedoya-Castañeda DC, Estrella MJ, Pieckenstain FL. Description of Pseudomonas gorinensis sp. nov., a plant growth-promoting bacterium that modulates stomatal aperture. Int J Syst Evol Microbiol 2025; 75. [PMID: 40162554 DOI: 10.1099/ijsem.0.006739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025] Open
Abstract
A polyphasic taxonomic approach was used to characterize a previously isolated plant growth-promoting Pseudomonas strain designated as NT2T and a Pseudomonas strain designated as TKP (JCM 19688), both of which were found to manipulate plant stomatal immunity. Both strains shared 100% 16S rRNA gene sequence identity. Phylogenetic trees based on single and concatenated sequences of the housekeeping genes gyrB, rpoB, rpoD and 16S rRNA, as well as whole-genome sequences, clustered NT2T and TKP together, clearly separated from the closest Pseudomonas spp., which belonged to the Pseudomonas fluorescens complex. NT2T showed average nucleotide identities (ANIs) of 87.8% (ANIb) and 89.9% (ANIm) and a 37.4% digital DNA-DNA hybridization score with Pseudomonas grimontii DSM 17515T, the species with the highest genome sequence similarity. On the contrary, the comparison between NT2T and TKP showed very high ANI (ANIb=99.67, ANIm=99.93) and digital DNA-DNA hybridization scores (98.90%). NT2T and TKP differed from closely related species in relation to arginine dihydrolase activity, aesculin and gelatin hydrolysis, N-acetyl-d-glucosamine, maltose, adipate, phenylacetate, p-hydroxy-phenylacetic acid, Tween 40, glycyl-l-proline, d-maltose, d-galactonic acid lactone, α-hydroxy butyric acid, myo-inositol, sucrose, l-histidine, d-malic acid, l-rhamnose and acetic acid assimilation, NaCl-tolerance range and pyocyanin production (fluorescence on King A medium). The major fatty acids in NT2T and TKP were C16 : 0, C16 : 1 ω7t and C18 : 1 ω7c. The results of this polyphasic study allowed the genotypic and phenotypic differentiation of NT2T and TKP from the closest Pseudomonas and confirmed that these strains represent a novel species, for which the name Pseudomonas gorinensis sp. nov. is proposed with NT2T (DSM 114757T=LMG 32751T) as the type strain.
Collapse
Affiliation(s)
- María Elisa Gonzalez
- Instituto Tecnológico de Chascomús, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)/Universidad Nacional de San Martín, Av. Intendente Marino km 8.2 (7130) Chascomús, Provincia de Buenos Aires, Argentina
| | - Luis Nazareno Castagno
- Instituto Tecnológico de Chascomús, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)/Universidad Nacional de San Martín, Av. Intendente Marino km 8.2 (7130) Chascomús, Provincia de Buenos Aires, Argentina
| | - Analía Inés Sannazzaro
- Instituto Tecnológico de Chascomús, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)/Universidad Nacional de San Martín, Av. Intendente Marino km 8.2 (7130) Chascomús, Provincia de Buenos Aires, Argentina
| | - Camila Rios
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Instituto de Biociencias, Biotecnología y Biología Traslacional, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Buenos Aires, Int. Güiraldes 2160 - Ciudad Universitaria (1428) CABA, Argentina
| | - Gustavo Eduardo Gudesblat
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Instituto de Biociencias, Biotecnología y Biología Traslacional, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Buenos Aires, Int. Güiraldes 2160 - Ciudad Universitaria (1428) CABA, Argentina
| | - Silvia Graciela Altabe
- Instituto de Biología Molecular y Celular de Rosario, CONICET/ Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Ocampo y Esmeralda (S2000FHQ), Rosario, Provincia de Santa Fe, Argentina
| | - Diana Carolina Bedoya-Castañeda
- Instituto Tecnológico de Chascomús, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)/Universidad Nacional de San Martín, Av. Intendente Marino km 8.2 (7130) Chascomús, Provincia de Buenos Aires, Argentina
| | - María Julia Estrella
- Instituto Tecnológico de Chascomús, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)/Universidad Nacional de San Martín, Av. Intendente Marino km 8.2 (7130) Chascomús, Provincia de Buenos Aires, Argentina
| | - Fernando Luis Pieckenstain
- Instituto Tecnológico de Chascomús, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)/Universidad Nacional de San Martín, Av. Intendente Marino km 8.2 (7130) Chascomús, Provincia de Buenos Aires, Argentina
| |
Collapse
|
4
|
Cai XL, Zhang W, Yu H, Wen YQ, Feng JY. The Xanthomonas fragariae effector XopK suppresses stomatal immunity by perturbing abscisic acid accumulation and ABA-transciptional responses in strawberry. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109368. [PMID: 39721188 DOI: 10.1016/j.plaphy.2024.109368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/25/2024] [Accepted: 11/28/2024] [Indexed: 12/28/2024]
Abstract
Xanthomonas fragariae (Xaf) is the cause of strawberry crown dry cavity rot and strawberry leaf angular spots. Despite having a long evolutionary history with strawberries, the plant-pathogen interaction is poorly understood. Pathogenicity for most plant pathogens is mostly dependent on the type-III secretion system, which introduces virulence type III effectors (T3Es) into eukaryotic host cells. Understanding how effector proteins escape from plant surveillance is important for plant breeding and resistance deployment. In this study, a core conserved secreted effector called Xanthomonas Outer Protein K (XopK) was identified in Xaf strain YL19. Transgenic strawberries expressing XopK exhibit increased susceptibility to Xaf YL19, and this was associated with weakened stomatal immunity. Additionally, abscisic acid (ABA) accumulation and signaling were significantly suppressed in XopK-OX strawberry plants. Overexpression of XopK also inhibited ABA- and methyl jasmonate (MeJA)-induced stomatal closure in strawberry leaves. Moreover, endogenous ABA is critical for Xaf-induced stomatal closure. These results suggested that Xaf YL19 uses XopK to suppress ABA signaling to disrupt stomatal closure allowing bacterial colonization for disease development.
Collapse
Affiliation(s)
- Xiao-Lin Cai
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Protected Horticulture Engineering in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Wenyao Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Protected Horticulture Engineering in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Hongwei Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Protected Horticulture Engineering in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Ying-Qiang Wen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Protected Horticulture Engineering in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Jia-Yue Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Protected Horticulture Engineering in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, China.
| |
Collapse
|
5
|
Tarkowski ŁP, Signorelli S. No free entry: stomatal state as decision maker in defining stress response strategies. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:205-209. [PMID: 39786163 PMCID: PMC11714746 DOI: 10.1093/jxb/erae447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 10/29/2024] [Indexed: 01/12/2025]
Abstract
This article comments on:
Maleki FA, Seidl-Adams I, Felton GW, Kersch-Becker MF, Tumlinson JH. 2024. Stomata: gatekeepers of uptake and defense signaling by green leaf volatiles in maize. Journal of Experimental Botany 75, 6872–6887. https://doi.org/10.1093/jxb/erae401.
Collapse
Affiliation(s)
| | - Santiago Signorelli
- Food and Plant Biology Group, School of Agriculture, Universidad de la República, Montevideo, 12900, Uruguay
- School of Molecular Sciences, University of Western Australia, Crawley, WA 6009,Australia
| |
Collapse
|
6
|
Jian Y, Liu Z, He P, Shan L. An emerging connected view: Phytocytokines in regulating stomatal, apoplastic, and vascular immunity. CURRENT OPINION IN PLANT BIOLOGY 2024; 82:102623. [PMID: 39236593 DOI: 10.1016/j.pbi.2024.102623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/22/2024] [Accepted: 08/11/2024] [Indexed: 09/07/2024]
Abstract
Foliar pathogens exploit natural openings, such as stomata and hydathodes, to invade plants, multiply in the apoplast, and potentially spread through the vasculature. To counteract these threats, plants dynamically regulate stomatal movement and apoplastic water potential, influencing hydathode guttation and water transport. This review highlights recent advances in understanding how phytocytokines, plant small peptides with immunomodulatory functions, regulate these processes to limit pathogen entry and proliferation. Additionally, we discuss the coordinated actions of stomatal movement, hydathode guttation, and the vascular system in restricting pathogen entry, multiplication, and dissemination. We also explore future perspectives and key questions arising from these findings, aiming to advance our knowledge of plant immunity and improve disease resistance strategies.
Collapse
Affiliation(s)
- Yunqing Jian
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Zunyong Liu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ping He
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Libo Shan
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
7
|
Ciereszko I, Kuźniak E. Photorespiratory Metabolism and Its Regulatory Links to Plant Defence Against Pathogens. Int J Mol Sci 2024; 25:12134. [PMID: 39596201 PMCID: PMC11595106 DOI: 10.3390/ijms252212134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/09/2024] [Accepted: 11/10/2024] [Indexed: 11/28/2024] Open
Abstract
When plants face biotic stress, the induction of defence responses imposes a massive demand for carbon and energy resources, which could decrease the reserves allocated towards growth. These growth-defence trade-offs have important implications for plant fitness and productivity and influence the outcome of plant-pathogen interactions. Biotic stress strongly affects plant cells' primary metabolism, including photosynthesis and respiration, the main source of energy and carbon skeletons for plant growth, development, and defence. Although the nature of photosynthetic limitations imposed by pathogens is variable, infection often increases photorespiratory pressure, generating conditions that promote ribulose-1,5-bisphosphate oxygenation, leading to a metabolic shift from assimilation to photorespiration. Photorespiration, the significant metabolic flux following photosynthesis, protects the photosynthetic apparatus from photoinhibition. However, recent studies reveal that its role is far beyond photoprotection. The intermediates of the photorespiratory cycle regulate photosynthesis, and photorespiration interacts with the metabolic pathways of nitrogen and sulphur, shaping the primary metabolism for stress responses. This work aims to present recent insights into the integration of photorespiration within the network of primary metabolism under biotic stress. It also explores the potential implications of regulating photosynthetic-photorespiratory metabolism for plant defence against bacterial and fungal pathogens.
Collapse
Affiliation(s)
- Iwona Ciereszko
- Department of Biology and Plant Ecology, Faculty of Biology, University of Bialystok, Ciolkowskiego 1J, 15-245 Bialystok, Poland
| | - Elżbieta Kuźniak
- Department of Plant Physiology and Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| |
Collapse
|
8
|
Dang T, Piro L, Pasini C, Santelia D. Starch metabolism in guard cells: At the intersection of environmental stimuli and stomatal movement. PLANT PHYSIOLOGY 2024; 196:1758-1777. [PMID: 39115378 PMCID: PMC11531838 DOI: 10.1093/plphys/kiae414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/19/2024] [Indexed: 11/05/2024]
Abstract
Starch metabolism in guard cells plays a central role in regulating stomatal movement in response to light, elevated ambient CO2 and potentially other abiotic and biotic factors. Here, we discuss how various guard cell signal transduction pathways converge to promote rearrangements in guard cell starch metabolism for efficient stomatal responses, an essential physiological process that sustains plant productivity and stress tolerance. We suggest manipulation of guard cell starch dynamics as a previously overlooked strategy to improve stomatal behavior under changing environmental conditions.
Collapse
Affiliation(s)
- Trang Dang
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zurich, 8092 Zurich, Switzerland
| | - Lucia Piro
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zurich, 8092 Zurich, Switzerland
| | - Carlo Pasini
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zurich, 8092 Zurich, Switzerland
| | - Diana Santelia
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
9
|
Wang M, Kang S, Wang Z, Jiang S, Yang Z, Xie Z, Tang H. Genome-wide analysis of the PYL-PP2C-SnRK2s family in the ABA signaling pathway of pitaya reveals its expression profiles under canker disease stress. BMC Genomics 2024; 25:749. [PMID: 39090531 PMCID: PMC11295335 DOI: 10.1186/s12864-024-10665-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Abscisic acid (ABA) plays a crucial role in seed dormancy, germination, and growth, as well as in regulating plant responses to environmental stresses during plant growth and development. However, detailed information about the PYL-PP2C-SnRK2s family, a central component of the ABA signaling pathway, is not known in pitaya. RESULTS In this study, we identified 19 pyrabactin resistance-likes (PYLs), 70 type 2 C protein phosphatases (PP2Cs), and 14 SNF1-related protein kinase 2s (SnRK2s) from pitaya. In pitaya, tandem duplication was the primary mechanism for amplifying the PYL-PP2C-SnRK2s family. Co-linearity analysis revealed more homologous PYL-PP2C-SnRK2s gene pairs located in collinear blocks between pitaya and Beta vulgaris L. than that between pitaya and Arabidopsis. Transcriptome analysis showed that the PYL-PP2C-SnRK2s gene family plays a role in pitaya's response to infection by N. dimidiatum. By spraying ABA on pitaya and subsequently inoculating it with N. dimidiatum, we conducted qRT-PCR experiments to observe the response of the PYL-PP2C-SnRK2s gene family and disease resistance-related genes to ABA. These treatments significantly enhanced pitaya's resistance to pitaya canker. Further protein interaction network analysis helped us identify five key PYLs genes that were upregulated during the interaction between pitaya and N. dimidiatum, and their expression patterns were verified by qRT-PCR. Subcellular localization analysis revealed that the PYL (Hp1879) gene is primarily distributed in the nucleus. CONCLUSION This study enhances our understanding of the response of PYL-PP2C-SnRK2s to ABA and also offers a new perspective on pitaya disease resistance.
Collapse
Affiliation(s)
- Meng Wang
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Shaoling Kang
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Zhouwen Wang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Senrong Jiang
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Zhuangjia Yang
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Zhan Xie
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Hua Tang
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, 572025, China.
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China.
| |
Collapse
|
10
|
Melotto M, Fochs B, Jaramillo Z, Rodrigues O. Fighting for Survival at the Stomatal Gate. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:551-577. [PMID: 39038249 DOI: 10.1146/annurev-arplant-070623-091552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Stomata serve as the battleground between plants and plant pathogens. Plants can perceive pathogens, inducing closure of the stomatal pore, while pathogens can overcome this immune response with their phytotoxins and elicitors. In this review, we summarize new discoveries in stomata-pathogen interactions. Recent studies have shown that stomatal movement continues to occur in a close-open-close-open pattern during bacterium infection, bringing a new understanding of stomatal immunity. Furthermore, the canonical pattern-triggered immunity pathway and ion channel activities seem to be common to plant-pathogen interactions outside of the well-studied Arabidopsis-Pseudomonas pathosystem. These developments can be useful to aid in the goal of crop improvement. New technologies to study intact leaves and advances in available omics data sets provide new methods for understanding the fight at the stomatal gate. Future studies should aim to further investigate the defense-growth trade-off in relation to stomatal immunity, as little is known at this time.
Collapse
Affiliation(s)
- Maeli Melotto
- Department of Plant Sciences, University of California, Davis, California, USA;
| | - Brianna Fochs
- Department of Plant Sciences, University of California, Davis, California, USA;
- Plant Biology Graduate Group, University of California, Davis, California, USA
| | - Zachariah Jaramillo
- Department of Plant Sciences, University of California, Davis, California, USA;
- Plant Biology Graduate Group, University of California, Davis, California, USA
| | - Olivier Rodrigues
- Unité de Recherche Physiologie, Pathologie et Génétique Végétales, Université de Toulouse, INP-PURPAN, Toulouse, France
| |
Collapse
|
11
|
Chien CC, Chang CH, Ting HM. A novel lectin receptor kinase gene, AtG-LecRK-I.2, enhances bacterial pathogen resistance through regulation of stomatal immunity in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 343:112071. [PMID: 38508495 DOI: 10.1016/j.plantsci.2024.112071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/24/2024] [Accepted: 03/17/2024] [Indexed: 03/22/2024]
Abstract
The S-locus lectin receptor kinases (G-LecRKs) have been suggested as receptors for microbe/damage-associated molecular patterns (MAMPs/DAMPs) and to be involved in the pathogen defense responses, but the functions of most G-LecRKs in biotic stress response have not been characterized. Here, we identified a member of this family, G-LecRK-I.2, that positively regulates flg22- and Pseudomonas syringae pv. tomato (Pst) DC3000-induced stomatal closure. G-LecRK-I.2 was rapidly phosphorylated under flg22 treatment and could interact with the FLS2/BAK1 complex. Two T-DNA insertion lines, glecrk-i.2-1 and glecrk-i.2-2, had lower levels of reactive oxygen species (ROS) and nitric oxide (NO) production in guard cells, as compared with the wild-type Col-0, under Pst DC3000 infection. Also, the immunity marker genes CBP60g and PR1 were induced at lower levels under Pst DC3000 hrcC- infection in glecrk-i.2-1 and glecrk-i.2-2. The GUS reporter system also revealed that G-LecRK-I.2 was expressed only in guard cells. We also found that G-LecRK-I.2 could interact H+-ATPase AHA1 to regulate H+-ATPase activity in the guard cells. Taken together, our results show that G-LecRK-I.2 plays an important role in regulating stomatal closure under flg22 and Pst DC3000 treatments and in ROS and NO signaling specifically in guard cells.
Collapse
Affiliation(s)
- Chih-Cheng Chien
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei, Taiwan; Institute of Plant Biology, National Taiwan University, Taipei, Taiwan; Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan.
| | - Chuan-Hsin Chang
- Research Center for Chinese Herbal Medicine, Graduate Institute of Healthy Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
| | - Hieng-Ming Ting
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
12
|
Roussin-Léveillée C, Mackey D, Ekanayake G, Gohmann R, Moffett P. Extracellular niche establishment by plant pathogens. Nat Rev Microbiol 2024; 22:360-372. [PMID: 38191847 PMCID: PMC11593749 DOI: 10.1038/s41579-023-00999-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2023] [Indexed: 01/10/2024]
Abstract
The plant extracellular space, referred to as the apoplast, is inhabited by a variety of microorganisms. Reflecting the crucial nature of this compartment, both plants and microorganisms seek to control, exploit and respond to its composition. Upon sensing the apoplastic environment, pathogens activate virulence programmes, including the delivery of effectors with well-established roles in suppressing plant immunity. We posit that another key and foundational role of effectors is niche establishment - specifically, the manipulation of plant physiological processes to enrich the apoplast in water and nutritive metabolites. Facets of plant immunity counteract niche establishment by restricting water, nutrients and signals for virulence activation. The complex competition to control and, in the case of pathogens, exploit the apoplast provides remarkable insights into the nature of virulence, host susceptibility, host defence and, ultimately, the origin of phytopathogenesis. This novel framework focuses on the ecology of a microbial niche and highlights areas of future research on plant-microorganism interactions.
Collapse
Affiliation(s)
| | - David Mackey
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH, USA.
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA.
- Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, USA.
| | - Gayani Ekanayake
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH, USA
| | - Reid Gohmann
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH, USA
| | - Peter Moffett
- Centre SÈVE, Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| |
Collapse
|
13
|
Song N, Wu J. NaWRKY70 is a key regulator of Nicotiana attenuata resistance to Alternaria alternata through regulation of phytohormones and phytoalexins biosynthesis. THE NEW PHYTOLOGIST 2024; 242:1289-1306. [PMID: 38426573 DOI: 10.1111/nph.19647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/12/2024] [Indexed: 03/02/2024]
Abstract
Jasmonate (JA) and abscisic acid (ABA) are two major phytohormones involved in pathogen resistance. However, how their biosynthesis is regulated is not well understood. We silenced NaWRKY70 in wild tobacco Nicotiana attenuata and determined its role in regulating genes involved in the production of JA, ABA and the phytoalexin capsidiol in response to the fungal pathogen Alternaria alternata using techniques including electrophoretic mobility shift, chromatin immunoprecipitation, transient overexpression and virus-induced gene silencing. Silencing NaWRKY70 dramatically reduced both basal and A. alternata-induced jasmonoyl-isoleucine (JA-Ile) and ABA. Further evidence showed that NaWRKY70 directly binds to the W-boxes of the promoters of NaAOS and NaJAR4 (JA biosynthesis), NaNCED1 and NaXD1-like (ABA biosynthesis), and NaMPK4 (ABA signaling) to activate their expression, while binding but repressing the expression of NaCYP707A4-like3 (ABA degradation). Additionally, NaWRKY70 regulates capsidiol production through its key enzyme genes NaEASs and NaEAHs, and interacts with its regulator NaERF2-like to enhance their expression, whereas ABA negatively regulates capsidiol biosynthesis. Our results highlight the key role of NaWRKY70 in controlling both JA-Ile and ABA production, as well as capsidiol production, thus providing new insight into the defense mechanism of plant resistance to A. alternata.
Collapse
Affiliation(s)
- Na Song
- Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Jinsong Wu
- Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| |
Collapse
|
14
|
Alassimone J, Praz C, Lorrain C, De Francesco A, Carrasco-López C, Faino L, Shen Z, Meile L, Sánchez-Vallet A. The Zymoseptoria tritici Avirulence Factor AvrStb6 Accumulates in Hyphae Close to Stomata and Triggers a Wheat Defense Response Hindering Fungal Penetration. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:432-444. [PMID: 38265007 DOI: 10.1094/mpmi-11-23-0181-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Zymoseptoria tritici, the causal agent of Septoria tritici blotch, is one of Europe's most damaging wheat pathogens, causing significant economic losses. Genetic resistance is a common strategy to control the disease, Stb6 being a resistance gene used for more than 100 years in Europe. This study investigates the molecular mechanisms underlying Stb6-mediated resistance. Utilizing confocal microscopy imaging, we determined that Z. tritici epiphytic hyphae mainly accumulate the corresponding avirulence factor AvrStb6 in close proximity to stomata. Consequently, the progression of AvrStb6-expressing avirulent strains is hampered during penetration. The fungal growth inhibition co-occurs with a transcriptional reprogramming in wheat characterized by an induction of immune responses, genes involved in stomatal regulation, and cell wall-related genes. Overall, we shed light on the gene-for-gene resistance mechanisms in the wheat-Z. tritici pathosystem at the cytological and transcriptomic level, and our results highlight that stomatal penetration is a critical process for pathogenicity and resistance. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Julien Alassimone
- Plant Pathology, Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | - Coraline Praz
- Centro de Biotecnología y Genómica de Plantas (CBGP)/Universidad Politécnica de Madrid-Instituto Nacional de Investigación Agraria y Alimentaria/Centro Superior de Investigaciones Científicas (INIA/CSIC), Campus de Montegancedo, Pozuelo de Alarcón (Madrid), Spain
| | - Cécile Lorrain
- Plant Pathology, Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | - Agustina De Francesco
- Centro de Biotecnología y Genómica de Plantas (CBGP)/Universidad Politécnica de Madrid-Instituto Nacional de Investigación Agraria y Alimentaria/Centro Superior de Investigaciones Científicas (INIA/CSIC), Campus de Montegancedo, Pozuelo de Alarcón (Madrid), Spain
| | - Cristian Carrasco-López
- Centro de Biotecnología y Genómica de Plantas (CBGP)/Universidad Politécnica de Madrid-Instituto Nacional de Investigación Agraria y Alimentaria/Centro Superior de Investigaciones Científicas (INIA/CSIC), Campus de Montegancedo, Pozuelo de Alarcón (Madrid), Spain
| | - Luigi Faino
- Environmental Biology, Sapienza University of Rome, Roma, Italy
| | - Ziqi Shen
- Plant Pathology, Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | - Lukas Meile
- Centro de Biotecnología y Genómica de Plantas (CBGP)/Universidad Politécnica de Madrid-Instituto Nacional de Investigación Agraria y Alimentaria/Centro Superior de Investigaciones Científicas (INIA/CSIC), Campus de Montegancedo, Pozuelo de Alarcón (Madrid), Spain
| | - Andrea Sánchez-Vallet
- Plant Pathology, Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
- Centro de Biotecnología y Genómica de Plantas (CBGP)/Universidad Politécnica de Madrid-Instituto Nacional de Investigación Agraria y Alimentaria/Centro Superior de Investigaciones Científicas (INIA/CSIC), Campus de Montegancedo, Pozuelo de Alarcón (Madrid), Spain
| |
Collapse
|
15
|
Liu Y, Hou S. Bacteria manipulate host cells with channel-forming effectors. Trends Microbiol 2024; 32:8-9. [PMID: 37953153 DOI: 10.1016/j.tim.2023.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/14/2023]
Abstract
Bacterial pathogens deliver effectors into host cells mostly to manipulate signaling and metabolic molecules, thereby subverting host immunity. A recent study by Nomura et al. demonstrates that certain effectors create membrane channels in host cells, enabling bacteria to access water and solutes for multiplication.
Collapse
Affiliation(s)
- Yukun Liu
- College of Forestry, Southwest Forestry University, 300 Bailong Si, Kunming, Yunnan 650224, China.
| | - Shuguo Hou
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, Shandong 261325, China.
| |
Collapse
|
16
|
Wu H, He B, Chen B, Liu A. Toxicity of polyvinyl chloride microplastics on Brassica rapa. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122435. [PMID: 37625773 DOI: 10.1016/j.envpol.2023.122435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 08/27/2023]
Abstract
Microplastics (MPs) can pose high risk to living organisms due to their very small sizes. This study selected polyvinyl chloride MPs (PVC-MPs) which experienced up to 1000 h UV light radiation to investigate the influence of PVC-MPs on Brassica rapa growth. The outcomes showed the presence of PVC-MPs inhibited the plants' growth. The stem length, root length, fresh weight and dry weight of plants exposed to PVC-MPs after 30 days reduced by 45.9%, 35.2%, 26.1% and 5.2%, respectively. The chlorophyll, soluble sugar, malondialdehyde (MDA) and catalase (CAT) concentrations for plants exposed to PVC-MPs after 30 days increased by 25.9%, 135.7%, 88.7% and 47.1% respectively. It was also observed that PVC-MPs blocked the plants' leaf stomata and even entered plants' bodies. This might lead to PVC-MPs movement within the plants and influence plants' growth. The transcriptomic analysis results indicated that exposure to PVC-MPs up-regulated metabolic pathway of plant hormone signal transduction of the plants and down-regulated pathway network of ribosome. However, the research outcomes also showed that the PVC-MPs' locations in soil (located at the upper layers or at lower layers) and the UV light radiation time did not exert significantly different influences on inhibiting plants' growth. This can be attributed to PVC-MPs' small sizes and not much decomposition under light radiation. These imply that longer light radiation time and different particle sizes should be included into future research in order to further explore photodegraded MPs' toxicity effects on plants.
Collapse
Affiliation(s)
- Hao Wu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Beibei He
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Bocheng Chen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - An Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
17
|
Brazel AJ, Fattorini R, McCarthy J, Franzen R, Rümpler F, Coupland G, Ó’Maoiléidigh DS. AGAMOUS mediates timing of guard cell formation during gynoecium development. PLoS Genet 2023; 19:e1011000. [PMID: 37819989 PMCID: PMC10593234 DOI: 10.1371/journal.pgen.1011000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 10/23/2023] [Accepted: 09/27/2023] [Indexed: 10/13/2023] Open
Abstract
In Arabidopsis thaliana, stomata are composed of two guard cells that control the aperture of a central pore to facilitate gas exchange between the plant and its environment, which is particularly important during photosynthesis. Although leaves are the primary photosynthetic organs of flowering plants, floral organs are also photosynthetically active. In the Brassicaceae, evidence suggests that silique photosynthesis is important for optimal seed oil content. A group of transcription factors containing MADS DNA binding domains is necessary and sufficient to confer floral organ identity. Elegant models, such as the ABCE model of flower development and the floral quartet model, have been instrumental in describing the molecular mechanisms by which these floral organ identity proteins govern flower development. However, we lack a complete understanding of how the floral organ identity genes interact with the underlying leaf development program. Here, we show that the MADS domain transcription factor AGAMOUS (AG) represses stomatal development on the gynoecial valves, so that maturation of stomatal complexes coincides with fertilization. We present evidence that this regulation by AG is mediated by direct transcriptional repression of a master regulator of the stomatal lineage, MUTE, and show data that suggests this interaction is conserved among several members of the Brassicaceae. This work extends our understanding of the mechanisms underlying floral organ formation and provides a framework to decipher the mechanisms that control floral organ photosynthesis.
Collapse
Affiliation(s)
- Ailbhe J. Brazel
- Department of Biology, Maynooth University, Ireland
- The Max Plank Institute for Plant Breeding Research, Cologne, Germany
| | - Róisín Fattorini
- Department of Biochemistry and Systems Biology, The University of Liverpool, United Kingdom
| | - Jesse McCarthy
- Department of Biochemistry and Systems Biology, The University of Liverpool, United Kingdom
| | - Rainer Franzen
- The Max Plank Institute for Plant Breeding Research, Cologne, Germany
| | - Florian Rümpler
- Department of Genetics, Friedrich Schiller University Jena, Jena, Germany
| | - George Coupland
- The Max Plank Institute for Plant Breeding Research, Cologne, Germany
| | - Diarmuid S. Ó’Maoiléidigh
- Department of Biology, Maynooth University, Ireland
- The Max Plank Institute for Plant Breeding Research, Cologne, Germany
- Department of Biochemistry and Systems Biology, The University of Liverpool, United Kingdom
| |
Collapse
|
18
|
Meddya S, Meshram S, Sarkar D, S R, Datta R, Singh S, Avinash G, Kumar Kondeti A, Savani AK, Thulasinathan T. Plant Stomata: An Unrealized Possibility in Plant Defense against Invading Pathogens and Stress Tolerance. PLANTS (BASEL, SWITZERLAND) 2023; 12:3380. [PMID: 37836120 PMCID: PMC10574665 DOI: 10.3390/plants12193380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/12/2023] [Accepted: 09/12/2023] [Indexed: 10/15/2023]
Abstract
Stomata are crucial structures in plants that play a primary role in the infection process during a pathogen's attack, as they act as points of access for invading pathogens to enter host tissues. Recent evidence has revealed that stomata are integral to the plant defense system and can actively impede invading pathogens by triggering plant defense responses. Stomata interact with diverse pathogen virulence factors, granting them the capacity to influence plant susceptibility and resistance. Moreover, recent studies focusing on the environmental and microbial regulation of stomatal closure and opening have shed light on the epidemiology of bacterial diseases in plants. Bacteria and fungi can induce stomatal closure using pathogen-associated molecular patterns (PAMPs), effectively preventing entry through these openings and positioning stomata as a critical component of the plant's innate immune system; however, despite this defense mechanism, some microorganisms have evolved strategies to overcome stomatal protection. Interestingly, recent research supports the hypothesis that stomatal closure caused by PAMPs may function as a more robust barrier against pathogen infection than previously believed. On the other hand, plant stomatal closure is also regulated by factors such as abscisic acid and Ca2+-permeable channels, which will also be discussed in this review. Therefore, this review aims to discuss various roles of stomata during biotic and abiotic stress, such as insects and water stress, and with specific context to pathogens and their strategies for evading stomatal defense, subverting plant resistance, and overcoming challenges faced by infectious propagules. These pathogens must navigate specific plant tissues and counteract various constitutive and inducible resistance mechanisms, making the role of stomata in plant defense an essential area of study.
Collapse
Affiliation(s)
- Sandipan Meddya
- School of Agriculture, Lovely Professional University, Phagwara 144411, India
| | - Shweta Meshram
- School of Agriculture, Lovely Professional University, Phagwara 144411, India
| | - Deepranjan Sarkar
- Department of Agriculture, Integral Institute of Agricultural Science and Technology, Integral University, Lucknow 226026, India;
| | - Rakesh S
- Department of Soil Science and Agricultural Chemistry, Uttar Banga Krishi Viswavidyalaya, Pundibari, Cooch Behar 736165, India;
| | - Rahul Datta
- Department of Geology and Pedology, Faculty of Forestry and Wood Technology, Mendel University in Brno, 61300 Brno, Czech Republic;
| | - Sachidanand Singh
- Department of Biotechnology, Smt. S. S. Patel Nootan Science and Commerce College, Sankalchand Patel University, Visnagar 384315, India;
| | - Gosangi Avinash
- Department of Biochemistry, Punjab Agricultural University, Ludhiana 141027, India;
| | - Arun Kumar Kondeti
- Department of Agronomy, Acharya N.G. Ranga Agricultural University, Regional Agricultural Research Station, Nandyal 518502, India;
| | - Ajit Kumar Savani
- Department of Plant Pathology, Assam Agricultural University, Jorhat 785013, India;
| | - Thiyagarajan Thulasinathan
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India;
| |
Collapse
|
19
|
Breen S, McLellan H, Birch PRJ, Gilroy EM. Tuning the Wavelength: Manipulation of Light Signaling to Control Plant Defense. Int J Mol Sci 2023; 24:ijms24043803. [PMID: 36835216 PMCID: PMC9958957 DOI: 10.3390/ijms24043803] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
The growth-defense trade-off in plants is a phenomenon whereby plants must balance the allocation of their resources between developmental growth and defense against attack by pests and pathogens. Consequently, there are a series of points where growth signaling can negatively regulate defenses and where defense signaling can inhibit growth. Light perception by various photoreceptors has a major role in the control of growth and thus many points where it can influence defense. Plant pathogens secrete effector proteins to manipulate defense signaling in their hosts. Evidence is emerging that some of these effectors target light signaling pathways. Several effectors from different kingdoms of life have converged on key chloroplast processes to take advantage of regulatory crosstalk. Moreover, plant pathogens also perceive and react to light in complex ways to regulate their own growth, development, and virulence. Recent work has shown that varying light wavelengths may provide a novel way of controlling or preventing disease outbreaks in plants.
Collapse
Affiliation(s)
- Susan Breen
- Division of Plant Sciences, University of Dundee, At James Hutton Institute, Errol Road, Invergowrie, Dundee DD2 5DA, UK
| | - Hazel McLellan
- Division of Plant Sciences, University of Dundee, At James Hutton Institute, Errol Road, Invergowrie, Dundee DD2 5DA, UK
| | - Paul R. J. Birch
- Division of Plant Sciences, University of Dundee, At James Hutton Institute, Errol Road, Invergowrie, Dundee DD2 5DA, UK
- Cell and Molecular Sciences, James Hutton Institute, Errol Road, Invergowrie, Dundee DD2 5DA, UK
| | - Eleanor M. Gilroy
- Cell and Molecular Sciences, James Hutton Institute, Errol Road, Invergowrie, Dundee DD2 5DA, UK
- Correspondence: ; Tel.: +44-1382568827
| |
Collapse
|
20
|
Sakata N, Ishiga Y. Prevention of Stomatal Entry as a Strategy for Plant Disease Control against Foliar Pathogenic Pseudomonas Species. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12030590. [PMID: 36771673 PMCID: PMC9919041 DOI: 10.3390/plants12030590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/21/2023] [Accepted: 01/26/2023] [Indexed: 05/14/2023]
Abstract
The genus Pseudomonas includes some of the most problematic and studied foliar bacterial pathogens. Generally, in a successful disease cycle there is an initial epiphytic lifestyle on the leaf surface and a subsequent aggressive endophytic stage inside the leaf apoplast. Leaf-associated bacterial pathogens enter intercellular spaces and internal leaf tissues by natural surface opening sites, such as stomata. The stomatal crossing is complex and dynamic, and functional genomic studies have revealed several virulence factors required for plant entry. Currently, treatments with copper-containing compounds, where authorized and admitted, and antibiotics are commonly used against bacterial plant pathogens. However, strains resistant to these chemicals occur in the fields. Therefore, the demand for alternative control strategies has been increasing. This review summarizes efficient strategies to prevent bacterial entry. Virulence factors required for entering the leaf in plant-pathogenic Pseudomonas species are also discussed.
Collapse
Affiliation(s)
- Nanami Sakata
- Correspondence: (N.S.); (Y.I.); Tel./Fax: (+81)-029-853-4792 (Y.I.)
| | - Yasuhiro Ishiga
- Correspondence: (N.S.); (Y.I.); Tel./Fax: (+81)-029-853-4792 (Y.I.)
| |
Collapse
|