1
|
Cyprichová V, Urík M, Csibriová S, Kolenčík M, Bujdoš M, Matúš P, Šebesta M. Interaction of zinc oxide nanoparticles with soil colloidal suspensions. CHEMOSPHERE 2025; 370:144001. [PMID: 39708946 DOI: 10.1016/j.chemosphere.2024.144001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/13/2024] [Accepted: 12/19/2024] [Indexed: 12/23/2024]
Abstract
The properties of soil colloids determine the interaction with nanoparticles, their behavior, and destiny in the soil environment including soil solutions. This study examines how several properties of soil colloids, including pH, phosphorus content, clay minerals, and iron oxyhydroxides, influence the interaction with zinc oxide nanoparticles (ZnO-nps). For the experimental setup, four different soils were selected from the temperate climate of central Europe, in Slovakia, exhibiting pH values ranging from 4.6 to 8.0. Two concentrations of ZnO-nps suspended in water, 20 and 200 mg Zn∙L-1 were applied to the colloidal suspensions extracted from the soils and shaken for 24 h. Then the soil colloids were separated into three fractions, 100-1000 nm in size, 1-100 nm in size, and dissolved. Concentrations of Al, Si, Fe, Mn, P, and Zn were measured in these fractions, providing a comprehensive understanding of ZnO-NP distribution and interaction with soil colloids. The study reveals that soil pH significantly affects the distribution of Zn from ZnO-nps across different size fractions. However, the concentration of Fe, Al, and Si had an even greater impact on the concentration of dissolved Zn. Additionally, behavior of Zn following ZnO-NP application is associated with soil P content, where P may stabilize the ZnO-nps. These findings enhance the knowledge of nanoparticle behavior in various soil matrices and contribute to developing more stable, efficient, and easily useable nanoparticle-based applications in environmental science and agriculture.
Collapse
Affiliation(s)
- Veronika Cyprichová
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovakia
| | - Martin Urík
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovakia
| | - Sindy Csibriová
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovakia
| | - Marek Kolenčík
- Institute of Agronomic Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, Nitra, 949 76, Slovakia
| | - Marek Bujdoš
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovakia
| | - Peter Matúš
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovakia
| | - Martin Šebesta
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovakia.
| |
Collapse
|
2
|
Sharma B, Kohay H, Sharma S, Youngblood M, Cochran JP, Unrine JM, Tsyusko OV, Lowry GV, Giraldo JP. Controlled Nitrogen Release by Hydroxyapatite Nanomaterials in Leaves Enhances Plant Growth and Nitrogen Uptake. ACS NANO 2025; 19:3906-3919. [PMID: 39804241 DOI: 10.1021/acsnano.4c16362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
Nitrogen fertilizer delivery inefficiencies limit crop productivity and contribute to environmental pollution. Herein, we developed Zn- and Fe-doped hydroxyapatite nanomaterials (ZnHAU, FeHAU) loaded with urea (∼26% N) through hydrogen bonding and metal-ligand interactions. The nanomaterials attach to the leaf epidermal cuticle and localize in the apoplast of leaf epidermal cells, triggering a slow N release at acidic conditions (pH 5.8) that promote wheat (Triticum aestivum) growth and increased N uptake compared to conventional urea fertilizers. ZnHAU and FeHAU exhibited prolonged N release compared to urea in model plant apoplast fluid pH in vitro (up to 2 days) and in leaf membranes in plants (up to 10 days) with a high N retention (32% to 53%) under simulated high rainfall events (50 mm). Foliar N delivery doses of up to 4% as ZnHAU and FeHAU did not induce toxicity in plant cells. The foliar-applied ZnHAU and FeHAU enhanced fresh and dry biomass by ∼214% and ∼161%, and N uptake by ∼108% compared to foliar-applied urea under low soil N conditions in greenhouse experiments. Controlled N release by leaf-attached nanomaterials improves N delivery and use efficiency in crop plants, creating nanofertilizers with reduced environmental impact.
Collapse
Affiliation(s)
- Bhaskar Sharma
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521, United States
| | - Hagay Kohay
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Sandeep Sharma
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521, United States
| | - Marina Youngblood
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521, United States
| | - Jarad P Cochran
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky 40546, United States
| | - Jason M Unrine
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky 40546, United States
- Kentucky Water Research Institute, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Olga V Tsyusko
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky 40546, United States
| | - Gregory V Lowry
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Juan Pablo Giraldo
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521, United States
| |
Collapse
|
3
|
Kohay H, Wielinski J, Reiser J, Perkins LA, Ristroph K, Giraldo JP, Lowry GV. Nanocarrier foliar uptake pathways affect delivery of active agents and plant physiological response. ENVIRONMENTAL SCIENCE. NANO 2025; 12:660-674. [PMID: 39450293 PMCID: PMC11494269 DOI: 10.1039/d4en00547c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024]
Abstract
Layered double hydroxide (LDH) nanoparticles enable foliar delivery of genetic material, herbicides, and nutrients to promote plant growth and yield. Understanding the foliar uptake route of nanoparticles is needed to maximize their effectiveness and avoid unwanted negative effects. In this study, we investigated how delivering layered double hydroxide (d = 37 ± 1.5 nm) through the adaxial (upper) or abaxial (lower) side of leaves affects particle uptake, nutrient delivery, and photosynthesis in tomato plants. LDH applied on the adaxial side was embedded in the cuticle and accumulated at the anticlinal pegs between epidermal cells. On the abaxial side, LDH particles penetrated the cuticle less, but the presence of the stomata enables penetration to deeper leaf layers. Accordingly, the average penetration levels of LDH relative to the cuticle were 2.47 ± 0.07, 1.25 ± 0.13, and 0.75 ± 0.1 μm for adaxial, abaxial with stomata, and abaxial without stomata leaf segments, respectively. In addition, the colocalization of LDH with the cuticle was ∼2.3 times lower for the adaxial application, indicating the ability to penetrate the cuticle. Despite the low adaxial stomata density, LDH-mediated delivery of magnesium (Mg) from leaves to roots was 46% higher for the adaxial than abaxial application. In addition, adaxial application leads to ∼24% higher leaf CO2 assimilation rate and higher biomass accumulation. The lower efficiency from the abaxial side was, at least partially, a result of interference with the stomata functionality which reduced stomatal conductance and evapotranspiration by 28% and 25%, respectively, limiting plant photosynthesis. This study elucidates how foliar delivery pathways through different sides of the leaves affect their ability to deliver active agents into plants and consequently affect the plants' physiological response. That knowledge enables a more efficient use of nanocarriers for agricultural applications.
Collapse
Affiliation(s)
- Hagay Kohay
- Carnegie Mellon University, Civil & Environmental Engineering Pittsburgh PA USA
| | - Jonas Wielinski
- Carnegie Mellon University, Civil & Environmental Engineering Pittsburgh PA USA
| | - Jana Reiser
- Carnegie Mellon University, Civil & Environmental Engineering Pittsburgh PA USA
| | - Lydia A Perkins
- Molecular Biosensor & Imaging Center (MBIC), Carnegie Mellon University Pittsburgh PA USA
| | - Kurt Ristroph
- Purdue University, Agricultural & Biological Engineering West Lafayette IN USA
- Purdue University, Davidson School of Chemical Engineering West Lafayette IN USA
| | - Juan Pablo Giraldo
- University of California, Botany & Plant Sciences, Riverside Riverside CA USA
| | - Gregory V Lowry
- Carnegie Mellon University, Civil & Environmental Engineering Pittsburgh PA USA
| |
Collapse
|
4
|
Husted S, Cakmak I, Schjoerring JK, Lambers H, Kopittke PM, McLaughlin MJ. Nanotechnology Papers with an Agricultural Focus Are Too Frequently Published with a Superficial Understanding of Basic Plant and Soil Science. ACS NANO 2024; 18:33767-33770. [PMID: 39686798 DOI: 10.1021/acsnano.4c07684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Affiliation(s)
- Søren Husted
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Ismail Cakmak
- Sabanci University, Faculty of Engineering & Natural Sciences, 34956 Tuzla, Istanbul, Turkey
| | - Jan Kofod Schjoerring
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Hans Lambers
- School of Biological Sciences, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Peter M Kopittke
- The University of Queensland, School of Agriculture and Food Sustainability, St Lucia, Queensland 4072, Australia
| | - Michael J McLaughlin
- Fertiliser Technology Research Centre, School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, South Australia 5064, Australia
| |
Collapse
|
5
|
Chen L, Zhu L, Cheng H, Xu W, Li G, Zhang Y, Gu J, Chen L, Xie Z, Li Z, Wu H. Negatively Charged Carbon Dots Employed Symplastic and Apoplastic Pathways to Enable Better Plant Delivery than Positively Charged Carbon Dots. ACS NANO 2024; 18:23154-23167. [PMID: 39140713 DOI: 10.1021/acsnano.4c05362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Efficient delivery of nanoparticles (NPs) to plants is important for agricultural application. However, to date, we still lack knowledge about how NPs' charge matters for its translocation pathway, i.e., symplastic and apoplastic pathways, in plants. In this study, we synthesized and used negatively charged citrate sourced carbon dots (C-CDs, -37.97 ± 1.89 mV), Cy5 coated C-CDs (Cy5-C-CDs, -41.90 ± 2.55 mV), positively charged PEI coated carbon dots (P-CDs, +43.03 ± 1.71 mV), and Cy5 coated P-CDs (Cy5-P-CDs, +48.80 ± 1.21 mV) to investigate the role of surface charges and coatings on the employed translocation pathways (symplastic and apoplastic pathways) of charged NPs in plants. Our results showed that, different from the higher fluorescence intensity of P-CDs and Cy5-P-CDs in extracellular than intracellular space, the fluorescence intensity of C-CDs and Cy5-C-CDs was similar between intracellular and extracellular space in cucumber and cotton roots. It suggests that the negatively charged CDs were translocated via both symplastic and apoplastic pathways, but the positively charged CDs were mainly translocated via the apoplastic pathway. Furthermore, our results showed that root applied negatively charged C-CDs demonstrated higher leaf fluorescence than did positively charged P-CDs in both cucumber (8.09 ± 0.99 vs 3.75 ± 0.23) and cotton (7.27 ± 1.06 vs 3.23 ± 0.22), indicating that negatively charged CDs have a higher translocation efficiency from root to leaf than do positively charged CDs. It should be noted that CDs do not affect root cell activities, ROS level, and photosynthetic performance in cucumber and cotton, showing its good biocompatibility. Overall, this study not only figured out that root applied negatively charged CDs employed both symplastic and apoplastic pathways to do the transportation in roots compared with mainly the employment of apoplastic pathway for positively charge CDs, but also found that negatively charge CDs could be more efficiently translocated from root to leaf than positively charged CDs, indicating that imparting negative charge to NPs, at least CDs, matters for its efficient delivery in crops.
Collapse
Affiliation(s)
- Linlin Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, The Center of Crop Nanobiotechnology, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Lan Zhu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, The Center of Crop Nanobiotechnology, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Huiling Cheng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, The Center of Crop Nanobiotechnology, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenying Xu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, The Center of Crop Nanobiotechnology, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Guangjing Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, The Center of Crop Nanobiotechnology, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuqing Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, The Center of Crop Nanobiotechnology, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiangjiang Gu
- College of Chemistry, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518120, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Lu Chen
- College of Chemistry, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhouli Xie
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, The Center of Crop Nanobiotechnology, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Zhaohu Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, The Center of Crop Nanobiotechnology, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Honghong Wu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, The Center of Crop Nanobiotechnology, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518120, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| |
Collapse
|
6
|
Jeon SJ, Zhang Y, Castillo C, Nava V, Ristroph K, Therrien B, Meza L, Lowry GV, Giraldo JP. Targeted Delivery of Sucrose-Coated Nanocarriers with Chemical Cargoes to the Plant Vasculature Enhances Long-Distance Translocation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304588. [PMID: 37840413 DOI: 10.1002/smll.202304588] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/15/2023] [Indexed: 10/17/2023]
Abstract
Current practices for delivering agrochemicals are inefficient, with only a fraction reaching the intended targets in plants. The surfaces of nanocarriers are functionalized with sucrose, enabling rapid and efficient foliar delivery into the plant phloem, a vascular tissue that transports sugars, signaling molecules, and agrochemicals through the whole plant. The chemical affinity of sucrose molecules to sugar membrane transporters on the phloem cells enhances the uptake of sucrose-coated quantum dots (sucQD) and biocompatible carbon dots with β-cyclodextrin molecular baskets (suc-β-CD) that can carry a wide range of agrochemicals. The QD and CD fluorescence emission properties allowed detection and monitoring of rapid translocation (<40 min) in the vasculature of wheat leaves by confocal and epifluorescence microscopy. The suc-β-CDs more than doubled the delivery of chemical cargoes into the leaf vascular tissue. Inductively coupled plasma mass spectrometry (ICP-MS) analysis showed that the fraction of sucQDs loaded into the phloem and transported to roots is over 6.8 times higher than unmodified QDs. The sucrose coating of nanoparticles approach enables unprecedented targeted delivery to roots with ≈70% of phloem-loaded nanoparticles delivered to roots. The use of plant biorecognition molecules mediated delivery provides an efficient approach for guiding nanocarriers containing agrochemicals to the plant vasculature and whole plants.
Collapse
Affiliation(s)
- Su-Ji Jeon
- Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
| | - Yilin Zhang
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Christopher Castillo
- Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
| | - Valeria Nava
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Kurt Ristroph
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Benjamin Therrien
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Leticia Meza
- Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
| | - Gregory V Lowry
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Juan Pablo Giraldo
- Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
| |
Collapse
|
7
|
Gohari G, Jiang M, Manganaris GA, Zhou J, Fotopoulos V. Next generation chemical priming: with a little help from our nanocarrier friends. TRENDS IN PLANT SCIENCE 2024; 29:150-166. [PMID: 38233253 DOI: 10.1016/j.tplants.2023.11.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 01/19/2024]
Abstract
Plants are exposed to multiple threats linked to climate change which can cause critical yield losses. Therefore, designing novel crop management tools is crucial. Chemical priming has recently emerged as an effective technology for improving tolerance to stress factors. Several compounds such as phytohormones, reactive species, and synthetic chimeras have been identified as promising priming agents. Following remarkable developments in nanotechnology, several unique nanocarriers (NCs) have been engineered that can act as smart delivery systems. These provide an eco-friendly, next-generation method for chemical priming, leading to increased efficiency and reduced overall chemical usage. We review novel engineered NCs (NENCs) as vehicles for chemical agents in advanced priming strategies, and address challenges and opportunities to be met towards achieving sustainable agriculture.
Collapse
Affiliation(s)
- Gholamreza Gohari
- Department of Agricultural Sciences Biotechnology and Food Science, Cyprus University of Technology, Lemesos, Cyprus; Department of Horticulture, Faculty of Horticulture, University of Maragheh, Maragheh, Iran
| | - Meng Jiang
- Hainan Institute, Zhejiang University, Yazhou Bay Sci-Tech City, Sanya, PR China
| | - George A Manganaris
- Department of Agricultural Sciences Biotechnology and Food Science, Cyprus University of Technology, Lemesos, Cyprus
| | - Jie Zhou
- Hainan Institute, Zhejiang University, Yazhou Bay Sci-Tech City, Sanya, PR China; Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, PR China
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences Biotechnology and Food Science, Cyprus University of Technology, Lemesos, Cyprus.
| |
Collapse
|
8
|
Gao X, Kundu A, Persson DP, Szameitat A, Minutello F, Husted S, Ghoshal S. Application of ZnO Nanoparticles Encapsulated in Mesoporous Silica on the Abaxial Side of a Solanum lycopersicum Leaf Enhances Zn Uptake and Translocation via the Phloem. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21704-21714. [PMID: 38079531 PMCID: PMC10753877 DOI: 10.1021/acs.est.3c06424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/29/2023] [Accepted: 11/15/2023] [Indexed: 12/27/2023]
Abstract
Foliar application of nutrient nanoparticles (NPs) is a promising strategy for improving fertilization efficiency in agriculture. Phloem translocation of NPs from leaves is required for efficient fertilization but is currently considered to be feasible only for NPs smaller than a cell wall pore size exclusion limit of <20 nm. Using mass spectrometry imaging, we provide here the first direct evidence for phloem localization and translocation of a larger (∼70 nm) fertilizer NP comprised of ZnO encapsulated in mesoporous SiO2 (ZnO@MSN) following foliar deposition. The Si content in the phloem tissue of the petiole connected to the dosed leaf was ∼10 times higher than in the xylem tissue, and ∼100 times higher than the phloem tissue of an untreated tomato plant petiole. Direct evidence of NPs in individual phloem cells has only previously been shown for smaller NPs introduced invasively in the plant. Furthermore, we show that uptake and translocation of the NPs can be enhanced by their application on the abaxial (lower) side of the leaf. Applying ZnO@MSN to the abaxial side of a single leaf resulted in a 56% higher uptake of Zn as well as higher translocation to the younger (upper) leaves and to the roots, than dosing the adaxial (top) side of a leaf. The higher abaxial uptake of NPs is in alignment with the higher stomatal density and lower density of mesophyll tissues on that side and has not been demonstrated before.
Collapse
Affiliation(s)
- Xiaoyu Gao
- Department
of Civil Engineering, McGill University, Montreal, Quebec H3A 0C3, Canada
| | - Anirban Kundu
- Department
of Civil Engineering, McGill University, Montreal, Quebec H3A 0C3, Canada
| | - Daniel Pergament Persson
- Department
of Plant and Environmental Sciences, University
of Copenhagen, Frederiksberg 1871, Denmark
| | - Augusta Szameitat
- Department
of Plant and Environmental Sciences, University
of Copenhagen, Frederiksberg 1871, Denmark
| | - Francesco Minutello
- Department
of Plant and Environmental Sciences, University
of Copenhagen, Frederiksberg 1871, Denmark
| | - Søren Husted
- Department
of Plant and Environmental Sciences, University
of Copenhagen, Frederiksberg 1871, Denmark
| | - Subhasis Ghoshal
- Department
of Civil Engineering, McGill University, Montreal, Quebec H3A 0C3, Canada
| |
Collapse
|
9
|
Pimentel C, Pina CM, Müller N, Lara LA, Melo Rodriguez G, Orlando F, Schoelkopf J, Fernández V. Mineral Particles in Foliar Fertilizer Formulations Can Improve the Rate of Foliar Uptake. PLANTS (BASEL, SWITZERLAND) 2023; 13:71. [PMID: 38202379 PMCID: PMC10780703 DOI: 10.3390/plants13010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024]
Abstract
The application of foliar sprays of suspensions of relatively insoluble essential element salts is gradually becoming common, chiefly with the introduction of nano-technology approaches in agriculture. However, there is controversy about the effectiveness of such sparingly soluble nutrient sources as foliar fertilizers. In this work, we focussed on analysing the effect of adding Ca-carbonate (calcite, CaCO3) micro- and nano-particles as model sparingly soluble mineral compounds to foliar fertilizer formulations in terms of increasing the rate of foliar absorption. For these purposes, we carried out short-term foliar application experiments by treating leaves of species with variable surface features and wettability rates. The leaf absorption efficacy of foliar formulations containing a surfactant and model soluble nutrient sources, namely Ca-chloride (CaCl2), magnesium sulphate (MgSO4), potassium nitrate (KNO3), or zinc sulphate (ZnSO4), was evaluated alone or after addition of calcite particles. In general, the combination of the Ca-carbonate particles with an essential element salt had a synergistic effect and improved the absorption of Ca and the nutrient element provided. In light of the positive effects of using calcite particles as foliar formulation adjuvants, dolomite nano- and micro-particles were also tested as foliar formulation additives, and the results were also positive in terms of increasing foliar uptake. The observed nutrient element foliar absorption efficacy can be partially explained by geochemical modelling, which enabled us to predict how these formulations will perform at least in chemical terms. Our results show the major potential of adding mineral particles as foliar formulation additives, but the associated mechanisms of action and possible additional benefits to plants should be characterised in future investigations.
Collapse
Affiliation(s)
- Carlos Pimentel
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, IRD, Université Gustave Eiffel, ISTerre, 38000 Grenoble, France
| | - Carlos M. Pina
- Departamento de Mineralogía y Petrología, Facultad de Ciencias Geológicas, Universidad Complutense de Madrid, 28040 Madrid, Spain;
- Instituto de Geociencias (UCM-CSIC), 28040 Madrid, Spain
| | - Nora Müller
- New Applications Research Group, Research and Development Services, Omya International AG, 4622 Egerkingen, Switzerland; (N.M.); (G.M.R.); (F.O.); (J.S.)
| | - Luis Adrián Lara
- Systems and Natural Resources Department, School of Forest Engineering, Polytechnic University of Madrid, 28040 Madrid, Spain;
| | - Gabriela Melo Rodriguez
- New Applications Research Group, Research and Development Services, Omya International AG, 4622 Egerkingen, Switzerland; (N.M.); (G.M.R.); (F.O.); (J.S.)
| | - Fabrizio Orlando
- New Applications Research Group, Research and Development Services, Omya International AG, 4622 Egerkingen, Switzerland; (N.M.); (G.M.R.); (F.O.); (J.S.)
| | - Joachim Schoelkopf
- New Applications Research Group, Research and Development Services, Omya International AG, 4622 Egerkingen, Switzerland; (N.M.); (G.M.R.); (F.O.); (J.S.)
| | - Victoria Fernández
- Systems and Natural Resources Department, School of Forest Engineering, Polytechnic University of Madrid, 28040 Madrid, Spain;
- Centro para la Conservación de la Biodiversidad y el Desarrollo Sostenible, School of Forest Engineering, Polytechnic University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
10
|
Liang M, Yang H, Xu L, Cao L. Obeticholic acid treatment of mice to promote fertilization and reproduction. ZYGOTE 2023; 31:527-536. [PMID: 37655605 DOI: 10.1017/s0967199423000400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Obeticholic acid (OCA), a farnesoid X receptor (FXR) agonist, has been demonstrated to ameliorate the histopathological characteristics of liver damage. Nonetheless, the systemic safety profile of OCA with regard to reproduction and development remains poorly understood. In the present study, we conducted a dose-response experiment by administering OCA at doses of 5 mg/kg, 10 mg/kg, or 20 mg/kg through tube feeding to investigate its effect on reproductive development and fertilization rate in both male and female mice. Furthermore, we evaluated the levels of protein and mitochondrial function in the placenta through western blot, qPCR, and scanning electron microscopy. The results showed that 10 mg/kg and 20 mg/kg OCA doses significantly reduced the rate of placental implantation (P < 0.05). Also, OCA increased maternal body weight. In addition, OCA increased levels of FXR and TGR5 and produced changes in oxidative stress levels (P < 0.05). Mitochondrial activity result found that 10 mg/kg and 20 mg/kg of OCA significantly reduced the mitophagy autosomes/nucleus compared with the normal control group (P < 0.05). What is more, there was no significant difference in sperm count after OCA intervention in either C57BL/10 mice or BALB/c mice. Overall, we demonstrated that OCA treatment protected against placental implantation by suppressing placental oxidative stress and mitochondrial activity.
Collapse
Affiliation(s)
- Ming Liang
- Department of Reproductive Medicine, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250001, Shandong Province, China
| | - Huailiang Yang
- Department of Reproductive Medicine, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250001, Shandong Province, China
| | - Lanyong Xu
- The People's Hospital of Gaotang, Gaotang People's Hospital Affiliated to Jining Medical College, Gaotang, 252800, Shandong Province, China
| | - Longqiao Cao
- Department of Reproductive Medicine, The First People's Hospital of Jining, Jining, 272011, Shandong Province, China
| |
Collapse
|
11
|
Wu H, Wan X, Niu J, Xu H, Zhang Y, Xue X, Li Y, Li Q, Lu T, Yu H, Jiang W. Enhancing lettuce yield via Cu/Fe-layered double hydroxide nanoparticles spraying. J Nanobiotechnology 2023; 21:417. [PMID: 37950234 PMCID: PMC10638715 DOI: 10.1186/s12951-023-02178-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023] Open
Abstract
Layered double hydroxides (LDHs) have been widely used in the field of plant engineering, such as DNA/RNA transformation and enhancing plant disease resistance. However, few studies have examined the direct effects of LDHs on plants and their potential utility as nanofertilizers. In this study, the retention capacity of Cu/Fe-layered double hydroxide nanoparticles (CuFe-LDHs) was assessed by comparative experiments on vegetables. The results showed that the retention of CuFe-LDHs in leafy vegetables was high, such as lettuce. Phenotypic analysis revealed that the fresh and dry weights of lettuce leaves were both increased by spraying 10-100 μg/mL CuFe-LDHs. Using the optimal concentration of 10 μg/mL, we conducted further experiments to elucidate the mechanism of CuFe-LDHs promoting lettuce growth. It was found that the application of CuFe-LDHs had a significant effect on growth and induced physiological, transcriptomic, and metabolomic changes, including an increase in the chlorophyll b content, net photosynthetic rate, and intercellular carbon dioxide concentration, as well as modifications in gene expression patterns and metabolite profiles. This work provides compelling evidence that CuFe-LDHs can efficiently adsorb on the surface of lettuce leaves through hydrogen bonding, promote lettuce growth, mitigate the toxicity of heavy metal ions compared to their raw materials at the same concentration and offer a molecular-scale insight into the response of leafy vegetables to CuFe-LDHs.
Collapse
Affiliation(s)
- Hongyang Wu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaoyang Wan
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jiefei Niu
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Huimin Xu
- College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yu Zhang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Xian Xue
- College of Agriculture, Henan University of Science and Technology, Luoyang, 471000, China
| | - Yang Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qiang Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Tao Lu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hongjun Yu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Weijie Jiang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
- College of Horticulture, Xinjiang Agricultural University, Urumqi, 830052, China.
| |
Collapse
|
12
|
Poschenrieder C, Scalenghe R. The unseen world beneath our feet: Heliyon soil science. Exploring the cutting-edge techniques and ambitious goals of modern soil science. Heliyon 2023; 9:e18778. [PMID: 37701409 PMCID: PMC10493421 DOI: 10.1016/j.heliyon.2023.e18778] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023] Open
Abstract
In the face of climate change, ecosystem destruction, desertification, and increasing food demand, soil conservation is crucial for ensuring the sustainability of life on Earth. The Soil Section of Heliyon aims to be a platform for basic and applied soil science research, emphasizing the central role of soils and their interactions with human activities. This editorial highlights recent research trends in soil science, including the evolving definition of soil, the multifunctionality of soils and their biodiversity, soil degradation and erosion, the role of soil microflora, advancements in soil mapping techniques, global change and the carbon cycle, soil health, the relationship between soil and buildings, and the importance of considering soil quality in land use planning and policies. The Heliyon Soil Science section seeks to publish scientifically accurate and valuable research that explores the diverse functions of soil and their significance in sustainable land-use systems.
Collapse
|
13
|
Godel-Jędrychowska K, Milewska-Hendel A, Sala K, Barański R, Kurczyńska E. The Impact of Gold Nanoparticles on Somatic Embryogenesis Using the Example of Arabidopsis thaliana. Int J Mol Sci 2023; 24:10356. [PMID: 37373504 DOI: 10.3390/ijms241210356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Although the influence of nanoparticles (NPs) on developmental processes is better understood, little is known about their impact on somatic embryogenesis (SE). This process involves changes in the direction of cell differentiation. Thus, studying the effect of NPs on SE is essential to reveal their impact on cell fate. This study aimed to examine the influence of gold nanoparticles (Au NPs) with different surface charges on the SE of 35S:BBM Arabidopsis thaliana, with particular emphasis on the spatiotemporal localization of pectic arabinogalactan proteins (AGPs) and extensin epitopes in cells changing the direction of their differentiation. The results show that under the influence of nanoparticles, the explant cells of 35S:BBM Arabidopsis thaliana seedling origin did not enter the path of SE. Bulges and the formation of organ-like structures were observed in these explants, in contrast to the control, where somatic embryos developed. Additionally, spatiotemporal changes in the chemical composition of the cell walls during the culture were observed. Under the influence of Au NPs, the following effects were observed: (1) explant cells did not enter the SE pathway, (2) the impacts of Au NPs with different surface charges on the explants were variable, and (3) the compositions of the analyzed pectic AGPs and extensin epitopes were diverse in the cells with different developmental programs: SE (control) and non-SE (treated with Au NPs).
Collapse
Affiliation(s)
- Kamila Godel-Jędrychowska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland
| | - Anna Milewska-Hendel
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland
| | - Katarzyna Sala
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland
| | - Rafał Barański
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-130 Kraków, Poland
| | - Ewa Kurczyńska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland
| |
Collapse
|