1
|
Yuan Q, Tang JW, Chen J, Liao YW, Zhang WW, Wen XR, Liu X, Chen HJ, Wang L. SERS-ATB: A comprehensive database server for antibiotic SERS spectral visualization and deep-learning identification. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 373:126083. [PMID: 40113206 DOI: 10.1016/j.envpol.2025.126083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/20/2025] [Accepted: 03/14/2025] [Indexed: 03/22/2025]
Abstract
The rapid and accurate identification of antibiotics in environmental samples is critical for addressing the growing concern of antibiotic pollution, particularly in water sources. Antibiotic contamination poses a significant risk to ecosystems and human health by contributing to the spread of antibiotic resistance. Surface-enhanced Raman spectroscopy (SERS), known for its high sensitivity and specificity, is a powerful tool for antibiotic identification. However, its broader application is constrained by the lack of a large-scale antibiotic spectral database crucial for environmental and clinical use. To address this need, we systematically collected 12,800 SERS spectra for 200 environmentally relevant antibiotics and developed an open-access, web-based database at http://sers.test.bniu.net/. We compared six machine learning algorithms with a convolutional neural network (CNN) model, which achieved the highest accuracy at 98.94%, making it the preferred database model. For external validation, CNN demonstrated an accuracy of 82.8%, underscoring its reliability and practicality for real-world applications. The SERS database and CNN prediction model represent a novel resource for environmental monitoring, offering significant advantages in terms of accessibility, speed, and scalability. This study establishes the large-scale, public SERS spectral databases for antibiotics, facilitating the integration of SERS into environmental programs, with the potential to improve antibiotic detection, pollution management, and resistance mitigation.
Collapse
Affiliation(s)
- Quan Yuan
- School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu Province, China; Department of Laboratory Medicine, Shengli Oilfield Central Hospital, Dongying, Shandong Province, China
| | - Jia-Wei Tang
- Division of Microbiology and Immunology, School of Biomedical Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Jie Chen
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yi-Wen Liao
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
| | - Wen-Wen Zhang
- Department of Clinical Medicine, School of 1st Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Xin-Ru Wen
- School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu Province, China; Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xin Liu
- School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu Province, China.
| | - Hui-Jin Chen
- Department of Laboratory Medicine, Shengli Oilfield Central Hospital, Dongying, Shandong Province, China.
| | - Liang Wang
- School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu Province, China; Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China; School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Queensland, Australia; Centre for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia; Division of Microbiology and Immunology, School of Biomedical Sciences, University of Western Australia, Crawley, Western Australia, Australia.
| |
Collapse
|
2
|
Huang Z, Lei Y, Liang W, Cai Y, Guo P, Sun J. Rapid and sensitive detection of pharmaceutical pollutants in aquaculture by aluminum foil substrate based SERS method combined with deep learning algorithm. Anal Chim Acta 2025; 1351:343920. [PMID: 40187885 DOI: 10.1016/j.aca.2025.343920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/02/2025] [Accepted: 03/07/2025] [Indexed: 04/07/2025]
Abstract
BACKGROUND Pharmaceutical residual such as antibiotics and disinfectants in aquaculture wastewater have significant potential risks for environment and human health. Surface enhanced Raman spectroscopy (SERS) has been widely used for the detection of pharmaceuticals due to its high sensitivity, low cost, and rapidity. However, it is remain a challenge for high-sensitivity SERS detection and accurate identification of complex pollutants. RESULTS Hence, in this work, we developed an aluminum foil (AlF) based SERS detection substrate and established a multilayer perceptron (MLP) deep learning model for the rapid identification of antibiotic components in a mixture. The detection method demonstrated exceptional performance, achieving a high SERS enhancement factor of 4.2 × 105 and excellent sensitivity for trace amounts of fleroxacin (2.7 × 10-8 mol/L), levofloxacin (1.95 × 10-8 mol/L), and pefloxacin (6.9 × 10-8 mol/L),sulfadiazine, methylene blue, and malachite green at a concentration of 1 × 10-8 mol/L can all be detected, the concentrations of the six target compounds and their Raman intensities exhibit a good linear relationship. Moreover, the AlF SERS substrate can be prepared rapidly without adding organic reagents, and it exhibited good reproducibility, with RSD<9.6 %. Additionally, the algorithm model can accurately identify the contaminants mixture of sulfadiazine, methylene blue, and malachite green with a recognition accuracy of 97.8 %, an F1-score of 98.2 %, and a 5-fold cross validation score of 97.4 %, the interpretation analysis using Shapley Additive Explanations (SHAP) reveals that MLP model can specifically concentrate on the distribution of characteristic peaks. SIGNIFICANCE The experimental results indicated that the MLP model demonstrated strong performance and good robustness in complex matrices. This research provides a promising detection and identification method for the antibiotics and disinfectants in actual aquaculture wastewater treatment.
Collapse
Affiliation(s)
- Zixi Huang
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou, 510070, China; Guangdong Provincial Engineering Research Center for Online Monitoring of Water Pollution, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou, 510070, China
| | - Yongqian Lei
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou, 510070, China; Guangdong Provincial Engineering Research Center for Online Monitoring of Water Pollution, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou, 510070, China.
| | - Weixin Liang
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou, 510070, China; Guangdong Provincial Engineering Research Center for Online Monitoring of Water Pollution, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou, 510070, China
| | - Yili Cai
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou, 510070, China; Guangdong Provincial Engineering Research Center for Online Monitoring of Water Pollution, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou, 510070, China
| | - Pengran Guo
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou, 510070, China; Guangdong Provincial Engineering Research Center for Online Monitoring of Water Pollution, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou, 510070, China.
| | - Jian Sun
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
3
|
Dai Z, Zhang W, Li J, Wu Y, Fu H. Study on prediction model of TCH degradation by three -dimensional electrocatalysis based on XGBoost and MLP. JOURNAL OF WATER PROCESS ENGINEERING 2024; 68:106420. [DOI: 10.1016/j.jwpe.2024.106420] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
4
|
Telgmann L, Horn H. The behavior of pharmaceutically active compounds and contrast agents during wastewater treatment - Combining sampling strategies and analytical techniques: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174344. [PMID: 38964417 DOI: 10.1016/j.scitotenv.2024.174344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/10/2024] [Accepted: 06/26/2024] [Indexed: 07/06/2024]
Abstract
Increasing consumption of pharmaceuticals and the respective consequences for the aquatic environment have been the focus of many studies over the last thirty years. Various aspects in this field were investigated, considering diverse pharmaceutical groups and employing a wide range of research methodologies. Various questions from the perspectives of different research areas were devised and answered, resulting in a large mix of individual findings and conclusions. Collectively, the results of the studies offer a comprehensive overview. The large variety of methods and strategies, however, demands close attention when comparing and combining information from heterogeneous projects. This review critically examines the application of diverse sampling techniques as well as analytical methods in investigations concerning the behavior of pharmaceutically active compounds (PhACs) and contrast agents (CAs) in wastewater treatment plants (WWTPs). The combination of sampling and analysis is discussed with regard to its suitability for specific scientific problems. Different research focuses need different methods and answer different questions. An overview of studies dealing with the fate and degradation of PhACs and CAs in WWTPs is presented, discussing their strategic approaches and findings. This review includes surveys of anticancer drugs, antibiotics, analgesics and anti-inflammatory drugs, antidiabetics, beta blockers, hormonal contraceptives, lipid lowering agents, antidepressants as well as contrast agents for X-ray and magnetic resonance imaging.
Collapse
Affiliation(s)
- Lena Telgmann
- Department of Chemistry and Pharmacy, University of Münster, Münster, Germany
| | - Harald Horn
- Department Water Chemistry and Water Technology, Engler-Bunte-Institut, Karlsruher Institute of Technology (KIT), Karlsruhe, Germany.
| |
Collapse
|
5
|
Kazemi A, Ebrahimpour E, Esmaeilbeigi M, Gheitasi F, Einollahipeer F, Mohammadrezai M. Optimizing oxytetracycline removal from aqueous solutions using activated carbon from barley lignocellulosic wastes with isotherms and thermodynamic studies. Sci Rep 2024; 14:23281. [PMID: 39375380 PMCID: PMC11458894 DOI: 10.1038/s41598-024-73142-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 09/13/2024] [Indexed: 10/09/2024] Open
Abstract
The excessive presence of antibiotics such as Oxytetracycline (OTC) in the wastewater has increased health problems due to their toxic impact on the aquatic ecosystem. Therefore, their removal has become an important topic. This study aims to produce high surface area-activated carbon derived from low-cost and environmentally friendly barley lignocellulosic wastes to remove OTC from aqueous solutions. The synthesized barley wastes-activated carbon (BW-AC) was characterized using Fourier-Transform Infrared spectroscopy, Thermal Gravimetric Analysis, X-ray diffraction analysis, N2 adsorption/desorption isotherms, and Scanning Electron Microscopy. A Central Composite Design under the Response Surface Methodology (CCD-RSM) was applied to optimize the operational parameters (adsorbent dosage, pH, OTC initial concentration, and contact time) affecting the adsorption capacity as the response factor. The optimum condition of OTC adsorption by BW-AC was the adsorbent dosage of 16.25 mg, pH of 8.25, initial concentration of 62.50 mg/L, and contact time of 23.46 min. An analysis of variance (ANOVA) was performed to investigate the significance of the designed quadratic model and evaluate the parameters interactions. The linear regression coefficient (R2) of 0.975 shows a good correlation between predicted and actual results. The adsorption isotherms were used to determine the contaminant distribution over the adsorbent surface, and the equilibrium data was best described by the Freundlich isotherm due to the R2 value of 0.99 compared to other isotherms and β parameter of 0.23 in Redlich-Peterson equation. Moreover, the n value of 1.25 in Freundlich equation and E value of 0.31 in Dubinin-Radushkevich equation indicates a physical nature of adsorption process. According to the equations results, the maximum adsorption capacity of BW-AC for OTC removal was 500 mg/g, based on the Langmuir isotherm equation. In addition, the thermodynamic studies indicated an endothermic process based on the 0.31 value of ΔH° and spontaneous nature due to the negative amount of ΔG° within the temperature range of 288-318 K. Consequently, the prepared BW-AC can be deemed as a highly effective adsorbent with a large surface area, resulting in significant capacity for removing OTC. This synthesized BW-AC can serve as an environmentally friendly adsorbent for affordable wastewater treatment and is poised to make valuable contributions to future research in this field.
Collapse
Affiliation(s)
- Ali Kazemi
- Department of Environmental Science and Engineering, Arak University, Arak, Iran.
| | - Elaheh Ebrahimpour
- Research and Development Department of Arvin Zist Pooya Lab, Tehran, 1563794747, Iran
| | - Milad Esmaeilbeigi
- Centre for Applied Water Science, Institute for Applied Ecology, University of Canberra, Canberra, ACT, Australia
| | - Farideh Gheitasi
- Department of Sustainable Development, Environmental Science and Engineering (SEED), KTH Royal Institute of Technology, Stockholm, Sweden
| | - Fatemeh Einollahipeer
- Department of Environment, Faculty of Natural Resources, University of Zabol, Zabol, Sistan and Baluchestan, Iran
| | - Mansure Mohammadrezai
- Department of Civil and Environmental Engineering, Payame Noor University, Tehran, Iran
| |
Collapse
|
6
|
Dolkar P, Sharma M, Modeel S, Yadav S, Siwach S, Bharti M, Yadav P, Lata P, Negi T, Negi RK. Challenges and effective tracking down strategies of antibiotic contamination in aquatic ecosystem. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:55935-55957. [PMID: 39254807 DOI: 10.1007/s11356-024-34806-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 08/22/2024] [Indexed: 09/11/2024]
Abstract
A growing environmental concern revolves around the widespread use of medicines, particularly antibiotics, which adversely impact water quality and various life forms. The unregulated production and utilization of antibiotics not only affect non-targeted organisms but also exert significant evolutionary pressures, leading to the rapid development of antimicrobial resistance (AMR) in bacterial communities. To address this issue, global studies have been conducted to assess the prevalence and quantities of antibiotics in various environmental components including freshwater, ocean, local sewage, and fish. These studies aim to establish effective analytical methods for identifying and measuring antibiotic residues in environmental matrices that might enable authorities to establish norms for the containment and disposal of antibiotics. This article offers a comprehensive overview of methods used to extract antibiotics from environmental matrices exploring purification techniques such as liquid-liquid extraction, solid-phase extraction, green extraction techniques, and concentration methods like lyophilization and rotary evaporation. It further highlights qualitative and quantitative analysis methods, high-performance liquid chromatography, ultra-high-performance liquid chromatography, and liquid chromatography-tandem along with analytical methods such as UV-Vis and tandem mass spectrometry for detecting and measuring antibiotics. Urgency is underscored for proactive strategies to curb antibiotic contamination, safeguarding the integrity of aquatic ecosystems and public health on a global scale.
Collapse
Affiliation(s)
- Padma Dolkar
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, 110007, India
| | - Monika Sharma
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, 110007, India
- Present Address: Gargi College, University of Delhi, Delhi, 110049, India
| | - Sonakshi Modeel
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, 110007, India
| | - Sheetal Yadav
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, 110007, India
| | - Sneha Siwach
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, 110007, India
| | - Meghali Bharti
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, 110007, India
| | - Pankaj Yadav
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, 110007, India
| | - Pushp Lata
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, 110007, India
| | - Tarana Negi
- Government College, Dujana, Jhajjar, Haryana, 124102, India
| | - Ram Krishan Negi
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, 110007, India.
| |
Collapse
|
7
|
Han G, Yu J, He J, Zheng P, Mao X, Yu B. Subtherapeutic Kitasamycin Promoted Fat Accumulation in the Longissimus Dorsi Muscle in Growing-Finishing Pigs. Animals (Basel) 2024; 14:1057. [PMID: 38612296 PMCID: PMC11010921 DOI: 10.3390/ani14071057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/14/2024] Open
Abstract
Kitasamycin (KM), a broad-spectrum macrolide antibiotic, has implications for growth performance and residue in animals and humans. This study aimed to explore the effects of different KM doses on intramuscular fat accumulation, cecal microflora, and short-chain fatty acids (SCFAs) using a growing-finishing pig model. Forty-two pigs were divided into three groups: control, subtherapeutic KM (50 mg/kg, KM50), and therapeutic KM (200 mg/kg, KM200) diets over 8 weeks. KM50 led to increased back fat thickness, fat content in the longissimus dorsi muscle (LM), and elevated plasma total cholesterol (TC) levels (p < 0.05), supported by upregulated lipid synthesis gene expression (Acc1, Fas, Scd1) (p < 0.05) in the LM. KM50 altered cecal microflora, reducing Lactobacillus spp. and Bifidobacterium spp. abundance, while increasing SCFA concentrations (acetic acid, propionic acid, total SCFAs) (p < 0.05). KM200 had minimal effects on intestinal weight and density, with increased apparent digestibility of nutrients. These findings highlight the dose-dependent impact of KM on intramuscular fat deposition. Subtherapeutic KM induced ectopic fat deposition, emphasizing potential risks in disease treatment for humans and animals.
Collapse
Affiliation(s)
| | | | | | | | | | - Bing Yu
- Key Laboratory of Animal Disease-Resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (G.H.); (J.Y.); (J.H.); (P.Z.)
| |
Collapse
|
8
|
Sarma D, Medhi A, Mohanta D, Nath P. Electrochemically deposited bimetallic SERS substrate for trace sensing of antibiotics. Mikrochim Acta 2023; 191:14. [PMID: 38087069 DOI: 10.1007/s00604-023-06075-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/26/2023] [Indexed: 12/18/2023]
Abstract
Electrochemically deposited bimetallic copper-gold nanoparticles on indium tin oxide (Cu-AuNPs on ITO) glass are demonstrated to be a sensitive and reproducible surface-enhanced Raman scattering (SERS) platform. An optimal signal enhancement with reasonably good degree of homogeneity was obtained by tuning the deposition parameters of the electrochemical setup. For Raman active analytes such as malachite green (MG) and rhodamine 6G (R6G), the developed SERS platform yields a limit of detection (LOD) of 0.75 nM. The usability of the proposed SERS platform has been realized through detection of two important antibiotics namely sulfamethoxazole (SFZ) and tetracycline hydrochloride (TCH) commonly used in egg farms. Furthermore, a machine learning (ML)-based model coupled with a dimensionality reduction technique-principal component analysis (PCA)-has been implemented to classify the targeted analytes in egg samples.
Collapse
Affiliation(s)
- Dipjyoti Sarma
- Applied Photonics and Nanophotonics Laboratory, Department of Physics, Tezpur University, Napaam, Tezpur, Assam, 784028, India
| | - Ankush Medhi
- Nanoscience and Soft-Matter Laboratory, Department of Physics, Tezpur University, Napaam, Tezpur, Assam, 784028, India
| | - Dambarudhar Mohanta
- Nanoscience and Soft-Matter Laboratory, Department of Physics, Tezpur University, Napaam, Tezpur, Assam, 784028, India
| | - Pabitra Nath
- Applied Photonics and Nanophotonics Laboratory, Department of Physics, Tezpur University, Napaam, Tezpur, Assam, 784028, India.
| |
Collapse
|
9
|
Hidayati NV, Asia L, Lebarillier S, Widowati I, Sabdono A, Piram A, Hidayat RR, Fitriyah D, Almanar IP, Doumenq P, Syakti AD. Environmental Sample Stability for Pharmaceutical Compound Analysis: Handling and Preservation Recommendations. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2023; 2023:5526429. [PMID: 37901345 PMCID: PMC10602706 DOI: 10.1155/2023/5526429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/09/2023] [Accepted: 09/27/2023] [Indexed: 10/31/2023]
Abstract
Efficient and resilient techniques for handling samples are essential for detecting pharmaceutical compounds in the environment. This study explores a method for preserving water samples during transport before quantitative analysis. The study investigates the stability of 17α-ethynylestradiol (EE2), acetaminophen (ACM), oxytetracycline (OTC), sulfamethoxazole (SMX), and trimethoprim (TMP) after preconcentration within solid-phase extraction (SPE) cartridges. Through various experiments involving different holding times and storage temperatures, it was determined that four pharmaceutical compounds remained stable when stored for a month at 4°C and for six months when stored at -18°C in darkness. Storing these compounds in SPE cartridges at -18°C seemed effective in preserving them for extended periods. In addition, ACM, TMP, OTC, EE2, and SMX remained stable for three days at room temperature. These findings establish guidelines for appropriate storage and handling practices of pharmaceutical compounds preconcentrated from aqueous environmental samples using SPE.
Collapse
Affiliation(s)
- Nuning Vita Hidayati
- Fisheries and Marine Sciences Faculty, Jenderal Soedirman University, Kampus Karangwangkal, Jl. Dr. Suparno, Purwokerto 53123, Indonesia
- Center for Maritime Biosciences Studies, Institute for Research and Community Service, Jenderal Soedirman University, Kampus Karangwangkal, Jl. Dr. Suparno, Purwokerto 53123, Indonesia
| | - Laurence Asia
- Aix Marseille University, CNRS, LCE, Marseille, France
| | | | - Ita Widowati
- Faculty of Fisheries and Marine Sciences, Universitas Diponegoro, Jl. Prof. Soedharto, SH, Tembalang, Semarang 50275, Indonesia
| | - Agus Sabdono
- Faculty of Fisheries and Marine Sciences, Universitas Diponegoro, Jl. Prof. Soedharto, SH, Tembalang, Semarang 50275, Indonesia
| | - Anne Piram
- Aix Marseille University, CNRS, LCE, Marseille, France
| | - Rizqi Rizaldi Hidayat
- Fisheries and Marine Sciences Faculty, Jenderal Soedirman University, Kampus Karangwangkal, Jl. Dr. Suparno, Purwokerto 53123, Indonesia
| | - Dina Fitriyah
- Maritime Technique and Technology Faculty, Raja Ali Haji Maritime University, Jl. Politeknik Senggarang, Tanjungpinang, Riau Islands 29100, Indonesia
| | - Indra Putra Almanar
- Maritime Technique and Technology Faculty, Raja Ali Haji Maritime University, Jl. Politeknik Senggarang, Tanjungpinang, Riau Islands 29100, Indonesia
| | | | - Agung Dhamar Syakti
- Center for Maritime Biosciences Studies, Institute for Research and Community Service, Jenderal Soedirman University, Kampus Karangwangkal, Jl. Dr. Suparno, Purwokerto 53123, Indonesia
- Marine Sciences and Fisheries Faculty, Raja Ali Haji Maritime University, Jl. Politeknik Senggarang, Tanjungpinang, Riau Islands 29100, Indonesia
| |
Collapse
|
10
|
Mathai T, Pal T, Prakash N, Mukherji S. Portable biosensor for the detection of Enrofloxacin and Ciprofloxacin antibiotic residues in food, body fluids, environmental and wastewater samples. Biosens Bioelectron 2023; 237:115478. [PMID: 37356410 DOI: 10.1016/j.bios.2023.115478] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/19/2023] [Accepted: 06/13/2023] [Indexed: 06/27/2023]
Abstract
Enrofloxacin (ENR) and its metabolite Ciprofloxacin (CIP) are both a class of fluoroquinolone antibiotics effective against a broad-spectrum microbial infection. Recent surge in the consumption of CIP and ENR has been linked to increased cases of drug-resistant pathogens. This is due to the fact that the antibiotic residues remain in milk, meat, soil and environmental water for a prolonged duration. Although gold standard methods such as LC-MS are sensitive, they suffer from expensive operation and maintenance cost, and would need dedicated facilities and tedious sample preparation steps. Such limitations make on site detection impossible for regulatory bodies in developing countries. To address this issue, we developed a portable device that can detect the presence of CIP and ENR antibiotics in the range of parts per billion (ppb) concentrations accurately. It consists of a polyaniline (PAni) coated U-bent optical fiber with anti-ENR/CIP antibody immobilized on the polymer surface. The sensor relies on the principle of evanescent wave absorbance by antigen-antibody complex. The sensor showed limit of detection (LOD) of 1 ppb with a linear range of operation from 1 ppb to 500 ppb (R2 = 0.96-0.99) in lake water, waste water treatment plant effluent, urine, blood serum, milk and meat samples. The recovery of the sensor ranges from 88% to 120% indicating reasonable accuracy. The sensor has excellent selectivity towards CIP and ENR and showed stability for four weeks indicating its field deployability and robustness. The portable sensor is scalable and contract has been given to an industry partner to mass manufacture the device.
Collapse
Affiliation(s)
- Tennyson Mathai
- Department of Biosciences and Bioengineering, Indian Institute of Technology Mumbai, India
| | - Tathagata Pal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Mumbai, India
| | - Nayan Prakash
- Department of Biosciences and Bioengineering, Indian Institute of Technology Mumbai, India
| | - Soumyo Mukherji
- Department of Biosciences and Bioengineering, Indian Institute of Technology Mumbai, India.
| |
Collapse
|
11
|
Barbillon G, Cheap-Charpentier H. Advances in Surface-Enhanced Raman Scattering Sensors of Pollutants in Water Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2417. [PMID: 37686925 PMCID: PMC10489740 DOI: 10.3390/nano13172417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023]
Abstract
Water scarcity is a world issue, and a solution to address it is the use of treated wastewater. Indeed, in these wastewaters, pollutants such as pharmaceuticals, pesticides, herbicides, and heavy ions can be present at high concentrations. Thus, several analytical techniques were initiated throughout recent years for the detection and quantification of pollutants in different types of water. Among them, the surface-enhanced Raman scattering (SERS) technique was examined due to its high sensitivity and its ability to provide details on the molecular structure. Herein, we summarize the most recent advances (2021-2023) on SERS sensors of pollutants in water treatment. In this context, we present the results obtained with the SERS sensors in terms of detection limits serving as assessment of SERS performances of these sensors for the detection of various pollutants.
Collapse
Affiliation(s)
- Grégory Barbillon
- EPF-Ecole d’Ingénieurs, 55 Avenue du Président Wilson, 94230 Cachan, France;
| | - Hélène Cheap-Charpentier
- EPF-Ecole d’Ingénieurs, 55 Avenue du Président Wilson, 94230 Cachan, France;
- Laboratoire Interfaces et Systèmes Electrochimiques, Sorbonne Université, CNRS, UMR 8235, LISE, 4 Place Jussieu, 75005 Paris, France
| |
Collapse
|
12
|
Pozzebon EA, Seifert L. Emerging environmental health risks associated with the land application of biosolids: a scoping review. Environ Health 2023; 22:57. [PMID: 37599358 PMCID: PMC10440945 DOI: 10.1186/s12940-023-01008-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 08/14/2023] [Indexed: 08/22/2023]
Abstract
BACKGROUND Over 40% of the six million dry metric tons of sewage sludge, often referred to as biosolids, produced annually in the United States is land applied. Biosolids serve as a sink for emerging pollutants which can be toxic and persist in the environment, yet their fate after land application and their impacts on human health have not been well studied. These gaps in our understanding are exacerbated by the absence of systematic monitoring programs and defined standards for human health protection. METHODS The purpose of this paper is to call critical attention to the knowledge gaps that currently exist regarding emerging pollutants in biosolids and to underscore the need for evidence-based testing standards and regulatory frameworks for human health protection when biosolids are land applied. A scoping review methodology was used to identify research conducted within the last decade, current regulatory standards, and government publications regarding emerging pollutants in land applied biosolids. RESULTS Current research indicates that persistent organic compounds, or emerging pollutants, found in pharmaceuticals and personal care products, microplastics, and per- and polyfluoroalkyl substances (PFAS) have the potential to contaminate ground and surface water, and the uptake of these substances from soil amended by the land application of biosolids can result in contamination of food sources. Advanced technologies to remove these contaminants from wastewater treatment plant influent, effluent, and biosolids destined for land application along with tools to detect and quantify emerging pollutants are critical for human health protection. CONCLUSIONS To address these current risks, there needs to be a significant investment in ongoing research and infrastructure support for advancements in wastewater treatment; expanded manufacture and use of sustainable products; increased public communication of the risks associated with overuse of pharmaceuticals and plastics; and development and implementation of regulations that are protective of health and the environment.
Collapse
Affiliation(s)
- Elizabeth A Pozzebon
- California Conference of Directors of Environmental Health, P.O. Box 2017, Cameron Park, CA, 95682-2017, USA
| | - Lars Seifert
- California Conference of Directors of Environmental Health, P.O. Box 2017, Cameron Park, CA, 95682-2017, USA.
| |
Collapse
|
13
|
Tawalbeh M, Mohammed S, Al-Othman A, Yusuf M, Mofijur M, Kamyab H. MXenes and MXene-based materials for removal of pharmaceutical compounds from wastewater: Critical review. ENVIRONMENTAL RESEARCH 2023; 228:115919. [PMID: 37072081 DOI: 10.1016/j.envres.2023.115919] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/10/2023] [Accepted: 04/14/2023] [Indexed: 05/16/2023]
Abstract
The rapid increase in the global population and its ever-rising standards of living are imposing a huge burden on global resources. Apart from the rising energy needs, the demand for freshwater is correspondingly increasing. A population of around 3.8 billion people will face water scarcity by 2030, as per the reports of the World Water Council. This may be due to global climate change and the deficiency in the treatment of wastewater. Conventional wastewater treatment technologies fail to completely remove several emerging contaminants, especially those containing pharmaceutical compounds. Hence, leading to an increase in the concentration of harmful chemicals in the human food chain and the proliferation of several diseases. MXenes are transition metal carbide/nitride ceramics that primarily structure the leading 2D material group. MXenes act as novel nanomaterials for wastewater treatment due to their high surface area, excellent adsorption properties, and unique physicochemical properties, such as high electrical conductivity and hydrophilicity. MXenes are highly hydrophilic and covered with active functional groups (i.e., hydroxyl, oxygen, fluorine, etc.), which makes them efficient adsorbents for a wide range of species and promising candidates for environmental remediation and water treatment. This work concludes that the scaling up process of MXene-based materials for water treatment is currently of high cost. The up-to-date applications are still limited because MXenes are currently produced mainly in the laboratory with limited yield. It is recommended to direct research efforts towards lower synthesis cost procedures coupled with the use of more environmentally friendly materials to avoid secondary contamination.
Collapse
Affiliation(s)
- Muhammad Tawalbeh
- Sustainable and Renewable Energy Engineering Department, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates; Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates.
| | - Shima Mohammed
- Sustainable and Renewable Energy Engineering Department, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Amani Al-Othman
- Department of Chemical and Biological Engineering, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates
| | - Mohammad Yusuf
- Institute of Hydrocarbon Recovery (IHR), Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak, 32610, Malaysia.
| | - M Mofijur
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Mechanical Engineering Department, Prince Mohammad Bin Fahd University, Al Khobar, 31952, Saudi Arabia
| | - Hesam Kamyab
- Faculty of Architecture and Urbanism, UTE University, Calle Rumipamba S/N and Bourgeois, Quito, Ecuador; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600 077, India; Process Systems Engineering Centre (PROSPECT), Faculty of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| |
Collapse
|
14
|
Huang YH, Wei H, Santiago PJ, Thrift WJ, Ragan R, Jiang S. Sensing Antibiotics in Wastewater Using Surface-Enhanced Raman Scattering. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4880-4891. [PMID: 36934344 PMCID: PMC10061928 DOI: 10.1021/acs.est.3c00027] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/27/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Rapid and cost-effective detection of antibiotics in wastewater and through wastewater treatment processes is an important first step in developing effective strategies for their removal. Surface-enhanced Raman scattering (SERS) has the potential for label-free, real-time sensing of antibiotic contamination in the environment. This study reports the testing of two gold nanostructures as SERS substrates for the label-free detection of quinoline, a small-molecular-weight antibiotic that is commonly found in wastewater. The results showed that the self-assembled SERS substrate was able to quantify quinoline spiked in wastewater with a lower limit of detection (LoD) of 5.01 ppb. The SERStrate (commercially available SERS substrate with gold nanopillars) had a similar sensitivity for quinoline quantification in pure water (LoD of 1.15 ppb) but did not perform well for quinoline quantification in wastewater (LoD of 97.5 ppm) due to interferences from non-target molecules in the wastewater. Models constructed based on machine learning algorithms could improve the separation and identification of quinoline Raman spectra from those of interference molecules to some degree, but the selectivity of SERS intensification was more critical to achieve the identification and quantification of the target analyte. The results of this study are a proof-of-concept for SERS applications in label-free sensing of environmental contaminants. Further research is warranted to transform the concept into a practical technology for environmental monitoring.
Collapse
Affiliation(s)
- Yen-Hsiang Huang
- Department
of Civil and Environmental Engineering, University of California, Irvine, Irvine, California 92697, United States
| | - Hong Wei
- Department
of Materials Science and Engineering, University
of California, Irvine, Irvine, California 92697, United States
| | - Peter J. Santiago
- Department
of Materials Science and Engineering, University
of California, Irvine, Irvine, California 92697, United States
| | - William John Thrift
- Department
of Materials Science and Engineering, University
of California, Irvine, Irvine, California 92697, United States
| | - Regina Ragan
- Department
of Materials Science and Engineering, University
of California, Irvine, Irvine, California 92697, United States
| | - Sunny Jiang
- Department
of Civil and Environmental Engineering, University of California, Irvine, Irvine, California 92697, United States
| |
Collapse
|
15
|
Liu LJ, Liu Y, Cui GH, Fu L. Two chemically robust coordination polymers as fluorescent probes for effective sensing of sulfadiazine/ornidazole and Cd2+ ions. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2023.121449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
16
|
Zhang F, Mao X, Song X, Yu H, Yan J, Kong D, Liu Y, Yao N, Yang S, Xie S, Ji H, Zhou H. Ecological Risks of Antibiotics in Urban Wetlands on the Qinghai-Tibet Plateau, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1735. [PMID: 36767103 PMCID: PMC9914113 DOI: 10.3390/ijerph20031735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/13/2023] [Accepted: 01/15/2023] [Indexed: 06/18/2023]
Abstract
Although the ecological risks of antibiotics have been extensively researched globally, fewer studies have been conducted in sensitive and fragile plateau wetland ecosystems. To evaluate the ecological risk of antibiotics in plateau urban wetlands, 18 water samples, 10 plant samples, and 8 sediment samples were collected in March 2022 in the Xining urban wetlands on the Qinghai-Tibet Plateau. The liquid chromatography-electrospray ionization tandem mass spectrometry method was utilized to measure the concentrations of 15 antibiotics in three categories in three types of environmental media. Risk quotients were adopted to assess the ecological risk of antibiotics, and the principal component analysis-multiple linear regression model was used to analyze the source of antibiotics. The results showed that (1) the maximum concentrations of antibiotics in water samples, plants, and sediments reached 1220.86 ng/L, 78.30 ng/g, and 5.64 ng/g, respectively; (2) Tylosin (TYL), norfloxacin (NFX), ofloxacin (OFX), and ciprofloxacin (CFX) in water were at medium and high-risk levels, and OFX had the highest risk value, of 108.04; and (3) the results of source apportionment indicate that 58.94% of the antibiotics came from the Huangshui river and wastewater treatment plant (WWTP) near the wetlands. The current study may provide a reference for the risks and management of antibiotics in plateau urban wetlands.
Collapse
Affiliation(s)
- Fengjiao Zhang
- MOE Key Laboratory of Tibetan Plateau Land Surface Processes and Ecological Conservation, Qinghai Normal University, Xining 810008, China
- Key Laboratory of Qinghai Province Physical Geography and Environmental Process, School of Geographical Science, Qinghai Normal University, Xining 810008, China
| | - Xufeng Mao
- MOE Key Laboratory of Tibetan Plateau Land Surface Processes and Ecological Conservation, Qinghai Normal University, Xining 810008, China
- Key Laboratory of Qinghai Province Physical Geography and Environmental Process, School of Geographical Science, Qinghai Normal University, Xining 810008, China
| | - Xiuhua Song
- Management and Service Center for Huangshui National Wetland Park, Xining 810016, China
| | - Hongyan Yu
- Management and Service Center of Qilian Mountain National Park, Xining 810008, China
| | - Jinlu Yan
- Qinghai Forestry Engineering Consulting Co., Ltd., Xining 810008, China
| | - Dongsheng Kong
- Qinghai Forestry Engineering Consulting Co., Ltd., Xining 810008, China
| | - Yinlong Liu
- Qinghai Forestry Engineering Consulting Co., Ltd., Xining 810008, China
| | - Naixin Yao
- Qinghai Forestry Engineering Supervision Co., Ltd., Xining 810008, China
| | - Shilin Yang
- Qinghai Forestry Engineering Consulting Co., Ltd., Xining 810008, China
| | - Shunbang Xie
- Management and Service Center for Huangshui National Wetland Park, Xining 810016, China
| | - Haichuan Ji
- Qinghai Wetland Protection Center, Xining 810008, China
| | - Huakun Zhou
- Key Laboratory of Cold Regions and Restoration Ecology, Xining 810008, China
| |
Collapse
|
17
|
Chang C, Gupta P. In-situ degradation of Amphotericin B in a microbial electrochemical cell containing wastewater. CHEMOSPHERE 2022; 309:136726. [PMID: 36209861 DOI: 10.1016/j.chemosphere.2022.136726] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/19/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Antimicrobial resistance raises serious medical implications and is primarily caused by indiscriminate usage and environmental contamination with antimicrobial agents. To prevent microbes from developing resistance against antimicrobial agents, they must be effectively degraded. This is the first study that investigates the degradation of Amphotericin B(AmB) with simultaneous wastewater treatment in a Microbial Peroxide producing cell (MPPC). Two sets of MPPCs (A and B) were used to degrade AmB oxidatively, one with H2O2 and the other with the microbial electro Fenton process in a catholyte containing 0.1% AmB. MPPC A and B had voltage outputs of 0.356 ± 3 V and 0.411 ± 2 V, producing 26 ± 0.04 mM and 44 ± 0.8 mM of H2O2 respectively. The structural changes of treated samples were analyzed using Fourier Transformed Infrared Spectroscopy, which revealed the disappearance of major characteristic bands such as the NH band (1556 cm-1), the CH band Polyene ring (3358 cm-1), and others, implying the disruption of multiple double bonds in polyene, resulting in the structure's lactone ring breakdown. Liquid chromatography quadrupole time-of-flight revealed the changes in retention time and peak area of treated samples in comparison to native AmB which also confirmed its structural changes. Such structural disruption induced the drug to lose its antifungal action since no zones of inhibition were detected in an antimicrobial susceptibility test against Candida albicans. The degradation of 57.05% and 69.83% of AmB by H2O2 and the Fenton process was also correlated with a reduction in COD. Simultaneously the anodic wastewater treatment in both the MPPCs had COD removal efficiency of 78% and 82% and the BOD removal efficiency was 75.38% and 90% respectively. The MPPC system's process conditions and reactor design could be optimized further to enhance antimicrobial degradation and wastewater treatment. This research offers a sustainable and efficient method for expediting antimicrobial degradation while simultaneously treating wastewater.
Collapse
Affiliation(s)
- Changsomba Chang
- Department of Biotechnology, National Institute of Technology Raipur, Chhattisgarh, 492010, India
| | - Pratima Gupta
- Department of Biotechnology, National Institute of Technology Raipur, Chhattisgarh, 492010, India.
| |
Collapse
|
18
|
Quach TA, Becerra J, Nguyen DT, Sakar M, Vu MH, Dion F, Abou-Rachid H, Do TO. Direct Z-scheme mediated SmVO 4/UiO-66-NH 2 heterojunction nanocomposite for the degradation of antibiotic tetracycline hydrochloride molecules under sunlight. CHEMOSPHERE 2022; 303:134861. [PMID: 35584713 DOI: 10.1016/j.chemosphere.2022.134861] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/19/2022] [Accepted: 05/03/2022] [Indexed: 06/15/2023]
Abstract
The use of tetracycline hydrochloride (TCH) for veterinary, human therapy, and agriculture has risen in the past few decades, making it to become one of the most exploited antibiotics. However, TCH residue in the environment is causing issues related to the evolution of antibiotic-resistant bacteria. To address such a problem, photodegradation offers a potential solution to decompose these pollutants in wastewater and thereby mitigates negative environmental impacts. In this context, the research focuses on the use of the rare-earth metal oxide samarium orthovanadate (SmVO4) with nanorod structure, coupled with UiO-66-NH2 for the photocatalytic degradation. Their photocatalytic activity to degrade antibiotic TCH molecules is explored under simulated solar light irradiation. The integration of UiO-66-NH2 with SmVO4 enhanced the light absorption, recombination resistance, carrier lifetime (from 0.382 to 0.411 ns) and specific surface area (from 67.17 to 246 m2/g) of the composite system as confirmed from multiple analyses. The obtained results further indicated that SmVO4/UiO-66-NH2 nanocomposites could form a direct Z-scheme based heterojunction. Such mechanism of charge transfer leads to the effective degradation of TCH molecules up to 50% in 90 min under solar light, while it is degraded only 30% in the case of bare-SmVO4 nanorods. In this work, the incorporation of UiO-66-NH2 positively influences photoelectrochemical properties and improves the overall photoredox properties of SmVO4 for the degradation of complex compounds like antibiotic TCH molecules. Therefore, UiO-66-NH2 can be proposed as an effective material to sensitize the rare-earth based photocatalytic material.
Collapse
Affiliation(s)
- Toan-Anh Quach
- Department of Chemical Engineering, Laval University, 1065 Avenue de la Médecine, Quebec, QC G1V0A6, Canada
| | - Jorge Becerra
- Department of Chemical Engineering, Laval University, 1065 Avenue de la Médecine, Quebec, QC G1V0A6, Canada
| | - Duc-Trung Nguyen
- Department of Chemical Engineering, Laval University, 1065 Avenue de la Médecine, Quebec, QC G1V0A6, Canada
| | - Mohan Sakar
- Department of Chemical Engineering, Laval University, 1065 Avenue de la Médecine, Quebec, QC G1V0A6, Canada; Centre for Nano and Material Sciences, Jain University, Bangalore, 562112, Karnataka, India
| | - Manh-Hiep Vu
- Department of Chemical Engineering, Laval University, 1065 Avenue de la Médecine, Quebec, QC G1V0A6, Canada
| | - François Dion
- Department of Chemical Engineering, Laval University, 1065 Avenue de la Médecine, Quebec, QC G1V0A6, Canada
| | | | - Trong-On Do
- Department of Chemical Engineering, Laval University, 1065 Avenue de la Médecine, Quebec, QC G1V0A6, Canada.
| |
Collapse
|
19
|
Jin L, Wang W, Xu F, Ding CF. In-Situ and High-Throughput Determination of Antibiotics in Pork Using Electro-Filter Paper Spray Ionization Tandem Miniature Ion Trap Mass Spectrometry. ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2094937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Liuyu Jin
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, China
| | - Weimin Wang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, China
| | - Fuxing Xu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, China
| | - Chuan-Fan Ding
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, China
| |
Collapse
|
20
|
Chen Y, Xia Z, Li H. Metagenomic comparison of gut communities between hawksbills (Eretmochelys imbricata) and green sea turtles (Chelonia mydas). Arch Microbiol 2022; 204:450. [PMID: 35780445 DOI: 10.1007/s00203-022-03073-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 06/07/2022] [Accepted: 06/13/2022] [Indexed: 11/29/2022]
Abstract
The gut microbiota is closely linked to host nutrition, immunity, and health. Here, metagenomic analysis was conducted to elucidate the taxonomic and functional diversity of gut communities from hawksbills and green sea turtles. In terms of diversity and abundance, the gut microbiota of herbivorous green sea turtles showed a higher bacterial diversity and richness than that of hawksbills. Firmicutes dominated in all groups; however, the phylum Proteobacteria showed a higher relative abundance in hawksbills. Several metabolic pathways displayed broad prevalence and high relative abundances in the two sea turtle populations. Antibiotic resistance genes (ARGs) responsible for resistance to glycopeptide and tetracycline were the most abundant in all samples. In ARGs, the subtype macB was the most abundant in the two different sea turtle populations; however, evgS, bcrA, and efrA were more abundant in the green sea turtles, while in the hawksbills, tetT and tetB(P) were more abundant. Among mobile genetic elements (MGEs), the abundance of 16 MGE types showed a significant difference between the two sea turtle populations. MGE type transposase and plasmid were the most abundant in the two sea turtle populations. Additionally, gene functions were enriched in carbohydrate esterases, glycoside hydrolases, and polysaccharide lyases in the green sea turtles, whereas genes related to glycosyltransferases and auxiliary activities were highly abundant in hawksbills. These metagenomic profiles provide further insights into the microbial diversities of the two types of sea turtles and provide valuable information for future conservation efforts.
Collapse
Affiliation(s)
- Yuan Chen
- School of Life Science, Huizhou University, No. 46 Yanda Road, Huizhou, 516007, China
| | - Zhongrong Xia
- Guangdong Huidong Sea Turtle National Nature Reserve Administration, Huidong, 516359, Guangdong, China
| | - Hongwei Li
- School of Life Science, Huizhou University, No. 46 Yanda Road, Huizhou, 516007, China.
| |
Collapse
|
21
|
Javaid A, Latif S, Imran M, Hussain N, Bilal M, Iqbal HMN. MXene-based hybrid composites as photocatalyst for the mitigation of pharmaceuticals. CHEMOSPHERE 2022; 291:133062. [PMID: 34856238 DOI: 10.1016/j.chemosphere.2021.133062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/08/2021] [Accepted: 11/22/2021] [Indexed: 02/05/2023]
Abstract
Environmental contamination is a burning issue and has gained global attention in the present era. Pharmaceuticals are emerging contaminants affecting the natural environment worldwide owing to their extensive consumption particularly in developing countries where self-medication is a common practice. These pharmaceuticals or their degraded active metabolites enter water bodies via different channels and are continuous threat to the whole ecological system. There is a dire need to find efficient approaches for their removal from all environmental matrices. Photocatalysis is one of the most effective and simple approach, however, finding a suitable photocatalyst is a challenging task. Recently, MXenes (two-dimensional transition metal carbides/nitrides), a relatively new material has attracted increasing interest as photocatalysts due to their exceptional properties, such as large surface area, appreciable safety, huge interlayer spacing, thermal conductivity, and environmental flexibility. This review describes the recent advancements of MXene-based composites and their photocatalytic potential for the elimination of pharmaceuticals. Furthermore, present limitations and future research requirements are recommended to attain more benefits of MXene-based composites for the purification of wastewater.
Collapse
Affiliation(s)
- Ayesha Javaid
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab, Lahore, 54000, Pakistan
| | - Shoomaila Latif
- School of Physical Sciences, University of the Punjab, Lahore, 54000, Pakistan
| | - Muhammad Imran
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab, Lahore, 54000, Pakistan
| | - Nazim Hussain
- Center for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, NL, CP, 64849, Mexico.
| |
Collapse
|
22
|
Xia Z, Lin CY, Drndić M. Protein-enabled detection of ibuprofen and sulfamethoxazole using solid-state nanopores. Proteomics 2022; 22:e2100071. [PMID: 34974637 DOI: 10.1002/pmic.202100071] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 02/01/2023]
Abstract
Enabled by proteins, we present an all-electrical method for rapid detection of small pharmaceuticals (ibuprofen and sulfamethoxazole [SMZ]) in aqueous media using silicon nitride pores. Specifically, we use carrier proteins, bovine serum albumin (BSA), and take advantage of their interactions with two small drug molecules to form BSA-drug complexes which can be detected by nm-diameter pores, thereby confirming the presence of small pharmaceuticals. We demonstrate detection of ibuprofen and SMZ at concentrations down to 100 nM (∼21 μg/L) and 48.5 nM (12 μg/L), respectively. We observe changes in electrical signal characteristics (reflected in event durations, rates, current magnitudes, and estimated particle diameters) of BSA-drug complexes compared to BSA-only, and differences between these two small pharmaceuticals, possibly paving a path toward developing selective sensors by identifying "electrical fingerprints" of these molecules in the future. These distinct electrical signals are likely a combined result of diffusion, electrophoretic and electroosmotic effects, interactions between the pore and particles, which depend on pore diameters, pH, and the resulting surface charges. The use of single-molecule-counting nanopores allows sensing of small pharmaceuticals, studies of protein conformational changes, and may aid in efforts to evaluate the impact of small drug molecules on aquatic and human life.
Collapse
Affiliation(s)
- Zehui Xia
- Goeppert LLC, Philadelphia, Pennsylvania, USA
| | - Chih-Yuan Lin
- Department of Physics and Astronomy, David Rittenhouse Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Marija Drndić
- Department of Physics and Astronomy, David Rittenhouse Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
23
|
Hidayati NV, Syakti AD, Asia L, Lebarillier S, Khabouchi I, Widowati I, Sabdono A, Piram A, Doumenq P. Emerging contaminants detected in aquaculture sites in Java, Indonesia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:145057. [PMID: 33592457 DOI: 10.1016/j.scitotenv.2021.145057] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 06/12/2023]
Abstract
Pharmaceuticals of emerging concern (acetaminophen (ACM), trimethoprim (TMP), oxytetracycline (OTC), and sulfamethoxazole (SMX)) were detected in water samples from aquaculture environments and nonaquaculture sites in four regions located on the northern coast of Central Java. ACM was the most prevalent pharmaceutical, with a mean concentration ranging from not detected (n.d.) to 5.5 ± 1.9 ngL-1 (Brebes). Among the target antibiotics (TMP, OTC, SMX), OTC was the most ubiquitous, with a mean concentration varying from n.d. to 8.0 ± 3.3 ngL-1. Correlation analysis demonstrated that there was a significant correlation between TMP and SMX concentrations. Based on ecological risk assessment evaluation, the use of OTC requires serious consideration, as it presented high health risks to algae, while ACM, TMP, and SMX posed an insignificant to moderate risk to algae, invertebrates, and fish. The findings obtained from this study highlight OTC as an emerging contaminant of prominent concern. More attention needs to be given to managing and planning for the sustainable management of shrimp farms, particularly in the northern part of Central Java.
Collapse
Affiliation(s)
- Nuning Vita Hidayati
- Aix Marseille Univ, CNRS, LCE, Marseille, France; Fisheries and Marine Science Faculty - Jenderal Soedirman University, Kampus Karangwangkal, Jl. dr. Suparno, Purwokerto 53123, Indonesia; Faculty of Fisheries and Marine Sciences, Universitas Diponegoro, Jl. Prof. Soedharto, SH, Tembalang, Semarang 50275, Indonesia; Center for Maritime Biosciences Studies - Institute for Sciences and Community Service, Jenderal Soedirman University, Kampus Karangwangkal, Jl. dr. Suparno, Purwokerto 53123, Indonesia
| | - Agung Dhamar Syakti
- Center for Maritime Biosciences Studies - Institute for Sciences and Community Service, Jenderal Soedirman University, Kampus Karangwangkal, Jl. dr. Suparno, Purwokerto 53123, Indonesia; Marine Science and Fisheries Faculty - Raja Ali Haji Maritime University, Jl. Politeknik Senggarang-Tanjungpinang, Riau Islands Province 29100, Indonesia.
| | | | | | | | - Ita Widowati
- Faculty of Fisheries and Marine Sciences, Universitas Diponegoro, Jl. Prof. Soedharto, SH, Tembalang, Semarang 50275, Indonesia
| | - Agus Sabdono
- Faculty of Fisheries and Marine Sciences, Universitas Diponegoro, Jl. Prof. Soedharto, SH, Tembalang, Semarang 50275, Indonesia
| | - Anne Piram
- Aix Marseille Univ, CNRS, LCE, Marseille, France
| | | |
Collapse
|
24
|
Mirmont E, Bœuf A, Charmel M, Vaslin-Reimann S, Lalère B, Laprévote O, Lardy-Fontan S. Development and implementation of an analytical procedure for the quantification of natural and synthetic steroid hormones in whole surface waters. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1175:122732. [PMID: 33992977 DOI: 10.1016/j.jchromb.2021.122732] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/25/2021] [Accepted: 04/21/2021] [Indexed: 10/21/2022]
Abstract
Natural and synthetic steroid hormones are chronically released into aquatic spheres. Whereas knowledge on their combined mode of action and the cocktail effect are needed, only few multi-class methods address the challenge of their trace quantification in surface waters. The current study describes a sensitive multi-residue analytical strategy aiming to quantify 23 steroid hormones belonging to androgens, estrogens, glucocorticoids and progestogens in whole surface waters. The procedure relies on a two-step solid-phase extraction followed by an ultra-performance liquid chromatography separation coupled to tandem mass spectrometry detection (UPLC-MS/MS). Isotope dilution was implemented when possible in order to ensure the reliability of the measurement. The procedure was optimized toward the reliable quantification of the 23 target compounds at the predicted no-effect concentrations when existing or below the ng L-1 level. Satisfactory absolute global recoveries ≥ 77% were obtained for almost all compounds (21 out of 23) in intermediate precision conditions. Measurement errors were comprised between -27% and +17% for the great majority of compounds (21 out of 23) with standard deviations < 20% in intermediate precision conditions. Despite signal suppression was observed in water samples, satisfactory limits of quantification were achieved, ranging from 0.035 ng L-1 for 17alpha-ethinylestradiol to 1 ng L-1 for 6beta-hydroxycortisol and 6beta-hydroxydexamethasone. Abiotic stability was demonstrated for the great majority of target compounds (22 out of 23) in reference water samples stored at 4 ± 3 °C during 48 h, driving our sampling strategy. To demonstrate its fitness for purpose, the procedure was implemented in a preliminary monitoring survey of Belgian surface waters. As a result, 6 out of 23 target compounds were detected or quantified, showing a contamination by some estrogens and glucocorticoids at levels ranging from 0.1 to 0.9 ng L-1.
Collapse
Affiliation(s)
- E Mirmont
- Laboratoire National de métrologie et d'Essais (LNE), 1 rue Gaston Boissier, 75724 Paris, France; UMR CNRS 8038 CiTCoM, Chimie-Toxicologie Analytique et Cellulaire, Université de Paris, Faculté de Pharmacie de Paris, 4 avenue de l'Observatoire, 75006 Paris, France
| | - A Bœuf
- Laboratoire National de métrologie et d'Essais (LNE), 1 rue Gaston Boissier, 75724 Paris, France
| | - M Charmel
- Laboratoire National de métrologie et d'Essais (LNE), 1 rue Gaston Boissier, 75724 Paris, France
| | - S Vaslin-Reimann
- Laboratoire National de métrologie et d'Essais (LNE), 1 rue Gaston Boissier, 75724 Paris, France
| | - B Lalère
- Laboratoire National de métrologie et d'Essais (LNE), 1 rue Gaston Boissier, 75724 Paris, France
| | - O Laprévote
- UMR CNRS 8038 CiTCoM, Chimie-Toxicologie Analytique et Cellulaire, Université de Paris, Faculté de Pharmacie de Paris, 4 avenue de l'Observatoire, 75006 Paris, France; Hôpital Européen Georges Pompidou, AP-HP, Service de Biochimie, 24 rue Leblanc, 75015 Paris, France
| | - S Lardy-Fontan
- Laboratoire National de métrologie et d'Essais (LNE), 1 rue Gaston Boissier, 75724 Paris, France.
| |
Collapse
|
25
|
Ceolin BC, Kemmerich M, Noguera MM, Camargo ER, Avila LAD. Evaluation of an alternative sorbent for passive sampling of the herbicides 2,4-D and Dicamba in the air. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2021; 56:634-643. [PMID: 34082656 DOI: 10.1080/03601234.2021.1929019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The present study aimed to evaluate the Strata-X® sorbent, commonly used in cartridges, through analysis by high-performance liquid chromatography coupled with mass spectrometry. Due to the different physical-chemical characteristics of the compounds, different conditions of chromatography and mass analysis were necessary. The developed methods were validated in terms of selectivity, linear range, linearity (coefficient of determination, r2), the limit of detection (LOD), the limit of quantification (LOQ), accuracy (recovery, %), and precision (RSD, %). The results allowed us to select efficient extraction methods, using methanol acidified to pH 2 with formic acid, to elute the herbicides 2,4-D and dicamba in both sorbent materials. Besides, the Strata-X® sorbent was efficient in the sorption of analytes; thus, we indicate it for potential use in air sampling as an alternative to XAD-2.
Collapse
Affiliation(s)
| | - Magali Kemmerich
- Weed Science Research Group (CEHERB), Federal University of Pelotas, Capão do Leão, RS, Brazil
| | - Matheus Machado Noguera
- Crop, Soil and Environmental Sciences Department, University of Arkansas, Fayetteville, AR, Brazil
| | | | | |
Collapse
|
26
|
Hena S, Gutierrez L, Croué JP. Removal of pharmaceutical and personal care products (PPCPs) from wastewater using microalgae: A review. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:124041. [PMID: 33265054 DOI: 10.1016/j.jhazmat.2020.124041] [Citation(s) in RCA: 183] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/20/2020] [Accepted: 09/16/2020] [Indexed: 05/20/2023]
Abstract
Pharmaceuticals and personal care products (PPCPs) are a group of emerging micro-pollutants causing detrimental effects on living organisms even at low doses. Previous investigations have confirmed the presence of PPCPs in the environment at hazardous levels, mainly due to the inefficiency of conventional wastewater treatment plants (CWWTPs). Their stable structure induces longer persistence in the environment. Microalgae are currently used to bioremediate numerous pollutants of different characteristics and properties released from the domestic, industrial, agricultural, and farm sectors. CO2 mitigation during culture and the use of biomass as feedstock for biodiesel or biofuel production are, briefly, other benefits of microalgae-mediated treatment over CWWTPs. This review provides a comprehensive summary of recent literature, an overview of approaches and treatment systems, and breakthrough in the field of algal-mediated removal of PPCPs in wastewater treatment processes. The mechanisms involved in phycoremediation, along with their experimental approaches, have been discussed in detail. Factors influencing the removal of PPCPs from aqueous media are comprehensively described and assessed. A comparative study on microalgal strains is analyzed for a more efficient implementation of future processes. The role of microalgae to mitigate the most severe environmental impacts of PPCPs and the generation of antibiotic-resistant bacteria is discussed. Also, a detailed assessment of recent research on potential toxic effects of PPCPs on microalgae was conducted. The current review highlights microalgae as a promising and sustainable approach to efficiently bio-transform or bio-adsorb PPCPs.
Collapse
Affiliation(s)
- Sufia Hena
- Department of Chemistry, Curtin Water Quality Research Centre, Curtin University, Australia
| | | | - Jean-Philippe Croué
- Institut de Chimie des Milieux et des Matériaux, IC2MP UMR 7285 CNRS, Université de Poitiers, France.
| |
Collapse
|
27
|
Occurrence and Fate of Emerging Pollutants in Water Environment and Options for Their Removal. WATER 2021. [DOI: 10.3390/w13020181] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Emerging pollutants (EPs) are chemicals known to cause major impacts on the terrestrial, aquatic life and human health as a result of their chronic and acute toxicity. Although lots of studies on EPs behavior in the aquatic environment are currently available in literature, an urgent requirement exists to complete toxicological studies and develop and implement efficient and ecological methods for their removal. This paper raises some relevant problems related to water environment pollution with EPs, the risks they can generate for aquatic life and humans and opportunities to reduce the effects of pollution by EPs removal. Categories of emerging chemicals of concern in the environment, their sources, fate and impacts, with some examples are discussed. Organic UV filters are shortly presented as a relative new EPs category, with a focus on the need to develop extensive experimental studies on their environmental occurrence, fate and removal. Furthermore, sources for the aquatic environment resulting from discharging EPs directly into rivers from wastewater treatment plants are examined. The incidence of environmental and human health risks related to EPs is also considered. The removal of EPs from the environment as a solution to risk mitigation is addressed, with emphasis on several non-conventional processes involving biological removal of EPs. The paper provides a critical look at the current challenges posed by the presence of emerging pollutants in the aquatic environment, with critical comments and recommendations for further research to reduce the impact of EPs on water and human health and improve the performance of developed methods for their removal.
Collapse
|
28
|
Jiang C, Wu T, Liu J, Wang Y. Application of a thermo-sensitive imprinted SERS substrate to the rapid trace detection of ofloxacin. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:4783-4788. [PMID: 32945296 DOI: 10.1039/d0ay00616e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A novel composite (AgNPs-MIPs) was prepared by combining nano-silver particles with an ofloxacin (OFL) imprinted thermo-sensitive hydrogel. The thermo-sensitive optical properties of the composite were studied and it was used as a Raman substrate for the detection of ofloxacin. The results have shown that the position and intensity of the plasmon resonance absorption peak of the AgNPs-MIPs can be reversibly changed with the change of temperature, and the intensity of the ofloxacin Raman signal increases with the increase of temperature. Because the hydrogel combined Raman enhancement of silver nanoparticles, the selectivity of molecularly imprinted materials and the intelligent response of thermo-sensitive hydrogels, it can realize rapid, in situ, trace and selective detection of ofloxacin. Moreover, the detection limit can reach 10-10 mol L-1.
Collapse
Affiliation(s)
- Caiyun Jiang
- College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | | | | | | |
Collapse
|
29
|
Environmental Dissemination of Selected Antibiotics from Hospital Wastewater to the Aquatic Environment. Antibiotics (Basel) 2020; 9:antibiotics9070431. [PMID: 32708321 PMCID: PMC7400012 DOI: 10.3390/antibiotics9070431] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 02/07/2023] Open
Abstract
The environmental dissemination of selected antibiotics from hospital wastewater into municipal wastewater and lastly to a receiving water body was investigated. Selected antibiotics (azithromycin (AZM), ciprofloxacin (CIP), clindamycin (CDM), doxycycline (DXC) and sulfamethoxazole (SMZ)) present in effluents of academic hospital wastewater, influents, sewage sludge, and effluents of municipal wastewater, receiving water, and its benthic sediment samples were quantified using the Acquity® Waters Ultra-Performance Liquid Chromatography System hyphenated with a Waters Synapt G2 coupled to a quadrupole time-of-flight mass spectrometer. The overall results showed that all assessed antibiotics were found in all matrices. For solid matrices, river sediment samples had elevated concentrations with mean concentrations of 34,834, 35,623, 50,913, 55,263, and 41,781 ng/g for AZM, CIP, CDM, DXC, and SMZ, respectively, whereas for liquid samples, hospital wastewater and influent of wastewater had the highest concentrations. The lowest concentrations were observed in river water, with mean concentrations of 11, 97, 15, and 123 ng/L, except for CDM, which was 18 ng/L in the effluent of wastewater. The results showed that the highest percentages of antibiotics removed was SMZ with 90%, followed by DXC, AZM and CIP with a removal efficiency of 85%, 83%, and 83%, respectively. The antibiotic that showed the lowest removal percentage was CDM with 66%. However, the calculated environmental dissemination analysis through the use of mass load calculations revealed daily release of 15,486, 14,934, 1526, 922, and 680 mg/d for SMZ, CIP, AZM, DXC, and CDM, respectively, indicating a substantial release of selected antibiotics from wastewater to the river system, where they are possibly adsorbed in the river sediment. Further research into the efficient removal of antibiotics from wastewater and the identification of antibiotic sources in river sediment is needed.
Collapse
|
30
|
Mooney D, Coxon C, Richards K, Gill L, Mellander PE, Danaher M. A new sensitive method for the simultaneous chromatographic separation and tandem mass spectrometry detection of anticoccidials, including highly polar compounds, in environmental waters. J Chromatogr A 2020; 1618:460857. [DOI: 10.1016/j.chroma.2020.460857] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/02/2020] [Accepted: 01/06/2020] [Indexed: 10/25/2022]
|
31
|
Photodegradation performance and transformation mechanisms of sulfamethoxazole by porous g-C3N4 modified with ammonia bicarbonate. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116172] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
Alonso LL, Demetrio PM, Capparelli AL, Marino DJG. Behavior of ionophore antibiotics in aquatic environments in Argentina: The distribution on different scales in water courses and the role of wetlands in depuration. ENVIRONMENT INTERNATIONAL 2019; 133:105144. [PMID: 31669774 DOI: 10.1016/j.envint.2019.105144] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/28/2019] [Accepted: 08/29/2019] [Indexed: 06/10/2023]
Abstract
We studied for the first time three ionophore anticoccidial drugs: monensin (MON), lasalocid (LAS), and salinomycin (SAL) as emerging pollutants originating from animal and plant husbandry in surface waters (n = 89) in one of the most extensive hydrological basins in South América (Del Plata basin). The soluble fraction of ionophores was pretreated by solid-phase extraction and analyzed by LC-MS/MS at a limit of detection of 1.7 ng·L-1. A statistical approach noted the need to report parameters calculated by methods based on the number of observations and the censorship percentage over substitution methods for more precise estimations of environmental data with a high percentage of left-censored data. Water collectors adjacent to intensive-husbandry facilities, placed in direct runoffs from animal excreta, or in wastewater emissions contained median concentrations of MON and SAL approximately 70 times higher than those found in regional tributaries and main courses of 5 sub-basins of the pampas and mesopotamic regions, thus exhibiting a relevance to other similar agricultural pollutants widely reported as pesticides. Chemical speciation of these compounds in surface water was characterized especially for MON and SAL, where the pH and chemical oxygen demand of the natural water body was associated with the concentration of the soluble fraction. The concentrations in abundant rivers such as the Gualeguay deliver a contribution to a natural wetland such as the Paraná-River delta, which registered only one sample with a [MON] ≤ the limit of quantification. Since wetlands possess a limited removal capability, these affluent contributions recorded strongly indicate that attention must be paid to the development of guidelines involving quality criteria for assessing the impact of ionophore antibiotics on such ecosystems.
Collapse
Affiliation(s)
- Lucas L Alonso
- Centro de Investigaciones del Medioambiente (CIM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Pablo M Demetrio
- Centro de Investigaciones del Medioambiente (CIM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Alberto L Capparelli
- Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Damián J G Marino
- Centro de Investigaciones del Medioambiente (CIM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
33
|
A simple methodology based on cloud point extraction prior to HPLC-PDA analysis for tetracycline residues in food samples. Microchem J 2019. [DOI: 10.1016/j.microc.2019.104170] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
34
|
Faleye AC, Adegoke AA, Ramluckan K, Fick J, Bux F, Stenström TA. Concentration and reduction of antibiotic residues in selected wastewater treatment plants and receiving waterbodies in Durban, South Africa. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 678:10-20. [PMID: 31075576 DOI: 10.1016/j.scitotenv.2019.04.410] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 04/25/2019] [Accepted: 04/27/2019] [Indexed: 05/15/2023]
Abstract
In the province of KwaZulu-Natal, South Africa the incidence of resistant tuberculosis, upper respiratory tract diseases as well as diarrhoeal and parasitic infections is high. Treatment of these diseases with antibiotics is partly reflected by the excretion of the respective antibiotics and their subsequent occurrence in wastewater. Their quantitative reduction in wastewater treatment reflects their potential environmental as well as human impact, the latter due to the use of the recipient water for domestic purposes and for irrigation. Information of the occurrence and reduction of different classes of antibiotics in wastewater treatment is sparse, especially the particle bound fraction of these. Due to this, analyses of aqueous and particle bound antibiotics in untreated wastewater of four selected wastewater treatment plants (WWTPs) and their receiving water bodies was carried out in Durban, South Africa. The treatment step especially considered was the biological one, represented by activated sludge and trickling filters. The treatment further included secondary clarifiers and final chlorine disinfection. Composite samples were collected during the period February 2017 to May 2017 and analysed with online solid phase extraction - high performance liquid chromatography mass spectrometry (SPE-HPLC-MS). For the 13 assessed antibiotics, the limit of detection (LOD) and the limit of quantification (LOQ) ranged from 0.07 to 0.33 ng L-1 and 0.23 to 1.09 ng L-1 respectively, while the total percentage recovery was in the range of 51 to 111%. The percentage of individual antibiotics bound to the particulate fraction normally lost by sample (influent) filtration, if not analysed in parallel, was in the range of 2.6%-97.3% (n = 32). In this fraction (sludge from centrifuge sample), the concentration of bound antibiotics of all the target antibiotics were detected in the influent of all WWTP in concentration ranges between 1.3 ng L-1 (Azithromycin; AZI) to 81,748 ng L-1 (Ciprofloxacin; CIP). The antibiotics with the highest median concentrations in receiving water bodies of the respective WWTP were; Sulfamethoxazole; SUL (239 ng L-1) WWTP "K", Ciprofloxacin; CIP (708 ng L-1) WWTP "S" and Albendazole; ALB (325 ng L-1 and 683 ng L-1) WWTP "P" and "I" respectively. The overall percentage removal efficiency for the four WWTPs ranged from 21% to 100%. The biological treatment steps, activated sludge and trickling filters, were effective in removing antibiotics especially with the trickling filter and the impact of the sedimentation stage after activated sludge treatment.
Collapse
Affiliation(s)
- A C Faleye
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa; Department of Chemistry, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa.
| | - A A Adegoke
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa; Department of Microbiology, University of Uyo, Uyo, Nigeria
| | - K Ramluckan
- Department of Chemistry, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa
| | - Jerker Fick
- Department of Chemistry, Umeå University, Sweden
| | - F Bux
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa
| | - T A Stenström
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa
| |
Collapse
|
35
|
Cheng J, Jiang L, Sun T, Tang Y, Du Z, Lee L, Zhao Q. Occurrence, Seasonal Variation and Risk Assessment of Antibiotics in the Surface Water of North China. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2019; 77:88-97. [PMID: 30929037 DOI: 10.1007/s00244-019-00605-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 02/02/2019] [Indexed: 06/09/2023]
Abstract
In this study, the occurrence, seasonal, and spatial variations of four classes antibiotics were investigated in the surface water of North China. Water samples were taken from 24 sampling sites along rivers in May and August and antibiotics in water samples were detected by SPE-UPLC-MS/MS. The occurrence of all antibiotics except for FLO in May were higher than in August. The mean concentrations of four classes antibiotics detected in May and August were in the following order respectively: quinolones (421.23 ng/L) > tetracyclines (28.37 ng/L) > amphenicols (20.38 ng/L) > sulfonamides (5.79 ng/L) and amphenicols (284.36 ng/L) > quinolones (15.74 ng/L) > tetracyclines (3.05 ng/L) > sulfonamides (0.20 ng/L). The results showed that quinolones and amphenicols were dominant antibiotics among four classes antibiotics. To explore the source of antibiotics from the fish ponds nearby, antibiotic concentration data, which was investigated in the sediment, fish feed and fish revealed a direct relationship between the main antibiotics and fish farms along the rivers. Risk assessment data indicated enrofloxacin and florfenicol could cause higher safety risks to aquatic organisms compared to other antibiotics.
Collapse
Affiliation(s)
- Jiaxing Cheng
- Faculty of Science, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Lei Jiang
- Beijing Municipal Environmental Monitoring Center, Beijing, 100048, China
| | - Tangqiang Sun
- Faculty of Science, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yan Tang
- Faculty of Science, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhenxia Du
- Faculty of Science, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Lingjun Lee
- Beijing Municipal Environmental Monitoring Center, Beijing, 100048, China.
| | - Qiyue Zhao
- Beijing Municipal Environmental Monitoring Center, Beijing, 100048, China
| |
Collapse
|
36
|
Miossec C, Lanceleur L, Monperrus M. Multi-residue analysis of 44 pharmaceutical compounds in environmental water samples by solid-phase extraction coupled to liquid chromatography-tandem mass spectrometry. J Sep Sci 2019; 42:1853-1866. [PMID: 30884137 DOI: 10.1002/jssc.201801214] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/06/2019] [Accepted: 03/08/2019] [Indexed: 01/01/2023]
Abstract
A solid-phase extraction combined with a liquid chromatography-tandem mass spectrometry analysis has been developed and validated for the simultaneous determination of 44 pharmaceuticals belonging to different therapeutic classes (i.e., antibiotics, anti-inflammatories, cardiovascular agents, hormones, neuroleptics, and anxiolytics) in water samples. The sample preparation was optimized by studying target compounds retrieval after the following processes: i) water filtration, ii) solid phase extraction using Waters Oasis HLB cartridges at various pH, and iii) several evaporation techniques. The method was then validated by the analysis of spiked estuarine waters and wastewaters before and after treatment. Analytical performances were evaluated in terms of linearity, accuracy, precision, detection, and quantification limits. Recoveries of the pharmaceuticals were acceptable, instrumental detection limits varied between 0.001 and 25 pg injected and method quantification limits ranged from 0.01 to 30.3 ng/L. The precision of the method, calculated as relative standard deviation, ranged from 0.3 to 49.4%. This procedure has been successfully applied to the determination of the target analytes in estuarine waters and wastewaters. Eight of these 44 pharmaceuticals were detected in estuarine water, while 26 of them were detected in wastewater effluent. As expected, the highest values of occurrence and concentration were found in wastewater influent.
Collapse
Affiliation(s)
- Carole Miossec
- CNRS/Univ Pau & Pays Adour/E2S UPPA, Institut Des Sciences Analytiques Et De Physicochimie Pour L'environnement Et Les Materiaux-MIRA, Anglet, France
| | - Laurent Lanceleur
- CNRS/Univ Pau & Pays Adour/E2S UPPA, Institut Des Sciences Analytiques Et De Physicochimie Pour L'environnement Et Les Materiaux-MIRA, Anglet, France
| | - Mathilde Monperrus
- CNRS/Univ Pau & Pays Adour/E2S UPPA, Institut Des Sciences Analytiques Et De Physicochimie Pour L'environnement Et Les Materiaux-MIRA, Anglet, France
| |
Collapse
|
37
|
Patel M, Kumar R, Kishor K, Mlsna T, Pittman CU, Mohan D. Pharmaceuticals of Emerging Concern in Aquatic Systems: Chemistry, Occurrence, Effects, and Removal Methods. Chem Rev 2019; 119:3510-3673. [DOI: 10.1021/acs.chemrev.8b00299] [Citation(s) in RCA: 970] [Impact Index Per Article: 161.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Manvendra Patel
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rahul Kumar
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Kamal Kishor
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Todd Mlsna
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Charles U. Pittman
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Dinesh Mohan
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
38
|
Xu R, Wu Z, Zhou Z, Meng F. Removal of sulfadiazine and tetracycline in membrane bioreactors: linking pathway to microbial community shift. ENVIRONMENTAL TECHNOLOGY 2019; 40:134-143. [PMID: 28918708 DOI: 10.1080/09593330.2017.1380714] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 09/11/2017] [Indexed: 06/07/2023]
Abstract
In this study, the removal pathway of sulfadiazine (SDZ) and tetracycline (TC) and their roles in shaping microbial community were separately explored in two lab-scale membrane bioreactors (MBRs) operating in parallel with one control MBR. Results show that the MBR system eliminated more than 90% of TC in the feed, whereas removal efficiency of SDZ decreased from 100% to 40% with increasing SDZ concentrations (1-1000 μg/L). Based on batch tests, biodegradation and adsorption was the main removal route for SDZ and TC, following pseudo-first-order kinetic and pseudo-second-order kinetic model with a rate constant of 1.21 L/(g MLSS·d) and 1.91 h-1, respectively, in the acclimated sludge. As expected, the acclimated sludge possessed a higher removal potential for the antibiotics compared with unacclimated sludge. Notably, high-throughput sequencing revealed that the most abundant phylum Proteobacteria was resistant to TC (1-1000 μg/L), but was suppressed by SDZ (100-1000 μg/L). Members of the phylum TM7 were likely responsible for SDZ degradation. Overall, TC exhibited a stronger inhibitory effect on bacterial species and significantly reduced the biodiversity compared with SDZ, which could be strongly related to the persistent toxicity of TC to microbes resulting from its high adsorption potential on activated sludge.
Collapse
Affiliation(s)
- Ronghua Xu
- a School of Environmental Science and Engineering, Sun Yat-sen University , Guangzhou , People's Republic of China
- b Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology , Sun Yat-sen University , Guangzhou , People's Republic of China
| | - Zhiyong Wu
- a School of Environmental Science and Engineering, Sun Yat-sen University , Guangzhou , People's Republic of China
- b Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology , Sun Yat-sen University , Guangzhou , People's Republic of China
| | - Zhongbo Zhou
- a School of Environmental Science and Engineering, Sun Yat-sen University , Guangzhou , People's Republic of China
- b Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology , Sun Yat-sen University , Guangzhou , People's Republic of China
| | - Fangang Meng
- a School of Environmental Science and Engineering, Sun Yat-sen University , Guangzhou , People's Republic of China
- b Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology , Sun Yat-sen University , Guangzhou , People's Republic of China
| |
Collapse
|
39
|
González-Gaya B, Cherta L, Nozal L, Rico A. An optimized sample treatment method for the determination of antibiotics in seawater, marine sediments and biological samples using LC-TOF/MS. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 643:994-1004. [PMID: 30189582 DOI: 10.1016/j.scitotenv.2018.06.079] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 06/07/2018] [Accepted: 06/07/2018] [Indexed: 06/08/2023]
Abstract
Antibiotics used in marine aquaculture have been reported to accumulate in sediments and non-target aquatic organisms, modifying the biodiversity and the environmental conditions in areas close to the fish farms. Improved analytical methods are required to assess the spread and the impacts of aquaculture antibiotics in the marine environment, as well as to estimate resistance development risks. In this study, we have optimized a method for simultaneous quantitative determination of oxytetracycline, florfenicol and flumequine in marine samples using liquid chromatography coupled to time-of-flight high resolution mass spectrometry (LC-TOF/MS). The method optimization was carried out for seawater, sediment and biological samples (biofilm and two benthic invertebrate species: Gammarus aequicauda and Monodonta articulata). Special attention was paid to the optimization of the extraction and purification steps, testing: liquid-liquid and solid-liquid extractions, the use of silica and other commercial sorbents' clean-up, and single and tandem solid phase extraction procedures. The limits of quantification (MQLs) achieved with the developed method are 0.1-0.5 μg L-1 in seawater; 1-5 μg kg-1 in marine sediments; 5-25 μg kg-1 in biofilm; and 100-500 μg kg-1 in invertebrates, with good accuracy and precision. Method recoveries in spiked samples are 65-120% in seawater and sediment samples, and 63-110% in the biological samples. The method has been successfully implemented for the determination of antibiotic concentrations in sediment and invertebrate samples collected from a Mediterranean bay in south-east Spain. These represent significant advances in the analysis of antibiotics in environmental samples, especially for wild marine taxa, and attend for a proper assessment of the environmental fate and side effects of aquaculture antibiotics in the marine environment.
Collapse
Affiliation(s)
- Belén González-Gaya
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Avenida Punto Com 2, P.O. Box 28805, Alcalá de Henares, Madrid, Spain.
| | - Laura Cherta
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Avenida Punto Com 2, P.O. Box 28805, Alcalá de Henares, Madrid, Spain
| | - Leonor Nozal
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Avenida Punto Com 2, P.O. Box 28805, Alcalá de Henares, Madrid, Spain; Institute of Applied Chemistry and Biotechnology (CQAB), University of Alcala, Madrid, Spain
| | - Andreu Rico
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Avenida Punto Com 2, P.O. Box 28805, Alcalá de Henares, Madrid, Spain
| |
Collapse
|
40
|
|
41
|
Wu W, Tang Y, Yang J, Idehen E, Sang S. Avenanthramide Aglycones and Glucosides in Oat Bran: Chemical Profile, Levels in Commercial Oat Products, and Cytotoxicity to Human Colon Cancer Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:8005-8014. [PMID: 29985603 DOI: 10.1021/acs.jafc.8b02767] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Avenanthramides (AVAs), unique phytochemicals in oat, have attracted an increasing amount of attention due to their outstanding health benefits. However, the chemical profile and the levels of AVAs in commercial oat products as well as their health benefits have not been examined in detail. In the present study, a total of 29 AVA aglycones and AVA glucosides were identified and characterized from oat bran using NMR (1D and 2D NMR) and LC-MS techniques. Among them, 17 novel AVA glucosides were reported in oat bran for the first time. The most abundant AVA glucoside, 2c-3'- O-glc, had a similar growth inhibitory activity with the major AVA, 2c, against HCT-116 and HT-29 human colon cancer cells, indicating glucosylation does not affect the growth inhibitory effects of AVAs. Furthermore, the levels of all individual AVAs in 13 commercial oat products were analyzed using HPLC-MS/MS. The total AVAs contents in various oat products ranged from 9.22 to 61.77 mg/kg (fresh weight).
Collapse
Affiliation(s)
- Wenbin Wu
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies , North Carolina Agricultural and Technical State University , North Carolina Research Campus, 500 Laureate Way , Kannapolis , North Carolina 28081 , United States
| | - Yao Tang
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies , North Carolina Agricultural and Technical State University , North Carolina Research Campus, 500 Laureate Way , Kannapolis , North Carolina 28081 , United States
| | - Junli Yang
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies , North Carolina Agricultural and Technical State University , North Carolina Research Campus, 500 Laureate Way , Kannapolis , North Carolina 28081 , United States
| | - Emmanuel Idehen
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies , North Carolina Agricultural and Technical State University , North Carolina Research Campus, 500 Laureate Way , Kannapolis , North Carolina 28081 , United States
| | - Shengmin Sang
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies , North Carolina Agricultural and Technical State University , North Carolina Research Campus, 500 Laureate Way , Kannapolis , North Carolina 28081 , United States
| |
Collapse
|
42
|
Liu X, Lu S, Guo W, Xi B, Wang W. Antibiotics in the aquatic environments: A review of lakes, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 94:736-757. [PMID: 30857084 DOI: 10.1016/j.envint.2016.06.025] [Citation(s) in RCA: 635] [Impact Index Per Article: 90.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 05/19/2016] [Accepted: 06/19/2016] [Indexed: 05/05/2023]
Abstract
The potential threat of antibiotics to the environment and human health has raised significant concerns in recent years. The consumption and production of antibiotics in China are the highest in the world due to its rapid economic development and huge population, possibly resulting in the high detection frequencies and concentrations of antibiotics in aquatic environments of China. As a water resource, lakes in China play an important role in sustainable economic and social development. Understanding the current state of antibiotics in lakes in China is important. Closed and semi-closed lakes provide an ideal medium for the accumulation of antibiotics and antibiotic resistance genes (ARGs). This review summarizes the current levels of antibiotic exposure in relevant environmental compartments in lakes. The ecological and health risks of antibiotics are also evaluated. This review concludes that 39 antibiotics have been detected in the aquatic environments of lakes in China. The levels of antibiotic contamination in lakes in China is relatively high on the global scale. Antibiotic contamination is higher in sediment than water and aquatic organisms. Quinolone antibiotics (QNs) pose the greatest risks. The contents of antibiotics in aquatic organisms are far lower than their maximum residual limits (MRLs), with the exception of the organisms in Honghu Lake. The lakes experience high levels of ARG contamination. A greater assessment of ARG presence and antibiotic exposure are urgent.
Collapse
Affiliation(s)
- Xiaohui Liu
- School of Environment, Tsinghua University, Beijing 100084, China; State Environmental Protection Scientific Observation and Research Station for Lake Dongting, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Shaoyong Lu
- State Environmental Protection Scientific Observation and Research Station for Lake Dongting, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Wei Guo
- School of Environmental Science and Engineering, North China Electric Power University, Beijing 1002206, China
| | - Beidou Xi
- State Environmental Protection Scientific Observation and Research Station for Lake Dongting, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Weiliang Wang
- School of Geography and Environment, Shandong Normal University, Jinan, Shandong 250358, China
| |
Collapse
|
43
|
Gusmaroli L, Insa S, Petrovic M. Development of an online SPE-UHPLC-MS/MS method for the multiresidue analysis of the 17 compounds from the EU "Watch list". Anal Bioanal Chem 2018; 410:4165-4176. [PMID: 29691601 DOI: 10.1007/s00216-018-1069-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/19/2018] [Accepted: 04/05/2018] [Indexed: 01/01/2023]
Abstract
During the last decades, the quality of aquatic ecosystems has been threatened by increasing levels of pollutions, caused by the discharge of man-made chemicals, both via accidental release of pollutants as well as a consequence of the constant outflow of inadequately treated wastewater effluents. For this reason, the European Union is updating its legislations with the aim of limiting the release of emerging contaminants. The Commission Implementing Decision (EU) 2015/495 published in March 2015 drafts a "Watch list" of compounds to be monitored Europe-wide. In this study, a methodology based on online solid-phase extraction (SPE) ultra-high-performance liquid chromatography coupled to a triple-quadrupole mass spectrometer (UHPLC-MS/MS) was developed for the simultaneous determination of the 17 compounds listed therein. The proposed method offers advantages over already available methods, such as versatility (all 17 compounds can be analyzed simultaneously), shorter time required for analysis, robustness, and sensitivity. The employment of online sample preparation minimized sample manipulation and reduced dramatically the sample volume needed and time required, dramatically the sample volume needed and time required, thus making the analysis fast and reliable. The method was successfully validated in surface water and influent and effluent wastewater. Limits of detection ranged from sub- to low-nanogram per liter levels, in compliance with the EU limits, with the only exception of EE2. Graphical abstract Schematic of the workflow for the analysis of the Watch list compounds.
Collapse
Affiliation(s)
- Lucia Gusmaroli
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, H2O Building, c/ Emili Grahit 101, 17003, Girona, Spain
| | - Sara Insa
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, H2O Building, c/ Emili Grahit 101, 17003, Girona, Spain
| | - Mira Petrovic
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, H2O Building, c/ Emili Grahit 101, 17003, Girona, Spain. .,Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys 23, 08010, Barcelona, Spain.
| |
Collapse
|
44
|
Lucas D, Castellet-Rovira F, Villagrasa M, Badia-Fabregat M, Barceló D, Vicent T, Caminal G, Sarrà M, Rodríguez-Mozaz S. The role of sorption processes in the removal of pharmaceuticals by fungal treatment of wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 610-611:1147-1153. [PMID: 28847135 DOI: 10.1016/j.scitotenv.2017.08.118] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 08/11/2017] [Accepted: 08/12/2017] [Indexed: 06/07/2023]
Abstract
The contribution of the sorption processes in the elimination of pharmaceuticals (PhACs) during the fungal treatment of wastewater has been evaluated in this work. The sorption of four PhACs (carbamazepine, diclofenac, iopromide and venlafaxine) by 6 different fungi was first evaluated in batch experiments. Concentrations of PhACs in both liquid and solid (biomass) matrices from the fungal treatment were measured. Contribution of the sorption to the total removal of pollutants ranged between 3% and 13% in relation to the initial amount. The sorption of 47 PhACs in fungi was also evaluated in a fungal treatment performed in 26days in a continuous bioreactor treating wastewater from a veterinary hospital. PhACs levels measured in the fungal biomass were similar to those detected in conventional wastewater treatment (WWTP) sludge. This may suggest the necessity of manage fungal biomass as waste in the same manner that the WWTP sludge is managed.
Collapse
Affiliation(s)
- D Lucas
- Catalan Institute for Water Research (ICRA), H2O Building, Scientific and Technological Park of the University of Girona, 17003 Girona, Spain
| | - F Castellet-Rovira
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Catalonia, Spain
| | - M Villagrasa
- Catalan Institute for Water Research (ICRA), H2O Building, Scientific and Technological Park of the University of Girona, 17003 Girona, Spain
| | - M Badia-Fabregat
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Catalonia, Spain
| | - D Barceló
- Catalan Institute for Water Research (ICRA), H2O Building, Scientific and Technological Park of the University of Girona, 17003 Girona, Spain; Water and Soil Quality Research Group, Department of Environmental Chemistry (IDAEA-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - T Vicent
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Catalonia, Spain
| | - G Caminal
- Institut de Química Avançada de Catalunya (IQAC) CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - M Sarrà
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Catalonia, Spain
| | - S Rodríguez-Mozaz
- Catalan Institute for Water Research (ICRA), H2O Building, Scientific and Technological Park of the University of Girona, 17003 Girona, Spain.
| |
Collapse
|
45
|
Gilliland WM, Mellors JS, Ramsey JM. Coupling Microchip Electrospray Ionization Devices with High Pressure Mass Spectrometry. Anal Chem 2017; 89:13320-13325. [DOI: 10.1021/acs.analchem.7b03484] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
46
|
Ivešić M, Krivohlavek A, Žuntar I, Tolić S, Šikić S, Musić V, Pavlić I, Bursik A, Galić N. Monitoring of selected pharmaceuticals in surface waters of Croatia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:23389-23400. [PMID: 28844101 DOI: 10.1007/s11356-017-9894-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 08/01/2017] [Indexed: 05/16/2023]
Abstract
Sulfonamides, macrolides, torasemide, fumagillin, and chloramphenicol were simultaneously analyzed in surface water samples by using solid-phase extraction (SPE) and reversed-phase (RP) liquid chromatography-electrospray tandem mass spectrometry (LC-ESI-MS/MS). In the pre-concentration and clean-up process, the pH value of samples and volume of the solvent for extraction of analytes from cartridge were optimized. Extraction recoveries were high with values in the range from 62 to 115%. Limits of quantification (LoQ) were in the range from 0.02 to 0.2 μg L-1. Repeatability of the method was evaluated at LoQ and expressed as relative standard deviation (RSD). Calculated RSDs were low with values in the range from 2.4 to 14.5%. The method was successfully applied for analysis of surface water real samples. Samples were collected along the rivers in Croatia on four sampling sites in 2012 in Danube catchment areas, 19 sampling sites in Danube and Adriatic catchment areas in 2013, and another 19 places in 2014. Altogether, 20 target compounds were analyzed in 148 water samples and detected in 31 samples in range (0.1-5.3) μg L-1 or in 20.1% of samples. The most frequent and highest concentrations were detected for macrolide antibiotics. This is the first attempt of such monitoring in surface waters in Croatia.
Collapse
Affiliation(s)
- Martina Ivešić
- Andrija Štampar Teaching Institute of Public Health, Mirogojska, 16, Zagreb, Croatia
| | - Adela Krivohlavek
- Andrija Štampar Teaching Institute of Public Health, Mirogojska, 16, Zagreb, Croatia.
| | - Irena Žuntar
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, Zagreb, Croatia
| | - Sonja Tolić
- Andrija Štampar Teaching Institute of Public Health, Mirogojska, 16, Zagreb, Croatia
| | - Sandra Šikić
- Andrija Štampar Teaching Institute of Public Health, Mirogojska, 16, Zagreb, Croatia
| | - Valerija Musić
- Hrvatske vode, Ulica grada Vukovara, 220, Zagreb, Croatia
| | - Ivan Pavlić
- Faculty of Science, University of Zagreb, Horvatovac 102a, Zagreb, Croatia
| | - Andrea Bursik
- Faculty of Science, University of Zagreb, Horvatovac 102a, Zagreb, Croatia
| | - Nives Galić
- Faculty of Science, University of Zagreb, Horvatovac 102a, Zagreb, Croatia.
| |
Collapse
|
47
|
Hamnca S, Phelane L, Iwuoha E, Baker P. Electrochemical Determination of Neomycin and Norfloxacin at a Novel Polymer Nanocomposite Electrode in Aqueous Solution. ANAL LETT 2017. [DOI: 10.1080/00032719.2016.1261876] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Siyabulela Hamnca
- SensorLab, Chemistry Department, University of the Western Cape, Bellville, South Africa
| | - Lisebo Phelane
- SensorLab, Chemistry Department, University of the Western Cape, Bellville, South Africa
| | - Emmanuel Iwuoha
- SensorLab, Chemistry Department, University of the Western Cape, Bellville, South Africa
| | - Priscilla Baker
- SensorLab, Chemistry Department, University of the Western Cape, Bellville, South Africa
| |
Collapse
|
48
|
Paíga P, Santos L, Delerue-Matos C. Development of a multi-residue method for the determination of human and veterinary pharmaceuticals and some of their metabolites in aqueous environmental matrices by SPE-UHPLC–MS/MS. J Pharm Biomed Anal 2017; 135:75-86. [DOI: 10.1016/j.jpba.2016.12.013] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 12/07/2016] [Accepted: 12/09/2016] [Indexed: 01/14/2023]
|
49
|
Mirzaei R, Yunesian M, Nasseri S, Gholami M, Jalilzadeh E, Shoeibi S, Bidshahi HS, Mesdaghinia A. An optimized SPE-LC-MS/MS method for antibiotics residue analysis in ground, surface and treated water samples by response surface methodology- central composite design. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2017; 15:21. [PMID: 29075502 PMCID: PMC5646162 DOI: 10.1186/s40201-017-0282-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 09/19/2017] [Indexed: 05/15/2023]
Abstract
BACKGROUND Antibiotic residues are being constantly identified in environmental waters at low concentration. Growing concern has been expressed over the adverse environmental and human health effects even at low concentration. Hence, it is crucial to develop a multi-residues analytical method for antibiotics to generate a considerable dataset which are necessary in the assessment of aquatic toxicity of environmental waters for aquatic organisms and human health. This work aimed to develop a reliable and sensitive multi-residue method based on high performance liquid chromatography coupled with quadrupole-linear ion trap tandem mass spectrometry (HPLC-MS-MS). The method was optimized and validated for simultaneous determination of four classes of antibiotics including, β-lactam, macrolide, fluoroquinolone and nitro-imidazole in treated, ground and surface water matrices. METHODS In order to optimize the solid phase extraction process, main parameters influencing the extraction process including, pH, the volume of elution solvent and the amount of Na4EDTA were evaluated. The optimization of extraction process was carried out by response surface methodology using central composite design. Analysis of variance was performed for nine target antibiotics using response surface methodology. RESULTS The extraction recoveries were found to be sensitive to the independent variables of pH, the volume of elution solvent and the amount of Na4EDTA. The extraction process was pH-dependent and pH was a significant model term in the extraction process of all target antibiotics. Method validation was performed in optimum operation conditions in which the recoveries were obtained in the range of 50-117% for seven antibiotics in spiked treated and ground water samples and for six antibiotics in spiked river water samples. Method validation parameters in terms of method detection limit were obtained in the range of 1-10 ng/L in treated water, 0.8-10 ng/L in the ground water and 0.8-25 ng/L in river water, linearity varied from 0.95 to 0.99 and repeatability in term of relative standard deviation values was achieved less than 10% with the exception for metronidazole and ceftriaxone. The developed method was applied to the analysis of target antibiotics in treated, ground and surface water samples. CONCLUSIONS Target antibiotics were analyzed in different water matrices including treated, ground and river water. Seven out of nine antibiotics were detected in Kan River and Firozabad Ditch water samples, although none of them were detected in treated water and ground water samples.
Collapse
Affiliation(s)
- Roya Mirzaei
- Center for Water Quality Research (CWQR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, 8th floor, Gol Building, North Karegar St., Enghelab Sq, Tehran, Iran
| | - Masoud Yunesian
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Simin Nasseri
- Center for Water Quality Research (CWQR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, 8th floor, Gol Building, North Karegar St., Enghelab Sq, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mitra Gholami
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Esfandiyar Jalilzadeh
- Water and Wastewater Company, Department of Water and Wastewater Quality Control Laboratory, Tehran, Iran
| | - Shahram Shoeibi
- Food and Drug Reference Control Laboratories Center, Food and Drug Organization, Ministry of Health & Medical Education, Tehran, Iran
| | - Hooshang Shafieyan Bidshahi
- Food and Drug Reference Control Laboratories Center, Food and Drug Organization, Ministry of Health & Medical Education, Tehran, Iran
| | - Alireza Mesdaghinia
- Center for Water Quality Research (CWQR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, 8th floor, Gol Building, North Karegar St., Enghelab Sq, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
50
|
Leng Y, Bao J, Chang G, Zheng H, Li X, Du J, Snow D, Li X. Biotransformation of tetracycline by a novel bacterial strain Stenotrophomonas maltophilia DT1. JOURNAL OF HAZARDOUS MATERIALS 2016; 318:125-133. [PMID: 27420384 DOI: 10.1016/j.jhazmat.2016.06.053] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 06/06/2016] [Accepted: 06/27/2016] [Indexed: 05/22/2023]
Abstract
Although several abiotic processes have been reported that can transform antibiotics, little is known about whether and how microbiological processes may degrade antibiotics in the environment. This work isolated one tetracycline degrading bacterial strain, Stenotrophomonas maltophilia strain DT1, and characterized the biotransformation of tetracycline by DT1 under various environmental conditions. The biotransformation rate was the highest when the initial pH was 9 and the reaction temperature was at 30°C, and can be described using the Michaelis-Menten model under different initial tetracycline concentrations. When additional substrate was present, the substrate that caused increased biomass resulted in a decreased biotransformation rate of tetracycline. According to disk diffusion tests, the biotransformation products of tetracycline had lower antibiotic potency than the parent compound. Six possible biotransformation products were identified, and a potential biotransformation pathway was proposed that included sequential removal of N-methyl, carbonyl, and amine function groups. Results from this study can lead to better estimation of the fate and transport of antibiotics in the environment and has the potential to be utilized in designing engineering processes to remove tetracycline from water and soil.
Collapse
Affiliation(s)
- Yifei Leng
- School of Environment Studies, China University of Geosciences, Wuhan 430074, PR China; Department of Civil Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Jianguo Bao
- School of Environment Studies, China University of Geosciences, Wuhan 430074, PR China.
| | - Gaofeng Chang
- Tianjin Environmental Protection Technical Development Center, Tianjin 300191, PR China
| | - Han Zheng
- School of Environment Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Xingxing Li
- School of Environment Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Jiangkun Du
- School of Environment Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Daniel Snow
- Water Sciences Laboratory, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Xu Li
- Department of Civil Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.
| |
Collapse
|