1
|
Ullah M, Ullah S, Zhengxin L, Khan M, Nazir R, Qassem TA, Mushtaq H, Hasan DF, Aldossari SA, Mahmood N, Hussain S, Alam K. Fabrication of Highly Sensitive and Selective Nitrite Colorimetric Sensor Based on the Enhanced Peroxidase Mimetic Activity of Using Acetic Acid Capped Zinc Oxide Nanosheets. J Fluoresc 2024:10.1007/s10895-024-03830-6. [PMID: 38967859 DOI: 10.1007/s10895-024-03830-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 06/24/2024] [Indexed: 07/06/2024]
Abstract
Nitrite ions (NO2-), as one of the leading type-A inorganic-anion, showing significant-effects in the aquatic environment and also to humans health. Whereas, the higher uptake causes detrimental threat to human health leading to various chronic diseases, thus demanding efficient, reliable and convenient method for its monitoring. For this purpose, in the present research study we have fabricated the mimetic nonozyme like catalyst based colorimetric nitrite sensor. The acetic acid capped Zinc Oxide (ZnO) nanosheets (NSs) were introduce as per-oxidase mimetic like catalyst which shows high efficiency towards the oxidative catalysis of colorless tetramethylbenzidine (TMB) to oxidized-TMB (blue color) in the presence of Hydrogen-peroxide (H2O2). The present nitrite ions will stimulate the as formed oxidized-TMB (TMBox), and will caused diazotization reaction (diazotized-TMBox), which will not only decreases the peak intensity of UV-visible peak of TMBox at 652 nm but will also produces another peak at 446 nm called as diazotized-TMBox peak, proving the catalytic reaction between the nitrite ions and TMBox. Further, the prepared colorimetric sensor exhibits better sensitivity with a wider range of concentration (1 × 10-3-4.50 × 10-1 µM), lowest limit of detection (LOD) of 0.22 ± 0.05 nM and small limit of quantification (LOQ) 0.78 ± 0.05 nM having R2 value of 0.998. Further, the colorimetric sensor also manifest strong selectivity towards NO2- as compared to other interference in drinking water system. Resultantly, the prepared sensor with outstanding repeatability, stability, reproducibility, re-usability and its practicability in real water samples also exploit its diverse applications in food safety supervision and environmental monitoring.
Collapse
Affiliation(s)
- Mohib Ullah
- School of Material Science and Engineering, Henan university of Technology, Zhengzhou, 450001, China
| | - Sami Ullah
- Department of Chemistry, Kohat University of Science & Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Li Zhengxin
- School of Material Science and Engineering, Henan university of Technology, Zhengzhou, 450001, China.
| | - Muslim Khan
- Department of Chemistry, Kohat University of Science & Technology, Kohat, Khyber Pakhtunkhwa, Pakistan.
| | - Ruqia Nazir
- Department of Chemistry, Kohat University of Science & Technology, Kohat, Khyber Pakhtunkhwa, Pakistan.
| | - Talal Aziz Qassem
- Department of Medical Laboratory Technics, College of Health and Medical Technology, Alnoor University, Mosul, Iraq
| | | | - Dheyaa Flayih Hasan
- College of Health and Medical Technology, National University of Science and Technology, Dhi Qar, 64001, Iraq
| | - Samar A Aldossari
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Nasir Mahmood
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China
| | - Shehbaz Hussain
- Department of Chemistry, Kohat University of Science & Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Khurshid Alam
- Department of Chemistry, Kohat University of Science & Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
2
|
Ovbude ST, Sharmeen S, Kyei I, Olupathage H, Jones J, Bell RJ, Powers R, Hage DS. Applications of chromatographic methods in metabolomics: A review. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1239:124124. [PMID: 38640794 PMCID: PMC11618781 DOI: 10.1016/j.jchromb.2024.124124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 03/11/2024] [Accepted: 04/10/2024] [Indexed: 04/21/2024]
Abstract
Chromatography is a robust and reliable separation method that can use various stationary phases to separate complex mixtures commonly seen in metabolomics. This review examines the types of chromatography and stationary phases that have been used in targeted or untargeted metabolomics with methods such as mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy. General considerations for sample pretreatment and separations in metabolomics are considered, along with the various supports and separation formats for chromatography that have been used in such work. The types of liquid chromatography (LC) that have been most extensively used in metabolomics will be examined, such as reversed-phase liquid chromatography and hydrophilic liquid interaction chromatography. In addition, other forms of LC that have been used in more limited applications for metabolomics (e.g., ion-exchange, size-exclusion, and affinity methods) will be discussed to illustrate how these techniques may be utilized for new and future research in this field. Multidimensional LC methods are also discussed, as well as the use of gas chromatography and supercritical fluid chromatography in metabolomics. In addition, the roles of chromatography in NMR- vs. MS-based metabolomics are considered. Applications are given within the field of metabolomics for each type of chromatography, along with potential advantages or limitations of these separation methods.
Collapse
Affiliation(s)
- Susan T Ovbude
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | - Sadia Sharmeen
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | - Isaac Kyei
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | - Harshana Olupathage
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | - Jacob Jones
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | - Richard J Bell
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | - Robert Powers
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA; Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | - David S Hage
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA.
| |
Collapse
|
3
|
Burnum-Johnson KE, Zheng X, Dodds JN, Ash J, Fourches D, Nicora CD, Wendler JP, Metz TO, Waters KM, Jansson JK, Smith RD, Baker ES. Ion Mobility Spectrometry and the Omics: Distinguishing Isomers, Molecular Classes and Contaminant Ions in Complex Samples. Trends Analyt Chem 2019; 116:292-299. [PMID: 31798197 DOI: 10.1016/j.trac.2019.04.022] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Ion mobility spectrometry (IMS) is a widely used analytical technique providing rapid gas phase separations. IMS alone is useful, but its coupling with mass spectrometry (IMS-MS) and various front-end separation techniques has greatly increased the molecular information achievable from different omic analyses. IMS-MS analyses are specifically gaining attention for improving metabolomic, lipidomic, glycomic, proteomic and exposomic analyses by increasing measurement sensitivity (e.g. S/N ratio), reducing the detection limit, and amplifying peak capacity. Numerous studies including national security-related analyses, disease screenings and environmental evaluations are illustrating that IMS-MS is able to extract information not possible with MS alone. Furthermore, IMS-MS has shown great utility in salvaging molecular information for low abundance molecules of interest when high concentration contaminant ions are present in the sample by reducing detector suppression. This review highlights how IMS-MS is currently being used in omic analyses to distinguish structurally similar molecules, isomers, molecular classes and contaminant ions.
Collapse
Affiliation(s)
| | - Xueyun Zheng
- Department of Chemistry, Texas A &M University, College Station, TX
| | - James N Dodds
- Department of Chemistry, NC State University, Raleigh, NC
| | - Jeremy Ash
- Department of Chemistry, NC State University, Raleigh, NC
| | - Denis Fourches
- Department of Chemistry, NC State University, Raleigh, NC
| | - Carrie D Nicora
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA
| | - Jason P Wendler
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA
| | - Thomas O Metz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA
| | - Katrina M Waters
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA
| | - Janet K Jansson
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA
| | - Erin S Baker
- Department of Chemistry, NC State University, Raleigh, NC
| |
Collapse
|
4
|
A review of nanoscale LC-ESI for metabolomics and its potential to enhance the metabolome coverage. Talanta 2018; 182:380-390. [PMID: 29501168 DOI: 10.1016/j.talanta.2018.01.084] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 01/29/2018] [Accepted: 01/30/2018] [Indexed: 12/22/2022]
Abstract
Liquid chromatography-electrospray ionisation-mass spectrometry (LC-ESI-MS) platforms are widely used to perform high throughput untargeted profiling of biological samples for metabolomics-based approaches. However, these LC-ESI platforms usually favour the detection of metabolites present at relatively high concentrations because of analytical limitations such as ion suppression, thus reducing overall sensitivity. To counter this issue of sensitivity, the latest in terms of analytical platforms can be adopted to enable a greater portion of the metabolome to be analysed in a single analytical run. Here, nanoflow liquid chromatography-nanoelectrospray ionisation (nLC-nESI), which has previously been utilised successfully in proteomics, is explored for use in metabolomic and exposomic research. As a discovery based field, the markedly increased sensitivity of these nLC-nESI platforms offer the potential to uncover the roles played by low abundant signalling metabolites (e.g. steroids, eicosanoids) in health and disease studies, and would also enable an improvement in the detection of xenobiotics present at trace levels in biological matrices to better characterise the chemical exposome. This review aims to give an insight into the advantages associated with nLC-nESI for metabolomics-based approaches. Initially we detail the source of improved sensitivity prior to reviewing the available approaches to achieving nanoflow rates and nanospray ionisation for metabolomics. The robustness of nLC-nESI platforms was then assessed using the literature available from a metabolomic viewpoint. We also discuss the challenging point of sample preparation which needs to be addressed to fully enjoy the benefits of these nLC-nESI platforms. Finally, we assess metabolomic analysis utilising nano scale platforms and look ahead to the future of metabolomics using these new highly sensitive platforms.
Collapse
|
5
|
Blum BC, Mousavi F, Emili A. Single-platform ‘multi-omic’ profiling: unified mass spectrometry and computational workflows for integrative proteomics–metabolomics analysis. Mol Omics 2018; 14:307-319. [DOI: 10.1039/c8mo00136g] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Advances in instrumentation and analysis tools are permitting evermore comprehensive interrogation of diverse biomolecules and allowing investigators to move from linear signaling cascades to network models, which more accurately reflect the molecular basis of biological systems and processes.
Collapse
Affiliation(s)
- Benjamin C. Blum
- Center for Network Systems Biology
- Boston University School of Medicine
- Boston
- USA
- Department of Biochemistry
| | - Fatemeh Mousavi
- Donnelly Centre
- Department of Molecular Genetics
- University of Toronto
- Toronto
- Canada
| | - Andrew Emili
- Center for Network Systems Biology
- Boston University School of Medicine
- Boston
- USA
- Department of Biochemistry
| |
Collapse
|
6
|
Gomes NG, Pereira DM, Valentão P, Andrade PB. Hybrid MS/NMR methods on the prioritization of natural products: Applications in drug discovery. J Pharm Biomed Anal 2018; 147:234-249. [DOI: 10.1016/j.jpba.2017.07.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/27/2017] [Accepted: 07/28/2017] [Indexed: 12/17/2022]
|
7
|
Marshall DD, Powers R. Beyond the paradigm: Combining mass spectrometry and nuclear magnetic resonance for metabolomics. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2017; 100:1-16. [PMID: 28552170 PMCID: PMC5448308 DOI: 10.1016/j.pnmrs.2017.01.001] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 01/04/2017] [Accepted: 01/08/2017] [Indexed: 05/02/2023]
Abstract
Metabolomics is undergoing tremendous growth and is being employed to solve a diversity of biological problems from environmental issues to the identification of biomarkers for human diseases. Nuclear magnetic resonance (NMR) and mass spectrometry (MS) are the analytical tools that are routinely, but separately, used to obtain metabolomics data sets due to their versatility, accessibility, and unique strengths. NMR requires minimal sample handling without the need for chromatography, is easily quantitative, and provides multiple means of metabolite identification, but is limited to detecting the most abundant metabolites (⩾1μM). Conversely, mass spectrometry has the ability to measure metabolites at very low concentrations (femtomolar to attomolar) and has a higher resolution (∼103-104) and dynamic range (∼103-104), but quantitation is a challenge and sample complexity may limit metabolite detection because of ion suppression. Consequently, liquid chromatography (LC) or gas chromatography (GC) is commonly employed in conjunction with MS, but this may lead to other sources of error. As a result, NMR and mass spectrometry are highly complementary, and combining the two techniques is likely to improve the overall quality of a study and enhance the coverage of the metabolome. While the majority of metabolomic studies use a single analytical source, there is a growing appreciation of the inherent value of combining NMR and MS for metabolomics. An overview of the current state of utilizing both NMR and MS for metabolomics will be presented.
Collapse
Affiliation(s)
- Darrell D Marshall
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, United States
| | - Robert Powers
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, United States.
| |
Collapse
|
8
|
Metz TO, Baker ES, Schymanski EL, Renslow RS, Thomas DG, Causon TJ, Webb IK, Hann S, Smith RD, Teeguarden JG. Integrating ion mobility spectrometry into mass spectrometry-based exposome measurements: what can it add and how far can it go? Bioanalysis 2017; 9:81-98. [PMID: 27921453 PMCID: PMC5674211 DOI: 10.4155/bio-2016-0244] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 10/12/2016] [Indexed: 01/01/2023] Open
Abstract
Measuring the exposome remains a challenge due to the range and number of anthropogenic molecules that are encountered in our daily lives, as well as the complex systemic responses to these exposures. One option for improving the coverage, dynamic range and throughput of measurements is to incorporate ion mobility spectrometry (IMS) into current MS-based analytical methods. The implementation of IMS in exposomics studies will lead to more frequent observations of previously undetected chemicals and metabolites. LC-IMS-MS will provide increased overall measurement dynamic range, resulting in detections of lower abundance molecules. Alternatively, the throughput of IMS-MS alone will provide the opportunity to analyze many thousands of longitudinal samples over lifetimes of exposure, capturing evidence of transitory accumulations of chemicals or metabolites. The volume of data corresponding to these new chemical observations will almost certainly outpace the generation of reference data to enable their confident identification. In this perspective, we briefly review the state-of-the-art in measuring the exposome, and discuss the potential use for IMS-MS and the physico-chemical property of collisional cross section in both exposure assessment and molecular identification.
Collapse
Affiliation(s)
- Thomas O Metz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Erin S Baker
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Emma L Schymanski
- Eawag, Swiss Federal Institute of Aquatic Science & Technology, Dübendorf, Switzerland
| | - Ryan S Renslow
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Dennis G Thomas
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Tim J Causon
- Division of Analytical Chemistry, Department of Chemistry, University of Natural Resources & Life Sciences (BOKU Vienna), Vienna, Austria
| | - Ian K Webb
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Stephan Hann
- Division of Analytical Chemistry, Department of Chemistry, University of Natural Resources & Life Sciences (BOKU Vienna), Vienna, Austria
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Justin G Teeguarden
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
- Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
9
|
Gao FY, Zhang LY, Li XQ, Zhang WB, Zhang QH. Study on diffusion behavior of analyte in an electrospray ionization source. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2016; 30 Suppl 1:34-37. [PMID: 27539412 DOI: 10.1002/rcm.7622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
RATIONALE Diffusion of an analyte is one of the main determinants of reduced sensitivity in an electrospray ionization (ESI) source. In this work, the relative responses of compounds and their stable isotope-labeled (SIL) products in different injection modes were compared to investigate the diffusion behavior of analytes in ESI, without influence of other factors. METHODS Chloramphenicol (CAP) and D5 -CAP as well as melamine (Mel) and (13) C3 -Mel were used to illustrate the diffusion behavior in different operation modes and different ion sources, by comparing their relative responses in infusion mode and flow injection analysis (FIA) mode under variable temperature. RESULTS In infusion mode, sample solution was introduced by syringe, and formed a stable and continuous signal. While in FIA mode, because of the huge difference in volume between the sample solution and the mobile phase, it is assumed that analyte ionizes and transmits in the gaseous phase created by the mobile phase. Analytes formed different concentration distributions in the two injection modes. The relative responses of CAP and D5 -CAP increased from 0.81 to 0.98 when the temperature was increased from 300 °C to 650 °C in infusion mode and decreased from 1.37 to 1.17 with increasing temperature in FIA mode. The opposite trends of the two injection modes were also obtained in positive operation modes and ion sources with different configuration. CONCLUSIONS Opposite variation tendencies of relative responses of model samples and their stable isotope-labeled products with temperature were observed for infusion and FIA injection modes, indicating different diffusion behaviors in the two injection modes. These results provide a theoretical basis for ion source designing and better understanding of the ESI mechanism. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Fang Yuan Gao
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai, 200237, China
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing, 100013, China
| | - Ling Yi Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai, 200237, China
| | - Xiu Qin Li
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing, 100013, China
| | - Wei Bing Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai, 200237, China
| | - Qing He Zhang
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing, 100013, China
| |
Collapse
|
10
|
Baker ES, Burnum-Johnson KE, Ibrahim YM, Orton DJ, Monroe ME, Kelly RT, Moore RJ, Zhang X, Théberge R, Costello CE, Smith RD. Enhancing bottom-up and top-down proteomic measurements with ion mobility separations. Proteomics 2015; 15:2766-76. [PMID: 26046661 DOI: 10.1002/pmic.201500048] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 04/06/2015] [Accepted: 06/02/2015] [Indexed: 11/06/2022]
Abstract
Proteomic measurements with greater throughput, sensitivity, and structural information are essential for improving both in-depth characterization of complex mixtures and targeted studies. While LC separation coupled with MS (LC-MS) measurements have provided information on thousands of proteins in different sample types, the introduction of a separation stage that provides further component resolution and rapid structural information has many benefits in proteomic analyses. Technical advances in ion transmission and data acquisition have made ion mobility separations an opportune technology to be easily and effectively incorporated into LC-MS proteomic measurements for enhancing their information content. Herein, we report on applications illustrating increased sensitivity, throughput, and structural information by utilizing IMS-MS and LC-IMS-MS measurements for both bottom-up and top-down proteomics measurements.
Collapse
Affiliation(s)
- Erin Shammel Baker
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | | | - Yehia M Ibrahim
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Daniel J Orton
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Matthew E Monroe
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Ryan T Kelly
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Ronald J Moore
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Xing Zhang
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Roger Théberge
- Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, MA, USA
| | - Catherine E Costello
- Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, MA, USA
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| |
Collapse
|
11
|
Marshall DD, Lei S, Worley B, Huang Y, Garcia-Garcia A, Franco R, Dodds ED, Powers R. Combining DI-ESI-MS and NMR datasets for metabolic profiling. Metabolomics 2015; 11:391-402. [PMID: 25774104 PMCID: PMC4354777 DOI: 10.1007/s11306-014-0704-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Metabolomics datasets are commonly acquired by either mass spectrometry (MS) or nuclear magnetic resonance spectroscopy (NMR), despite their fundamental complementarity. In fact, combining MS and NMR datasets greatly improves the coverage of the metabolome and enhances the accuracy of metabolite identification, providing a detailed and high-throughput analysis of metabolic changes due to disease, drug treatment, or a variety of other environmental stimuli. Ideally, a single metabolomics sample would be simultaneously used for both MS and NMR analyses, minimizing the potential for variability between the two datasets. This necessitates the optimization of sample preparation, data collection and data handling protocols to effectively integrate direct-infusion MS data with one-dimensional (1D) 1H NMR spectra. To achieve this goal, we report for the first time the optimization of (i) metabolomics sample preparation for dual analysis by NMR and MS, (ii) high throughput, positive-ion direct infusion electrospray ionization mass spectrometry (DI-ESI-MS) for the analysis of complex metabolite mixtures, and (iii) data handling protocols to simultaneously analyze DI-ESI-MS and 1D 1H NMR spectral data using multiblock bilinear factorizations, namely multiblock principal component analysis (MB-PCA) and multiblock partial least squares (MB-PLS). Finally, we demonstrate the combined use of backscaled loadings, accurate mass measurements and tandem MS experiments to identify metabolites significantly contributing to class separation in MB-PLS-DA scores. We show that integration of NMR and DI-ESI-MS datasets yields a substantial improvement in the analysis of neurotoxin involvement in dopaminergic cell death.
Collapse
Affiliation(s)
- Darrell D. Marshall
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE
68588-0304
| | - Shulei Lei
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE
68588-0304
| | - Bradley Worley
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE
68588-0304
| | - Yuting Huang
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE
68588-0304
| | - Aracely Garcia-Garcia
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE
68583-0905
- School of Veterinary Medicine and Biomedical Sciences, University of
Nebraska-Lincoln, Lincoln, NE 68583-0905
| | - Rodrigo Franco
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE
68583-0905
- School of Veterinary Medicine and Biomedical Sciences, University of
Nebraska-Lincoln, Lincoln, NE 68583-0905
| | - Eric D. Dodds
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE
68588-0304
| | - Robert Powers
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE
68588-0304
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE
68583-0905
| |
Collapse
|
12
|
Cumeras R, Figueras E, Davis CE, Baumbach JI, Gràcia I. Review on ion mobility spectrometry. Part 2: hyphenated methods and effects of experimental parameters. Analyst 2015; 140:1391-410. [PMID: 25465248 PMCID: PMC4331244 DOI: 10.1039/c4an01101e] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ion Mobility Spectrometry (IMS) is a widely used and 'well-known' technique of ion separation in the gaseous phase based on the differences of ion mobilities under an electric field. This technique has received increased interest over the last several decades as evidenced by the pace and advances of new IMS devices available. In this review we explore the hyphenated techniques that are used with IMS, specifically mass spectrometry as an identification approach and a multi-capillary column as a pre-separation approach. Also, we will pay special attention to the key figures of merit of the ion mobility spectrum and how data sets are treated, and the influences of the experimental parameters on both conventional drift time IMS (DTIMS) and miniaturized IMS also known as high Field Asymmetric IMS (FAIMS) in the planar configuration. The present review article is preceded by a companion review article which details the current instrumentation and contains the sections that configure both conventional DTIMS and FAIMS devices. These reviews will give the reader an insightful view of the main characteristics and aspects of the IMS technique.
Collapse
Affiliation(s)
- R Cumeras
- Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC), Esfera UAB, Campus UAB s/n, E-08193 Bellaterra, Barcelona, Spain.
| | | | | | | | | |
Collapse
|
13
|
Cumeras R, Figueras E, Davis CE, Baumbach JI, Gràcia I. Review on ion mobility spectrometry. Part 1: current instrumentation. Analyst 2015; 140:1376-90. [PMID: 25465076 PMCID: PMC4331213 DOI: 10.1039/c4an01100g] [Citation(s) in RCA: 295] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ion Mobility Spectrometry (IMS) is a widely used and 'well-known' technique of ion separation in the gaseous phase based on the differences in ion mobilities under an electric field. All IMS instruments operate with an electric field that provides space separation, but some IMS instruments also operate with a drift gas flow that provides also a temporal separation. In this review we will summarize the current IMS instrumentation. IMS techniques have received an increased interest as new instrumentation and have become available to be coupled with mass spectrometry (MS). For each of the eight types of IMS instruments reviewed it is mentioned whether they can be hyphenated with MS and whether they are commercially available. Finally, out of the described devices, the six most-consolidated ones are compared. The current review article is followed by a companion review article which details the IMS hyphenated techniques (mainly gas chromatography and mass spectrometry) and the factors that make the data from an IMS device change as a function of device parameters and sampling conditions. These reviews will provide the reader with an insightful view of the main characteristics and aspects of the IMS technique.
Collapse
Affiliation(s)
- R Cumeras
- Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC), Esfera UAB, Campus UAB s/n, E-08193 Bellaterra, Barcelona, Spain.
| | | | | | | | | |
Collapse
|
14
|
Chetwynd AJ, Abdul-Sada A, Hill EM. Solid-Phase Extraction and Nanoflow Liquid Chromatography-Nanoelectrospray Ionization Mass Spectrometry for Improved Global Urine Metabolomics. Anal Chem 2015; 87:1158-65. [DOI: 10.1021/ac503769q] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Andrew J. Chetwynd
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, U.K
| | - Alaa Abdul-Sada
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, U.K
| | - Elizabeth M. Hill
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, U.K
| |
Collapse
|
15
|
Karpievitch YV, Nikolic SB, Wilson R, Sharman JE, Edwards LM. Metabolomics data normalization with EigenMS. PLoS One 2014; 9:e116221. [PMID: 25549083 PMCID: PMC4280143 DOI: 10.1371/journal.pone.0116221] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 12/03/2014] [Indexed: 12/26/2022] Open
Abstract
Liquid chromatography mass spectrometry has become one of the analytical platforms of choice for metabolomics studies. However, LC-MS metabolomics data can suffer from the effects of various systematic biases. These include batch effects, day-to-day variations in instrument performance, signal intensity loss due to time-dependent effects of the LC column performance, accumulation of contaminants in the MS ion source and MS sensitivity among others. In this study we aimed to test a singular value decomposition-based method, called EigenMS, for normalization of metabolomics data. We analyzed a clinical human dataset where LC-MS serum metabolomics data and physiological measurements were collected from thirty nine healthy subjects and forty with type 2 diabetes and applied EigenMS to detect and correct for any systematic bias. EigenMS works in several stages. First, EigenMS preserves the treatment group differences in the metabolomics data by estimating treatment effects with an ANOVA model (multiple fixed effects can be estimated). Singular value decomposition of the residuals matrix is then used to determine bias trends in the data. The number of bias trends is then estimated via a permutation test and the effects of the bias trends are eliminated. EigenMS removed bias of unknown complexity from the LC-MS metabolomics data, allowing for increased sensitivity in differential analysis. Moreover, normalized samples better correlated with both other normalized samples and corresponding physiological data, such as blood glucose level, glycated haemoglobin, exercise central augmentation pressure normalized to heart rate of 75, and total cholesterol. We were able to report 2578 discriminatory metabolite peaks in the normalized data (p<0.05) as compared to only 1840 metabolite signals in the raw data. Our results support the use of singular value decomposition-based normalization for metabolomics data.
Collapse
Affiliation(s)
- Yuliya V. Karpievitch
- School of Mathematics and Physics, University of Tasmania, Hobart, TAS, Australia
- * E-mail:
| | - Sonja B. Nikolic
- Menzies Research Institute Tasmania, University of Tasmania, Hobart, TAS, Australia
| | - Richard Wilson
- Central Science Laboratory, University of Tasmania, Hobart, TAS, Australia
| | - James E. Sharman
- Central Science Laboratory, University of Tasmania, Hobart, TAS, Australia
| | - Lindsay M. Edwards
- Centre of Human & Aerospace Physiological Sciences, King’s College London, London, United Kingdom
- Fibrosis Discovery Performance Unit, GlaxoSmithKline R&D, Stevenage, United Kingdom
| |
Collapse
|
16
|
Halouska S, Zhang B, Gaupp R, Lei S, Snell E, Fenton RJ, Barletta RG, Somerville GA, Powers R. Revisiting Protocols for the NMR Analysis of Bacterial Metabolomes. JOURNAL OF INTEGRATED OMICS 2013; 3:120-137. [PMID: 26078915 PMCID: PMC4465129 DOI: 10.5584/jiomics.v3i2.139] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Over the past decade, metabolomics has emerged as an important technique for systems biology. Measuring all the metabolites in a biological system provides an invaluable source of information to explore various cellular processes, and to investigate the impact of environmental factors and genetic modifications. Nuclear magnetic resonance (NMR) spectroscopy is an important method routinely employed in metabolomics. NMR provides comprehensive structural and quantitative information useful for metabolomics fingerprinting, chemometric analysis, metabolite identification and metabolic pathway construction. A successful metabolomics study relies on proper experimental protocols for the collection, handling, processing and analysis of metabolomics data. Critically, these protocols should eliminate or avoid biologically-irrelevant changes to the metabolome. We provide a comprehensive description of our NMR-based metabolomics procedures optimized for the analysis of bacterial metabolomes. The technical details described within this manuscript should provide a useful guide to reliably apply our NMR-based metabolomics methodology to systems biology studies.
Collapse
Affiliation(s)
- Steven Halouska
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304
| | - Bo Zhang
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304
| | - Rosmarie Gaupp
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588-0905
| | - Shulei Lei
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304
| | - Emily Snell
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304
| | - Robert J. Fenton
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588-0905
| | - Raul G. Barletta
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588-0905
| | - Greg A. Somerville
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588-0905
| | - Robert Powers
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304
| |
Collapse
|
17
|
Forcisi S, Moritz F, Kanawati B, Tziotis D, Lehmann R, Schmitt-Kopplin P. Liquid chromatography–mass spectrometry in metabolomics research: Mass analyzers in ultra high pressure liquid chromatography coupling. J Chromatogr A 2013; 1292:51-65. [DOI: 10.1016/j.chroma.2013.04.017] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 03/29/2013] [Accepted: 04/10/2013] [Indexed: 12/27/2022]
|
18
|
Kuehnbaum NL, Britz-McKibbin P. New Advances in Separation Science for Metabolomics: Resolving Chemical Diversity in a Post-Genomic Era. Chem Rev 2013; 113:2437-68. [DOI: 10.1021/cr300484s] [Citation(s) in RCA: 239] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Naomi L. Kuehnbaum
- Department of Chemistry
and Chemical Biology, McMaster University, Hamilton, Canada
| | | |
Collapse
|
19
|
Toyo’oka T. LC–MS determination of bioactive molecules based upon stable isotope-coded derivatization method. J Pharm Biomed Anal 2012; 69:174-84. [DOI: 10.1016/j.jpba.2012.04.018] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 04/17/2012] [Accepted: 04/18/2012] [Indexed: 10/28/2022]
|
20
|
Abstract
Capillary-based separations offer increased resolution, low mass LOD and, in the case of MS, higher sensitivity. The chemical diversity and wide dynamic range of the metabolome requires systems that offer breadth and depth of analysis. In this review, we will highlight novel chemical innovations, technological advancements and various applications of capillary separations in the field of metabolomics.
Collapse
|
21
|
Xing J, Yan L, Zhang J, Lin L, Gao Y, Chen W, Song X, Yan X, Hang W, Huang B. A Comparative Study of Elution Gradients in UPLC-TOF-MS-Based Metabonomics Research. Chromatographia 2010. [DOI: 10.1365/s10337-010-1746-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
22
|
Lee R, Britz-McKibbin P. Metabolomic studies of radiation-induced apoptosis of human leukocytes by capillary electrophoresis-mass spectrometry and flow cytometry: Adaptive cellular responses to ionizing radiation. Electrophoresis 2010; 31:2328-37. [DOI: 10.1002/elps.200900451] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
23
|
Baker ES, Livesay EA, Orton DJ, Moore RJ, Danielson WF, Prior DC, Ibrahim YM, LaMarche BL, Mayampurath AM, Schepmoes AA, Hopkins DF, Tang K, Smith RD, Belov ME. An LC-IMS-MS platform providing increased dynamic range for high-throughput proteomic studies. J Proteome Res 2010; 9:997-1006. [PMID: 20000344 DOI: 10.1021/pr900888b] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A high-throughput approach and platform using 15 min reversed-phase capillary liquid chromatography (RPLC) separations in conjunction with ion mobility spectrometry-mass spectrometry (IMS-MS) measurements was evaluated for the rapid analysis of complex proteomics samples. To test the separation quality of the short LC gradient, a sample was prepared by spiking 20 reference peptides at varying concentrations from 1 ng/mL to 10 microg/mL into a tryptic digest of mouse blood plasma and analyzed with both a LC-Linear Ion Trap Fourier Transform (FT) MS and LC-IMS-TOF MS. The LC-FT MS detected 13 out of the 20 spiked peptides that had concentrations >or=100 ng/mL. In contrast, the drift time selected mass spectra from the LC-IMS-TOF MS analyses yielded identifications for 19 of the 20 peptides with all spiking levels present. The greater dynamic range of the LC-IMS-TOF MS system could be attributed to two factors. First, the LC-IMS-TOF MS system enabled drift time separation of the low concentration spiked peptides from the high concentration mouse peptide matrix components, reducing signal interference and background, and allowing species to be resolved that would otherwise be obscured by other components. Second, the automatic gain control (AGC) in the linear ion trap of the hybrid FT MS instrument limits the number of ions that are accumulated to reduce space charge effects and achieve high measurement accuracy, but in turn limits the achievable dynamic range compared to the IMS-TOF instrument.
Collapse
Affiliation(s)
- Erin Shammel Baker
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Wilcoxen KM, Uehara T, Myint KT, Sato Y, Oda Y. Practical metabolomics in drug discovery. Expert Opin Drug Discov 2010; 5:249-63. [DOI: 10.1517/17460441003631854] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
25
|
Álvarez-Sánchez B, Priego-Capote F, Luque de Castro M. Metabolomics analysis I. Selection of biological samples and practical aspects preceding sample preparation. Trends Analyt Chem 2010. [DOI: 10.1016/j.trac.2009.12.003] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
Cutillas PR, Timms JF. Approaches and applications of quantitative LC-MS for proteomics and activitomics. Methods Mol Biol 2010; 658:3-17. [PMID: 20839095 DOI: 10.1007/978-1-60761-780-8_1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
LC-MS is a powerful technique in biomolecular research. In addition to its uses as a tool for protein and peptide quantization, LC-MS can also be used to quantify the activity of signalling and metabolic pathways in a multiplex and comprehensive manner, i.e. as an 'activitomic' tool. Taking cancer research as an illustrative example of application, this review discusses the concepts of biochemical pathway analysis using LC-MS-based proteomic and activitomic techniques.
Collapse
Affiliation(s)
- Pedro R Cutillas
- Analytical Signalling Group, Centre for Cell Signalling, Institute of Cancer, Bart's and the London School of Medicine, Queen Mary University of London, London, UK
| | | |
Collapse
|
27
|
Metabolic profiling of intracellular metabolites in fermentation broths from beta-lactam antibiotics production by liquid chromatography-tandem mass spectrometry methods. J Chromatogr A 2009; 1217:312-28. [PMID: 19954781 DOI: 10.1016/j.chroma.2009.11.051] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Revised: 11/10/2009] [Accepted: 11/17/2009] [Indexed: 12/31/2022]
Abstract
An analytical platform comprising three LC-ESI-MS/MS methods is presented for qualitative and quantitative profiling of more than 200 intracellular metabolites. Employing a silica based zwitterionic stationary phase in the HILIC mode, in total 223 hydrophilic metabolites can be determined. In particular, amino acids, organic acids as well as nucleotide sugars were found to be well separable and detectable under acidic mobile phase conditions, while in comparison especially phosphates such as nucleotides, coenzymes or sugar phosphates as well as sugars and sugar acids performed better at higher pH. Additionally, 21 less polar analytes turned out to be amenable for separation and analysis on a pentafluorophenyl modified silica stationary phase in RP mode. Solutes were detected by tandem mass spectrometry on a triple quadrupole instrument in the selected reaction monitoring (SRM) mode and specific SRM transitions for 258 metabolites are provided. All three methods were validated with respect to the limit of quantification, linear dynamic range, precision and accuracy. Applicability of the analytical platform was evaluated by analysis of the targeted metabolites in extracts of beta-lactam antibiotics fermentation broths. Thereby, 87 metabolites were determined qualitatively in penicillin fermentation broths, and 94 compounds were found in cephalosporin extracts. In addition, a number of selected metabolites that can be determined by at least two of the presented LC-MS/MS methods was analyzed quantitatively by both, external calibration using pure standards as well as by matrix-matched calibration performing standard addition. Quantitative results obtained with the different methods agreed well, however, for some analytes external calibration was found to be ill-suited due to matrix effects.
Collapse
|
28
|
Wohlgemuth R. Tools and ingredients for the biocatalytic synthesis of metabolites. Biotechnol J 2009; 4:1253-65. [DOI: 10.1002/biot.200900002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
29
|
Abstract
PURPOSE OF REVIEW Recent advances in metabolomic tools now permit to characterize dysregulated metabolic pathways in various diseases associated with the identification of sensitive and specific early responding biomarkers that are critical both for the diagnosis of the type of insult as well as for the selection and evaluation of therapy. RECENT FINDINGS This short review describes progresses made in analytical science and their applications in the field of glucose disorders. Recent studies focused mainly on type 2 diabetes both in human and animal models in order to validate early biomarkers and effects of drugs on disease progression. The potential of using the metabolomic approach was also demonstrated for diagnosing diabetic complications such as diabetic nephropathy. SUMMARY In addition to its application in the discovery of disease biomarkers, metabolomics can contribute to the elucidation of pathophysiological mechanisms.
Collapse
Affiliation(s)
- Jean-Louis Sébédio
- Plate-Forme Exploration du Métabolisme, INRA UMR 1019 Nutrition Humaine, Saint Genes Champanelle, France.
| | | | | |
Collapse
|
30
|
Grata E, Guillarme D, Glauser G, Boccard J, Carrupt PA, Veuthey JL, Rudaz S, Wolfender JL. Metabolite profiling of plant extracts by ultra-high-pressure liquid chromatography at elevated temperature coupled to time-of-flight mass spectrometry. J Chromatogr A 2009; 1216:5660-8. [DOI: 10.1016/j.chroma.2009.05.069] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 05/23/2009] [Accepted: 05/26/2009] [Indexed: 01/09/2023]
|
31
|
Guo K, Li L. Differential 12C-/13C-Isotope Dansylation Labeling and Fast Liquid Chromatography/Mass Spectrometry for Absolute and Relative Quantification of the Metabolome. Anal Chem 2009; 81:3919-32. [DOI: 10.1021/ac900166a] [Citation(s) in RCA: 323] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Kevin Guo
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2 Canada
| | - Liang Li
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2 Canada
| |
Collapse
|
32
|
Kamleh MA, Dow JAT, Watson DG. Applications of mass spectrometry in metabolomic studies of animal model and invertebrate systems. BRIEFINGS IN FUNCTIONAL GENOMICS AND PROTEOMICS 2008; 8:28-48. [DOI: 10.1093/bfgp/eln052] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|