1
|
Qiao JY, Pang YH, Yan ZY, Shen XF. Electro-enhanced solid-phase microextraction with membrane protection for enrichment of bisphenols in canned meat. J Chromatogr A 2022; 1685:463592. [DOI: 10.1016/j.chroma.2022.463592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/27/2022]
|
2
|
Wu J, Huang X. Electric field-reinforced solid phase microextraction based on anion-exchange monolith for efficient entrapment of anions in aqueous and wine samples. J Chromatogr A 2022; 1676:463291. [DOI: 10.1016/j.chroma.2022.463291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/18/2022] [Accepted: 06/27/2022] [Indexed: 10/17/2022]
|
3
|
Fritz PA, Boom RM, Schroën C. Electrochemically driven adsorptive separation techniques: From ions to proteins and cells in liquid streams. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118754] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
4
|
Viana JDS, Caneschi de Freitas M, Botelho BG, Orlando RM. Large-volume electric field-assisted multiphase extraction of malachite green from water samples: A multisample device and method validation. Talanta 2021; 222:121540. [PMID: 33167248 DOI: 10.1016/j.talanta.2020.121540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 08/06/2020] [Accepted: 08/08/2020] [Indexed: 10/23/2022]
Abstract
In this work, a new large-volume multiphase, multi-sample electroextraction device was developed and applied to selectively extract malachite green (MG) from water samples. This device was easily constructed with ordinary materials and capable of extracting ten samples simultaneously, obtaining MG preconcentrated on a solid support, to fit into a pipette tip. A multi-well plate was applied to extract MG from aquaculture water samples, and the extracts containing the desorbed MG were analysed by LC-DAD and LC-MS/MS. The signals from both detectors were used in two independent validation procedures. Linearity, matrix effect, selectivity, precision, trueness, and limits of detection and quantification were all evaluated. For both detectors, linearity was demonstrated in the range of 0.5-5 μg L-1 (R2 > 0.98). Matrix effect was insignificant for LC-DAD only, and the average preconcentration factor was about 60 times. Recoveries ranged from 94 to 113% for LC-DAD and 95-115% for LC-MS/MS analysis. ANOVA was applied to estimate the standard deviation under repeatability (6.96-8.61% for LC-DAD and 5.98-7.41% for LC-MS/MS) and within-reproducibility (6.96-8.61% for LC-DAD and 6.56-7.41% for LC-MS/MS) conditions. The limits of detection and quantification for LC-MS/MS analysis were 4.29 and 28.74 ng L-1, respectively, while, for LC-DAD, these limits were 14.29 and 95.81 ng L-1, respectively. The results demonstrated that the developed method was suitable for determining MG in water samples, and the large-volume multiphase, multi-sample electroextraction device proved to be a powerful sample preparation technique to obtain high clean-up and large preconcentration levels, which are of paramount importance for environmental applications.
Collapse
Affiliation(s)
- Jaime Dos Santos Viana
- Laboratório de Microfluídica e Separações, LaMS, Departamento de Química, Universidade Federal de Minas Gerais, Belo Horizonte, 30123-970, Minas Gerais, Brazil
| | - Marina Caneschi de Freitas
- Laboratório de Microfluídica e Separações, LaMS, Departamento de Química, Universidade Federal de Minas Gerais, Belo Horizonte, 30123-970, Minas Gerais, Brazil
| | - Bruno Gonçalves Botelho
- Laboratório de Microfluídica e Separações, LaMS, Departamento de Química, Universidade Federal de Minas Gerais, Belo Horizonte, 30123-970, Minas Gerais, Brazil
| | - Ricardo M Orlando
- Laboratório de Microfluídica e Separações, LaMS, Departamento de Química, Universidade Federal de Minas Gerais, Belo Horizonte, 30123-970, Minas Gerais, Brazil.
| |
Collapse
|
5
|
Cellulose cone tip as a sorbent material for multiphase electrical field-assisted extraction of cocaine from saliva and determination by LC-MS/MS. Talanta 2019; 208:120353. [PMID: 31816720 DOI: 10.1016/j.talanta.2019.120353] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 09/13/2019] [Accepted: 09/14/2019] [Indexed: 12/22/2022]
Abstract
A porous and hydrophilic sorbent material was used in an extraction system, assisted by electric fields, for the extraction of cocaine in saliva and subsequent determination by ultra-high-performance liquid chromatography associated with sequential triple quadrupole mass spectrometry (UHPLC-MS/MS). The cellulose-based material was characterized by scanning electron microscopy, infrared spectroscopy, thermogravimetric analysis, and X-ray diffraction. The time and voltage variables applied in the extraction process were investigated through a Doehlert experimental design, and with the best conditions found (35min and 300 V) some validation parameters were evaluated. The established working range was 1-100 μg L-1 (R2 > 0.99), and the detection and quantification limits determined were 0.3 and 0.8 μg L-1, respectively. Recoveries from 80 to 115% and coefficient of variation ≤15 and 16% for intra-day and inter-day assays, respectively, were obtained for sample concentrations of LOQ, 5, 25, and 75 μg L-1, indicating satisfactory accuracy and precision for the proposed method. In addition, the method presented no matrix effect, and the extraction efficiency was between 56 and 70%. The results showed that the material used has adequate physicochemical characteristics and can be applied as a sorbent and electrolyte support in multiphase extractions using electric fields.
Collapse
|
6
|
Orlando RM, Nascentes CC, Botelho BG, Moreira JS, Costa KA, de Miranda Boratto VH. Development and Evaluation of a 66-Well Plate Using a Porous Sorbent in a Four-Phase Extraction Assisted by Electric Field Approach. Anal Chem 2019; 91:6471-6478. [DOI: 10.1021/acs.analchem.8b04943] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ricardo Mathias Orlando
- Laboratory of Microfluidics and Separations, LaMS, and Beer Production and Analysis Lab, Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte 30123-970, Minas Gerais Brazil
| | - Clesia Cristina Nascentes
- Laboratory of Microfluidics and Separations, LaMS, and Beer Production and Analysis Lab, Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte 30123-970, Minas Gerais Brazil
| | - Bruno Gonçalves Botelho
- Laboratory of Microfluidics and Separations, LaMS, and Beer Production and Analysis Lab, Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte 30123-970, Minas Gerais Brazil
| | - Juliane Soares Moreira
- Laboratory of Microfluidics and Separations, LaMS, and Beer Production and Analysis Lab, Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte 30123-970, Minas Gerais Brazil
| | - Karina Araujo Costa
- Laboratory of Microfluidics and Separations, LaMS, and Beer Production and Analysis Lab, Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte 30123-970, Minas Gerais Brazil
| | - Victor Hugo de Miranda Boratto
- Laboratory of Microfluidics and Separations, LaMS, and Beer Production and Analysis Lab, Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte 30123-970, Minas Gerais Brazil
| |
Collapse
|
7
|
Nasrollahi SS, Davarani SSH, Moazami HR. Impedometric investigation of salt effects on electromembrane extraction: Practical hints for pH adjustment. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.11.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
8
|
Abstract
The extraction kinetics of polyphenols, which are leached from red vine leaves, are studied and evaluated using a laboratory robot and nonconventional processing techniques such as ultrasonic (US)-, microwave (MW)-, and pulsed electric field (PEF)-assisted extraction processes. The robotic high-throughput screening reveals optimal extraction conditions at a pH value of 2.5, a temperature of 56 °C, and a solvent mixture of methanol:water:HCl of 50:49:1 v/v/v. Nonconventional processing techniques, such as MW- and US-assisted extraction, have the fastest kinetics and produce the highest polyphenol yield. The non-conventional techniques yield is 2.29 g/L (MW) resp. 2.47 g/L (US) for particles that range in size from 450 to 2000 µm and 2.20 g/L (MW) resp. 2.05 g/L (US) for particles that range from 2000 to 4000 µm. PEF has the lowest yield of polyphenols with 0.94 g/L (450–2000 µm), resp. 0.64 g/L (2000–4000 µm) in comparison to 1.82 g/L (2000 to 4000 µm) in a standard stirred vessel (50 °C). When undried red vine leaves (2000 to 4000 µm) are used the total phenol content is 1.44 g/L with PEF.
Collapse
|
9
|
Tabani H, Nojavan S, Alexovič M, Sabo J. Recent developments in green membrane-based extraction techniques for pharmaceutical and biomedical analysis. J Pharm Biomed Anal 2018; 160:244-267. [DOI: 10.1016/j.jpba.2018.08.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/01/2018] [Accepted: 08/03/2018] [Indexed: 01/11/2023]
|
10
|
Chaudhury S, Bhattacharyya A, Ansari SA, Goswami A. A new approach for selective Cs+ separation from simulated nuclear waste solution using electrodriven cation transport through hollow fiber supported liquid membranes. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2017.09.060] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Nojavan S, Sirani M, Asadi S. Investigation of the continuous flow of the sample solution on the performance of electromembrane extraction: Comparison with conventional procedure. J Sep Sci 2017; 40:3889-3897. [DOI: 10.1002/jssc.201700528] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/02/2017] [Accepted: 07/26/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Saeed Nojavan
- Department of analytical chemistry and pollutants; Shahid Beheshti University; Tehran Iran
| | - Mahsa Sirani
- Department of analytical chemistry and pollutants; Shahid Beheshti University; Tehran Iran
| | - Sakine Asadi
- Department of analytical chemistry and pollutants; Shahid Beheshti University; Tehran Iran
| |
Collapse
|
12
|
Direct coupling of electromembrane extraction to mass spectrometry - Advancing the probe functionality toward measurements of zwitterionic drug metabolites. Anal Chim Acta 2017; 983:121-129. [DOI: 10.1016/j.aca.2017.05.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/26/2017] [Accepted: 05/31/2017] [Indexed: 11/23/2022]
|
13
|
Mamat NA, See HH. Simultaneous electromembrane extraction of cationic and anionic herbicides across hollow polymer inclusion membranes with a bubbleless electrode. J Chromatogr A 2017; 1504:9-16. [PMID: 28499598 DOI: 10.1016/j.chroma.2017.05.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 04/02/2017] [Accepted: 05/02/2017] [Indexed: 12/26/2022]
Abstract
A new electric-field driven extraction approach based on the integration of a bubbleless electrode into the electromembrane extraction (EME) across hollow polymer inclusion membranes (HPIMs) was demonstrated for the first time. The bubbleless electrode was prepared based on an in-situ synthesised polyacrylamide within a fused silica capillary. The electrode functions as a salt bridge, which conducts the electrical current between the acceptor phase in the lumen of the HPIM and the acceptor solution in the reservoir connected to a high voltage supply through a platinum electrode. Two types of HPIMs were employed, which consisted of desired proportions of cellulose acetate as base polymer, tris(2-ethylhexyl)phosphate as plasticizer, and di-(2-ethylhexyl)phosphoric acid as anionic carrier or Aliquat 336 as cationic carrier, respectively. The EME strategy was evaluated for the simultaneous determination of cationic quaternary ammonium and anionic chlorophenoxy acetic acid herbicides present in the river water, respectively. The analysis was carried out using capillary electrophoresis coupled with UV and contactless conductivity detection. Under the optimised conditions, enrichment factors in the range of 152-185-fold were obtained from 4mL of river water sample with a 20min extraction time and an applied voltage of 3000V. The proposed method provided good linearity with correlation coefficients ranging from 0.9982 to 0.9997 over a concentration range of 1-1000μg/L. The detection limits of the method for the herbicides were in the range of 0.3-0.4μg/L, with relative standard deviations of between 4.8% and 8.5%. The relative recoveries obtained when analysing the spiked river water ranged from 99.1% to 100%. A comparison was also made between the newly developed approach with the conventional EME setup by placing the platinum electrode directly in the lumen of the HPIMs.
Collapse
Affiliation(s)
- Nor Akma Mamat
- Centre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Johor, Malaysia; Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Johor, Malaysia
| | - Hong Heng See
- Centre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Johor, Malaysia; Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Johor, Malaysia.
| |
Collapse
|
14
|
Electrical field assisted matrix solid phase dispersion as a powerful tool to improve the extraction efficiency and clean-up of fluoroquinolones in bovine milk. J Chromatogr A 2016; 1461:27-34. [PMID: 27492598 DOI: 10.1016/j.chroma.2016.07.063] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 07/21/2016] [Accepted: 07/23/2016] [Indexed: 11/22/2022]
Abstract
This work presents a new method by electrical matrix solid phase dispersion for the extraction and clean-up of marbofloxacin, ofloxacin, norfloxacin, ciprofloxacin, enrofloxacin, difloxacin and sarafloxacin in bovine milk. Composition and pH of the eluent, applied electrical potential and polarity were optimized by experimental designs. The combination of the chromatographic and electrophoretic mechanisms allowed the extraction and clean-up in one step with low organic solvent consumption, high extraction throughput and elution automation. Linearity, precision, trueness and limit of quantification were evaluated and provided values in accordance with other methods recently developed for the analysis of fluoroquinolones in milk. This technique proved to be promising for the extraction and clean-up of ionizable analytes in different milk matrices.
Collapse
|
15
|
Ribeiro CC, Orlando RM, Rohwedder JJR, Reyes FGR, Rath S. Electric field-assisted solid phase extraction and cleanup of ionic compounds in complex food matrices: Fluoroquinolones in eggs. Talanta 2016; 152:498-503. [DOI: 10.1016/j.talanta.2016.02.047] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 02/18/2016] [Accepted: 02/19/2016] [Indexed: 10/22/2022]
|
16
|
Nojavan S, Tahmasebi Z, Hosseiny Davarani SS. Effect of type of stirring on hollow fiber liquid phase microextraction and electromembrane extraction of basic drugs: speed up extraction time and enhancement of extraction efficiency. RSC Adv 2016. [DOI: 10.1039/c6ra18798f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In microextraction procedures, the stirring of the donor solution is crucial to speed up the extraction.
Collapse
Affiliation(s)
- Saeed Nojavan
- Faculty of Chemistry
- Shahid Beheshti University
- Evin
- Iran
| | | | | |
Collapse
|
17
|
Rahmani T, Rahimi A, Nojavan S. Study on electrical current variations in electromembrane extraction process: Relation between extraction recovery and magnitude of electrical current. Anal Chim Acta 2016; 903:81-90. [DOI: 10.1016/j.aca.2015.11.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 11/11/2015] [Accepted: 11/13/2015] [Indexed: 11/24/2022]
|
18
|
Nojavan S, Asadi S. Electromembrane extraction using two separate cells: A new design for simultaneous extraction of acidic and basic compounds. Electrophoresis 2015; 37:587-94. [DOI: 10.1002/elps.201500455] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 11/13/2015] [Accepted: 11/14/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Saeed Nojavan
- Faculty of Chemistry; ShahidBeheshti University; Tehran Iran
| | - Sakine Asadi
- Faculty of Chemistry; ShahidBeheshti University; Tehran Iran
| |
Collapse
|
19
|
A Membrane-Based Electro-Separation Method (MBES) for Sample Clean-Up and Norovirus Concentration. PLoS One 2015; 10:e0141484. [PMID: 26513464 PMCID: PMC4625962 DOI: 10.1371/journal.pone.0141484] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 10/08/2015] [Indexed: 12/01/2022] Open
Abstract
Noroviruses are the leading cause of acute gastroenteritis and foodborne illnesses in the United States. Enhanced methods for detecting noroviruses in food matrices are needed as current methods are complex, labor intensive and insensitive, often resulting in inhibition of downstream molecular detection and inefficient recovery. Membrane-based electro-separation (MBES) is a technique to exchange charged particles through a size-specific dialysis membrane from one solution to another using electric current as the driving force. Norovirus has a net negative surface charge in a neutrally buffered environment, so when placed in an electric field, it moves towards the anode. It can then be separated from the cathodic compartment where the sample is placed and then collected in the anodic compartment for downstream detection. In this study, a MBES-based system was designed, developed and evaluated for concentrating and recovering murine norovirus (MNV-1) from phosphate buffer. As high as 30.8% MNV-1 migrated from the 3.5 ml sample chamber to the 1.5 ml collection chamber across a 1 μm separation membrane when 20 V was applied for 30 min using 20 mM sodium phosphate with 0.01% SDS (pH 7.5) as the electrolyte. In optimization of the method, weak applied voltage (20 V), moderate duration (30 min), and low ionic strength electrolytes with SDS addition were needed to increase virus movement efficacy. The electric field strength of the system was the key factor to enhance virus movement, which could only be improved by shortening the electrodes distance, instead of increasing system applied voltage because of virus stability. This study successfully demonstrated the norovirus mobility in an electric field and migration across a size-specific membrane barrier in sodium phosphate electrolyte. With further modification and validation in food matrixes, a novel, quick, and cost-effective sample clean-up technique might be developed to separate norovirus particles from food matrices by electric force.
Collapse
|
20
|
Development and evaluation of electromembrane extraction across a hollow polymer inclusion membrane. J Chromatogr A 2015; 1406:34-9. [DOI: 10.1016/j.chroma.2015.06.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 06/09/2015] [Accepted: 06/09/2015] [Indexed: 11/20/2022]
|
21
|
Seidi S, Yamini Y, Rezazadeh M. Electrochemically assisted solid based extraction techniques: A review. Talanta 2015; 132:339-53. [DOI: 10.1016/j.talanta.2014.08.059] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 08/20/2014] [Accepted: 08/21/2014] [Indexed: 11/25/2022]
|
22
|
Chaudhury S, Bhattacharyya A, Goswami A. Electrodriven selective transport of Cs+ using chlorinated cobalt dicarbollide in polymer inclusion membrane: a novel approach for cesium removal from simulated nuclear waste solution. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:12994-13000. [PMID: 25299942 DOI: 10.1021/es503667j] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The work describes a novel and cleaner approach of electrodriven selective transport of Cs from simulated nuclear waste solutions through cellulose tri acetate (CTA)/poly vinyl chloride (PVC) based polymer inclusion membrane. The electrodriven cation transport together with the use of highly Cs+ selective hexachlorinated derivative of cobalt bis dicarbollide, allows to achieve selective separation of Cs+ from high concentration of Na+ and other fission products in nuclear waste solutions. The transport selectivity has been studied using radiotracer technique as well as atomic emission spectroscopic technique. Transport studies using CTA based membrane have been carried out from neutral solution as well as 0.4 M HNO3, while that with PVC based membrane has been carried out from 3 M HNO3. High decontamination factor for Cs+ over Na+ has been obtained in all the cases. Experiment with simulated high level waste solution shows selective transport of Cs+ from most of other fission products also. Significantly fast Cs+ transport rate along with high selectivity is an interesting feature observed in this membrane. The current efficiency for Cs+ transport has been found to be ∼100%. The promising results show the possibility of using this kind of electrodriven membrane transport methods for nuclear waste treatment.
Collapse
Affiliation(s)
- Sanhita Chaudhury
- Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | | | | |
Collapse
|
23
|
Abstract
Since the complexity origin of biological samples, the research trends have been directed to the development of new miniaturized sample preparation techniques. This review provides a comprehensive survey of past and present microextraction methods followed by GC analysis for preconcentration and determination of various analytes in urine samples. These techniques have been classified in three general groups, including liquid-, solid- and membrane-based techniques. The principal of different microextraction methods that are located in each general group as well as their various extraction modes and the recent developments introduced for them has been presented. Subsequently, a comparison survey has been carried out among different microextraction techniques and finally a future perspective has been predicted based on the existing literature.
Collapse
|
24
|
Chan CH, Yusoff R, Ngoh GC. Modeling and kinetics study of conventional and assisted batch solvent extraction. Chem Eng Res Des 2014. [DOI: 10.1016/j.cherd.2013.10.001] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Chaudhury S, Bhattacharyya A, Goswami A. Electrodriven Ion Transport through Crown Ether–Nafion Composite Membrane: Enhanced Selectivity of Cs+ over Na+ by Ion Gating at the Surface. Ind Eng Chem Res 2014. [DOI: 10.1021/ie500934v] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sanhita Chaudhury
- Radiochemistry
Division, Bhabha Atomic Research Centre, Mumbai - 400 085, Maharashtra, India
| | - A. Bhattacharyya
- Radiochemistry
Division, Bhabha Atomic Research Centre, Mumbai - 400 085, Maharashtra, India
| | - A. Goswami
- Radiochemistry
Division, Bhabha Atomic Research Centre, Mumbai - 400 085, Maharashtra, India
| |
Collapse
|
26
|
Yamini Y, Seidi S, Rezazadeh M. Electrical field-induced extraction and separation techniques: promising trends in analytical chemistry--a review. Anal Chim Acta 2013; 814:1-22. [PMID: 24528839 DOI: 10.1016/j.aca.2013.12.019] [Citation(s) in RCA: 154] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Revised: 12/07/2013] [Accepted: 12/16/2013] [Indexed: 10/25/2022]
Abstract
Sample preparation is an important issue in analytical chemistry, and is often a bottleneck in chemical analysis. So, the major incentive for the recent research has been to attain faster, simpler, less expensive, and more environmentally friendly sample preparation methods. The use of auxiliary energies, such as heat, ultrasound, and microwave, is one of the strategies that have been employed in sample preparation to reach the above purposes. Application of electrical driving force is the current state-of-the-art, which presents new possibilities for simplifying and shortening the sample preparation process as well as enhancing its selectivity. The electrical driving force has scarcely been utilized in comparison with other auxiliary energies. In this review, the different roles of electrical driving force (as a powerful auxiliary energy) in various extraction techniques, including liquid-, solid-, and membrane-based methods, have been taken into consideration. Also, the references have been made available, relevant to the developments in separation techniques and Lab-on-a-Chip (LOC) systems. All aspects of electrical driving force in extraction and separation methods are too specific to be treated in this contribution. However, the main aim of this review is to provide a brief knowledge about the different fields of analytical chemistry, with an emphasis on the latest efforts put into the electrically assisted membrane-based sample preparation systems. The advantages and disadvantages of these approaches as well as the new achievements in these areas have been discussed, which might be helpful for further progress in the future.
Collapse
Affiliation(s)
- Yadollah Yamini
- Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran.
| | - Shahram Seidi
- Department of Analytical Chemistry, Faculty of Chemistry, K.N. Toosi University of Technology, Tehran, Iran
| | - Maryam Rezazadeh
- Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
| |
Collapse
|
27
|
Orlando RM, Rohwedder JJR, Rath S. Electric Field-Assisted Solid Phase Extraction: Devices, Development and Application with a Cationic Model Compound. Chromatographia 2013. [DOI: 10.1007/s10337-013-2565-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
28
|
See HH, Stratz S, Hauser PC. Electro-driven extraction across a polymer inclusion membrane in a flow-through cell. J Chromatogr A 2013; 1300:79-84. [PMID: 23394749 DOI: 10.1016/j.chroma.2013.01.062] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 01/08/2013] [Accepted: 01/10/2013] [Indexed: 11/29/2022]
Abstract
A flow-through arrangement for electrodriven extraction across a polymer inclusion membrane was developed. Sample introduction into the donor chamber was continuous, while the acceptor solution was stagnant. By adjustment of the total volume of the donor solution pumped through the cell the best compromise between enrichment factor and extraction time can be set. The enriched extract was analyzed by capillary electrophoresis with contactless conductivity detection. Membranes of 20μm thickness were employed which consisted of 60% cellulose triacetate as base polymer, 20% o-nitrophenyl octyl ether as plasticizer, and 20% Aliquat 336. By passing through 10mL of sample at a flow rate of 1mL/min the model analytes glyphosate (a common herbicide) and its major metabolite aminomethylphosphonic acid could be transported from the aqueous donor solution to the aqueous acceptor solution with efficiencies >87% in 10min at an applied voltage of 1500V. Enrichment factors of 87 and 95 and limits of detection down to 43 and 64pg/mL were obtained for glyphosate and aminomethylphosphonic acid, respectively. The intra- and interday reproducibilities for the extraction of the two compounds from spiked river water were about 6 and 7% respectively when new membranes were used for each experiment. For consecutive extractions of batches of river water with a single piece of membrane a deterioration of recovery by about 16% (after 20 runs) was noted, an effect not observed with purely aqueous standards.
Collapse
Affiliation(s)
- Hong Heng See
- Department of Chemistry, University of Basel, Spitalstrasse 51, 4056 Basel, Switzerland.
| | | | | |
Collapse
|
29
|
Chaudhury S, Agarwal C, Pandey A, Goswami A, Sastry P. Electrically-driven facilitated transport of Cs+ across copper ferrocyanide channels in track etched membrane. J Memb Sci 2013. [DOI: 10.1016/j.memsci.2013.01.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
30
|
Kinetic aspects of hollow fiber liquid-phase microextraction and electromembrane extraction. Anal Chim Acta 2012; 742:10-6. [DOI: 10.1016/j.aca.2011.12.039] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 12/15/2011] [Accepted: 12/17/2011] [Indexed: 11/23/2022]
|
31
|
Kašička V. Recent developments in CE and CEC of peptides (2009-2011). Electrophoresis 2011; 33:48-73. [DOI: 10.1002/elps.201100419] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Revised: 09/19/2011] [Accepted: 09/20/2011] [Indexed: 12/12/2022]
|
32
|
See HH, Hauser PC. Electric field-driven extraction of lipophilic anions across a carrier-mediated polymer inclusion membrane. Anal Chem 2011; 83:7507-13. [PMID: 21851124 DOI: 10.1021/ac201772g] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The use of a cationic carrier-mediated polymer inclusion membrane (PIM) for extraction and preconcentration of anionic model analytes driven by an electric field directly into an aqueous acceptor solution is demonstrated. The optimized membrane was 20 μm thick and consisted of 60% cellulose triacetate as base polymer, 20% o-nitrophenyl octyl ether as plasticizer, and 20% Aliquat 336 as cationic carrier in the perchlorate form. By applying voltages of up to 700 V across the membrane, the lipophilic model analytes propanesulfonate, octanesulfonate, and decanesulfonate could be transported from the aqueous donor solution to the aqueous acceptor solution with efficiences >90% within 5 to 20 min. A preconcentration factor of 26, defined by the volume ratio between donor and acceptor compartments of the current cell design, could be achieved. The utility of the method for analytical applications is demonstrated by extraction of the herbicide glyphosate and its breakdown product aminomethylphosphonic acid from spiked river water, followed by quantification with capillary electrophoresis using contactless conductivity detection. Limits of detection of 0.8 and 1.5 ng/mL were obtained for glyphosate and aminomethylphosphonic acid, respectively.
Collapse
Affiliation(s)
- Hong Heng See
- Department of Chemistry, University of Basel, Spitalstrasse 51, 4056 Basel, Switzerland.
| | | |
Collapse
|
33
|
Electromembrane extraction: a new technique for accelerating bioanalytical sample preparation. Bioanalysis 2011; 3:787-97. [DOI: 10.4155/bio.11.13] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The recent societal requirements to explore more environmentaly friendly solutions in the field of sample preparation have gained increasing focus during recent years. A reduction in the consumption of hazardous organic solvent owing to environmental and cost perspectives, small amounts of sample available and time reduction, have been major incentives for scientists to miniaturize existing sample preparation methods. Some of these challenges were addressed by the introduction of electromembrane extraction (EME), a totally new extraction principle where a potential difference is applied across a thin organic membrane immobilized in the pores in the wall of a porous polypropylene membrane. The potential difference is utilized to extract charged analytes of interest from the sample, across the organic membrane, and into an aqueous acceptor solution present inside the lumen of the hollow fiber. This article focuses on the potential of EME in bioanalysis, including discussions of EME performance.
Collapse
|
34
|
Kinetic electro membrane extraction under stagnant conditions—Fast isolation of drugs from untreated human plasma. J Chromatogr A 2010; 1217:5050-6. [DOI: 10.1016/j.chroma.2010.06.018] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 05/28/2010] [Accepted: 06/04/2010] [Indexed: 11/21/2022]
|