1
|
Kelani KM, Ibrahim MM, Ramadan NK, Elzanfaly ES, Eid SM. Comparing silver and gold nanoislands' surface plasmon resonance for bisacodyl and its metabolite quantification in human plasma. BMC Chem 2024; 18:56. [PMID: 38521957 PMCID: PMC10960993 DOI: 10.1186/s13065-024-01157-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 03/07/2024] [Indexed: 03/25/2024] Open
Abstract
Gold and silver nanoparticles have witnessed increased scientific interest due to their colourful colloidal solutions and exceptional applications. Comparing the localized surface plasmon resonance (LSPR) of gold and silver nanoparticles is crucial for understanding and optimizing their optical properties. This comparison informs the design of highly sensitive plasmonic sensors, aids in selecting the most suitable nanoparticles for applications like surface-enhanced infrared spectroscopy (SEIRA) and biomedical imaging, and guides the choice between gold and silver nanoparticles based on their catalytic and photothermal properties. Ultimately, the study of LSPR facilitates the tailored use of these nanoparticles in diverse scientific and technological applications. Two SEIRA methods combined with partial least squares regression (PLSR) chemometric tools were developed. This development is based on the synthesis of homogeneous, high-dense deposited metal nanoparticle islands over the surface of glass substrates to be used as lab-on-chip SEIRA sensors for the determination of bisacodyl (BIS) and its active metabolite in plasma. SEM micrographs revealed the formation of metallic islands of colloidal citrate-capped gold and silver nanoparticles of average sizes of 29.7 and 15 nm, respectively. BIS and its active metabolite were placed on the nanoparticles' coated substrates to be directly measured, then PLSR chemometric modelling was used for the quantitative determinations. Plasmonic citrate-capped gold nanoparticle substrates showed better performance than those prepared using citrate-capped silver nanoparticles in terms of preparation time, enhancement factor, PLSR model prediction, and quantitative results. This study offers a way to determine BIS and its active metabolite in the concentration range 15-240 ng/mL in human plasma using inexpensive disposable glass-coated substrates that can be prepared in 1 h to get results in seconds with good recovery between 98.77 and 100.64%. The sensors provided fast, simple, selective, molecular-specific and inexpensive procedures to determine molecules in their pure form and biological fluid.
Collapse
Affiliation(s)
- Khadiga M Kelani
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Maha M Ibrahim
- Analytical Chemistry Department, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| | - Nesreen K Ramadan
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Eman S Elzanfaly
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo, Egypt
| | - Sherif M Eid
- Analytical Chemistry Department, Faculty of Pharmacy, 6 October University, October City, Egypt.
| |
Collapse
|
2
|
Tkachenko Y, Niedzielski P. FTIR as a Method for Qualitative Assessment of Solid Samples in Geochemical Research: A Review. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248846. [PMID: 36557982 PMCID: PMC9780788 DOI: 10.3390/molecules27248846] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022]
Abstract
This study aims to collect information about soil investigation by FTIR. As we know, the FTIR technique is most often used in organic and bioorganic chemistry, while in geochemistry FTIR spectroscopy is not used very often. Therefore, there is a problem with the identification and interpretation of the IR spectra of minerals contained in sediments and soils. The reason for this is a deficiency of data about characteristic wavenumbers for minerals. Therefore, this study reviews and sums up, in one place, published articles that are connected to an investigation of minerals from 2002 to 2021 (based on the Scopus database). Additionally, the present review highlights various analytical techniques (ATR-FTIR, DRIFT, 2D-IR, and SR-FTIR) and discusses some of them for geochemical study. Additionally, the study describes helpful tools in the data pre-processing of IR spectra (normalization, baseline correction, and spectral derivatives).
Collapse
|
3
|
Lv J, Huang Z, Luo L, Zhang S, Wang Y. Advances in Molecular and Microscale Characterization of Soil Organic Matter: Current Limitations and Future Prospects. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:12793-12810. [PMID: 36037253 DOI: 10.1021/acs.est.2c00421] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Soil organic matter (SOM) comprises a continuum of organic materials from granular organic debris to small organic molecules and contains more organic carbon than global vegetation and the atmosphere combined. It has remarkable effects on soil ecological functions and the global carbon cycle as well as the fate of pollutants in the terrestrial ecosystem. Therefore, characterization of SOM is an important topic in soil science, ecology, and environmental science. Chemical complexity and spatial heterogeneity are by far the two biggest challenges to our understanding of SOM. Recent developments in analytical techniques and methods provide the opportunity to reveal SOM composition at the molecular level and to observe its distribution in soils at micro- and nanoscales, which have greatly improved our understanding of SOM. This paper reviews the outstanding advances in SOM characterization regarding these two issues from target and nontarget analyses comprising molecular marker analysis, ultrahigh-resolution mass spectrometry analysis, and in situ microscopic imaging techniques such as synchrotron-based spectromicroscopy, nanoscale secondary ion mass spectrometry, and emerging electron and optical microscopic imaging techniques. However, current techniques and methods remain far from unlocking the unknown properties of SOM. We systematically point out the limitations of the current technologies and outline the future prospects for comprehensive characterization of SOM at the molecular level and micro- and nanoscales, paying particular attention to issues of environmental concern.
Collapse
Affiliation(s)
- Jitao Lv
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zaoquan Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Guangdong Key Laboratory of Contaminated Site Environmental Management and Remediation, Guangdong Provincial Academy of Environmental Science, Guangzhou, Guangdong 510045, China
| | - Lei Luo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Shuzhen Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yawei Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Phal Y, Yeh K, Bhargava R. Design Considerations for Discrete Frequency Infrared Microscopy Systems. APPLIED SPECTROSCOPY 2021; 75:1067-1092. [PMID: 33876990 PMCID: PMC9993325 DOI: 10.1177/00037028211013372] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Discrete frequency infrared chemical imaging is transforming the practice of microspectroscopy by enabling a diversity of instrumentation and new measurement capabilities. While a variety of hardware implementations have been realized, design considerations that are unique to infrared (IR) microscopes have not yet been compiled in literature. Here, we describe the evolution of IR microscopes, provide rationales for design choices, and catalog some major considerations for each of the optical components in an imaging system. We analyze design choices that use these components to optimize performance, under their particular constraints, while providing illustrative examples. We then summarize a framework to assess the factors that determine an instrument's performance mathematically. Finally, we provide a validation approach by enumerating performance metrics that can be used to evaluate the capabilities of imaging systems or suitability for specific intended applications. Together, the presented concepts and examples should aid in understanding available instrument configurations, while guiding innovations in design of the next generation of IR chemical imaging spectrometers.
Collapse
Affiliation(s)
- Yamuna Phal
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Kevin Yeh
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Rohit Bhargava
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, USA
- Departments of Bioengineering, Mechanical Science and Engineering, Chemical and Biomolecular Engineering, and Chemistry, University of Illinois at Urbana-Champaign, Urbana, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, USA
| |
Collapse
|
5
|
Li J, Li H, Wang Y, Liu M, Sun X, Huang P, Cheng W. Rapid Discrimination of Radix Salviae Miltiorrhizae Using Fourier-Transform Infrared Microspectroscopy. ANAL LETT 2020. [DOI: 10.1080/00032719.2020.1718160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Jincai Li
- School of Pharmacy, Bozhou Vocational and Technical College, Bozhou, China
| | - Huanhuan Li
- School of Pharmacy and Key Laboratory of Chinese Medicinal Formula of Anhui Province, Anhui University Chinese Medicine, Hefei, China
| | - Yuanyuan Wang
- School of Pharmacy and Key Laboratory of Chinese Medicinal Formula of Anhui Province, Anhui University Chinese Medicine, Hefei, China
| | - Mei Liu
- School of Pharmacy and Key Laboratory of Chinese Medicinal Formula of Anhui Province, Anhui University Chinese Medicine, Hefei, China
| | - Xiaohong Sun
- School of Pharmacy and Key Laboratory of Chinese Medicinal Formula of Anhui Province, Anhui University Chinese Medicine, Hefei, China
| | - Peng Huang
- School of Pharmacy and Key Laboratory of Chinese Medicinal Formula of Anhui Province, Anhui University Chinese Medicine, Hefei, China
| | - Wangxing Cheng
- School of Pharmacy and Key Laboratory of Chinese Medicinal Formula of Anhui Province, Anhui University Chinese Medicine, Hefei, China
| |
Collapse
|
6
|
Pisapia C, Jamme F, Duponchel L, Ménez B. Tracking hidden organic carbon in rocks using chemometrics and hyperspectral imaging. Sci Rep 2018; 8:2396. [PMID: 29402966 PMCID: PMC5799262 DOI: 10.1038/s41598-018-20890-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/25/2018] [Indexed: 01/06/2023] Open
Abstract
Finding traces of life or organic components of prebiotic interest in the rock record is an appealing goal for numerous fields in Earth and space sciences. However, this is often hampered by the scarceness and highly heterogeneous distribution of organic compounds within rocks. We assess here an innovative analytical strategy combining Synchrotron radiation-based Fourier-Transform Infrared microspectroscopy (S-FTIR) and multivariate analysis techniques to track and characterize organic compounds at the pore level in complex oceanic rocks. S-FTIR hyperspectral images are analysed individually or as multiple image combinations (multiset analysis) using Principal Component Analyses (PCA) and Multivariate Curve Resolution – Alternating Least Squares (MCR-ALS). This approach allows extracting simultaneously pure organic and mineral spectral signatures and determining their spatial distributions and relationships. MCR-ALS analysis provides resolved S-FTIR signatures of 8 pure mineral and organic components showing the close association at a micrometric scale of organic compounds and secondary clays formed during rock alteration and known to catalyse organic synthesis. These results highlights the potential of the serpentinizing oceanic lithosphere to generate and preserve organic compounds of abiotic origin, in favour of the hydrothermal theory for the origin of life.
Collapse
Affiliation(s)
- Céline Pisapia
- IPGP, Sorbonne Paris Cité, Univ Paris Diderot, CNRS, 1 rue Jussieu, 75238, Paris Cedex 5, France. .,Synchrotron SOLEIL, Campus Paris-Saclay, 91192, Gif sur Yvette, France.
| | - Frédéric Jamme
- Synchrotron SOLEIL, Campus Paris-Saclay, 91192, Gif sur Yvette, France
| | - Ludovic Duponchel
- LASIR CNRS UMR 8516, Université de Lille, Sciences et Technologies, 59655, Villeneuve d'Ascq Cedex, France
| | - Bénédicte Ménez
- IPGP, Sorbonne Paris Cité, Univ Paris Diderot, CNRS, 1 rue Jussieu, 75238, Paris Cedex 5, France
| |
Collapse
|
7
|
Steinle T, Neubrech F, Steinmann A, Yin X, Giessen H. Mid-infrared Fourier-transform spectroscopy with a high-brilliance tunable laser source: investigating sample areas down to 5 μm diameter. OPTICS EXPRESS 2015; 23:11105-13. [PMID: 25969206 DOI: 10.1364/oe.23.011105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
We demonstrate highly sensitive infrared spectroscopy of sample volumes close to the diffraction limit by coupling a femtosecond fiber-feedback optical parametric oscillator (OPO) to a conventional Fourier-transform infrared (FTIR) spectrometer. The high brilliance and long-term stable infrared radiation with 1e(2)-bandwidths up to 125 nm is easily tunable between 1.4 μm and 4.2 μm at 43 MHz repetition rate and thus enables rapid and low-noise infrared spectroscopy. We demonstrate this by measuring typical molecular vibrations in the range of 3 μm. Combined with surface-enhanced infrared spectroscopy, where the confined electromagnetic near-fields of resonantly excited metal nanoparticles are employed to enhance molecular vibrations, we realize the spectroscopic detection of a molecular monolayer of octadecanethiol. In comparison to conventional light sources and synchrotron radiation, our compact table-top OPO system features a significantly improved performance making it highly suitable for rapid analysis of minute amounts of molecular species in life science and medicine laboratories.
Collapse
|
8
|
Furchner A, Sun G, Ketelsen H, Rappich J, Hinrichs K. Fast IR laser mapping ellipsometry for the study of functional organic thin films. Analyst 2015; 140:1791-7. [PMID: 25668189 DOI: 10.1039/c4an01853b] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fast infrared mapping with sub-millimeter lateral resolution as well as time-resolved infrared studies of kinetic processes of functional organic thin films require a new generation of infrared ellipsometers. We present a novel laboratory-based infrared (IR) laser mapping ellipsometer, in which a laser is coupled to a variable-angle rotating analyzer ellipsometer. Compared to conventional Fourier-transform infrared (FT-IR) ellipsometers, the IR laser ellipsometer provides ten- to hundredfold shorter measurement times down to 80 ms per measured spot, as well as about tenfold increased lateral resolution of 120 μm, thus enabling mapping of small sample areas with thin-film sensitivity. The ellipsometer, equipped with a HeNe laser emitting at about 2949 cm(-1), was applied for the optical characterization of inhomogeneous poly(3-hexylthiophene) [P3HT] and poly(N-isopropylacrylamide) [PNIPAAm] organic thin films used for opto-electronics and bioapplications. With the constant development of tunable IR laser sources, laser-based infrared ellipsometry is a promising technique for fast in-depth mapping characterization of thin films and blends.
Collapse
Affiliation(s)
- Andreas Furchner
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e. V., Schwarzschildstraße 8, 12489 Berlin, Germany.
| | | | | | | | | |
Collapse
|
9
|
|
10
|
In-situ vibrational optical rotatory dispersion of molecular organic crystals at high pressures. Anal Chim Acta 2014; 842:51-6. [DOI: 10.1016/j.aca.2014.07.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 07/04/2014] [Accepted: 07/15/2014] [Indexed: 11/18/2022]
|
11
|
Coxon PR, Ahire JH, Ashby SP, Frogley MD, Chao Y. Amine-terminated nanoparticle films: pattern deposition by a simple nanostencilling technique and stability studies under X-ray irradiation. Phys Chem Chem Phys 2014; 16:5817-23. [DOI: 10.1039/c3cp55344b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Exploring the surface chemistry of nanopatterned amine-terminated nanoparticle films.
Collapse
Affiliation(s)
- P. R. Coxon
- Energy Materials Laboratory
- School of Chemistry
- University of East Anglia
- Norwich, UK
- Department of Materials Science & Metallurgy
| | - J. H. Ahire
- Energy Materials Laboratory
- School of Chemistry
- University of East Anglia
- Norwich, UK
| | - S. P. Ashby
- Energy Materials Laboratory
- School of Chemistry
- University of East Anglia
- Norwich, UK
| | | | - Y. Chao
- Energy Materials Laboratory
- School of Chemistry
- University of East Anglia
- Norwich, UK
| |
Collapse
|
12
|
Opportunities for live cell FT-infrared imaging: macromolecule identification with 2D and 3D localization. Int J Mol Sci 2013; 14:22753-81. [PMID: 24256815 PMCID: PMC3856089 DOI: 10.3390/ijms141122753] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 10/31/2013] [Accepted: 11/01/2013] [Indexed: 12/22/2022] Open
Abstract
Infrared (IR) spectromicroscopy, or chemical imaging, is an evolving technique that is poised to make significant contributions in the fields of biology and medicine. Recent developments in sources, detectors, measurement techniques and speciman holders have now made diffraction-limited Fourier transform infrared (FTIR) imaging of cellular chemistry in living cells a reality. The availability of bright, broadband IR sources and large area, pixelated detectors facilitate live cell imaging, which requires rapid measurements using non-destructive probes. In this work, we review advances in the field of FTIR spectromicroscopy that have contributed to live-cell two and three-dimensional IR imaging, and discuss several key examples that highlight the utility of this technique for studying the structure and chemistry of living cells.
Collapse
|
13
|
Martin MC, Dabat-Blondeau C, Unger M, Sedlmair J, Parkinson DY, Bechtel HA, Illman B, Castro JM, Keiluweit M, Buschke D, Ogle B, Nasse MJ, Hirschmugl CJ. 3D spectral imaging with synchrotron Fourier transform infrared spectro-microtomography. Nat Methods 2013; 10:861-4. [PMID: 23913258 DOI: 10.1038/nmeth.2596] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 07/02/2013] [Indexed: 10/26/2022]
Abstract
We report Fourier transform infrared spectro-microtomography, a nondestructive three-dimensional imaging approach that reveals the distribution of distinctive chemical compositions throughout an intact biological or materials sample. The method combines mid-infrared absorption contrast with computed tomographic data acquisition and reconstruction to enhance chemical and morphological localization by determining a complete infrared spectrum for every voxel (millions of spectra determined per sample).
Collapse
Affiliation(s)
- Michael C Martin
- Advanced Light Source Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Ling S, Qi Z, Knight DP, Huang Y, Huang L, Zhou H, Shao Z, Chen X. Insight into the structure of single Antheraea pernyi silkworm fibers using synchrotron FTIR microspectroscopy. Biomacromolecules 2013; 14:1885-92. [PMID: 23607809 DOI: 10.1021/bm400267m] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Synchrotron FTIR (S-FTIR) microspectroscopy was used to monitor both protein secondary structures (conformations) and their orientations in single cocoon silk fibers of the Chinese Tussah silk moth ( Antheraea pernyi ). In addition, to understand further the relationship between structure and properties of single silk fibers, we studied the changes of orientation and content of different secondary structures in single A. pernyi silk fibers when subjected to different strains. The results showed that the content and orientation of β-sheet was almost unchanged for strains from 0 to 0.3. However, the orientation of α-helix and random coil improved progressively with increasing strain, with a parallel decrease in α-helix content and an increase in random coil. This clearly indicates that most of the deformation upon stretching of the single fiber is due to the change of orientation in the amorphous regions coupled with a conversion of some of the α-helix to random coil. These observations provide an explanation for the supercontraction behavior of certain animal silks and are likely to facilitate understanding and optimization of postdrawing used in the conjunction with the wet-spinning of silk fibers from regenerated silk solutions. Thus, our work demonstrates the power of S-FTIR microspectroscopy for studying biopolymers.
Collapse
Affiliation(s)
- Shengjie Ling
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University , Shanghai, 200433, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Infrared (IR) spectroscopic imaging seemingly matured as a technology in the mid-2000s, with commercially successful instrumentation and reports in numerous applications. Recent developments, however, have transformed our understanding of the recorded data, provided capability for new instrumentation, and greatly enhanced the ability to extract more useful information in less time. These developments are summarized here in three broad areas--data recording, interpretation of recorded data, and information extraction--and their critical review is employed to project emerging trends. Overall, the convergence of selected components from hardware, theory, algorithms, and applications is one trend. Instead of similar, general-purpose instrumentation, another trend is likely to be diverse and application-targeted designs of instrumentation driven by emerging component technologies. The recent renaissance in both fundamental science and instrumentation will likely spur investigations at the confluence of conventional spectroscopic analyses and optical physics for improved data interpretation. While chemometrics has dominated data processing, a trend will likely lie in the development of signal processing algorithms to optimally extract spectral and spatial information prior to conventional chemometric analyses. Finally, the sum of these recent advances is likely to provide unprecedented capability in measurement and scientific insight, which will present new opportunities for the applied spectroscopist.
Collapse
Affiliation(s)
- Rohit Bhargava
- Department of Bioengineering, Beckman Institute for Advanced Science and Technology, University of Illinois Cancer Center, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
16
|
Abstract
Over the years Fourier-Transform Infrared (FTIR) spectroscopy has been widely employed in the structural and functional characterization of biomolecules. The introduction of infrared (IR) microscopes and of synchrotron light sources has created expectations that FTIR could become a generally viable technique to study both structure and reactivity in vivo, inside single cells, by performing measurements that up to a few years ago were the preserve of in vitro experiments on purified macromolecules. In this review we present the state-of-the-art in the application of FTIR spectromicroscopy as a technique for the study of structure and dynamics in single cells, we discuss the performance requirements for this application and review developments in sample handling methods.
Collapse
Affiliation(s)
- Luca Quaroni
- Swiss Light Source, Paul Scherrer Institut, Villigen-PSI, CH-5232, Switzerland.
| | | |
Collapse
|
17
|
Ling S, Qi Z, Knight DP, Shao Z, Chen X. Synchrotron FTIR microspectroscopy of single natural silk fibers. Biomacromolecules 2011; 12:3344-9. [PMID: 21790142 DOI: 10.1021/bm2006032] [Citation(s) in RCA: 164] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Synchrotron FTIR (S-FTIR) microspectroscopy was used to monitor the silk protein conformation in a range of single natural silk fibers (domestic and wild silkworm and spider dragline silk). With the selection of suitable aperture size, we obtained high-resolution S-FTIR spectra capable of semiquantitative analysis of protein secondary structures. For the first time, we have determined from S-FTIR the β-sheet content in a range of natural single silk fibers, 28 ± 4, 23 ± 2, and 17 ± 4% in Bombyx mori, Antheraea pernyi, and Nephila edulis silks, respectively. The trend of β-sheet content in different silk fibers from the current study accords quite well with published data determined by XRD, Raman, and (13)C NMR. Our results indicate that the S-FTIR microspectroscopy method has considerable potential for the study of single natural silk fibers.
Collapse
Affiliation(s)
- Shengjie Ling
- The Key Laboratory of Molecular Engineering of Polymers of MOE, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, China
| | | | | | | | | |
Collapse
|
18
|
Carroll L, Friedli P, Lerch P, Schneider J, Treyer D, Hunziker S, Stutz S, Sigg H. Ultra-broadband infrared pump-probe spectroscopy using synchrotron radiation and a tuneable pump. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2011; 82:063101. [PMID: 21721668 DOI: 10.1063/1.3592332] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Synchrotron infrared sources have become popular mainly because of their excellent broadband brilliance, which enables spectroscopically resolved spatial-mapping of stationary objects at the diffraction limit. In this article we focus on an often-neglected further advantage of such sources - their unique time-structure - to bring such broadband spectroscopy to the time domain, for studying dynamic phenomenon down to the 100 ps limit. We describe the ultra-broadband (12.5 to 1.1 μm) Fourier transform pump-probe setup, for condensed matter transmission- and reflection-spectroscopy, installed at the X01DC infrared beam-line of the Swiss Light Source (SLS). The optical pump consists of a widely tuneable 100 ps 1 kHz laser system, covering 94% of the 16 to 1.1 μm range. A thorough description of the system is given, including (i) the vector-modulator providing purely electronic tuning of the pump-probe overlap up to 1 ms with sub-ps time resolution, (ii) the 500 MHz data acquisition system interfaced with the experimental physics and industrial control system (EPICS) based SLS control system for consecutive pulse sampling, and (iii) the step-scan time-slice Fourier transform scheme for simultaneous recording of the dual-channel pumped, un-pumped, and difference spectra. The typical signal/noise ratio of a single interferogram in a 100 ps time slice is 300 (measured during one single 140 s TopUp period). This signal/noise ratio is comparable to that of existing gated Globar pump-probe Fourier transform spectroscopy, but brings up to four orders of magnitude better time resolution. To showcase the utility of broadband pump-probe spectroscopy, we investigate a Ge-on-Si material system similar to that in which optically pumped direct-gap lasing was recently reported. We show that the mid-infrared reflection-spectra can be used to determine the optically injected carrier density, while the mid- and near-infrared transmission-spectra can be used to separate the strong pump-induced absorption and inversion processes present at the direct-gap energy.
Collapse
Affiliation(s)
- Lee Carroll
- Laboratory for Micro and Nanotechnology, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Laser microperforated biodegradable microbial polyhydroxyalkanoate substrates for tissue repair strategies: an infrared microspectroscopy study. Anal Bioanal Chem 2011; 399:2379-88. [PMID: 21240671 DOI: 10.1007/s00216-011-4653-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 12/21/2010] [Accepted: 01/02/2011] [Indexed: 10/18/2022]
Abstract
Flexible and biodegradable film substrates prepared by solvent casting from poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBHV) solutions in chloroform were microperforated by ultraviolet laser ablation and subsequently characterized using infrared (IR) microspectroscopy and imaging techniques and scanning electron microscopy (SEM). Both transmission synchrotron IR microspectroscopy and attenuated total reflectance microspectroscopy measurements demonstrate variations in the polymer at the ablated pore rims, including evidence for changes in chemical structure and crystallinity. SEM results on microperforated PHBHV substrates after cell culture demonstrated that the physical and chemical changes observed in the biomaterial did not hinder cell migration through the pores.
Collapse
|