1
|
Tian X, Yang Q, Zhao Y, Cao D, Liu Y, Guo Y, Cui W, Hu L, Yin Y, Cai Y, Jiang G. Comprehensive Multidimensional Analysis of Metal(loid)-Containing Dust in Plastic Sports Facilities: Insights into the Potential Sources and Health Risks. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:23212-23221. [PMID: 39693048 DOI: 10.1021/acs.est.4c11896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Dust released from widely established plastic sports courts and synthetic turf poses potential environmental and health risks. Herein, we systematically investigate the metal(loid) characteristics, potential sources, and health risks of 162 dust samples from 17 campuses in Beijing, using complementary analytical techniques. Bulk analysis revealed higher levels of Zn, Pb, Cu, Sb, Cd, and Cr than background values, suggesting excessive anthropogenic contamination. Pb and Cr in plastic basketball court and track dust and Zn and Sb in synthetic turf dust were higher than those in other sports facilities. Multielement single-particle inductively coupled plasma time-of-flight mass spectrometry (spICP-TOF-MS) revealed more Fe-, Al-, Si-, Ti-, and Pb-containing particles in the dust. At least 92% toxic Pb-containing particles were composed of multiple elements. The significant correlations between Pb and Cr contents on individual dust particles support their common potential source from inorganic pigments (crocoite, PbCrO4). Pb, Sb, As, and Cr in the dust pose higher health risks through intake. The risks were estimated to be approximately 3-5 times higher for children than for adults. Additionally, highly toxic Cr(VI) and As(III) species were observed in the sweat and gastric juice leachate of dust, highlighting severe threats of the metal(loid)s to human health.
Collapse
Affiliation(s)
- Xiangwei Tian
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
| | - Qingqing Yang
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Yuqian Zhao
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Dandan Cao
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Yanwei Liu
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yingying Guo
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Wenbin Cui
- R&D Center, Shandong Yingsheng Biotechnology Co., Ltd., Beijing 100088, China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yongguang Yin
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
- School of Environment and Health, Jianghan University, Wuhan 430056, China
- Institute of Environment and Health, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Yong Cai
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
2
|
Amasya G, Tuba Sengel-Turk C, Basak Erol H, Kaskatepe B, Oncu A, Guney-Eskiler G, Celikten B. Rational design of a Nano-Antibiotic chitosan hydrogel for the bacterial infection Therapy: In vitro & ex vivo Assessments. Int J Pharm 2024; 665:124692. [PMID: 39265849 DOI: 10.1016/j.ijpharm.2024.124692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/25/2024] [Accepted: 09/08/2024] [Indexed: 09/14/2024]
Abstract
In modern times, many antibiotics have become less effective as microorganisms develop resistance. Besides antibiotic resistance, another bacterial strategy that contributes to the capacity to withstand antimicrobials is biofilm formation. Because of these bacterial survival strategies, the desired response cannot be achieved with conventional treatment. Considering the limited discovery of new compounds, the most logical approach is to reconstruct existing antimicrobial molecules with nano-drug delivery systems. With this scientific approach, the aim of the study is to develop a novel nano-antibiotic hydrogel formulation containing silver nanoparticles, chitosan, and amoxicillin. Endodontic disease was used as a model of biofilm-mediated infection, and the antibacterial activity of nano-antibiotic hydrogel was evaluated with the E. faecalis standard bacterial strain. By adopting the Box-Behnken design for the optimisation of formulation variables, an innovative pharmaceutical formulation with antimicrobial and antibiofilm activity was successfully obtained. Further characterisation studies, including nanoparticle characterisation, in vitro cytotoxicity, and ex vivo activity studies, were carried out on dental samples using the optimised formulation. All results were compared with antimicrobial agents routinely used in endodontic treatment. The findings mainly conclude that the optimised nano-antibiotic hydrogel may be an alternative antimicrobial formulation since it is non-cytotoxic and exhibits high antibiofilm activity.
Collapse
Affiliation(s)
- Gulin Amasya
- Ankara University, Faculty of Pharmacy, Department of Pharmaceutical Technology, 06560 Ankara, Turkey.
| | - Ceyda Tuba Sengel-Turk
- Ankara University, Faculty of Pharmacy, Department of Pharmaceutical Technology, 06560 Ankara, Turkey
| | - Hilal Basak Erol
- Ankara University, Faculty of Pharmacy, Department of Pharmaceutical Microbiology, 06560 Ankara, Turkey
| | - Banu Kaskatepe
- Ankara University, Faculty of Pharmacy, Department of Pharmaceutical Microbiology, 06560 Ankara, Turkey
| | - Aysenur Oncu
- Lokman Hekim University, Faculty of Dentistry, Department of Endodontics, 06510 Ankara, Turkey
| | - Gamze Guney-Eskiler
- Sakarya University, Faculty of Medicine, Department of Medical Biology, 54290, Sakarya, Turkey
| | - Berkan Celikten
- Ankara University, Faculty of Dentistry, Department of Endodontics, 06560 Ankara, Turkey
| |
Collapse
|
3
|
Henke AH, Flores K, Goodman AJ, Magurany K, LeVanseler K, Ranville J, Gardea-Torresdey JL, Westerhoff PK. Interlaboratory comparison of centrifugal ultrafiltration with ICP-MS detection in a first-step towards methods to screen for nanomaterial release during certification of drinking water contact materials. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168686. [PMID: 38000751 DOI: 10.1016/j.scitotenv.2023.168686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023]
Abstract
A key requirement for evaluating the safety of nano-enabled water treatment devices is measuring concentrations of insoluble nanomaterials released from devices into water that may be ingested by consumers. Therefore, there is a need for simple technique that uses commonly available commercial laboratory techniques to discriminate between nanoparticles and dissolved by-products of the nanomaterial (e.g., ionic metals). Such capabilities would enable screening for particulate or dissolved metals released into water from nanomaterial-containing drinking water contact materials (e.g., paint coatings) or devices (e.g., filters). This multi-laboratory study sought to investigate the use of relatively inexpensive centrifugal ultrafilters to separate nanoparticulate from ionic metal in combination with inductively-coupled plasma mass spectrometry (ICP-MS) detection. The accuracy, precision, and reproducibility for the proposed method were assessed using mixtures of nanoparticulate and ionic gold (Au) in a standard and widely utilized model water matrix (NSF International Standard 53/61). Concentrations for both ionic and nanoparticulate gold based upon measurements of Au mass in the initial solutions and Au permeating the centrifugal ultrafilters. Results across different solution compositions and different participating labs showed that ionic and nanoparticulate Au could be consistently discriminated with ppb concentrations typically resulting in <10 % error. A mass balance was not achieved because nanoparticles were retained on membranes embedded in plastic holders inside the centrifuge tubes, and the entire apparatus could not be acid and/or microwave digested. This was a minor limitation considering the ultrafiltration method is a screening tool, and gold concentration in the permeate indicates the presence of ionic metal rather than nanoforms. With further development, this approach could prove to be an effective tool in screening for nanomaterial release from water-system or device materials as part of third-party certification processes of drinking water compatible products.
Collapse
Affiliation(s)
- Austin H Henke
- National Science Foundation Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Kenneth Flores
- National Science Foundation Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Department of Chemistry & Biochemistry, Environmental Science and Engineering, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Aaron J Goodman
- Department of Chemistry, Colorado School of Mines, Golden, CO 80401, USA
| | | | | | - James Ranville
- Department of Chemistry, Colorado School of Mines, Golden, CO 80401, USA
| | - Jorge L Gardea-Torresdey
- National Science Foundation Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Department of Chemistry & Biochemistry, Environmental Science and Engineering, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Paul K Westerhoff
- National Science Foundation Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ 85287, USA.
| |
Collapse
|
4
|
Yu S, Tan Z, Lai Y, Li Q, Liu J. Nanoparticulate pollutants in the environment: Analytical methods, formation, and transformation. ECO-ENVIRONMENT & HEALTH 2023; 2:61-73. [PMID: 38075291 PMCID: PMC10702925 DOI: 10.1016/j.eehl.2023.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 06/28/2024]
Abstract
The wide application of nanomaterials and plastic products generates a substantial number of nanoparticulate pollutants in the environment. Nanoparticulate pollutants are quite different from their bulk counterparts because of their unique physicochemical properties, which may pose a threat to environmental organisms and human beings. To accurately predict the environmental risks of nanoparticulate pollutants, great efforts have been devoted to developing reliable methods to define their occurrence and track their fate and transformation in the environment. Herein, we summarized representative studies on the preconcentration, separation, formation, and transformation of nanoparticulate pollutants in environmental samples. Finally, some perspectives on future research directions are proposed.
Collapse
Affiliation(s)
- Sujuan Yu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiqiang Tan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yujian Lai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qingcun Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingfu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
5
|
Simultaneous multi-element and multi-isotope detection in single-particle ICP-MS analysis: Principles and applications. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
Zhao K, Wei Y, Dong J, Zhao P, Wang Y, Pan X, Wang J. Separation and characterization of microplastic and nanoplastic particles in marine environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 297:118773. [PMID: 34974085 DOI: 10.1016/j.envpol.2021.118773] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/16/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
Microplastics (<5 mm) are divided into primary and secondary microplastics, which are further degraded into nanoplastics. The microplastic particles are widely distributed in marine environment, terrestrial ecosystem and biological organism, leading to damages to whole environmental system. Microplastics are not only difficult to degrade, but also able to adsorb pollutants. Due to the tiny size and various properties, the separation and characterization of microplastic particles has become more and more challenging. This review introduces the sources and destinations of the microplastic particles and summarizes the general methods for the sorting and characterization of microplastics, especially the manipulation of microplastic particles on microfluidic chip, showing possibility to deal with smaller nanoplastic particles over traditional methods. This review focuses on studies of the size-based separation and property-dependent characterization of microplastics in marine environment by utilizing the microfluidic chip device.
Collapse
Affiliation(s)
- Kai Zhao
- Liaoning Key Laboratory of Marine Sensing and Intelligent Detection, Dalian Maritime University, 116026, Dalian, China; Department of Information Science and Technology, Dalian Maritime University, 116026, Dalian, China
| | - Yunman Wei
- Liaoning Key Laboratory of Marine Sensing and Intelligent Detection, Dalian Maritime University, 116026, Dalian, China; Department of Information Science and Technology, Dalian Maritime University, 116026, Dalian, China
| | - Jianhong Dong
- Liaoning Key Laboratory of Marine Sensing and Intelligent Detection, Dalian Maritime University, 116026, Dalian, China; Department of Information Science and Technology, Dalian Maritime University, 116026, Dalian, China
| | - Penglu Zhao
- Liaoning Key Laboratory of Marine Sensing and Intelligent Detection, Dalian Maritime University, 116026, Dalian, China; Department of Information Science and Technology, Dalian Maritime University, 116026, Dalian, China
| | - Yuezhu Wang
- Liaoning Key Laboratory of Marine Sensing and Intelligent Detection, Dalian Maritime University, 116026, Dalian, China; Department of Environmental Sciences and Engineering, Dalian Maritime University, 116026, Dalian, China
| | - Xinxiang Pan
- Liaoning Key Laboratory of Marine Sensing and Intelligent Detection, Dalian Maritime University, 116026, Dalian, China; Department of Maritime, Guangdong Ocean University, 524000, Zhanjiang, China
| | - Junsheng Wang
- Liaoning Key Laboratory of Marine Sensing and Intelligent Detection, Dalian Maritime University, 116026, Dalian, China; Department of Information Science and Technology, Dalian Maritime University, 116026, Dalian, China.
| |
Collapse
|
7
|
Martins CSM, Araújo AN, de Gouveia LP, Prior JAV. Minimizing the Silver Free Ion Content in Starch Coated Silver Nanoparticle Suspensions with Exchange Cationic Resins. NANOMATERIALS 2022; 12:nano12040644. [PMID: 35214974 PMCID: PMC8877803 DOI: 10.3390/nano12040644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/01/2022] [Accepted: 02/07/2022] [Indexed: 02/01/2023]
Abstract
This work describes the optimization of a methodology for the reduction of silver ions from silver nanoparticle suspensions obtained from low-yield laboratory procedures. The laboratory synthesis of silver nanoparticles following a bottom-up approach starting from silver nitrate, originates silver ions that were not reduced to their fundamental state for nanoparticles creation at the end of the process. However, it is well known that silver ions can easily influence chemical assays due to their chemical reactivity properties and can limit biological assays since they interfere with several biological processes, namely intracellular ones, leading to the death of living cells or organisms. As such, the presence of silver ions is highly undesirable when conducting biological assays to evaluate the influence of silver nanoparticles. We report the development of an easy, low-cost, and rapid methodology that is based on cation exchange resins to minimize the silver ion content in a raw suspension of silver nanoparticles while preserving the integrity of the nanomaterials. This procedure preserves the physical-chemical properties of the nanoparticles, thus allowing the purified nanoparticulate systems to be biologically tested. Different types of cationic resins were tested, and the developed methodology was optimized by changing several parameters. A reduction from 92% to 10% of free silver/total silver ratio was achieved when using the Bio-Rad 50W-X8 100–200 mesh resin and a contact time of 15 min. Filtration by vacuum was used to separate the used resin from the nanoparticles suspension, allowing it to be further reused, as well as the purified AgNPs suspension.
Collapse
Affiliation(s)
- Catarina S. M. Martins
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Alberto N. Araújo
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Luís Pleno de Gouveia
- Pharmacological and Regulatory Sciences Group (PharmaRegSci), Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia da Universidade de Lisboa, 1649-003 Lisbon, Portugal
- Correspondence: (L.P.d.G.); (J.A.V.P.)
| | - João A. V. Prior
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Correspondence: (L.P.d.G.); (J.A.V.P.)
| |
Collapse
|
8
|
Moreno-Martín G, Gómez-Gómez B, León-González ME, Madrid Y. Characterization of AgNPs and AuNPs in sewage sludge by single particle inductively coupled plasma-mass spectrometry. Talanta 2022; 238:123033. [PMID: 34857351 DOI: 10.1016/j.talanta.2021.123033] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 02/08/2023]
Abstract
This study develops for the first time an analytical method for the characterization of silver and gold nanoparticles in sewage sludge. The evaluation of the effect of temperature, extracting agent and centrifugation speed and time on the extraction yield was carried out through a multifactorial analysis of variance which allows us to select 289 g, 5 min and 20 mM sodium pyrophosphate tetrabasic as optimal extraction conditions. Under these conditions, the analysis of the extract by single particle inductively coupled plasma-mass spectrometry provided recovery percentages of 70 ± 2% and 56 ± 1% for silver and gold nanoparticles, respectively. Moreover, the complementary results obtained upon analysis of these extracts by transmission electron microscopy and single particle inductively coupled plasma-mass spectrometry showed that the developed method did not modify the original size and shape of these nanoparticles during the extraction procedure. Size detection limits of 23 nm and 16 nm as well as number concentration limits of 3.12 × 109 particles kg-1 and 1.38 × 109 particles kg-1 were obtained for silver and gold nanoparticles, respectively. Moreover, a stability study of silver and gold nanoparticles in sewage sludge for 12 months showed differences between the two nanoparticle types. Although the sizes were not affected during the 12 months, silver nanoparticles underwent an oxidation process from 6 months onwards, which was reflected in an increase in the percentage of ionic silver from 14 ± 1% at 6 months to 24 ± 2% at 12 months. The developed methodology represents a simple, reliable and fast tool for detecting, quantifying and assessing the stability of nanoparticles in an important environmental sample such as sewage sludge.
Collapse
Affiliation(s)
- Gustavo Moreno-Martín
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040, Madrid, Spain.
| | - Beatriz Gómez-Gómez
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Maria Eugenia León-González
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Yolanda Madrid
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040, Madrid, Spain.
| |
Collapse
|
9
|
Martins CSM, Sousa HBA, Prior JAV. From Impure to Purified Silver Nanoparticles: Advances and Timeline in Separation Methods. NANOMATERIALS 2021; 11:nano11123407. [PMID: 34947761 PMCID: PMC8703312 DOI: 10.3390/nano11123407] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 11/21/2022]
Abstract
AgNPs have exceptional characteristics that depend on their size and shape. Over the past years, there has been an exponential increase in applications of nanoparticles (NPs), especially the silver ones (AgNPs), in several areas, such as, for example, electronics; environmental, pharmaceutical, and toxicological applications; theragnostics; and medical treatments, among others. This growing use has led to a greater exposure of humans to AgNPs and a higher risk to human health and the environment. This risk becomes more aggravated when the AgNPs are used without purification or separation from the synthesis medium, in which the hazardous synthesis precursors remain unseparated from the NPs and constitute a severe risk for unnecessary environmental contamination. This review examines the situation of the available separation methods of AgNPs from crude suspensions or real samples. Different separation techniques are reviewed, and relevant data are discussed, with a focus on the sustainability and efficiency of AgNPs separation methods.
Collapse
|
10
|
Long H, Kuang WC, Wang SL, Zhang JX, Huang LH, Xiong YQ, Qing P, Cai X, Tan SZ. Preparation and Antimicrobial Activity of Antibacterial Silver-Loaded Polyphosphazene Microspheres. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 2021; 21:5120-5130. [PMID: 33875097 DOI: 10.1166/jnn.2021.19335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Poly(cyclotriphosphazene-co-4,4'-diaminodiphenyl ether) (PPO) microspheres were prepared via a precipitation polymerization method, using hexachlorocyclotriphosphazene (HCCP) and 4,4'-diaminodiphenyl ether (ODA) as monomers. Silver-loaded PPO (PPOA) microspheres were generated by the in situ loading of silver nanoparticles onto the surface by Ag+ reduction. Our results showed that PPOA microspheres were successfully prepared with a relatively uniform distribution of silver nanoparticles on microsphere surfaces. PPOA microspheres had good thermal stability and excellent antibacterial activity towards Escherichia coli and Staphylococcus aureus. Furthermore, PPOA microspheres exhibited lower cytotoxicity when compared to citrate-modified silver nanoparticles (c-Ag), and good sustained release properties. Our data indicated that polyphosphazene-based PPOA microspheres are promising antibacterial agents in the biological materials field.
Collapse
Affiliation(s)
- Hui Long
- Guangdong Engineering & Technology Research Centre of Graphene-Like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, P. R. China
| | - Wei-Cong Kuang
- Guangdong Engineering & Technology Research Centre of Graphene-Like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, P. R. China
| | - Shi-Liang Wang
- Guangdong Engineering & Technology Research Centre of Graphene-Like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, P. R. China
| | - Jing-Xian Zhang
- Guangdong Engineering & Technology Research Centre of Graphene-Like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, P. R. China
| | - Lang-Huan Huang
- Guangdong Engineering & Technology Research Centre of Graphene-Like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, P. R. China
| | - Yong-Qiang Xiong
- Guangdong Engineering & Technology Research Centre of Graphene-Like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, P. R. China
| | - Peng Qing
- Department of Acumoxibustion, The First Affiliated Hospital of Jinan University, Guangzhou 510630, P. R. China
| | - Xiang Cai
- Department of Light Chemical Engineering, Guangdong Polytechnic, Foshan 528041, P. R. China
| | - Shao-Zao Tan
- Guangdong Engineering & Technology Research Centre of Graphene-Like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, P. R. China
| |
Collapse
|
11
|
Paidari S, Tahergorabi R, Anari ES, Nafchi AM, Zamindar N, Goli M. Migration of Various Nanoparticles into Food Samples: A Review. Foods 2021; 10:foods10092114. [PMID: 34574224 PMCID: PMC8466665 DOI: 10.3390/foods10092114] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 08/30/2021] [Accepted: 09/02/2021] [Indexed: 12/17/2022] Open
Abstract
Nanotechnology has provided new opportunities for the food industry with its applications in food packaging. The addition of nanoparticles, such as clay, silver and copper, can improve the mechanical and antimicrobial properties of food packaging. However, nanoparticles may have an adverse impact on human health. This has led to legislative and regulatory concerns. The inhibitory effects of nano packaging on different microorganisms, such as Salmonella, E. coli, and molds, have been studied. Nanoparticles, like other materials, may have a diverse set of properties that need to be determined. In this review, different features of silver, clay and copper nanoparticles, such as their anti-microbial, cell toxicity, genetic toxicity, mechanical properties, and migration, are critically evaluated in the case of food packaging. Specifically, the viewpoints of WHO, FDA, and ESFA, concerning the nano-silver application in food packaging, are discussed as well.
Collapse
Affiliation(s)
- Saeed Paidari
- Department of Food Science and Technology, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan 81551-39998, Iran; (S.P.); (E.S.A.); (N.Z.); (M.G.)
| | - Reza Tahergorabi
- Food and Nutritional Sciences Program, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA
- Correspondence:
| | - Ensieh Sadat Anari
- Department of Food Science and Technology, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan 81551-39998, Iran; (S.P.); (E.S.A.); (N.Z.); (M.G.)
| | - Abdorezza Moahammdi Nafchi
- Food Biopolymer Research Group, Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia;
- Food Biopolymer Research Group, Food Science and Technology Department, Damghan Branch, Islamic Azad University, Damghan 36716-39998, Iran
| | - Nafiseh Zamindar
- Department of Food Science and Technology, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan 81551-39998, Iran; (S.P.); (E.S.A.); (N.Z.); (M.G.)
| | - Mohammad Goli
- Department of Food Science and Technology, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan 81551-39998, Iran; (S.P.); (E.S.A.); (N.Z.); (M.G.)
- Laser and Biophotonics in Biotechnologies Research Center, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan 81551-39998, Iran
| |
Collapse
|
12
|
Asdaq SMB, Ikbal AMA, Sahu RK, Bhattacharjee B, Paul T, Deka B, Fattepur S, Widyowati R, Vijaya J, Al mohaini M, Alsalman AJ, Imran M, Nagaraja S, Nair AB, Attimarad M, Venugopala KN. Nanotechnology Integration for SARS-CoV-2 Diagnosis and Treatment: An Approach to Preventing Pandemic. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1841. [PMID: 34361227 PMCID: PMC8308419 DOI: 10.3390/nano11071841] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/11/2021] [Accepted: 07/14/2021] [Indexed: 12/15/2022]
Abstract
The SARS-CoV-2 outbreak is the COVID-19 disease, which has caused massive health devastation, prompting the World Health Organization to declare a worldwide health emergency. The corona virus infected millions of people worldwide, and many died as a result of a lack of particular medications. The current emergency necessitates extensive therapy in order to stop the spread of the coronavirus. There are various vaccinations available, but no validated COVID-19 treatments. Since its outbreak, many therapeutics have been tested, including the use of repurposed medications, nucleoside inhibitors, protease inhibitors, broad spectrum antivirals, convalescence plasma therapies, immune-modulators, and monoclonal antibodies. However, these approaches have not yielded any outcomes and are mostly used to alleviate symptoms associated with potentially fatal adverse drug reactions. Nanoparticles, on the other hand, may prove to be an effective treatment for COVID-19. They can be designed to boost the efficacy of currently available antiviral medications or to trigger a rapid immune response against COVID-19. In the last decade, there has been significant progress in nanotechnology. This review focuses on the virus's basic structure, pathogenesis, and current treatment options for COVID-19. This study addresses nanotechnology and its applications in diagnosis, prevention, treatment, and targeted vaccine delivery, laying the groundwork for a successful pandemic fight.
Collapse
Affiliation(s)
| | - Abu Md Ashif Ikbal
- Department of Pharmacy, Tripura University (A Central University), Suryamaninagar 799022, Tripura (W), India;
| | - Ram Kumar Sahu
- Department of Pharmaceutical Science, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia;
- Department of Pharmaceutical Science, Assam University (A Central University), Silchar 788011, Assam, India
| | - Bedanta Bhattacharjee
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India; (B.B.); (T.P.); (B.D.)
| | - Tirna Paul
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India; (B.B.); (T.P.); (B.D.)
| | - Bhargab Deka
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India; (B.B.); (T.P.); (B.D.)
| | - Santosh Fattepur
- School of Pharmacy, Management and Science University, Seksyen 13, Shah Alam 40100, Selangor, Malaysia
| | - Retno Widyowati
- Department of Pharmaceutical Science, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia;
| | - Joshi Vijaya
- Department of Pharmaceutics, Government College of Pharmacy, Bangalore 560027, Karnataka, India;
| | - Mohammed Al mohaini
- Basic Sciences Department, College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Alahsa 31982, Saudi Arabia;
- King Abdullah International Medical Research Center, Alahsa 31982, Saudi Arabia
| | - Abdulkhaliq J. Alsalman
- Department of Clinical Pharmacy, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia;
| | - Mohd. Imran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia;
| | - Sreeharsha Nagaraja
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Hofuf, Al-Ahsa 31982, Saudi Arabia; (S.N.); (A.B.N.); (M.A.); (K.N.V.)
- Department of Pharmaceutics, Vidya Siri College of Pharmacy, Off Sarjapura Road, Bangalore 560035, India
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Hofuf, Al-Ahsa 31982, Saudi Arabia; (S.N.); (A.B.N.); (M.A.); (K.N.V.)
| | - Mahesh Attimarad
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Hofuf, Al-Ahsa 31982, Saudi Arabia; (S.N.); (A.B.N.); (M.A.); (K.N.V.)
| | - Katharigatta N. Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Hofuf, Al-Ahsa 31982, Saudi Arabia; (S.N.); (A.B.N.); (M.A.); (K.N.V.)
- Department of Biotechnology and Food Technology, Durban University of Technology, Durban 4001, South Africa
| |
Collapse
|
13
|
Incorporation of silver nanoparticles into active antimicrobial nanocomposites: Release behavior, analyzing techniques, applications and safety issues. Adv Colloid Interface Sci 2021; 293:102440. [PMID: 34022748 DOI: 10.1016/j.cis.2021.102440] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 05/09/2021] [Accepted: 05/09/2021] [Indexed: 02/08/2023]
Abstract
Employing new strategies to develop novel composite systems has become a popular area of interest among researchers. Raising people's awareness and their attention to the health and safety issues are key parameters to achieve this purpose. One of the recommended strategies is the utilization of nanoparticles within the matrix of composite materials to improve their physical, mechanical, structural and antimicrobial characteristics. Silver nanoparticles (Ag NPs) have attracted much attention for nanocomposite applications mainly due to their antimicrobial characteristics. Herein, the current review will focus on the different methods for preparing antimicrobial nanocomposites loaded with Ag NPs, the release of Ag NPs from these nanostructures in different media, analyzing techniques for the evaluation of Ag release from nanocomposites, potential applications, and safety issues of nanocomposites containing Ag NPs. The applications of Ag NPs-loaded nanocomposites have been extensively established in food, biomedical, textile, environmental and pharmacological areas mainly due to their antibacterial attributes. Several precautions should be addressed before implementation of Ag NPs in nanocomposites due to the health and safety issues.
Collapse
|
14
|
Misirli GM, Sridharan K, Abrantes SMP. A review on nanostructured silver as a basic ingredient in medicine: physicochemical parameters and characterization. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2021; 12:440-461. [PMID: 34104622 PMCID: PMC8144915 DOI: 10.3762/bjnano.12.36] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 04/30/2021] [Indexed: 05/07/2023]
Abstract
Recent studies with silver nanoparticles (AgNPs) and the history of silver metal as a broad-spectrum bactericidal and virucidal agent, places silver as one of the future biocidal candidates in the field of nanomedicine to eliminate bacteria and viruses, especially multidrug resistant ones. In this review, we have described the various morphologies of AgNPs and correlated the enhanced bactericidal activity with their prominent {111} facets. In addition to prioritizing the characterization we have also discussed the importance of quantifying AgNPs and silver ion content (Ag+) and their different mechanisms at the chemical, biological, pharmacological, and toxicological levels. The mechanism of action of AgNPs against various bacteria and viruses including the SARS-CoV-2 was analyzed in order to understand its effectiveness as an antimicrobial agent with therapeutic efficacy and low toxicity. Further, there is the need to characterize AgNPs and quantify the content of free Ag+ for the implementation of new systematic studies of this promising agent in nanomedicine and in clinical practice.
Collapse
Affiliation(s)
- Gabriel M Misirli
- Physical Chemistry Laboratory, Bio-Manguinhos, Oswaldo Cruz Foundation (FIOCRUZ), Av. Brasil, 4365, Rio de Janeiro, RJ, Brazil
| | - Kishore Sridharan
- Department of Nanoscience and Technology, School of Chemical and Physical Sciences, University of Calicut, P.O. Thenhipalam 673635, Kerala, India
| | - Shirley M P Abrantes
- National Institute for Quality Control in Health, Oswaldo Cruz Foundation (INCQS, FIOCRUZ), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
15
|
Abstract
Packaging containing nanoparticles (NPs) can increase the shelf life of products, but the presence of NPs may hazards human life. In this regard, there are reports regarding the side effect and cytotoxicity of nanoparticles. The main aim of this research was to study the migration of silver and copper nanoparticles from the packaging to the food matrix as well as the assessment techniques. The diffusion and migration of nanoparticles can be analyzed by analytical techniques including atomic absorption, inductively coupled plasma mass spectrometry, inductively coupled plasma atomic emission, and inductively coupled plasma optical emission spectroscopy, as well as X-ray diffraction, spectroscopy, migration, and titration. Inductively coupled plasma-based techniques demonstrated the best results. Reports indicated that studies on the migration of Ag/Cu nanoparticles do not agree with each other, but almost all studies agree that the migration of these nanoparticles is higher in acidic environments. There are widespread ambiguities about the mechanism of nanoparticle toxicity, so understanding these nanoparticles and their toxic effects are essential. Nanomaterials that enter the body in a variety of ways can be distributed throughout the body and damage human cells by altering mitochondrial function, producing reactive oxygen, and increasing membrane permeability, leading to toxic effects and chronic disease. Therefore, more research needs to be done on the development of food packaging coatings with consideration given to the main parameters affecting nanoparticles migration.
Collapse
|
16
|
Zhang B, Chao J, Chen L, Liu L, Yang X, Wang Q. Research progress of nanoplastics in freshwater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143791. [PMID: 33280859 DOI: 10.1016/j.scitotenv.2020.143791] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/07/2020] [Accepted: 10/26/2020] [Indexed: 06/12/2023]
Abstract
With the mass production and use of plastic products, which leads to their continuous entry into the water environment, the problem of environmental pollution has been paid more and more attention by scholars from different countries. In recent years, a large number of studies have focused on microplastics, but few on nanoplastics (NPs). However, NPs are smaller in size, have a higher affinity for cells, and surface and volume ratios are higher than those of microplastics. NPs may also enter biological tissues, blood and cells, which may cause greater potential harm to organisms. In this paper, firstly, the environmental fate of NPs accumulation and deposition is summarized, and further research is needed in the future; secondly, the current techniques for NPs extraction and characterization of NPs extraction and characterization are summarized. At present, the analytical methods of NPs are in the primary stage, and lack of standardized and accurate methods; finally, the toxic effects of NPs on biological morphology, behavior and reproduction are discussed. It has been found that the small size and high surface area of NPs make them more toxic to organisms than microplastics. However, most of the current toxicological studies of NPs on freshwater organisms could not be simulated in real environment.
Collapse
Affiliation(s)
- Bin Zhang
- School of Civil Engineering and Construction and Environment of Xihua University, Chengdu 610039, PR China; School of Food and Biotechnology of Xihua University, Chengdu 610039, PR China.
| | - Jinyu Chao
- School of Civil Engineering and Construction and Environment of Xihua University, Chengdu 610039, PR China
| | - Liang Chen
- School of Civil Engineering and Construction and Environment of Xihua University, Chengdu 610039, PR China
| | - Lingchen Liu
- School of Civil Engineering and Construction and Environment of Xihua University, Chengdu 610039, PR China
| | - Xin Yang
- School of Civil Engineering and Construction and Environment of Xihua University, Chengdu 610039, PR China
| | - Qing Wang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| |
Collapse
|
17
|
Saravanan A, Kumar PS, Karishma S, Vo DVN, Jeevanantham S, Yaashikaa PR, George CS. A review on biosynthesis of metal nanoparticles and its environmental applications. CHEMOSPHERE 2021; 264:128580. [PMID: 33059285 DOI: 10.1016/j.chemosphere.2020.128580] [Citation(s) in RCA: 166] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/01/2020] [Accepted: 10/05/2020] [Indexed: 05/02/2023]
Abstract
Nanotechnology has become one of the emerging multi-disciplinary fields receiving universal attention and playing a substantial role in agriculture, environment and pharmacology. In spite of various techniques employed for nanoparticle synthesis such as laser ablation, mechanical milling, spinning and chemical deposition, usage of hazardous chemicals and expensiveness of the process makes it unsuitable for the continuous production. Hence the necessity of sustainable, economic and environment friendly approach development have increased in recent years. Microbial synthesis of nanoparticles connecting microbiology and nanotechnology is one of the green techniques employed for sustainable production. Gold, silver and other metal nanoparticles like platinum, palladium, molybdenum nanoparticles biosynthesis by bacteria, fungi, yeast and algae have been reported in the present review. On account of microbial rich community, several microbes have been explored for the production of nanoparticles. Nanoparticles are also employed for environmental remediation processes such as pollutant removal and detection of contaminants. Lack of monodispersity and prolonged duration of synthesis are the limitations of bio-synthesis process which can be overcome by optimization of methods of microbial cultivation and its extraction techniques. The current review describes the different microbes involved in the synthesis of nanoparticles and its environmental applications.
Collapse
Affiliation(s)
- A Saravanan
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, 602105, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India.
| | - S Karishma
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, 602105, India
| | - Dai-Viet N Vo
- Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| | - S Jeevanantham
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, 602105, India
| | - P R Yaashikaa
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India
| | - Cynthia Susan George
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India
| |
Collapse
|
18
|
Antibacterial mechanism for inactivation of E. Coli by AgNPs@polydoamine/titania nanotubes via speciation analysis of silver ions and silver nanoparticles by cation exchange reaction. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105636] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Li P, Li Q, Hao Z, Yu S, Liu J. Analytical methods and environmental processes of nanoplastics. J Environ Sci (China) 2020; 94:88-99. [PMID: 32563491 DOI: 10.1016/j.jes.2020.03.057] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/23/2020] [Accepted: 03/29/2020] [Indexed: 06/11/2023]
Abstract
The degradation of plastic debris may result in the generation of nanoplastics (NPs). Their high specific surface area for the sorption of organic pollutions and toxic heavy metals and possible transfer between organisms at different nutrient levels make the study of NPs an urgent priority. However, there is very limited understanding on the occurrence, distribution, abundant, and fate of NPs in the environment, partially due to the lack of suitable techniques for the separation and identification of NPs from complex environmental matrices. In this review, we first overviewed the state-of-the-art methods for the extraction, separation, identification and quantification of NPs in the environment. Some of them have been successfully applied for the field determination of NPs, while some are borrowed from the detection of microplastics or engineered nanomaterials. Then the possible fate and transport of NPs in the environment are thoroughly described. Although great efforts have been made during the recent years, large knowledge gaps still exist, such as the relatively high detection limit of existing method failing to detect ultralow masses of NPs in the environment, and spherical polystyrene NP models failing to represent the various compositions of NPs with different irregular shapes, which needs further investigation.
Collapse
Affiliation(s)
- Peng Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingcun Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhineng Hao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Sujuan Yu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Jingfu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
20
|
Fu W, Min J, Jiang W, Li Y, Zhang W. Separation, characterization and identification of microplastics and nanoplastics in the environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 721:137561. [PMID: 32172100 DOI: 10.1016/j.scitotenv.2020.137561] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/16/2020] [Accepted: 02/24/2020] [Indexed: 05/23/2023]
Abstract
Microplastics (MPs) have globally been detected in aquatic and marine environments, which has raised scientific interests and public health concerns during the past decade. MPs are those polymeric particles with at least one dimension <5 mm. MPs possess complex physicochemical properties that vary their mobility, bioavailability and toxicity toward organisms and interactions with their surrounding pollutants. Similar to nanomaterials and nanoparticles, accurate and reliable detection and measurement of MPs or nanoplastics and their characteristics are important to warrant a comprehensive understanding of their environmental and ecological impacts. This review elaborates the principles and applications of diverse analytical instruments or techniques for separation, characterization and quantification of MPs in the environment. The strength and weakness of different instrumental methods in separation, morphological, physical classification, chemical characterization and quantification for MPs are critically compared and analyzed. There is a demand for standardized experimental procedures and characterization analysis due to the complex transformation, cross-contamination and heterogeneous properties of MPs in size and chemical compositions. Moreover, this review highlights emerging and promising characterization techniques that may have been overlooked by research communities to study MPs. The future research efforts may need to develop and implement new analytical tools and combinations of hyphenated technologies to complement respective limitations of detection and yield reliable characterization information for MPs. The goal of this critical review is to facilitate the research of plastic particles and pollutants in the environment and understanding of their environmental and human health effects.
Collapse
Affiliation(s)
- Wanyi Fu
- John A. Reif, Jr. Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, People's Republic of China
| | - Jiacheng Min
- John A. Reif, Jr. Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; Department of Municipal and Environmental Engineering, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, People's Republic of China
| | - Weiyu Jiang
- John A. Reif, Jr. Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; Department of Municipal and Environmental Engineering, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, People's Republic of China
| | - Yang Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Wen Zhang
- John A. Reif, Jr. Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; Department of Municipal and Environmental Engineering, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, People's Republic of China.
| |
Collapse
|
21
|
Silver nanoparticle conductive inks: synthesis, characterization, and fabrication of inkjet-printed flexible electrodes. Sci Rep 2020; 10:8878. [PMID: 32483302 PMCID: PMC7264204 DOI: 10.1038/s41598-020-65698-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 05/05/2020] [Indexed: 11/09/2022] Open
Abstract
Flexible electronics can be developed with a low-cost and simple fabrication process while being environmentally friendly. Conductive silver inks have been the most applied material in flexible substrates. This study evaluated the performance of different conductive ink formulations using silver nanoparticles by studying the material properties, the inkjet printing process, and application based on electrical impedance spectroscopy using a buffer solution. Silver nanoparticles synthesis was carried out through chemical reduction of silver nitrate; then, seven conductive ink formulations were produced. Properties such as resistivity, viscosity, surface tension, adhesion, inkjet printability of the inks, and electrical impedance of the printed electrodes were investigated. Curing temperature directly influenced the electrical properties of the inks. The resistivity obtained varied from 3.3 × 100 to 5.6 × 10-06 Ω.cm. Viscosity ranged from 3.7 to 7.4 mPa.s, which is suitable for inkjet printing fabrication. By using a buffer solution as an analyte, the printed electrode pairs presented electrical impedance lower than 200 Ω for all the proposed designs, demonstrating the potential of the formulated inks for utilization in flexible electronic devices for biological sensing applications.
Collapse
|
22
|
In situ synthesis and preconcentration of cetylpyridinium complexed hexaiodo platinum nanoparticles from spent automobile catalytic converter leachate using cloud point extraction. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2019.10.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
23
|
Espinoza JT, Novak RS, Magalhães CG, Budel JM, Justus B, Gonçalves MM, Boscardin PMD, Farago PV, Paula JDFPD. Preparation and characterization of liposomes loaded with silver nanoparticles obtained by green synthesis. BRAZ J PHARM SCI 2020. [DOI: 10.1590/s2175-97902020000118601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
24
|
Enescu D, Cerqueira MA, Fucinos P, Pastrana LM. Recent advances and challenges on applications of nanotechnology in food packaging. A literature review. Food Chem Toxicol 2019; 134:110814. [PMID: 31520669 DOI: 10.1016/j.fct.2019.110814] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 09/05/2019] [Accepted: 09/07/2019] [Indexed: 12/24/2022]
Abstract
Nanotechnology applied to food and beverage packaging has created enormous interest in recent years, but in the same time there are many controversial issues surrounding nanotechnology and food. The benefits of engineered nanoparticles (ENPs) in food-contact applications are accompanied by safety concerns due to gaps in understanding of their possible toxicology. In case of incorporation in food contact polymers, the first step to consumer exposure is the transfer of ENPs from the polymer to the food. Hence, to improve understanding of risk and benefit, the key questions are whether nanoparticles can be released from food contact polymers and under which conditions. This review has two main goals. Firstly, it will presents the current advancements in the application of ENPs in food and beverage packaging sector to grant active and intelligent properties. A particular focus will be placed on current demands in terms of risk assessment strategies associated with the use ENPs in food contact materials (FCMs), i.e. up-to-date migration/cytotoxicity studies of ENPs which are partly contradictory. Food matrix effects are often ignored, and may have a pronounced impact on the behaviour of ENPs in the gastrointestinal tract (GIT). A standardized food model (SFM) for evaluating the toxicity and fate of ingested ENPs was recently proposed and herein discussed with the aims to offer an overview to the reader. It is therefore clear that further systematic research is needed, which must account for interactions and transformations of ENMs in foods (food matrix effect) and in the gastrointestinal tract (GIT) that are likely to determine nano-biointeractions. Secondly, the review provides an extensive analysis of present market dynamics on ENPs in food/beverage packaging moving beyond concept to current industrial applications.
Collapse
Affiliation(s)
- Daniela Enescu
- International Iberian Nanotechnology Laboratory (INL), Department Life Sciences, Research Unit: Nano4Food/Food Processing, Av. Mestre Jose Veiga s/n, 4715-330, Braga, Portugal.
| | - Miguel A Cerqueira
- International Iberian Nanotechnology Laboratory (INL), Department Life Sciences, Research Unit: Nano4Food/Food Processing, Av. Mestre Jose Veiga s/n, 4715-330, Braga, Portugal
| | - Pablo Fucinos
- International Iberian Nanotechnology Laboratory (INL), Department Life Sciences, Research Unit: Nano4Food/Food Processing, Av. Mestre Jose Veiga s/n, 4715-330, Braga, Portugal
| | - Lorenzo M Pastrana
- International Iberian Nanotechnology Laboratory (INL), Department Life Sciences, Research Unit: Nano4Food/Food Processing, Av. Mestre Jose Veiga s/n, 4715-330, Braga, Portugal
| |
Collapse
|
25
|
Li L, Wang Q, Yang Y, Luo L, Ding R, Yang ZG, Li HP. Extraction Method Development for Quantitative Detection of Silver Nanoparticles in Environmental Soils and Sediments by Single Particle Inductively Coupled Plasma Mass Spectrometry. Anal Chem 2019; 91:9442-9450. [DOI: 10.1021/acs.analchem.8b05575] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Lei Li
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, No. 932 Lushan Nan Road, Yuelu District, Changsha 410083, PR China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha 410083, Hunan PR China
| | - Qiang Wang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, No. 932 Lushan Nan Road, Yuelu District, Changsha 410083, PR China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha 410083, Hunan PR China
| | - Yuan Yang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha 410083, Hunan PR China
- International Joint Laboratory of Hunan Agricultural Typical Pollution Restoration and Water Resources Safety Utilization, Hunan Agricultural University, Changsha 410128, PR China
| | - Li Luo
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, No. 932 Lushan Nan Road, Yuelu District, Changsha 410083, PR China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha 410083, Hunan PR China
| | - Ru Ding
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, No. 932 Lushan Nan Road, Yuelu District, Changsha 410083, PR China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha 410083, Hunan PR China
| | - Zhao-Guang Yang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, No. 932 Lushan Nan Road, Yuelu District, Changsha 410083, PR China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha 410083, Hunan PR China
| | - Hai-Pu Li
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, No. 932 Lushan Nan Road, Yuelu District, Changsha 410083, PR China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha 410083, Hunan PR China
| |
Collapse
|
26
|
|
27
|
Silver nanoparticles assessment in moisturizing creams by ultrasound assisted extraction followed by sp-ICP-MS. Talanta 2019; 197:530-538. [PMID: 30771972 DOI: 10.1016/j.talanta.2019.01.068] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/19/2019] [Accepted: 01/23/2019] [Indexed: 12/17/2022]
Abstract
Advances on nanometrology require reliable sample pre-treatment methods for extracting/isolating nanomaterials from complex samples. The current development deals with a discontinuous ultrasonication (60% amplitude, 15 cycles of ultrasound treatment for 59 s plus relaxing stage for 59 s, 20 mL of methanol) method for a fast and quantitative extraction of silver nanoparticles (Ag NPs) from moisturizing creams. Possibilities offered by modern inductively coupled plasma mass spectrometry (ICP-MS) which allow 'single particle' assessment (sp-ICP-MS) have been used for Ag NPs assessment (Ag NPs concentration and Ag size distribution). The relative standard deviation (RSD) of the over-all procedure (Ag NPs concentration in eleven extracts from a same cream) was found to be 5%; whereas, the analytical recovery for spiking experiments with Ag NPs of 20, 40, and 60 nm was found to be within the 90-109% range. The limit of quantification in Ag NPs concentration was established at 8.25 × 105 Ag NPs g-1; whereas, the limit of detection in size was found to be within the 5-13 nm (several equations were used for calculation). Finally, moisturizing creams prescribed for atopic dermatitis and also regular moisturizing creams were analyzed for total Ag, and for Ag NPs characterization (Ag NPs concentration and Ag NPs size distribution) by sp-ICP-MS. Electronic microscopy was also used for comparative (qualitative) purposes.
Collapse
|
28
|
Liu W, An R, Wang C, Zheng Z, Tian Y, Xu R, Wang Z. Recent Progress in Rapid Sintering of Nanosilver for Electronics Applications. MICROMACHINES 2018; 9:E346. [PMID: 30424279 PMCID: PMC6082269 DOI: 10.3390/mi9070346] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/13/2018] [Accepted: 07/09/2018] [Indexed: 01/27/2023]
Abstract
Recently, nanosilver pastes have emerged as one of the most promising high temperature bonding materials for high frequency and high power applications, which provide an effective lead-free electronic packaging solution instead of high-lead and gold-based solders. Although nanosilver pastes can be sintered at lower temperature compared to bulk silver, applications of nanosilver pastes are limited by long-term sintering time (20⁻30 min), relative high sintering temperature (>250 °C), and applied external pressure, which may damage chips and electronic components. Therefore, low temperature rapid sintering processes that can obtain excellent nanosilver joints are anticipated. In this regard, we present a review of recent progress in the rapid sintering of nanosilver pastes. Preparation of nanosilver particles and pastes, mechanisms of nanopastes sintering, and different rapid sintering processes are discussed. Emphasis is placed on the properties of sintered joints obtained by different sintering processes such as electric current assisted sintering, spark plasma sintering, and laser sintering, etc. Although the research on rapid sintering processes for nanosilver pastes has made a great breakthrough over the past few decades, investigations on mechanisms of rapid sintering, and the performance of joints fabricated by pastes with different compositions and morphologies are still far from enough.
Collapse
Affiliation(s)
- Wei Liu
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China.
| | - Rong An
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China.
- Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Ministry of Education, Harbin Institute of Technology, Harbin 150080, China.
| | - Chunqing Wang
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China.
- Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Ministry of Education, Harbin Institute of Technology, Harbin 150080, China.
| | - Zhen Zheng
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China.
| | - Yanhong Tian
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China.
| | - Ronglin Xu
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China.
| | - Zhongtao Wang
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China.
| |
Collapse
|
29
|
Vaneckova T, Smerkova K, Zitka J, Hynek D, Zitka O, Hlavacek A, Foret F, Adam V, Vaculovicova M. Upconversion nanoparticle bioconjugates characterized by capillary electrophoresis. Electrophoresis 2018; 39:2246-2252. [PMID: 29882600 DOI: 10.1002/elps.201700483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 05/29/2018] [Accepted: 05/29/2018] [Indexed: 11/06/2022]
Abstract
Upconversion nanoparticles (UCNPs) are an emerging class of optical materials with high potential in bioimaging due to practically no background signal and high penetration depth. Their excellent optical properties and easy surface functionalization make them perfect for conjugation with targeting ligands. In this work, capillary electrophoretic (CE) method with laser-induced fluorescence detection was used to investigate the behavior of carboxyl-silica-coated UCNPs. Folic acid, targeting folate receptor overexpressed by wide variety of cancer cells, was used for illustrative purposes and assessed by CE under optimized conditions. Peptide-mediated bioconjugation of antibodies to UCNPs was also investigated. Despite the numerous advantages of CE, this is the first time that CE was employed for characterization of UCNPs and their bioconjugates. The separation conditions were optimized including the background electrolyte concentration and pH. The optimized electrolyte was 20 mM borate buffer with pH 8.
Collapse
Affiliation(s)
- Tereza Vaneckova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Kristyna Smerkova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Jan Zitka
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - David Hynek
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Ondrej Zitka
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Antonin Hlavacek
- Czech Academy of Sciences, Institute of Analytical Chemistry, Brno, Czech Republic
| | - Frantisek Foret
- Czech Academy of Sciences, Institute of Analytical Chemistry, Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Marketa Vaculovicova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| |
Collapse
|
30
|
Ligand-assisted magnetic solid phase extraction for fast speciation of silver nanoparticles and silver ions in environmental water. Talanta 2018; 183:268-275. [DOI: 10.1016/j.talanta.2018.02.081] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 02/15/2018] [Accepted: 02/20/2018] [Indexed: 12/30/2022]
|
31
|
Huang K, Deng W, Dai R, Wang X, Xiong Q, Yuan Q, Jiang X, Yuan X, Xiong X. Ultrasensitive speciation analysis of silver ions and silver nanoparticles with a CdSe quantum dots immobilized filter by Cation exchange reaction. Microchem J 2017. [DOI: 10.1016/j.microc.2017.08.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
Wu YM, Wang ZW, Hu CY, Nerín C. Influence of factors on release of antimicrobials from antimicrobial packaging materials. Crit Rev Food Sci Nutr 2017; 58:1108-1121. [DOI: 10.1080/10408398.2016.1241215] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Yu-Mei Wu
- Packaging Engineering Institute, Jinan University, Zhuhai, China
- Key Laboratory of Product Packaging and Logistics of Guangdong Higher Education Institutes, Jinan University, Zhuhai, China
- Zhuhai Key Laboratory of Product Packaging and Logistics, Jinan University, Zhuhai, China
| | - Zhi-Wei Wang
- Packaging Engineering Institute, Jinan University, Zhuhai, China
- Key Laboratory of Product Packaging and Logistics of Guangdong Higher Education Institutes, Jinan University, Zhuhai, China
- Zhuhai Key Laboratory of Product Packaging and Logistics, Jinan University, Zhuhai, China
| | - Chang-Ying Hu
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
| | - Cristina Nerín
- I3A, Department of Analytical Chemistry, University of Zaragoza, Campus Rio Ebro, Zaragoza, Spain
| |
Collapse
|
33
|
Tolessa T, Zhou XX, Amde M, Liu JF. Development of reusable magnetic chitosan microspheres adsorbent for selective extraction of trace level silver nanoparticles in environmental waters prior to ICP-MS analysis. Talanta 2017; 169:91-97. [DOI: 10.1016/j.talanta.2017.03.064] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 03/15/2017] [Accepted: 03/20/2017] [Indexed: 01/05/2023]
|
34
|
Abstract
Food packaging is an integral component of the global food supply chain, protecting food from dirt, chemical contaminants and microorganisms, and helping to maintain food quality during transport and storage. Much of this packaging relies on modern polymeric materials, which have been developed to help control the exposure of products to light, oxygen and moisture. These have the benefits of being lightweight, cost-effective, reusable, recyclable and resistant to chemical and physical damage. Although traditional polymeric materials can fulfill many of these requirements, efforts continue to maintain or improve packaging performance while reducing the use of raw materials, waste and costs. The use of nanotechnology to produce nanocomposite materials has great promise to improve the characteristics of food packaging, but many of the products are still in their infancy. Only a relatively small number of nanoenabled products have entered the market and many, but not all, occupy niche markets. This chapter briefly describes the areas where nanomaterials have been used in research and commercial products to improve mechanical and barrier properties and to create active and intelligent packaging materials. It also addresses the regulation of nanomaterials in food contact applications and migration when evaluating the safety of these materials.
Collapse
Affiliation(s)
- Susana Addo Ntim
- Center for Food Safety and Applied Nutrition, United States Food and Drug Administration 5001 Campus Drive College Park MD 20740 USA
| | - Gregory O. Noonan
- Center for Food Safety and Applied Nutrition, United States Food and Drug Administration 5001 Campus Drive College Park MD 20740 USA
| |
Collapse
|
35
|
Mandyla SP, Tsogas GZ, Vlessidis AG, Giokas DL. Determination of gold nanoparticles in environmental water samples by second-order optical scattering using dithiotreitol-functionalized CdS quantum dots after cloud point extraction. JOURNAL OF HAZARDOUS MATERIALS 2017; 323:67-74. [PMID: 27021432 DOI: 10.1016/j.jhazmat.2016.03.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/13/2016] [Accepted: 03/15/2016] [Indexed: 06/05/2023]
Abstract
This work presents a new method for the sensitive and selective determination of gold nanoparticles in water samples. The method combines a sample preparation and enrichment step based on cloud point extraction with a new detection motif that relies on the optical incoherent light scattering of a nano-hybrid assembly that is formed by hydrogen bond interactions between gold nanoparticles and dithiotreitol-functionalized CdS quantum dots. The experimental parameters affecting the extraction and detection of gold nanoparticles were optimized and evaluated to the analysis of gold nanoparticles of variable size and surface coating. The selectivity of the method against gold ions and other nanoparticle species was also evaluated under different conditions reminiscent to those usually found in natural water samples. The developed method was applied to the analysis of gold nanoparticles in natural waters and wastewater with satisfactory results in terms of sensitivity (detection limit at the low pmolL-1 levels), recoveries (>80%) and reproducibility (<9%). Compared to other methods employing molecular spectrometry for metal nanoparticle analysis, the developed method offers improved sensitivity and it is easy-to-operate thus providing an additional tool for the monitoring and the assessment of nanoparticles toxicity and hazards in the environment.
Collapse
Affiliation(s)
| | - George Z Tsogas
- Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece
| | | | | |
Collapse
|
36
|
McGillicuddy E, Murray I, Kavanagh S, Morrison L, Fogarty A, Cormican M, Dockery P, Prendergast M, Rowan N, Morris D. Silver nanoparticles in the environment: Sources, detection and ecotoxicology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 575:231-246. [PMID: 27744152 DOI: 10.1016/j.scitotenv.2016.10.041] [Citation(s) in RCA: 291] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/05/2016] [Accepted: 10/05/2016] [Indexed: 05/25/2023]
Abstract
The environmental impact of silver nanoparticles (AgNP) has become a topic of interest recently, this is due to the fact that AgNPs have been included in numerous consumer products including textiles, medical products, domestic appliances, food containers, cosmetics, paints and nano-functionalised plastics. The production, use and disposal of these AgNP containing products are potential routes for environmental exposure. These concerns have led to a number of studies investigating the release of particles from nano-functionalised products, the detection of the particles in the aquatic environment and the potential environmental toxicology of these AgNPs to aquatic organisms. The overall aim of this review is to examine methods for the capture and detection of AgNPs, potential toxicity and transmission routes in the aquatic environment.
Collapse
Affiliation(s)
- E McGillicuddy
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, National University of Ireland Galway, Galway, Ireland; Centre for Health from Environment, Ryan Institute, National University of Ireland Galway, Galway, Ireland.
| | - I Murray
- Bioscience Research Institute, Athlone Institute of Technology, Dublin Road, Athlone, Co. Westmeath, Ireland
| | - S Kavanagh
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, National University of Ireland Galway, Galway, Ireland; Centre for Health from Environment, Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - L Morrison
- Earth and Ocean Sciences, National University of Ireland Galway, Galway, Ireland
| | - A Fogarty
- Bioscience Research Institute, Athlone Institute of Technology, Dublin Road, Athlone, Co. Westmeath, Ireland; Department of Life & Physical Science, Athlone Institute of Technology, Dublin Road, Athlone, Co. Westmeath, Ireland
| | - M Cormican
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, National University of Ireland Galway, Galway, Ireland; Centre for Health from Environment, Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - P Dockery
- Discipline of Anatomy, School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - M Prendergast
- Centre for Health from Environment, Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - N Rowan
- Bioscience Research Institute, Athlone Institute of Technology, Dublin Road, Athlone, Co. Westmeath, Ireland; Department of Life & Physical Science, Athlone Institute of Technology, Dublin Road, Athlone, Co. Westmeath, Ireland
| | - D Morris
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, National University of Ireland Galway, Galway, Ireland; Centre for Health from Environment, Ryan Institute, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
37
|
Tyupa DV, Kalenov SV, Baurina MM, Yakubovich LM, Morozov AN, Zakalyukin RM, Sorokin VV, Skladnev DA. Efficient continuous biosynthesis of silver nanoparticles by activated sludge micromycetes with enhanced tolerance to metal ion toxicity. Enzyme Microb Technol 2016; 95:137-145. [DOI: 10.1016/j.enzmictec.2016.10.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 10/10/2016] [Accepted: 10/14/2016] [Indexed: 10/20/2022]
|
38
|
|
39
|
Leopold K, Philippe A, Wörle K, Schaumann GE. Analytical strategies to the determination of metal-containing nanoparticles in environmental waters. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.03.026] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
40
|
Jochem AR, Ankah GN, Meyer LA, Elsenberg S, Johann C, Kraus T. Colloidal Mechanisms of Gold Nanoparticle Loss in Asymmetric Flow Field-Flow Fractionation. Anal Chem 2016; 88:10065-10073. [PMID: 27673742 DOI: 10.1021/acs.analchem.6b02397] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Flow field-flow fractionation is a powerful method for the analysis of nanoparticle size distributions, but its widespread use has been hampered by large analyte losses, especially of metal nanoparticles. Here, we report on the colloidal mechanisms underlying the losses. We systematically studied gold nanoparticles (AuNPs) during asymmetrical flow field-flow fractionation (AF4) by systematic variation of the particle properties and the eluent composition. Recoveries of AuNPs (core diameter 12 nm) stabilized by citrate or polyethylene glycol (PEG) at different ionic strengths were determined. We used online UV-vis detection and off-line elementary analysis to follow particle losses during full analysis runs, runs without cross-flow, and runs with parts of the instrument bypassed. The combination allowed us to calculate relative and absolute analyte losses at different stages of the analytic protocol. We found different loss mechanisms depending on the ligand. Citrate-stabilized particles degraded during analysis and suffered large losses (up to 74%). PEG-stabilized particles had smaller relative losses at moderate ionic strengths (1-20%) that depended on PEG length. Long PEGs at higher ionic strengths (≥5 mM) caused particle loss due to bridging adsorption at the membrane. Bulk agglomeration was not a relevant loss mechanism at low ionic strengths ≤5 mM for any of the studied particles. An unexpectedly large fraction of particles was lost at tubing and other internal surfaces. We propose that the colloidal mechanisms observed here are relevant loss mechanisms in many particle analysis protocols and discuss strategies to avoid them.
Collapse
Affiliation(s)
- Aljosha-Rakim Jochem
- INM - Leibniz Institute for New Materials , Campus D2 2, 66123 Saarbruecken, Germany
| | - Genesis Ngwa Ankah
- INM - Leibniz Institute for New Materials , Campus D2 2, 66123 Saarbruecken, Germany
| | - Lars-Arne Meyer
- INM - Leibniz Institute for New Materials , Campus D2 2, 66123 Saarbruecken, Germany
| | | | - Christoph Johann
- Wyatt Technology Europe GmbH , Hochstrasse 12a, 56307 Dernbach, Germany
| | - Tobias Kraus
- INM - Leibniz Institute for New Materials , Campus D2 2, 66123 Saarbruecken, Germany
| |
Collapse
|
41
|
Guggenheim EJ, Khan A, Pike J, Chang L, Lynch I, Rappoport JZ. Comparison of Confocal and Super-Resolution Reflectance Imaging of Metal Oxide Nanoparticles. PLoS One 2016; 11:e0159980. [PMID: 27695038 PMCID: PMC5047631 DOI: 10.1371/journal.pone.0159980] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 07/12/2016] [Indexed: 12/23/2022] Open
Abstract
The potential for human exposure to manufactured nanoparticles (NPs) has increased in recent years, in part through the incorporation of engineered particles into a wide range of commercial goods and medical applications. NP are ideal candidates for use as therapeutic and diagnostic tools within biomedicine, however concern exists regarding their efficacy and safety. Thus, developing techniques for the investigation of NP uptake into cells is critically important. Current intracellular NP investigations rely on the use of either Transmission Electron Microscopy (TEM), which provides ultrahigh resolution, but involves cumbersome sample preparation rendering the technique incompatible with live cell imaging, or fluorescent labelling, which suffers from photobleaching, poor bioconjugation and, often, alteration of NP surface properties. Reflected light imaging provides an alternative non-destructive label free technique well suited, but not limited to, the visualisation of NP uptake within model systems, such as cells. Confocal reflectance microscopy provides optical sectioning and live imaging capabilities, with little sample preparation. However confocal microscopy is diffraction limited, thus the X-Y resolution is restricted to ~250 nm, substantially larger than the <100 nm size of NPs. Techniques such as super-resolution light microscopy overcome this fundamental limitation, providing increased X-Y resolution. The use of Reflectance SIM (R-SIM) for NP imaging has previously only been demonstrated on custom built microscopes, restricting the widespread use and limiting NP investigations. This paper demonstrates the use of a commercial SIM microscope for the acquisition of super-resolution reflectance data with X-Y resolution of 115 nm, a greater than two-fold increase compared to that attainable with RCM. This increase in resolution is advantageous for visualising small closely spaced structures, such as NP clusters, previously unresolvable by RCM. This is advantageous when investigating the subcellular trafficking of NP within fluorescently labelled cellular compartments. NP signal can be observed using RCM, R-SIM and TEM and a direct comparison is presented. Each of these techniques has its own benefits and limitations; RCM and R-SIM provide novel complementary information while the combination of modalities provides a unique opportunity to gain additional information regarding NP uptake. The use of multiple imaging methods therefore greatly enhances the range of NPs that can be studied under label-free conditions.
Collapse
Affiliation(s)
- Emily J. Guggenheim
- Physical Science of Imaging in the Biomedical Sciences (PSIBS) Doctoral Training Centre (DTC), Birmingham, Edgbaston, United Kingdom
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Abdullah Khan
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Jeremy Pike
- Physical Science of Imaging in the Biomedical Sciences (PSIBS) Doctoral Training Centre (DTC), Birmingham, Edgbaston, United Kingdom
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Lynne Chang
- Nikon Instruments, Inc. Melville, New York, United States of America
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, United Kingdom
| | - Joshua Z. Rappoport
- Center for Advanced Microscopy, and Nikon Imaging Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| |
Collapse
|
42
|
Li L, Hu J, Shi X, Fan M, Luo J, Wei X. Nanoscale zero-valent metals: a review of synthesis, characterization, and applications to environmental remediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:17880-900. [PMID: 27094266 DOI: 10.1007/s11356-016-6626-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 04/04/2016] [Indexed: 05/21/2023]
Abstract
Engineered nanoscale zero-valent metals (NZVMs) representing the forefront of technologies have been considered as promising materials for environmental remediation and antimicrobial effect, due to their high reducibility and strong adsorption capability. This review is focused on the methodology for synthesis of bare NZVMs, supported NZVMs, modified NZVMs, and bimetallic systems with both traditional and green methods. Recent studies have demonstrated that self-assembly methods can play an important role for obtaining ordered, controllable, and tunable NZVMs. In addition to common characterization methods, the state-of-the-art methods have been developed to obtain the properties of NZVMs (e.g., granularity, size distribution, specific surface area, shape, crystal form, and chemical bond) with the resolution down to subnanometer scale. These methods include spherical aberration corrected scanning transmission electron microscopy (Cs-corrected STEM), electron energy-loss spectroscopy (EELS), and near edge X-ray absorption fine structure (NEXAFS). A growing body of experimental data has proven that nanoscale zero-valent iron (NZVI) is highly effective and versatile. This article discusses the applications of NZVMs to treatment of heavy metals, halogenated organic compounds, polycyclic aromatic hydrocarbons, nutrients, radioelements, and microorganisms, using both ex situ and in situ methods. Furthermore, this paper briefly describes the ecotoxicological effects for NZVMs and the research prospects related to their synthesis, modification, characterization, and applications.
Collapse
Affiliation(s)
- Lingyun Li
- Guizhou Provincial Key Laboratory for Information Systems of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, 550001, People's Republic of China
| | - Jiwei Hu
- Guizhou Provincial Key Laboratory for Information Systems of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, 550001, People's Republic of China.
| | - Xuedan Shi
- Guizhou Provincial Key Laboratory for Information Systems of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, 550001, People's Republic of China
| | - Mingyi Fan
- Guizhou Provincial Key Laboratory for Information Systems of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, 550001, People's Republic of China
| | - Jin Luo
- Guizhou Provincial Key Laboratory for Information Systems of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, 550001, People's Republic of China
| | - Xionghui Wei
- Department of Applied Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, People's Republic of China
| |
Collapse
|
43
|
Choleva TG, Kappi FA, Tsogas GZ, Vlessidis AG, Giokas DL. In-situ suspended aggregate microextraction of gold nanoparticles from water samples and determination by electrothermal atomic absorption spectrometry. Talanta 2016; 151:91-99. [DOI: 10.1016/j.talanta.2016.01.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 01/11/2016] [Accepted: 01/14/2016] [Indexed: 10/22/2022]
|
44
|
Addo Ntim S, Thomas TA, Noonan GO. Influence of aqueous food simulants on potential nanoparticle detection in migration studies involving nanoenabled food-contact substances. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2016; 33:905-12. [DOI: 10.1080/19440049.2016.1174506] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Susana Addo Ntim
- Center for Food Safety and Applied Nutrition, US Food and Drug Administration (USFDA), College Park, MD, USA
| | - Treye A. Thomas
- Office of Hazard Identification and Reduction, US Consumer Product Safety Commission, Bethesda, MD, USA
| | - Gregory O. Noonan
- Center for Food Safety and Applied Nutrition, US Food and Drug Administration (USFDA), College Park, MD, USA
| |
Collapse
|
45
|
Jimenez MS, Luque-Alled JM, Gomez T, Castillo JR. Evaluation of agarose gel electrophoresis for characterization of silver nanoparticles in industrial products. Electrophoresis 2016; 37:1376-83. [DOI: 10.1002/elps.201500577] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/01/2016] [Accepted: 02/01/2016] [Indexed: 01/08/2023]
Affiliation(s)
- Maria S. Jimenez
- Environmental Sciences Institute (IUCA), Analytical Spectroscopy and Sensors Group (GEAS); University of Zaragoza; Zaragoza Spain
| | - Jose M. Luque-Alled
- Environmental Sciences Institute (IUCA), Analytical Spectroscopy and Sensors Group (GEAS); University of Zaragoza; Zaragoza Spain
| | - Teresa Gomez
- Environmental Sciences Institute (IUCA), Analytical Spectroscopy and Sensors Group (GEAS); University of Zaragoza; Zaragoza Spain
| | - Juan R. Castillo
- Environmental Sciences Institute (IUCA), Analytical Spectroscopy and Sensors Group (GEAS); University of Zaragoza; Zaragoza Spain
| |
Collapse
|
46
|
Chen S, Sun Y, Chao J, Cheng L, Chen Y, Liu J. Dispersive liquid-liquid microextraction of silver nanoparticles in water using ionic liquid 1-octyl-3-methylimidazolium hexafluorophosphate. J Environ Sci (China) 2016; 41:211-217. [PMID: 26969067 DOI: 10.1016/j.jes.2015.04.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 04/08/2015] [Accepted: 04/09/2015] [Indexed: 05/21/2023]
Abstract
Using the ionic liquid (IL) 1-octyl-3-methylimidazolium hexafluorophosphate as the extractant and methanol as the dispersion solvent, a dispersive liquid-liquid microextraction method was developed to extract silver nanoparticles (AgNPs) from environmental water samples. Parameters that influenced the extraction efficiency such as IL concentration, pH and extraction time were optimized. Under the optimized conditions, the highest extraction efficiency for AgNPs was above 90% with an enrichment factor of >90. The extracted AgNPs in the IL phase were identified by transmission electron microscopy and ultraviolet-visible spectroscopy, and quantified by inductively coupled plasma mass spectrometry after microwave digestion, with a detection limit of 0.01μg/L. The spiked recovery of AgNPs was 84.4% with a relative standard deviation (RSD) of 3.8% (n=6) at a spiked level of 5μg/L, and 89.7% with a RSD of 2.2% (n=6) at a spiked level of 300μg/L, respectively. Commonly existed environmental ions had a very limited influence on the extraction efficiency. The developed method was successfully applied to the analysis of AgNPs in river water, lake water, and the influent and effluent of a wastewater treatment plant, with recoveries in the range of 71.0%-90.9% at spiking levels of 0.11-4.7μg/L.
Collapse
Affiliation(s)
- Sha Chen
- Key Laboratory of Beijing on Regional Air Pollution Control, Beijing University of Technology, Beijing 100124, China.
| | - Yuanjing Sun
- Key Laboratory of Beijing on Regional Air Pollution Control, Beijing University of Technology, Beijing 100124, China; Chemical Metrology and Analytical Science Division, National Institute of Metrology, Beijing 100031, China
| | - Jingbo Chao
- Chemical Metrology and Analytical Science Division, National Institute of Metrology, Beijing 100031, China.
| | - Liping Cheng
- Key Laboratory of Beijing on Regional Air Pollution Control, Beijing University of Technology, Beijing 100124, China
| | - Yun Chen
- Key Laboratory of Beijing on Regional Air Pollution Control, Beijing University of Technology, Beijing 100124, China
| | - Jingfu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
47
|
Su CK, Hsieh MH, Sun YC. Three-dimensional printed knotted reactors enabling highly sensitive differentiation of silver nanoparticles and ions in aqueous environmental samples. Anal Chim Acta 2016; 914:110-6. [PMID: 26965333 DOI: 10.1016/j.aca.2016.01.057] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 01/29/2016] [Accepted: 01/30/2016] [Indexed: 11/16/2022]
Abstract
Whether silver nanoparticles (AgNPs) persist or release silver ions (Ag(+)) when discharged into a natural environment has remained an unresolved issue. In this study, we employed a low-cost stereolithographic three-dimensional printing (3DP) technology to fabricate the angle-defined knotted reactors (KRs) to construct a simple differentiation scheme for quantitative assessment of Ag(+) ions and AgNPs in municipal wastewater samples. We chose xanthan/phosphate-buffered saline as a dispersion medium for in situ stabilization of the two silver species, while also facilitating their extraction from complicated wastewater matrices. After method optimization, we measured extraction efficiencies of 54.5 and 32.3% for retaining Ag(+) ions and AgNPs, respectively, in the printed KR (768-turn), with detection limits (DLs) of 0.86 and 0.52 ng L(-1) when determining Ag(+) ions and AgNPs, respectively (sample run at pH 11 without a rinse solution), and 0.86 ng L(-1) when determining Ag(+) ions alone (sample run at pH 12 with a 1.5-mL rinse solution). The proposed scheme is tolerant of the wastewater matrix and provides more reliable differentiation between Ag(+)/AgNPs than does a conventional filtration method. The concept and applicability of adopting 3DP technology to renew traditional KR devices were evidently proven by means of these significantly improved analytical performance. Our analytical data suggested that the concentrations of Ag(+) ions and AgNPs in the tested industrial wastewater sample were both higher than those in domestic wastewater, implying that industrial activity might be a main source of environmental silver species, rather than domestic discharge from AgNP-containing products.
Collapse
Affiliation(s)
- Cheng-Kuan Su
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, 20224, Taiwan, ROC.
| | - Meng-Hsuan Hsieh
- Department of Biomedical Engineering and Environmental Sciences, National Tsing-Hua University, Hsinchu, 30013, Taiwan, ROC
| | - Yuh-Chang Sun
- Department of Biomedical Engineering and Environmental Sciences, National Tsing-Hua University, Hsinchu, 30013, Taiwan, ROC.
| |
Collapse
|
48
|
Bismuth film electrode for anodic stripping voltammetric measurement of silver nanoparticle dissolution. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2015.11.110] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
49
|
Majedi SM, Lee HK. Recent advances in the separation and quantification of metallic nanoparticles and ions in the environment. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2015.08.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
50
|
Schaumann GE, Philippe A, Bundschuh M, Metreveli G, Klitzke S, Rakcheev D, Grün A, Kumahor SK, Kühn M, Baumann T, Lang F, Manz W, Schulz R, Vogel HJ. Understanding the fate and biological effects of Ag- and TiO₂-nanoparticles in the environment: The quest for advanced analytics and interdisciplinary concepts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 535:3-19. [PMID: 25455109 DOI: 10.1016/j.scitotenv.2014.10.035] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 10/10/2014] [Accepted: 10/10/2014] [Indexed: 05/29/2023]
Abstract
Engineered inorganic nanoparticles (EINP) from consumers' products and industrial applications, especially silver and titanium dioxide nanoparticles (NP), are emitted into the aquatic and terrestrial environments in increasing amounts. However, the current knowledge on their environmental fate and biological effects is diverse and renders reliable predictions complicated. This review critically evaluates existing knowledge on colloidal aging mechanisms, biological functioning and transport of Ag NP and TiO2 NP in water and soil and it discusses challenges for concepts, experimental approaches and analytical methods in order to obtain a comprehensive understanding of the processes linking NP fate and effects. Ag NP undergo dissolution and oxidation with Ag2S as a thermodynamically determined endpoint. Nonetheless, Ag NP also undergo colloidal transformations in the nanoparticulate state and may act as carriers for other substances. Ag NP and TiO2 NP can have adverse biological effects on organisms. Whereas Ag NP reveal higher colloidal stability and mobility, the efficiency of NOM as a stabilizing agent is greater towards TiO2 NP than towards Ag NP, and multivalent cations can dominate the colloidal behavior over NOM. Many of the past analytical obstacles have been overcome just recently. Single particle ICP-MS based methods in combination with field flow fractionation techniques and hydrodynamic chromatography have the potential to fill the gaps currently hampering a comprehensive understanding of fate and effects also at a low field relevant concentrations. These analytical developments will allow for mechanistically orientated research and transfer to a larger set of EINP. This includes separating processes driven by NP specific properties and bulk chemical properties, categorization of effect-triggering pathways directing the EINP effects towards specific recipients, and identification of dominant environmental parameters triggering fate and effect of EINP in specific ecosystems (e.g. soil, lake, or riverine systems).
Collapse
Affiliation(s)
- Gabriele E Schaumann
- Universität Koblenz-Landau, Institute for Environmental Sciences, Group of Environmental and Soil Chemistry, Fortstr. 7, D-76829 Landau, Germany.
| | - Allan Philippe
- Universität Koblenz-Landau, Institute for Environmental Sciences, Group of Environmental and Soil Chemistry, Fortstr. 7, D-76829 Landau, Germany.
| | - Mirco Bundschuh
- Universität Koblenz-Landau, Institute for Environmental Sciences, Group of Ecotoxicology and Environment, Fortstr. 7, D-76829 Landau, Germany; Swedish University of Agricultural Sciences, Department of Aquatic Sciences and Assessment, Lennart Hjelms väg 9, SE-75007 Uppsala, Sweden.
| | - George Metreveli
- Universität Koblenz-Landau, Institute for Environmental Sciences, Group of Environmental and Soil Chemistry, Fortstr. 7, D-76829 Landau, Germany.
| | - Sondra Klitzke
- Albert-Ludwigs-Universität Freiburg, Institute of Forest Sciences, Chair of Soil Ecology, 79085 Freiburg i.Br., Germany; Berlin University of Technology, Institute of Ecology, Department of Soil Science, Ernst-Reuter-Platz 1, D-10587 Berlin, Germany.
| | - Denis Rakcheev
- Universität Koblenz-Landau, Institute for Environmental Sciences, Group of Environmental and Soil Chemistry, Fortstr. 7, D-76829 Landau, Germany.
| | - Alexandra Grün
- Universität Koblenz-Landau, Institute for Integrated Natural Sciences, Dept. of Biology, Universitätsstr. 1, D-56070 Koblenz, Germany.
| | - Samuel K Kumahor
- Helmholtz Centre for Environmental Research - UFZ, Department of Soil Physics, Theodor-Lieser-Strasse 4, D-06120 Halle, Germany.
| | - Melanie Kühn
- Technische Universität München, Institute of Hydrochemistry, Marchioninistr. 17, D-81377 Munich, Germany.
| | - Thomas Baumann
- Technische Universität München, Institute of Hydrochemistry, Marchioninistr. 17, D-81377 Munich, Germany.
| | - Friederike Lang
- Albert-Ludwigs-Universität Freiburg, Institute of Forest Sciences, Chair of Soil Ecology, 79085 Freiburg i.Br., Germany.
| | - Werner Manz
- Universität Koblenz-Landau, Institute for Integrated Natural Sciences, Dept. of Biology, Universitätsstr. 1, D-56070 Koblenz, Germany.
| | - Ralf Schulz
- Universität Koblenz-Landau, Institute for Environmental Sciences, Group of Ecotoxicology and Environment, Fortstr. 7, D-76829 Landau, Germany.
| | - Hans-Jörg Vogel
- Helmholtz Centre for Environmental Research - UFZ, Department of Soil Physics, Theodor-Lieser-Strasse 4, D-06120 Halle, Germany; Martin-Luther-University Halle-Wittenberg, Institute of Soil Science and Plant Nutrition, Von-Seckendorff-Platz 3, 06120 Halle/Saale, Germany.
| |
Collapse
|