1
|
Thaweeskulchai T, Prempinij W, Schulte A. A 3D printed dual screen-printed electrode separation device for twin electrochemical mini-cell establishment. RSC Adv 2024; 14:30830-30835. [PMID: 39328873 PMCID: PMC11426311 DOI: 10.1039/d4ra05929h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024] Open
Abstract
We describe a tiny 3D-printed polymethyl-methacrylate-based plastic sleeve that houses two disposable screen-printed electrodes (SPE) and enables each of the working electrodes (WEs) to work independently, on a different side of a thin barrier, in its own electrochemical (EC) mini-cell, while the SPE counter and reference units are shared for electroanalysis. Optical and EC performance tests proved that the plastic divider between WE1 and WE2 efficiently inhibited solution mixing between the mini-cells. The two neighboring, independently operating mini-cells enabled matched differential measurements in the same sample solution, a tactic designed for elimination of electrochemical interference in complex samples. In a proof-of-principle glucose biosensor trial, a glucose oxidase-modified WE2 and an unmodified WE1 delivered the EC data for the removal of anodic ascorbic acid (AA) interference simply by subtracting the WE1 (background) current from the analyte-specific WE2 current (from buffered sample solution supplemented with glucose/AA), at an anodic H2O2 detection potential of +1 V. The microfabricated SPE accessory is cheap and easy to make and use. For the many dual electrode SPE strips on the market for multiple analytical targets the new device widens the options for their exploitation in assays of biological and environmental samples with complex matrix compositions and significant risks of interference.
Collapse
Affiliation(s)
- Thana Thaweeskulchai
- School of Biomolecular Science and Engineering (BSE) of the Vidyasirimedhi Institute of Science and Technology (VISTEC) 21210 Rayong Thailand
| | - Waswan Prempinij
- School of Biomolecular Science and Engineering (BSE) of the Vidyasirimedhi Institute of Science and Technology (VISTEC) 21210 Rayong Thailand
| | - Albert Schulte
- School of Biomolecular Science and Engineering (BSE) of the Vidyasirimedhi Institute of Science and Technology (VISTEC) 21210 Rayong Thailand
| |
Collapse
|
2
|
Huangfu X, Zhang Y, Wang Y, Ma C. The determination of thallium in the environment: A review of conventional and advanced techniques and applications. CHEMOSPHERE 2024; 358:142201. [PMID: 38692367 DOI: 10.1016/j.chemosphere.2024.142201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/03/2024]
Abstract
Thallium (Tl) is a potential toxicity element that poses significant ecological and environmental risks. Recently, a substantial amount of Tl has been released into the environment through natural and human activities, which attracts increasing attention. The determination of this hazardous and trace element is crucial for controlling its pollution. This article summarizes the advancement and progress in optimizing Tl detection techniques, including atomic absorption spectroscopy (AAS), voltammetry, inductively coupled plasma (ICP)-based methods, spectrophotometry, and X-ray-based methods. Additionally, it introduces sampling and pretreatment methods such as diffusive gradients in thin films (DGT), liquid-liquid extraction, solid phase extraction, and cloud point extraction. Among these techniques, ICP-mass spectrometry (MS) is the preferred choice for Tl detection due to its high precision in determining Tl as well as its species and isotopic composition. Meanwhile, some new materials and agents are employed in detection. The application of novel work electrode materials and chromogenic agents is discussed. Emphasis is placed on reducing solvent consumption and utilizing pretreatment techniques such as ultrasound-assisted processes and functionalized magnetic particles. Most detection is performed in aqueous matrices, while X-ray-based methods applied to solid phases are summarized which provide non-destructive analysis. This work improves the understanding of Tl determination technology while serving as a valuable resource for researchers seeking appropriate analytical techniques.
Collapse
Affiliation(s)
- Xiaoliu Huangfu
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment, and Ecology, Chongqing University, Chongqing 400044, China.
| | - Yifan Zhang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment, and Ecology, Chongqing University, Chongqing 400044, China
| | - Yunzhu Wang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment, and Ecology, Chongqing University, Chongqing 400044, China
| | - Chengxue Ma
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
3
|
Vanderlaan EL, Nolan JK, Sexton J, Evans-Molina C, Lee H, Voytik-Harbin SL. Development of electrochemical Zn 2+ sensors for rapid voltammetric detection of glucose-stimulated insulin release from pancreatic β-cells. Biosens Bioelectron 2023; 235:115409. [PMID: 37244091 DOI: 10.1016/j.bios.2023.115409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/12/2023] [Accepted: 05/17/2023] [Indexed: 05/29/2023]
Abstract
Diabetes is a chronic disease characterized by elevated blood glucose levels resulting from absent or ineffective insulin release from pancreatic β-cells. β-cell function is routinely assessed in vitro using static or dynamic glucose-stimulated insulin secretion (GSIS) assays followed by insulin quantification via time-consuming, costly enzyme-linked immunosorbent assays (ELISA). In this study, we developed a highly sensitive electrochemical sensor for zinc (Zn2+), an ion co-released with insulin, as a rapid and low-cost method for measuring dynamic insulin release. Different modifications to glassy carbon electrodes (GCE) were evaluated to develop a sensor that detects physiological Zn2+ concentrations while operating within a biological Krebs Ringer Buffer (KRB) medium (pH 7.2). Electrodeposition of bismuth and indium improved Zn2+ sensitivity and limit of detection (LOD), and a Nafion coating improved selectivity. Using anodic stripping voltammetry (ASV) with a pre-concentration time of 6 min, we achieved a LOD of 2.3 μg/L over the wide linear range of 2.5-500 μg/L Zn2+. Sensor performance improved with 10-min pre-concentration, resulting in increased sensitivity, lower LOD (0.18 μg/L), and a bilinear response over the range of 0.25-10 μg/L Zn2+. We further characterized the physicochemical properties of the Zn2+ sensor using scanning electron microscopy (SEM), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). Finally, we demonstrated the sensor's capability to measure Zn2+ release from glucose-stimulated INS-1 β-cells and primary mouse islets. Our results exhibited a high correlation with secreted insulin and validated the sensor's potential as a rapid alternative to conventional two-step GSIS plus ELISA methods.
Collapse
Affiliation(s)
- Emma L Vanderlaan
- Weldon School of Biomedical Engineering, College of Engineering, Purdue University, West Lafayette, IN, USA; Indiana Medical Scientist/Engineer Training Program, Indiana University School of Medicine, Indianapolis, IN, USA
| | - James K Nolan
- Weldon School of Biomedical Engineering, College of Engineering, Purdue University, West Lafayette, IN, USA; Center for Implantable Devices, Birck Nanotechnology Center, Purdue University, West Lafayette, IN, USA
| | - Joshua Sexton
- Weldon School of Biomedical Engineering, College of Engineering, Purdue University, West Lafayette, IN, USA
| | - Carmella Evans-Molina
- Indiana Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA; Roudebush VA Medical Center, Indianapolis, IN, USA
| | - Hyowon Lee
- Weldon School of Biomedical Engineering, College of Engineering, Purdue University, West Lafayette, IN, USA; Center for Implantable Devices, Birck Nanotechnology Center, Purdue University, West Lafayette, IN, USA
| | - Sherry L Voytik-Harbin
- Weldon School of Biomedical Engineering, College of Engineering, Purdue University, West Lafayette, IN, USA; Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
4
|
Zhang C, Li C, Han X. Screen printed electrode containing bismuth for the detection of cadmium ion. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
5
|
Selvolini G, Marrazza G. On spot detection of nickel and cobalt from exhausted batteries by a smart electrochemical sensor. Talanta 2023; 253:123918. [PMID: 36088847 DOI: 10.1016/j.talanta.2022.123918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/29/2022] [Accepted: 09/04/2022] [Indexed: 12/13/2022]
Abstract
This work presents the realization and the application of an user-friendly electrochemical platform based on screen-printed electrodes for the simultaneous determination of nickel and cobalt ions in real samples by means of square wave adsorptive stripping voltammetry (SWAdSV). The sensor was realized by electrodepositing in situ a bismuth film onto graphite screen-printed electrodes (GSPEs). The sensor surface was fully characterized by scanning electron microscopy (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The experimental conditions for the determination of nickel and cobalt in the form of dimethylglyoximate complexes were studied and optimized. Linear calibration curves for Ni(II) and Co(II), determined individually and together, in the range 10-40 μg/L for nickel and 10-60 μg/L for cobalt, respectively, were obtained. The limits of detection for nickel and cobalt determination were 2.5 μg/L and 2.4 μg/L, respectively. The performance of the sensor in terms of reproducibility and selectivity was also studied. The applicability of the developed platform was assessed by determining nickel and cobalt in samples deriving from an industrial process of recycling exhausted batteries and in soil samples.
Collapse
Affiliation(s)
- Giulia Selvolini
- "Ugo Schiff" Chemistry Department, University of Florence, Via Della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy
| | - Giovanna Marrazza
- "Ugo Schiff" Chemistry Department, University of Florence, Via Della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy.
| |
Collapse
|
6
|
Malakhova N, Mozharovskaia P, Kifle AB, Kozitsina A. Bismuth-coated screen-printed electrodes for the simple voltammetric determination of formaldehyde. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:3423-3433. [PMID: 35993393 DOI: 10.1039/d2ay00876a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
For the first time, bismuth modified electrodes have been used for the voltammetric detection of formaldehyde (FM). The well-known method of forming formaldehyde hydrazone (FAH) in the presence of hydrazine sulphate was used to convert the hydrated form of FM into its electrochemically active derivative. Various experimental conditions for differential pulse voltammetry were studied to achieve the best analytical performance. The FAH reduction current (FM response) reaches its maximum value at a pH of a phosphate buffer solution of 5.2 ± 0.1 in the presence of 0.09-0.12 M hydrazine sulfate on a bismuth film preliminarily precipitated for 8-12 min from acidic Bi(III) acetate solutions at an electrolysis potential of -1.0 V on the surface of a screen-printed carbon electrode (SPCE). A dendritic-like film structure was created on the SPCE surface. Under the optimized conditions a linear calibration curve over the range of 0.01-5 mg L-1 (0.33-167 μM) FM was achieved, with a detection limit of 0.002 mg L-1 (0.06 μM). The determination of FM in waste water, melt water from snow within the city industrial zone, and a widely used pharmaceutical preparation "Endofalk®" with good results revealed the potential applicability of a bismuth modified SPCE (BiSPCE) for trace analysis.
Collapse
Affiliation(s)
- Nataliya Malakhova
- Department of Analytical Chemistry, Institute of Chemical Technology, Ural Federal University named after the First President of Russia B. N. Yeltsin, Mira St, 28, Ekaterinburg 620002, Russian Federation.
| | - Polina Mozharovskaia
- Department of Analytical Chemistry, Institute of Chemical Technology, Ural Federal University named after the First President of Russia B. N. Yeltsin, Mira St, 28, Ekaterinburg 620002, Russian Federation.
| | - Alexander Berhane Kifle
- Department of Analytical Chemistry, Institute of Chemical Technology, Ural Federal University named after the First President of Russia B. N. Yeltsin, Mira St, 28, Ekaterinburg 620002, Russian Federation.
| | - Alisa Kozitsina
- Department of Analytical Chemistry, Institute of Chemical Technology, Ural Federal University named after the First President of Russia B. N. Yeltsin, Mira St, 28, Ekaterinburg 620002, Russian Federation.
| |
Collapse
|
7
|
Hyaluronic Acid Methacrylate Hydrogel-Modified Electrochemical Device for Adsorptive Removal of Lead(II). BIOSENSORS 2022; 12:bios12090714. [PMID: 36140099 PMCID: PMC9496323 DOI: 10.3390/bios12090714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/25/2022] [Accepted: 08/31/2022] [Indexed: 11/22/2022]
Abstract
This paper presents the development of a compact, three-electrode electrochemical device functionalized by a biocompatible layer of hyaluronic acid methacrylate (HAMA) hydrogel for the adsorptive removal of detrimental lead (Pb(II)) ions in aqueous solutions. An adsorption mechanism pertaining to the observed analytical performance of the device is proposed and further experimentally corroborated. It is demonstrated that both the molecular interactions originating from the HAMA hydrogel and electrochemical accumulation originating from the electrode beneath contribute to the adsorption capability of the device. Infrared spectral analysis reveals that the molecular interaction is mainly induced by the amide functional group of the HAMA hydrogel, which is capable of forming the Pb(II)–amide complex. In addition, inductively coupled plasma mass spectrometric (ICP-MS) analysis indicates that the electrochemical accumulation is particularly valuable in facilitating the adsorption rate of the device by maintaining a high ion-concentration gradient between the solution and the hydrogel layer. ICP-MS measurements show that 94.08% of Pb(II) ions present in the test solution can be adsorbed by the device within 30 min. The HAMA hydrogel-modified electrochemical devices exhibit reproducible performance in the aspect of Pb(II) removal from tap water, with a relative standard deviation (RSD) of 1.28% (for n = 8). The experimental results suggest that the HAMA hydrogel-modified electrochemical device can potentially be used for the rapid, on-field remediation of Pb(II) contamination.
Collapse
|
8
|
Antimony nanomaterials modified screen-printed electrodes for the voltammetric determination of metal ions. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Xin Y, Wang Z, Yao C, Shen H, Miao Y. Bismuth, a Previously Less‐studied Element, Is Bursting into New Hotspots. ChemistrySelect 2022. [DOI: 10.1002/slct.202201220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yanmei Xin
- Institute of Bismuth Science School of Materials and Chemistry University of Shanghai for Science and Technology Jungong Rd 334# Shanghai 200093 China
| | - Zhuo Wang
- Institute of Bismuth Science School of Materials and Chemistry University of Shanghai for Science and Technology Jungong Rd 334# Shanghai 200093 China
| | - Congfei Yao
- Institute of Bismuth Science School of Materials and Chemistry University of Shanghai for Science and Technology Jungong Rd 334# Shanghai 200093 China
| | - Haocheng Shen
- Institute of Bismuth Science School of Materials and Chemistry University of Shanghai for Science and Technology Jungong Rd 334# Shanghai 200093 China
| | - Yuqing Miao
- Institute of Bismuth Science School of Materials and Chemistry University of Shanghai for Science and Technology Jungong Rd 334# Shanghai 200093 China
| |
Collapse
|
10
|
Ustabasi G, yilmaz I, Ozcan M, Cetinkaya E. Simultaneous, Selective and Highly Sensitive Voltammetric Determination of Lead, Cadmium, and Zinc via Modified Pencil Graphite Electrodes. ELECTROANAL 2022. [DOI: 10.1002/elan.202100512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - ismail yilmaz
- Istanbul Teknik Universitesi Fen-Edebiyat Fakultesi TURKEY
| | | | | |
Collapse
|
11
|
A new electrochemical aptasensor based on gold/nitrogen-doped carbon nano-onions for the detection of Staphylococcus aureus. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139633] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
12
|
Yaghoobi A, Abiri R, Alvandi A, Arkan E, Jalalvand AR. A novel and highly selective aptamer-based sandwich-type biosensor assisted by second-order calibration methods for efficient biosensing of Streptococcus pneumoniae. SENSORS INTERNATIONAL 2022. [DOI: 10.1016/j.sintl.2022.100203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
13
|
Morris A, Serrano N, Díaz-Cruz JM, Bendavid A, Chen M, Vepsäläinen M. Vibrating boron-doped diamond electrode: A new, durable and highly sensitive tool for the detection of cadmium. Anal Chim Acta 2021; 1188:339166. [PMID: 34794577 DOI: 10.1016/j.aca.2021.339166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/16/2021] [Accepted: 10/09/2021] [Indexed: 12/31/2022]
Abstract
In this paper, a vibrating boron-doped diamond (BDD) electrode electroanalytical device and respective method for the analysis of ultralow concentrations of Cd(II) in water were studied. The enhanced mass transfer on the electrode surface was studied using Ru(NH3)6Cl3. Vibration with 133 Hz frequency enhanced the Ru(III) to Ru(II) reduction by 92.6% compared to a static electrode. The peak current of the anodic stripping voltammetry (ASV) method employed was increased by a factor of 5.3 and 4.7 for 10 and 30 μg L-1 Cd(II) concentrations, respectively, when a frequency of 200 Hz was used. A calibration plot with two linear regions was resolved between 0.01 and 1 μg L-1 and 1-30 μg L-1 with the LOD and LOQ of 0.04 μg L-1 and 0.12 μg L-1, respectively. The applicability of the device and the respective method in the analysis of real environmental samples was successfully verified by analysis of river samples and comparing the results with the ICP analysis presenting high reproducibility and trueness. According to the results of this research, the vibrating BDD electrode with the ASV method has excellent analytical performance without surface modification or regular replacement or polishing of the electrode surface. Combining the exceptional electrochemical and chemical properties of BDD with enhanced mass transfer and signal strength of vibrating electrodes makes the system especially suitable for on-site and online analysis of heavy metals.
Collapse
Affiliation(s)
- Adam Morris
- CSIRO, Mineral Resources, Private Bag 10, Clayton South, Victoria, 3169, Australia
| | - Núria Serrano
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain.
| | - José Manuel Díaz-Cruz
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain
| | - Avi Bendavid
- CSIRO Manufacturing, 36 Bradfield Road, Lindfield, New South Wales, 2070, Australia; School of Materials Science and Engineering, University of New South Wales (UNSW, Sydney), Sydney, NSW, 2052, Australia
| | - Miao Chen
- CSIRO, Mineral Resources, Private Bag 10, Clayton South, Victoria, 3169, Australia
| | - Mikko Vepsäläinen
- CSIRO, Mineral Resources, Private Bag 10, Clayton South, Victoria, 3169, Australia; VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044, VTT, Finland.
| |
Collapse
|
14
|
Anodic Stripping Voltammetry with the Hanging Mercury Drop Electrode for Trace Metal Detection in Soil Samples. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9050107] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The widely spread use of the hanging mercury drop electrode (HMDE) for multi-ion analysis is primarily ascribed to the following reasons: (i) excellent reproducibility owing to the easy renewal of the electrode surface avoiding any hysteresis effect (i.e., a new identical drop is generated for each measurement to be accomplished); (ii) a wide cathodic potential window originating from the passive hydrogen evolution and solvent electrolysis; (iii) the ability to form amalgams with many redox-active metal ions; and (iv) the achievement of (sub)nanomolar limits of detection. On the other hand, the main controversy of the HMDE usage is the high toxicity level of mercury, which has motivated the scientific community to question whether the HMDE deserves to continue being used despite its unique capability for multi-metal detection. In this work, the simultaneous determination of Zn2+, Cd2+, Pb2+, and Cu2+ using the HMDE is investigated as a model system to evaluate the main features of the technique. The analytical benefits of the HMDE in terms of linear range of response, reproducibility, limit of detection, proximity to ideal redox behavior of metal ions and analysis time are herein demonstrated and compared to other electrodes proposed in the literature as less-toxic alternatives to the HMDE. The results have revealed that the HMDE is largely superior to other reported methods in several aspects and, moreover, it displays excellent accuracy when simultaneously analyzing Zn2+, Cd2+, Pb2+, and Cu2+ in such a complex matrix as digested soils. Yet, more efforts are required towards the definitive replacement of the HMDE in the electroanalysis field, despite the elegant approaches already reported in the literature.
Collapse
|
15
|
Determination of Trace Levels of Nickel(II) by Adsorptive Stripping Voltammetry Using a Disposable and Low-Cost Carbon Screen-Printed Electrode. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9050094] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A commercial and disposable screen-printed carbon electrode (SPCE) has been proposed for a fast, simple and low-cost determination of Ni(II) at very low concentration levels by differential pulse adsorptive stripping voltammetry (DPAdSV) in the presence of dimethylglyoxime (DMG) as complexing agent. In contrast with previously proposed methods, the Ni(II)-DMG complex adsorbs directly on the screen-printed carbon surface, with no need of mercury, bismuth or antimony coatings. Well-defined stripping peaks and a linear dependence of the peak area on the concentration of Ni(II) was achieved in the range from 1.7 to 150 µg L−1, with a limit of detection of 0.5 µg L−1 using a deposition time of 120 s. An excellent reproducibility and repeatability with 0.3% (n = 3) and 1.5% (n = 15) relative standard deviation, respectively, were obtained. In addition, the suitability of the SPCE as sensing unit has been successfully assessed in a wastewater certificated reference material with remarkable trueness and very good reproducibility.
Collapse
|
16
|
|
17
|
Enhanced voltammetric determination of metal ions by using a bismuthene-modified screen-printed electrode. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.137144] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
18
|
Zhao G, Sedki M, Ma S, Villarreal C, Mulchandani A, Jassby D. Bismuth Subcarbonate Decorated Reduced Graphene Oxide Nanocomposite for the Sensitive Stripping Voltammetry Analysis of Pb(II) and Cd(II) in Water. SENSORS (BASEL, SWITZERLAND) 2020; 20:E6085. [PMID: 33114759 PMCID: PMC7662973 DOI: 10.3390/s20216085] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/09/2020] [Accepted: 10/20/2020] [Indexed: 11/17/2022]
Abstract
In this paper, bismuth subcarbonate (BiO)2CO3-reduced graphene oxide nanocomposite incorporated in Nafion matrix ((BiO)2CO3-rGO-Nafion) was synthesized and further applied, for the first time, in the sensitive detection of Pb(II) and Cd(II) by square-wave anodic stripping voltammetry (SWASV). The as-synthesized nanocomposites were characterized by energy-dispersive spectroscopy (EDS), Raman spectroscopy, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). (BiO)2CO3 composite plays a key role in the improvement of the detection sensitivity, which can form multicomponent alloy with cadmium and lead. Additionally, the unique structure of rGO can enlarge the surface area and provide abundant active sites. Moreover, Nafion incorporation in the nanocomposite can effectively increase the adhesion and mechanical strength of the film, and further improve the preconcetration ability due to the cation-exchange capacity of its abundant sulfonate groups. As expected, the (BiO)2CO3-rGO/Nafion nanocomposite-modified glassy carbon electrode ((BiO)2CO3-rGO-Nafion/GCE) achieved low detection limits of 0.24 μg/L for Pb(II) and 0.16 μg/L for Cd(II), in the linear range of 1.0-60 μg/L, and showed some excellent performance, such as high stability, good selectivity, and sensitivity. Finally, synthetic water samples were prepared and further used to verify the practicability of the (BiO)2CO3-rGO-Nafion/GCE with satisfactory results.
Collapse
Affiliation(s)
- Guo Zhao
- College of Artificial Intelligence, Nanjing Agricultural University, Nanjing 210031, China;
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA
| | - Mohammed Sedki
- Materials Science and Engineering Program, University of California, Riverside, CA 92521, USA; (M.S.); (C.V.)
| | - Shengcun Ma
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA 90095, USA; (S.M.); (D.J.)
| | - Claudia Villarreal
- Materials Science and Engineering Program, University of California, Riverside, CA 92521, USA; (M.S.); (C.V.)
- Materials Science and Engineering, Instituto Tecnológico de Costa Rica, 30101 Cartago, Costa Rica
| | - Ashok Mulchandani
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA
- Center for Environmental Research and Technology (CE-CERT), University of California, Riverside, CA 92507, USA
| | - David Jassby
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA 90095, USA; (S.M.); (D.J.)
| |
Collapse
|
19
|
Díaz-Cruz JM, Serrano N, Pérez-Ràfols C, Ariño C, Esteban M. Electroanalysis from the past to the twenty-first century: challenges and perspectives. J Solid State Electrochem 2020; 24:2653-2661. [PMID: 32837295 PMCID: PMC7306008 DOI: 10.1007/s10008-020-04733-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 12/14/2022]
Abstract
A personal mini-review is presented on the history of electroanalysis and on their present achievements and future challenges. The manuscript is written from the subjective view of two generations of electroanalytical chemists that have witnessed for many years the evolution of this discipline.
Collapse
Affiliation(s)
- José Manuel Díaz-Cruz
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, E08028 Barcelona, Spain
- Water Research Institute (IdRA) of the University of Barcelona, Barcelona, Spain
| | - Núria Serrano
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, E08028 Barcelona, Spain
- Water Research Institute (IdRA) of the University of Barcelona, Barcelona, Spain
| | - Clara Pérez-Ràfols
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, E08028 Barcelona, Spain
- Department of Chemistry, School of Engineering Science in Chemistry, Biochemistry and Health, KTH Royal Institute of Technology, Teknikringen 30, SE-10044 Stockholm, Sweden
| | - Cristina Ariño
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, E08028 Barcelona, Spain
- Water Research Institute (IdRA) of the University of Barcelona, Barcelona, Spain
| | - Miquel Esteban
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, E08028 Barcelona, Spain
- Water Research Institute (IdRA) of the University of Barcelona, Barcelona, Spain
| |
Collapse
|
20
|
Preparation and Application of Bismuth/MXene Nano-Composite as Electrochemical Sensor for Heavy Metal Ions Detection. NANOMATERIALS 2020; 10:nano10050866. [PMID: 32365912 PMCID: PMC7279382 DOI: 10.3390/nano10050866] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 04/26/2020] [Accepted: 04/27/2020] [Indexed: 11/17/2022]
Abstract
A nano-form composite of MXenes (Ti3C2Tx, Tx = -O, -OH, -F) was synthesized through depositing bismuth-nanoparticle (BiNPs) onto Ti3C2Tx sheets. Because of the preventive effect of the two-dimensional layered structure of Ti3C2Tx, the nanoparticles of Bi were uniform and well attached on the Ti3C2Tx. The obtained BiNPs/Ti3C2Tx nano-composite was applied for sensors construction of electrochemical detecting of Pb2+ and Cd2+ heavy metal ions. The produced BiNPs@Ti3C2Tx-based sensor showed high effective surface area and excellent conductivity. Also, the BiNPs were efficient for anodic-stripping voltammetric to detect heavy metal ions. After conditions optimization, the BiNPs@Ti3C2Tx nano-sensor could detect Pb2+ and Cd2+ simultaneously and the detection limits were 10.8 nM for Pb2+ and 12.4 nM for Cd2+. The BiNPs@Ti3C2Tx was promising for detecting heavy metal ions due to their high surface area, fast electron-transfer ability, environmental friendliness, and facial preparation.
Collapse
|
21
|
Antuña-Jiménez D, González-García MB, Hernández-Santos D, Fanjul-Bolado P. Screen-Printed Electrodes Modified with Metal Nanoparticles for Small Molecule Sensing. BIOSENSORS 2020; 10:E9. [PMID: 32024126 PMCID: PMC7167755 DOI: 10.3390/bios10020009] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 01/29/2020] [Accepted: 01/29/2020] [Indexed: 01/24/2023]
Abstract
Recent progress in the field of electroanalysis with metal nanoparticle (NP)-based screen-printed electrodes (SPEs) is discussed, focusing on the methods employed to perform the electrode surface functionalization, and the final application achieved with different types of metallic NPs. The ink mixing approach, electrochemical deposition, and drop casting are the usual methodologies used for SPEs' modification purposes to obtain nanoparticulated sensing phases with suitable tailor-made functionalities. Among these, applications on inorganic and organic molecule sensing with several NPs of transition metals, bimetallic alloys, and metal oxides should be highlighted.
Collapse
Affiliation(s)
| | | | | | - Pablo Fanjul-Bolado
- Metrohm DropSens S.L., Edificio CEEI-Parque Tecnológico de Asturias, 33428 Llanera, Spain; (D.A.-J.); (M.B.G.-G.); (D.H.-S.)
| |
Collapse
|
22
|
He Y, Wang Z, Ma L, Zhou L, Jiang Y, Gao J. Synthesis of bismuth nanoparticle-loaded cobalt ferrite for electrochemical detection of heavy metal ions. RSC Adv 2020; 10:27697-27705. [PMID: 35516934 PMCID: PMC9055655 DOI: 10.1039/d0ra02522d] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 07/15/2020] [Indexed: 11/21/2022] Open
Abstract
As an efficient modified electrode material for the detection of heavy metal ions, bismuth nanoparticles (BiNPs) were loaded on cobalt ferrite (CoFe2O4), a unique magnetic photocatalytic material, to fabricate a highly sensitive sensor. The obtained BiNPs@CoFe2O4 nanocomposites showed excellent adsorption and electrical conductivity using a Square Wave Anodic Stripping Voltammetry (SWASV) detection method. Under optimized conditions, the BiNPs@CoFe2O4/GCE sensor could simultaneously determine Pb2+ and Cd2+, with detection limits of 7.3 and 8.2 nM, respectively. In addition, the BiNPs@CoFe2O4 exhibited acceptable reproducibility and good stability, which indicated great potential for the detection of heavy metal ions in reality. As an efficient modified electrode material for the detection of heavy metal ions, bismuth nanoparticles (BiNPs) were loaded on cobalt ferrite (CoFe2O4), a unique magnetic photocatalytic material, to fabricate a highly sensitive sensor.![]()
Collapse
Affiliation(s)
- Ying He
- School of Chemical Engineering and Technology
- Hebei University of Technology
- Tianjin
- P. R. China
| | - Zihan Wang
- School of Chemical Engineering and Technology
- Hebei University of Technology
- Tianjin
- P. R. China
| | - Li Ma
- School of Chemical Engineering and Technology
- Hebei University of Technology
- Tianjin
- P. R. China
| | - Liya Zhou
- School of Chemical Engineering and Technology
- Hebei University of Technology
- Tianjin
- P. R. China
| | - Yanjun Jiang
- School of Chemical Engineering and Technology
- Hebei University of Technology
- Tianjin
- P. R. China
| | - Jing Gao
- School of Chemical Engineering and Technology
- Hebei University of Technology
- Tianjin
- P. R. China
| |
Collapse
|
23
|
Using Electrode Made of Carbon Nanotubes and Bismuth Oxide for the Determination of Metal Concentration by Anodic Stripping Voltammetry. J CHEM-NY 2019. [DOI: 10.1155/2019/6170967] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have successfully manufactured a new electrode modified with bismuth oxide (Bi2O3) using carbon nanotubes (CNTs). The electrode was fabricated to detect cadmium (Cd), lead (Pb), and indium (In) by differential pulse anodic stripping voltammetry (DP-ASV). The electrode surface was studied by scanning electron microscopy (SEM), and the reduction and oxidation processes were studied by cyclic voltammetry (CV) techniques. Operational parameters such as electrode size, bismuth concentration, and electrolytic background were optimized. The DP-ASV method used fabricated electrodes with a linear response range from 1.5–20 μg·L−1 with Cd(II) and Pb(II) and 2.5–20 μg·L−1 with In(III); low detection limit (LOD) of 0.22 μg·L−1 with Cd(II), 0.65 μg·L−1 with In(III), and 0.26 μg·L−1 with Pb(II); and good repeatability with relative standard deviations (RSD) of 2.65%, 2.51%, and 3.34% with Cd(II), Pb(II), and In(III), respectively (n = 8). The electrode can be used to test the content of Cd(II), In(III), and Pb(II) in water.
Collapse
|
24
|
Abstract
The growing concern for sustainability and environmental preservation has increased the demand for reliable, fast response, and low-cost devices to monitor the existence of heavy metals and toxins in water resources. An electronic tongue (e-tongue) is a multisensory array mostly based on electroanalytical methods and multivariate statistical techniques to facilitate information visualization in a qualitative and/or quantitative way. E-tongues are promising analytical devices having simple operation, fast response, low cost, easy integration with other systems (microfluidic, optical, etc) to enable miniaturization and provide a high sensitivity for measurements in complex liquid media, providing an interesting alternative to address many of the existing environmental monitoring challenges, specifically relevant emerging pollutants such as heavy metals and toxins.
Collapse
|
25
|
Nuñez RN, Moreno Betancourth J, Ortiz PI, Pfaffen V. Voltammetric Quantification of 4-Nitrophenol Using a Multivariate Optimized Plated Bismuth Film Electrode. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b01700] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Rodrigo N. Nuñez
- INFIQC−CONICET and Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina
| | | | - Patricia I. Ortiz
- INFIQC−CONICET and Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Valeria Pfaffen
- INFIQC−CONICET and Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina
| |
Collapse
|
26
|
Yao Y, Wu H, Ping J. Simultaneous determination of Cd(II) and Pb(II) ions in honey and milk samples using a single-walled carbon nanohorns modified screen-printed electrochemical sensor. Food Chem 2019; 274:8-15. [DOI: 10.1016/j.foodchem.2018.08.110] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 08/02/2018] [Accepted: 08/24/2018] [Indexed: 10/28/2022]
|
27
|
Pérez-Ràfols C, Puy-Llovera J, Serrano N, Ariño C, Esteban M, Díaz-Cruz JM. A new multivariate standard addition strategy for stripping voltammetric electronic tongues: Application to the determination of Tl(I) and In(III) in samples with complex matrices. Talanta 2019; 192:147-153. [PMID: 30348371 DOI: 10.1016/j.talanta.2018.09.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/05/2018] [Accepted: 09/11/2018] [Indexed: 11/25/2022]
Abstract
A new multivariate standard addition strategy applicable to stripping methods was proposed as an extention of the classical univariate standard addition method for the resolution of complex samples involving overlapped peaks and complex matrices. The proposed strategy consists in alternate additions of the considered analytes and the further extrapolation to a simulated blank solution measured by skipping the preconcentration step (deposition time = 0). This calibration approach was successfully tested in tonic water samples spiked with Tl(I) and In(III) using a sensor array based on a SeCyst-SPCNFE and an ex-situ-BiSPCE, providing good concordance between replicates and much better accuracy than the usual multivariate external calibration method.
Collapse
Affiliation(s)
- Clara Pérez-Ràfols
- Departament d'Enginyeria Química i Química Analítica, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, E-08028 Barcelona, Spain
| | - Jaume Puy-Llovera
- Departament d'Enginyeria Química i Química Analítica, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, E-08028 Barcelona, Spain
| | - Núria Serrano
- Departament d'Enginyeria Química i Química Analítica, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, E-08028 Barcelona, Spain.
| | - Cristina Ariño
- Departament d'Enginyeria Química i Química Analítica, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, E-08028 Barcelona, Spain
| | - Miquel Esteban
- Departament d'Enginyeria Química i Química Analítica, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, E-08028 Barcelona, Spain
| | - José Manuel Díaz-Cruz
- Departament d'Enginyeria Química i Química Analítica, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, E-08028 Barcelona, Spain
| |
Collapse
|
28
|
Nafion-Protected Sputtered-Bismuth Screen-Printed Electrode for On-site Voltammetric Measurements of Cd(II) and Pb(II) in Natural Water Samples. SENSORS 2019; 19:s19020279. [PMID: 30641983 PMCID: PMC6359193 DOI: 10.3390/s19020279] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 02/05/2023]
Abstract
In this work, we explore the protection with Nafion of commercial sputtered-bismuth screen-printed electrodes (BiSPSPEs), to improve its ability for on-site determination of Cd(II) and Pb(II) ions in ambient water samples. The modified screen-printed platform was coupled with a miniaturized cell, in combination with a battery-operated stirring system and a portable potentiostat operated by a laptop for decentralized electrochemical measurements using Square-Wave Anodic Stripping Voltammetry (SWASV). We also describe a detailed electrode surface characterization by microscopy and surface analysis techniques, before and after the modification with Nafion, to get insight about modification effect on signal size and stability. Optimization of the chemical composition of the medium including the optimization of pH, and instrumental parameters, resulted in a method with detection limits in the low ng/mL range (3.62 and 3.83 ng·mL−1 for Cd and Pb respectively). Our results show an improvement of the sensitivity and stability for Nafion-protected BiSPSPEs in pH = 4.4 medium, and similar or lower detection limits than comparable methods on commercial BiSPSPEs. The values obtained for Pb(II) and Cd(II) in natural water samples agreed well with those obtained by the much more costly Inductively Coupled Plasma Mass Spectrometry, ICP-MS, technique as a reference method (recoveries from 75% to 111%).
Collapse
|
29
|
Kitte SA, Li S, Nsabimana A, Gao W, Lai J, Liu Z, Xu G. Stainless steel electrode for simultaneous stripping analysis of Cd(II), Pb(II), Cu(II) and Hg(II). Talanta 2019; 191:485-490. [DOI: 10.1016/j.talanta.2018.08.066] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/19/2018] [Accepted: 08/27/2018] [Indexed: 10/28/2022]
|
30
|
Green Synthesis of Ag Nanoparticles Using Grape Stalk Waste Extract for the Modification of Screen-Printed Electrodes. NANOMATERIALS 2018; 8:nano8110946. [PMID: 30453600 PMCID: PMC6266962 DOI: 10.3390/nano8110946] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 11/10/2018] [Accepted: 11/13/2018] [Indexed: 11/24/2022]
Abstract
The chemical synthesis of silver nanoparticles (Ag-NPs) by using an environmentally friendly methodology for their preparation is presented. Thus, considering that plants possess components that can act as reducing agents and stabilizers in nanoparticles’ production, the synthesis of Ag-NPs by using an extract aqueous solution of grape stalk waste as a reducing and capping agent is studied. First, the total polyphenols and reducing sugars contained in the produced extracts at different conditions are characterized. After that, Ag-NPs are synthesized regarding the interaction of Ag ions (from silver nitrate) and the grape stalk extract. The effect of temperature, contact time, extract/metal solution volume ratio and pH solution in the synthesis of metal nanoparticles are also studied. Different sets of nanoparticle samples are characterized by means of Electron Microscopy coupled with Energy Dispersive X-Ray for qualitative chemical identification. Ag-NPs with an average diameter of 27.7 ± 0.6 nm are selected to proof their suitability for sensing purposes. Finally, screen-printed electrodes modified with Ag-NPs are tested for the simultaneous stripping voltammetric determination of Pb(II) and Cd(II). Results indicate good reproducibility, sensitivity and limits of detection around 2.7 µg L−1 for both metal ions.
Collapse
|
31
|
Squissato AL, Almeida ES, Silva SG, Richter EM, Batista AD, Munoz RA. Screen-printed electrodes for quality control of liquid (Bio)fuels. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.08.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
32
|
Serrano N, Cetó X, Núñez O, Aragó M, Gámez A, Ariño C, Díaz-Cruz JM. Characterization and classification of Spanish paprika (Capsicum annuum L.) by liquid chromatography coupled to electrochemical detection with screen-printed carbon-based nanomaterials electrodes. Talanta 2018; 189:296-301. [PMID: 30086921 DOI: 10.1016/j.talanta.2018.06.085] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/25/2018] [Accepted: 06/27/2018] [Indexed: 10/28/2022]
Abstract
Screen-printed electrodes based on graphite, carbon nanotubes, carbon nanofibers, and graphene were tested as amperometric detectors for the determination of phenolic compounds by high performance liquid chromatography (HPLC). The chromatographic performance as well as the obtained sensitivity, detection and quantification limits suggest that carbon nanofibers modified screen-printed electrode (SPCE-CNF) is the amperometric sensor that provides the best analytical performance. Upon this confirmation, chromatographic data obtained using SPCE-CNF were exploited by means of linear discriminant analysis (LDA) to successfully characterize and classify 96 Spanish paprika (Capsicum annuum L.) samples with different origin and type: from La Vera (including sweet, bittersweet and spicy types) and from Murcia (including sweet and spicy types).
Collapse
Affiliation(s)
- Núria Serrano
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, E08028 Barcelona, Spain.
| | - Xavier Cetó
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, E08028 Barcelona, Spain
| | - Oscar Núñez
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, E08028 Barcelona, Spain; Research Institute in Food Nutrition and Food Safety, University of Barcelona, Av. Prat de la Riba 171, Edifici Recerca (Gaudí), E-08901 Santa Coloma de Gramanet, Barcelona, Spain; Serra Hunter Fellow, Generalitat de Catalunya, Spain
| | - Miriam Aragó
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, E08028 Barcelona, Spain
| | - Alejandro Gámez
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, E08028 Barcelona, Spain
| | - Cristina Ariño
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, E08028 Barcelona, Spain
| | - José Manuel Díaz-Cruz
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, E08028 Barcelona, Spain
| |
Collapse
|
33
|
Bobrowski A, Królicka A, Śliwa J, Zarębski J, Economou A, Kalcher K. Tellurium Film Electrodes Deposited on Carbon and Mesoporous Carbon Screen-printed Substrates for Anodic Stripping Voltammetric Determination of Copper. ELECTROANAL 2018. [DOI: 10.1002/elan.201800165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Andrzej Bobrowski
- Department of Building Materials Technology; Faculty of Materials Science and Ceramics; AGH University of Science and Technology; Mickiewicza 30 30-059 Krakow Poland
| | - Agnieszka Królicka
- Department of Building Materials Technology; Faculty of Materials Science and Ceramics; AGH University of Science and Technology; Mickiewicza 30 30-059 Krakow Poland
| | - Julia Śliwa
- Department of Building Materials Technology; Faculty of Materials Science and Ceramics; AGH University of Science and Technology; Mickiewicza 30 30-059 Krakow Poland
| | - Jerzy Zarębski
- Department of Building Materials Technology; Faculty of Materials Science and Ceramics; AGH University of Science and Technology; Mickiewicza 30 30-059 Krakow Poland
| | - Anastasios Economou
- Laboratory of Analytical Chemistry; Department of Chemistry; University of Athens; Athens 157 71 Greece
| | - Kurt Kalcher
- Institute of Chemistry; Analytical Chemistry; Karl-Franzens-University; Universitätsplatz 1 8010 Graz Austria
| |
Collapse
|
34
|
Tyszczuk-Rotko K, Madejska K, Domańska K. Ultrasensitive hexavalent chromium determination at bismuth film electrode prepared with mediator. Talanta 2018; 182:62-68. [DOI: 10.1016/j.talanta.2018.01.053] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 01/17/2018] [Accepted: 01/20/2018] [Indexed: 12/13/2022]
|
35
|
Al-Harbi EA, El-Shahawi MS. Square Wave-Anodic Stripping Voltammetric Determination of Copper at a Bismuth Film/Glassy Carbon Electrode Using 3-[(2-Mercapto-Vinyl)-Hydrazono]- 1,3-Dihydro-Indol-2-One. ELECTROANAL 2018. [DOI: 10.1002/elan.201800092] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Eman A. Al-Harbi
- Department of Chemistry, Faculty of Science; Taibah University; Al-Madina Al-Mounawara Saudi Arabia
| | - Mohammad S. El-Shahawi
- Department of Chemistry, Faculty of Science; King Abdulaziz University; Jeddah, P.O. Box 21589 Saudi Arabia
| |
Collapse
|
36
|
Screen-Printed Electrodes Modified with "Green" Metals for Electrochemical Stripping Analysis of Toxic Elements. SENSORS 2018; 18:s18041032. [PMID: 29596391 PMCID: PMC5948781 DOI: 10.3390/s18041032] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 03/27/2018] [Accepted: 03/28/2018] [Indexed: 12/30/2022]
Abstract
This work reviews the field of screen-printed electrodes (SPEs) modified with “green” metals for electrochemical stripping analysis of toxic elements. Electrochemical stripping analysis has been established as a useful trace analysis technique offering many advantages compared to competing optical techniques. Although mercury has been the preferred electrode material for stripping analysis, the toxicity of mercury and the associated legal requirements in its use and disposal have prompted research towards the development of “green” metals as alternative electrode materials. When combined with the screen-printing technology, such environment-friendly metals can lead to disposable sensors for trace metal analysis with excellent operational characteristics. This review focuses on SPEs modified with Au, Bi, Sb, and Sn for stripping analysis of toxic elements. Different modification approaches (electroplating, bulk modification, use of metal precursors, microengineering techniques) are considered and representative applications are described. A developing related field, namely biosensing based on stripping analysis of metallic nanoprobe labels, is also briefly mentioned.
Collapse
|
37
|
A voltammetric sensor for simultaneous determination of lead, cadmium and zinc on an activated carbon fiber rod. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2017.05.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
38
|
Puy-Llovera J, Pérez-Ràfols C, Serrano N, Díaz-Cruz JM, Ariño C, Esteban M. Selenocystine modified screen-printed electrode as an alternative sensor for the voltammetric determination of metal ions. Talanta 2017; 175:501-506. [DOI: 10.1016/j.talanta.2017.07.089] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 07/25/2017] [Accepted: 07/28/2017] [Indexed: 10/19/2022]
|
39
|
Voltammetric determination of metal ions beyond mercury electrodes. A review. Anal Chim Acta 2017; 990:11-53. [DOI: 10.1016/j.aca.2017.07.069] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 07/24/2017] [Accepted: 07/29/2017] [Indexed: 02/01/2023]
|
40
|
Kumar P, Kim KH, Bansal V, Lazarides T, Kumar N. Progress in the sensing techniques for heavy metal ions using nanomaterials. J IND ENG CHEM 2017. [DOI: 10.1016/j.jiec.2017.06.010] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
41
|
Bobrowski A, Maczuga M, Królicka A, Konstanteli E, Sakellaropoulou C, Economou A. Determination of Copper(II) Through Anodic Stripping Voltammetry in Tartrate Buffer Using an Antimony Film Screen-printed Carbon Electrode. ANAL LETT 2017. [DOI: 10.1080/00032719.2017.1319850] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Andrzej Bobrowski
- Faculty of Materials Science and Ceramics, Department of Building Materials Technology, AGH University of Science and Technology, Kraków, Poland
| | - Mariola Maczuga
- Faculty of Materials Science and Ceramics, Department of Building Materials Technology, AGH University of Science and Technology, Kraków, Poland
| | - Agnieszka Królicka
- Faculty of Materials Science and Ceramics, Department of Building Materials Technology, AGH University of Science and Technology, Kraków, Poland
| | - Evangelia Konstanteli
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, Athens, Greece
| | | | - Anastasios Economou
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, Athens, Greece
| |
Collapse
|
42
|
Šelešovská R, Martinková P, Štěpánková M, Navrátil T, Chýlková J. Comparison Study of Voltammetric Behavior of Muscle Relaxant Dantrolene Sodium on Silver Solid Amalgam and Bismuth Film Electrodes. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2017; 2017:3627428. [PMID: 29057139 PMCID: PMC5615959 DOI: 10.1155/2017/3627428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/18/2017] [Accepted: 08/02/2017] [Indexed: 06/07/2023]
Abstract
Voltammetric behavior of muscle relaxant dantrolene sodium (DAN) was studied and the voltammetric methods for its determination using polished and mercury meniscus modified silver solid amalgam electrodes (p-AgSAE and m-AgSAE) as well as using bismuth film electrode (BiFE, ex situ plating on GCE) have been proposed. These working electrodes represent the most commonly used alternatives to mercury ones which come wrongfully into disfavor because of alleged toxicity of mercury. Within this work, the obtained results of DAN determination have been completed by corresponding statistical parameters and also some electrochemical characteristics of AgSAEs and BiFE were assessed, especially in comparison with the mercury electrodes.
Collapse
Affiliation(s)
- Renáta Šelešovská
- Faculty of Chemical Technology, Institute of Environmental and Chemical Engineering, University of Pardubice, Studentská 573, 53210 Pardubice, Czech Republic
| | - Pavlína Martinková
- Faculty of Chemical Technology, Institute of Environmental and Chemical Engineering, University of Pardubice, Studentská 573, 53210 Pardubice, Czech Republic
| | - Michaela Štěpánková
- Faculty of Chemical Technology, Institute of Environmental and Chemical Engineering, University of Pardubice, Studentská 573, 53210 Pardubice, Czech Republic
| | - Tomáš Navrátil
- J. Heyrovsky Institute of Physical Chemistry of the CAS, v.v.i., Dolejškova 3, 182 23 Prague 8, Czech Republic
| | - Jaromíra Chýlková
- Faculty of Chemical Technology, Institute of Environmental and Chemical Engineering, University of Pardubice, Studentská 573, 53210 Pardubice, Czech Republic
| |
Collapse
|
43
|
Gusmão R, Sofer Z, Bouša D, Pumera M. Pnictogen (As, Sb, Bi) Nanosheets for Electrochemical Applications Are Produced by Shear Exfoliation Using Kitchen Blenders. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201706389] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Rui Gusmão
- Division of Chemistry & Biological Chemistry; School of Physical Mathematical Science; Nanyang Technological University; Singapore 637371 Singapore
| | - Zdeněk Sofer
- Department of Inorganic Chemistry; University of Chemistry and Technology Prague; Technicka 5 166 28 Prague 6 Czech Republic
| | - Daniel Bouša
- Department of Inorganic Chemistry; University of Chemistry and Technology Prague; Technicka 5 166 28 Prague 6 Czech Republic
| | - Martin Pumera
- Division of Chemistry & Biological Chemistry; School of Physical Mathematical Science; Nanyang Technological University; Singapore 637371 Singapore
| |
Collapse
|
44
|
Gusmão R, Sofer Z, Bouša D, Pumera M. Pnictogen (As, Sb, Bi) Nanosheets for Electrochemical Applications Are Produced by Shear Exfoliation Using Kitchen Blenders. Angew Chem Int Ed Engl 2017; 56:14417-14422. [PMID: 28755460 DOI: 10.1002/anie.201706389] [Citation(s) in RCA: 182] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 07/18/2017] [Indexed: 11/05/2022]
Abstract
Layered materials are of high importance because of their anisotropy and as a source of 2D materials. Whilst there is a plethora of multi-elemental 2D materials, the number mono-elemental 2D materials is rather limited. Herein, we demonstrate that aqueous shear exfoliation can be used to obtain As, Sb, and Bi exfoliated nanosheets. Morphological and chemical characterization of the exfoliated materials shows a decrease in thickness, sheet-to-nanosheet scale, and partial oxidation owing to a higher surface area. The electrochemical performance is tested in terms of inherent electrochemistry, electron transfer, and sensing applications as demonstrated with ascorbic acid. Potential energy-related applications are evaluated in the hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and oxygen reduction reaction (ORR), with shear-exfoliated Sb having the best electrochemical performance overall. These findings will have a profound impact on the preparation and application of 2D mono-elemental materials.
Collapse
Affiliation(s)
- Rui Gusmão
- Division of Chemistry & Biological Chemistry, School of Physical Mathematical Science, Nanyang Technological University, Singapore, 637371, Singapore
| | - Zdeněk Sofer
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, 166 28, Prague 6, Czech Republic
| | - Daniel Bouša
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, 166 28, Prague 6, Czech Republic
| | - Martin Pumera
- Division of Chemistry & Biological Chemistry, School of Physical Mathematical Science, Nanyang Technological University, Singapore, 637371, Singapore
| |
Collapse
|
45
|
Koudelkova Z, Syrovy T, Ambrozova P, Moravec Z, Kubac L, Hynek D, Richtera L, Adam V. Determination of Zinc, Cadmium, Lead, Copper and Silver Using a Carbon Paste Electrode and a Screen Printed Electrode Modified with Chromium(III) Oxide. SENSORS 2017; 17:s17081832. [PMID: 28792450 PMCID: PMC5580028 DOI: 10.3390/s17081832] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 07/28/2017] [Accepted: 08/04/2017] [Indexed: 01/08/2023]
Abstract
In this study, the preparation and electrochemical application of a chromium(III) oxide modified carbon paste electrode (Cr-CPE) and a screen printed electrode (SPE), made from the same material and optimized for the simple, cheap and sensitive simultaneous determination of zinc, cadmium, lead, copper and the detection of silver ions, is described. The limits of detection and quantification were 25 and 80 µg·L-1 for Zn(II), 3 and 10 µg·L-1 for Cd(II), 3 and 10 µg·L-1 for Pb(II), 3 and 10 µg·L-1 for Cu(II), and 3 and 10 µg·L-1 for Ag(I), respectively. Furthermore, this promising modification was transferred to the screen-printed electrode. The limits of detection for the simultaneous determination of zinc, cadmium, copper and lead on the screen printed electrodes were found to be 350 µg·L-1 for Zn(II), 25 µg·L-1 for Cd(II), 3 µg·L-1 for Pb(II) and 3 µg·L-1 for Cu(II). Practical usability for the simultaneous detection of these heavy metal ions by the Cr-CPE was also demonstrated in the analyses of wastewaters.
Collapse
Affiliation(s)
- Zuzana Koudelkova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno CZ-613 00, Czech Republic.
| | - Tomas Syrovy
- Department of Graphic Arts and Photophysics, University of Pardubice Doubravice 41, Pardubice CZ-533 53, Czech Republic.
- Center of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Cs. Legii square 565, Pardubice CZ-53002, Czech Republic.
| | - Pavlina Ambrozova
- Department of Geology and Pedology, Mendel University in Brno, Zemedelska 1, Brno CZ-613 00, Czech Republic.
| | - Zdenek Moravec
- Department of Chemistry, Masaryk University, Kotlarska 2, Brno CZ-61137, Czech Republic.
| | - Lubomir Kubac
- Center of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Cs. Legii square 565, Pardubice CZ-53002, Czech Republic.
- Centre for Organic Chemistry Ltd., Rybitvi 296, Rybitvi CZ-533 54, Czech Republic.
| | - David Hynek
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno CZ-613 00, Czech Republic.
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno CZ-612 00, Czech Republic.
| | - Lukas Richtera
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno CZ-613 00, Czech Republic.
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno CZ-612 00, Czech Republic.
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno CZ-613 00, Czech Republic.
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno CZ-612 00, Czech Republic.
| |
Collapse
|
46
|
Point-of-need simultaneous electrochemical detection of lead and cadmium using low-cost stencil-printed transparency electrodes. Anal Chim Acta 2017; 981:24-33. [DOI: 10.1016/j.aca.2017.05.027] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 05/21/2017] [Accepted: 05/31/2017] [Indexed: 02/01/2023]
|
47
|
Multi-element determination of metals and metalloids in waters and wastewaters, at trace concentration level, using electroanalytical stripping methods with environmentally friendly mercury free-electrodes: A review. Talanta 2017; 175:53-68. [PMID: 28842029 DOI: 10.1016/j.talanta.2017.06.077] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 06/27/2017] [Accepted: 06/30/2017] [Indexed: 01/28/2023]
Abstract
Nowadays, water is no longer regarded as an inexhaustible resource and the excessive release and proliferation of toxic metal(loid)s into aquatic environments has become a critical issue. Therefore, fast, accurate, simple, selective, sensitive and portable methodologies to detect multiple elements in natural waters is of paramount importance. Electrochemical stripping analysis is an efficient tool for trace metal(loid)s determinations and bring new prospects for answering the current environmental concerns. This review presents a survey of the advancements made between 2003 and 2016 on the development and application of non-toxic mercury free electrodes on the simultaneous analysis of metals and metalloids in waters and wastewaters by means of electroanalytical stripping techniques. The advantages, limitations, improvements and real applications of these "green" sensors are discussed from a critical point of view.
Collapse
|
48
|
Pérez-Ràfols C, Bastos-Arrieta J, Serrano N, Díaz-Cruz JM, Ariño C, de Pablo J, Esteban M. Ag Nanoparticles Drop-Casting Modification of Screen-Printed Electrodes for the Simultaneous Voltammetric Determination of Cu(II) and Pb(II). SENSORS 2017. [PMID: 28635631 PMCID: PMC5492509 DOI: 10.3390/s17061458] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A new silver nanoparticle modified screen-printed electrode was developed and applied to the simultaneous determination of Pb(II) and Cu(II). Two different types of silver nanoparticles with different shapes and sizes, Ag nanoseeds and Ag nanoprisms, were microscopically characterized and three different carbon substrates, graphite, graphene and carbon nanofibers, were tested. The best analytical performance was achieved for the combination of Ag nanoseeds with a carbon nanofiber modified screen-printed electrode. The resulting sensor allowed the simultaneous determination of Pb(II) and Cu(II) at trace levels and its applicability to natural samples was successfully tested with a groundwater certified reference material, presenting high reproducibility and trueness.
Collapse
Affiliation(s)
- Clara Pérez-Ràfols
- Departament d'Enginyeria Química i Química Analítica, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain.
| | - Julio Bastos-Arrieta
- Departament d'Enginyeria Química, Universitat Politècnica de Catalunya (UPC), Campus Diagonal Besòs, Edificio I (EEBE), Carrer Eduard Maristany 10-14, 08019 Barcelona, Spain.
- Barcelona Research Center for Multiscale Science and Engineering, 08019 Barcelona, Spain.
| | - Núria Serrano
- Departament d'Enginyeria Química i Química Analítica, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain.
| | - José Manuel Díaz-Cruz
- Departament d'Enginyeria Química i Química Analítica, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain.
| | - Cristina Ariño
- Departament d'Enginyeria Química i Química Analítica, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain.
| | - Joan de Pablo
- Departament d'Enginyeria Química, Universitat Politècnica de Catalunya (UPC), Campus Diagonal Besòs, Edificio I (EEBE), Carrer Eduard Maristany 10-14, 08019 Barcelona, Spain.
- Barcelona Research Center for Multiscale Science and Engineering, 08019 Barcelona, Spain.
- Fundació CTM Centre Tecnològic, Plaça de la Ciència 2, 08240 Manresa, Spain.
| | - Miquel Esteban
- Departament d'Enginyeria Química i Química Analítica, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain.
| |
Collapse
|
49
|
Pérez-Ràfols C, Trechera P, Serrano N, Díaz-Cruz JM, Ariño C, Esteban M. Determination of Pd(II) using an antimony film coated on a screen-printed electrode by adsorptive stripping voltammetry. Talanta 2017; 167:1-7. [PMID: 28340698 DOI: 10.1016/j.talanta.2017.01.084] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/25/2017] [Accepted: 01/30/2017] [Indexed: 10/20/2022]
|
50
|
Shi L, Li Y, Rong X, Wang Y, Ding S. Facile fabrication of a novel 3D graphene framework/Bi nanoparticle film for ultrasensitive electrochemical assays of heavy metal ions. Anal Chim Acta 2017; 968:21-29. [DOI: 10.1016/j.aca.2017.03.013] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 01/24/2017] [Accepted: 03/01/2017] [Indexed: 12/12/2022]
|