1
|
Wu M, Liu Y, Wu L, Hasell T, Luan F. Adsorption/photodegradation of methylene blue using a sulfur-1,3-diisopropenylbenzene copolymer. RSC Adv 2025; 15:13225-13234. [PMID: 40290751 PMCID: PMC12022749 DOI: 10.1039/d5ra01297j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Accepted: 04/12/2025] [Indexed: 04/30/2025] Open
Abstract
This study aims to utilize sulfur-1,3-diisopropenylbenzene (S-DIB) to develop a more cost-effective treatment method for dye-contaminated wastewater. The behavior and mechanisms of adsorption and photodegradation on the removal of methylene blue (MB) by S-DIB in water were studied systematically, including three isotherm model fitting tests, kinetics and thermodynamic analysis. With the optimization of the adsorption experimental conditions, the results revealed that S-DIB achieved a 96.53% removal percentage of MB at pH 11, initial dye concentration of 8 mg L-1, adsorbent dose of 20 mg, temperature of 293 K and contact time of 180 min. The adsorption data fitted well with the Langmuir isotherm and pseudo-second order models, with regression coefficients (R 2) of 0.9990 and 0.9993, respectively. Thermodynamic studies showed that the adsorption of MB by S-DIB was exothermic and spontaneous. Furthermore, S-DIB exhibited a unique photodegradation property in visible light regions with the removal of MB from water, offering a dual mechanism of adsorption and photodegradation, with a degradation efficiency is 94%. This work enhances the possibilities and potential for the application of sulfur-rich copolymers in wastewater treatments.
Collapse
Affiliation(s)
- Moyan Wu
- Department of Chemistry and Chemical Engineering, School of Pharmacy, Jiamusi University Jiamusi 154007 Heilongjiang China
| | - Yue Liu
- Department of Chemistry and Chemical Engineering, School of Pharmacy, Jiamusi University Jiamusi 154007 Heilongjiang China
| | - Lili Wu
- Department of Chemistry and Chemical Engineering, School of Pharmacy, Jiamusi University Jiamusi 154007 Heilongjiang China
| | - Tom Hasell
- Department of Chemistry, University of Liverpool Liverpool L69 7ZD UK
| | - Fang Luan
- Department of Chemistry and Chemical Engineering, School of Pharmacy, Jiamusi University Jiamusi 154007 Heilongjiang China
- Department of Chemistry, University of Liverpool Liverpool L69 7ZD UK
| |
Collapse
|
2
|
Bakhtiyari-Ramezani M, Ziveh N, Ghaemi N. Elucidating the synergistic effects of aeration and non-thermal plasma on the degradation pathways of specific pollutants in wastewater. Heliyon 2025; 11:e42190. [PMID: 39931462 PMCID: PMC11808686 DOI: 10.1016/j.heliyon.2025.e42190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 01/21/2025] [Accepted: 01/21/2025] [Indexed: 02/13/2025] Open
Abstract
Organic pollutants originating from industrial discharges pose significant threats to human health and ecological balance. Conventional pretreatment methods face challenges due to high costs, limited efficiency, and the generation of residual sludge. Non-thermal plasma (NTP) technology, a promising advanced oxidation process, has attracted substantial research interest for its potential to rapidly and effectively treat industrial wastewater. This study employed a dielectric barrier discharge (DBD) reactor to investigate the feasibility of low-cost, efficient industrial wastewater treatment through NTP-mediated pollutant degradation. NTP generates reactive oxygen and nitrogen species (RONS), capable of complete organic pollutant oxidation. Wastewater samples from Kaveh Industrial City underwent treatment in a DBD reactor to induce the formation of reactive agents. Water quality parameters, including turbidity, total dissolved solids (TDS), total suspended solids (TSS), chemical oxygen demand (COD), biochemical oxygen demand (BOD5), dissolved oxygen (DO), electrical conductivity (EC), and pH, were measured before and after synergetic plasma treatment. The combination of aeration/filtration and 90 min of plasma treatment significantly reduced turbidity compared to untreated wastewater. A 30-min NTP treatment coupled with aeration/filtration demonstrated superior efficiency in removing TDS and TSS, attributed to NTP-generated active species. Optimal COD and BOD5 removal was achieved through a 24-h aeration, adsorbent filtration, and 30-min NTP process. While standalone 30-min NTP treatment exhibited lower efficiency, the combined aeration/filtration system reduced EC and increased pH with extended plasma exposure. A comparative study of advanced oxidation processes showed that plasma treatment effectively reduced COD by 65 %. Plasma offers a cost-effective and efficient solution for wastewater treatment, despite slightly higher energy consumption. These findings underscore the potential of NTP as a viable strategy for industrial wastewater treatment. The integration of NTP with conventional pretreatment methods offers promising prospects for enhancing wastewater quality and environmental protection.
Collapse
Affiliation(s)
- Mahdiyeh Bakhtiyari-Ramezani
- Plasma Physics and Nuclear Fusion Research School, Nuclear Science and Technology Research Institute (NSTRI), Tehran, Iran
| | - Narges Ziveh
- Water and Wastewater Department, Knowledge-Intensive Plasma Technology Development Company, Tehran, Iran
| | - Navid Ghaemi
- Plasma Physics Department, Knowledge-Intensive Plasma Technology Development Company, Tehran, Iran
| |
Collapse
|
3
|
Nguyen VC, Nguyen TD, Thanh Hoai Ta Q, Pham ALH. Hierarchical structures of GO-supported BiBTC MOFs for efficient RhB photodegradation. RSC Adv 2025; 15:2779-2791. [PMID: 39871974 PMCID: PMC11771327 DOI: 10.1039/d4ra08337g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/18/2025] [Indexed: 01/29/2025] Open
Abstract
This study, we synthesized a graphene oxide@BiBTC MOF (GO@BiBTC) photocatalyst in situ using a hydrothermal method. The resulting samples were comprehensively characterized using FT-IR, Raman spectra, XRD, SEM, TEM, XPS and UV-Vis spectroscopy. The photodegradation reaction fits the pseudo-first-order kinetics and the deterioration rate constants (k) value of BiBTC, GO@BiBTC MOF composites were 0.03 and 0.07 min-1, respectively. The GO@BiBTC MOF composite demonstrated a reduced energy band gap compared to BiBTC, with values of 3.39 eV and 3.6 eV, respectively. Among the various samples, the optimized GO@BiBTC MOF demonstrated superior photocatalytic performance, achieving a 98% degradation rate of rhodamine B (RhB) within 60 min, outperforming the pure BiBTC MOF. The significantly enhanced photocatalytic activity of BiBTC@GO can be attributed to its enhanced charge transfer and adsorption-(photo) degradation. Furthermore, the outstanding photo-stability of the GO@BiBTC MOF photocatalyst was investigated by conducting recycling measurements consecutively over five cycles for RhB with 90% photodegrading efficiency.
Collapse
Affiliation(s)
- Van Cuong Nguyen
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City No. 12 Nguyen Van Bao Street Ward 1 Go Vap District Ho Chi Minh City Vietnam
| | - Trinh Duy Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University Ho Chi Minh City Vietnam
| | - Qui Thanh Hoai Ta
- Institute of Chemical Technology, Vietnam Academy of Science and Technology 1A TL29 Street, Thanh Loc Ward, District 12 Ho Chi Minh City Vietnam
| | - Ai Le Hoang Pham
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City No. 12 Nguyen Van Bao Street Ward 1 Go Vap District Ho Chi Minh City Vietnam
| |
Collapse
|
4
|
Jiang R, Zhong D, Xu Y, He Y, Zhang J, Liao P. Chitosan-derived N-doped carbon supported Cu/Fe co-doped MoS 2 nanoparticles as peroxymonosulfate activator for efficient dyes degradation. Int J Biol Macromol 2024; 278:134352. [PMID: 39094868 DOI: 10.1016/j.ijbiomac.2024.134352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/17/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Peroxymonosulfate (PMS), which is dominated by free radical (SO4•-) pathway, has a good removal effect on organic pollutants in complex water matrices. In this article, a new catalyst (CFM@NC) was synthesized by hydrothermal carbonization method with chitosan (CS) as N and C precursors, and used to activate PMS to degrade dye wastewater. CFM@NC/PMS system can degrade 50 mg·L-1 rhodamine B by 99.59 % within 30 min, and the degradation rate remains as high as 97.32 % after 5 cycles. It has good complex background matrices, acid-base anti-interference ability (pH 2.6-10.1), universality and reusability. It can degrade methyl orange and methylene blue by >98 % within 30 min. The high efficiency of the composite is due to the fact that CS-modified MoS2 as a carrier exposes a large number of active sites, which not only disperses CuFe2O4 nanoparticles and improves the stability of the catalyst, but also provides abundant electron rich groups, which promotes the activation of PMS and the production of reactive oxygen species (ROS). PMS is effectively activated by catalytic sites (Cu+/Cu2+, Fe2+/Fe3+, Mo4+/Mo6+, pyridine N, pyrrole N, edge sulfur and hydroxyl group) to produce a large number of radicals to attack RhB molecules, causing chromophore cleavage, ring opening, and mineralization. Among them, free radical SO4•- is the main ROS for RhB degradation. This work is expected to provide a new idea for the design and synthesis of environmentally friendly and efficient heterogeneous catalysts.
Collapse
Affiliation(s)
- Ran Jiang
- School of Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Dengjie Zhong
- School of Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China.
| | - Yunlan Xu
- School of Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Yuanzhen He
- School of Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Jiayou Zhang
- School of Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Pengfei Liao
- School of Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| |
Collapse
|
5
|
Kamenická B, Kuchtová G. Critical review on electrooxidation and chemical reduction of azo dyes: Economic approach. CHEMOSPHERE 2024; 363:142799. [PMID: 38986779 DOI: 10.1016/j.chemosphere.2024.142799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/01/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
Effective degradation technologies have been extensively investigated and used to remove azo dyes from wastewater for decades. However, no review dealing with both electrooxidation and chemical reduction of azo dyes from an economic and, therefore, application-relevant perspective has been found in the current literature. A novelty of this review article consists not only in the brief summarization and comparison of both methods but mainly in the evaluation of their economic side. Based on the literature survey of the last 15 years, the costs of treatment approaches published in individual research articles have been summarized, and the missing data have been calculated. A broad spectrum of advanced electrode materials and catalysts have been developed and tested for the treatment, specifically aiming to enhance the degradation performance. An outline of the global prices of electrode materials, reducing agents, and basic chemicals is involved. All additional costs are described in depth in this review. The advantages and disadvantages of respective methods are discussed. It was revealed that effective and cheap treatment approaches can be found even in advanced degradation methods. Based on the collected data, electrooxidation methods offer, on average, 30 times cheaper treatment of aqueous solutions. Concerning chemical reduction, only ZVI provided high removal of azo dyes at prices <100 $ per kg of azo dye. The factors affecting total prices should also be considered. Therefore, the basic diagram of the decision-making process is proposed. In the conclusion, challenges, future perspectives, and critical findings are described.
Collapse
Affiliation(s)
- Barbora Kamenická
- Institute of Environmental and Chemical Engineering, University of Pardubice, Studentská 573, 532 10, Pardubice, Czech Republic
| | - Gabriela Kuchtová
- Institute of Environmental and Chemical Engineering, University of Pardubice, Studentská 573, 532 10, Pardubice, Czech Republic.
| |
Collapse
|
6
|
Kumar GS, Reddy NR, Siddiqui QT, Yusuf K, Pabba DP, Sai Kumar A, Kim JS, Joo SW. A facile green synthesis of gold nanoparticles using Canthium parviflorum extract sustainable and energy efficient photocatalytic degradation of organic pollutants for environmental remediation. ENVIRONMENTAL RESEARCH 2024; 258:119471. [PMID: 38914256 DOI: 10.1016/j.envres.2024.119471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/06/2024] [Accepted: 06/19/2024] [Indexed: 06/26/2024]
Abstract
Organic dye and nitrophenol pollution from textiles and other industries present a substantial risk to people and aquatic life. One of the most essential remediation techniques is photocatalysis, which uses the strength of visible light to decolorize water. The present study reports Canthium Parviflorum (CNP) leaf extract utilization as an effective bio-reductant for green synthesis of Au NPs. A simple, eco-friendly process with low reaction time and temperature was adopted to synthesize CNP extract-mediated Au-NPs (CNP-AuNPs). The prepared AuNPs characterization involving X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), energy-dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron microscopy (XPS) surface area analysis, ultraviolet-visible spectroscopy (UV-Vis). XRD results showed that the cubic-structured AuNPs had a crystallite size of 14.12 nm. Assessment of organic dyes performance in degrading brilliant green (BTG) and amido black 10B (AMB) under visible light irradiation highlights an impressive 83.25% and 86% degradation efficiency within 120 min, accompanied by a kinetic rate constant dyes was found to be 0.0828 min⁻1, BTG, and 0.0123 min⁻1, Furthermore, the reduction of 4-nitrophenol by NaBH4 using CNP-AuNPs as a catalyst demonstrated good catalytic performance and rapid degradation at 89.4%. and rate constant 0.099 min-1 followed pseudo-first-order. The LC-MS analysis identified various intermediates during the degradation of the CR dye. Radical trapping experiments suggest that photogenerated free electrons and hydroxyl radicals are crucial for degrading the amido black 10B dye The AuNPs influenced the significant factors responsible for the photocatalytic activity, such as the increase in range of absorbance, increased e- and h+ pair separation, improvement in the charge transfer process, and active site formation, which significantly enhanced the process of degradation. We found that the CNP-AuNPs could effectively remove dyes and nitrophenol from industrial wastewater.
Collapse
Affiliation(s)
| | | | - Qamar Tabrez Siddiqui
- School of Chemical Engineering, Jeonbuk National University, Jeonju-si, 54896, Republic of Korea
| | - Kareem Yusuf
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Durga Prasad Pabba
- Departamento de Electricidad, Facultad de Ingeniería, Universidad Tecnológica Metropolitana (UTEM), Santiago, 7800002, Chile
| | - Arla Sai Kumar
- School of Mechanical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea; Department of Physics, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| | - Jong Su Kim
- Department of Physics, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| | - Sang Woo Joo
- School of Mechanical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|
7
|
Jeevarathinam M, Asharani IV. Synthesis of CuO, ZnO nanoparticles, and CuO-ZnO nanocomposite for enhanced photocatalytic degradation of Rhodamine B: a comparative study. Sci Rep 2024; 14:9718. [PMID: 38678108 PMCID: PMC11577056 DOI: 10.1038/s41598-024-60008-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/17/2024] [Indexed: 04/29/2024] Open
Abstract
Water pollution, arising from the presence of toxic dyes and chemicals, is a global challenge, urging the need for eco-friendly solutions in water decontamination. This study focused on the synthesis of copper oxide nanoparticles (CuO NPs), zinc oxide nanoparticles (ZnO NPs), and a bimetallic CuO-ZnO nanocomposite (CZ NC) through an environmentally friendly method employing Tragia involucrata L. leaf extract. Comprehensive analysis of structural and optical properties involved using various analytical techniques such as XRD, FT-IR, XPS, UV-DRS, PL, FE-SEM, EDAX, TEM, SAED, zeta potential, TGA, and BET. In comparison to pristine CuO and ZnO NPs, the CZ-NC demonstrated notably enhanced photocatalytic activity in the degradation of Rhodamine B dye (RhB). The optimum conditions for RhB degradation were found to be a pH of 9 and a catalyst dosage of 1 mg/mL for a concentration of 10 ppm. Under these conditions, CuO NPs, ZnO NPs, and CZ-NC demonstrated high efficiencies of 78%, 83%, and 96.1% respectively over 105 min. Through LC-HRMS, the identification of degradation products offered valuable insights into the pathway of photocatalytic degradation. Furthermore, toxicity analysis of intermediates, conducted through ECOSAR software, indicated the formation of non-toxic by-products (ChV/LC50/EC50 > 100) after the completion of the reaction. Furthermore, the recycled catalysts exhibited sustained stability for up to 4 cycles, with only a minor decrease in activity of up to 6.8%. This confirms their catalytic efficacy in purifying polluted water. This research significantly contributes to the progress of environmentally friendly nanocomposites, enhancing their efficacy in the realm of environmental remediation.
Collapse
Affiliation(s)
- M Jeevarathinam
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - I V Asharani
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
8
|
Phonlakan K, Pornsuwan S, Nijpanich S, Budsombat S. Co 2+-adsorbed chitosan-grafted-poly(acrylic acid) hydrogel as peroxymonosulfate activator for effective dye degradation. Int J Biol Macromol 2024; 265:130922. [PMID: 38518932 DOI: 10.1016/j.ijbiomac.2024.130922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 03/24/2024]
Abstract
In this work, chitosan-grafted-poly(acrylic acid) (CS-g-PAA) was synthesized for use as a Co2+ adsorbent and circularly utilized as a peroxymonosulfate (PMS) activator in the degradation of rhodamine B (RhB) dye. CS-g-PAA demonstrated 3.7 times higher adsorption capacity toward Co2+ than pristine chitosan. The impact of the adsorption conditions was evaluated. The pseudo-second-order kinetic model and the Langmuir isotherm model best described the adsorption process. Under optimum conditions, the adsorption capacity of CS-g-PAA for Co2+ was 212 mg/g. The Co2+-adsorbed CS-g-PAA hydrogel was further utilized in the RhB degradation process. The effects of catalyst dosage, initial RhB concentration, pH, and the coexistence of anions on the degradation of RhB were studied. The hydrogel catalyst could remove 98 % of RhB within 5 min, at a degradation rate of 0.624 per min. Electron paramagnetic resonance (EPR) analysis and the radical scavenger experiment suggested that SO4•-, HO•, 1O2, and O2•- were involved in the degradation. Furthermore, when tested in various water systems, high degradation efficiencies of 98 % were attained after 20 min. The hydrogel catalyst performed excellent degradation over ten cycles without any chemical recovery processes. Moreover, high degradation efficiencies were observed between 95 % and 98 % when tested with other dyes.
Collapse
Affiliation(s)
- Kunlarat Phonlakan
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Materials Chemistry Research Center, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Soraya Pornsuwan
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, 272 Rama VI Rd., Ratchathewi, Bangkok 10400, Thailand
| | - Supinya Nijpanich
- Synchrotron Light Research Institute (Public organization), Nakhonratchasima 30000, Thailand
| | - Surangkhana Budsombat
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Materials Chemistry Research Center, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
9
|
Jiang R, Zhong D, Xu Y, Chang H, He Y, Zhang J, Liao P. Chitosan derived N-doped carbon anchored Co 3O 4-doped MoS 2 nanosheets as an efficient peroxymonosulfate activator for degradation of dyes. Int J Biol Macromol 2024; 265:130519. [PMID: 38553393 DOI: 10.1016/j.ijbiomac.2024.130519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 04/18/2024]
Abstract
Peroxymonosulfate (PMS), which is dominated by non-free radical pathway, has a good removal effect on organic pollutants in complex water matrices. In this article, a biodegradable cobalt-based catalyst (Co3O4/MoS2@NCS) was synthesized by a simple hydrothermal method with chitosan (CS) as nitrogen‑carbon precursor and doped with Cobaltic‑cobaltous oxide (Co3O4) and Molybdenum disulfide (MoS2), and was used to activate PMS to degrade dye wastewater. Electrochemical tests showed that Co3O4/MoS2@NCS exhibited higher current density and cycling area than MoS2@NCS and MoS2. In the Co3O4/MoS2@NCS/PMS system, the degradation rate of 30 mg·L-1 rhodamine B (RhB) reached 97.75 % within 5 min, and kept as high as 94.34 % after 5 cycles. Its rate constant was 1.91 and 8.37 times that of MoS2@NCS/PMS and MoS2/PMS, respectively. It had good complex background matrices and acid-base anti-interference ability, and had good universality and reusability. The degradation rate of methyl orange (MO) and methylene blue (MB) were more than 91 % within 5 min at pH 4.8. The experimental results demonstrated that MoS2-modified CS as a carrier exposed a large number of active sites, which not only dispersed Co3O4 nanoparticles and improved the stability of the catalyst, but also provided abundant electron rich groups, and promoted the activation of PMS and the production of reactive oxygen species (ROS). PMS was effectively activated by catalytic sites (Co3+/Co2+, Mo4+/Mo5+/Mo6+, CO, pyridine N, pyrrole N, hydroxyl group and unsaturated sulfur), producing a large number of radicals that attack RhB molecules, causing chromophore cleavage, ring opening, and mineralization. Among them, non-free radical 1O2 was the main ROS for RhB degradation. This work is expected to provide a new idea for the design and synthesis of environmentally friendly and efficient MoS2-modified cobalt-based catalysts.
Collapse
Affiliation(s)
- Ran Jiang
- School of Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Dengjie Zhong
- School of Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China.
| | - Yunlan Xu
- School of Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Haixing Chang
- School of Resources & Environmental Science, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, China
| | - Yuanzhen He
- School of Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Jiayou Zhang
- School of Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Pengfei Liao
- School of Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| |
Collapse
|
10
|
Bandini E, Wicht K, Barbetta MFS, Eghbali H, Lynen F. Temperature-responsive comprehensive two-dimensional liquid chromatography coupled to high resolution mass spectrometry for the elucidation of the oxidative degradation processes of chemicals of environmental concern. J Chromatogr A 2024; 1719:464765. [PMID: 38417374 DOI: 10.1016/j.chroma.2024.464765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/01/2024]
Abstract
This study explores the possibilities offered by temperature-responsive liquid chromatography (TRLC) based comprehensive 2-dimensional liquid chromatography in combination with reversed-phase liquid chromatography (RPLC) for the analysis of degradation products formed upon oxidative treatment of persistent organic pollutants, in this case exemplified through carbamazepine (CBZ). The TRLC×RPLC combination offers the possibility to overcome peak overlap and incomplete separation encountered in 1D approaches, while the transfer of the purely aqueous mobile phase leads to refocusing of all analytes on the second dimension column. Consequently, this allows for about method-development free and hence, easier LC×LC. The study focuses on the oxidative degradation of CBZ, a compound of environmental concern due to its persistence in water bodies. The TRLC×RPLC combination effectively separates and identifies CBZ and its degradation products, while offering improved selectivity over the individual TRLC or RPLC separations. This allows gathering more understanding of the degradation cascade and allows real-time monitoring of the appearance and disappearance of various degradation products. The compatibility with high-resolution mass spectrometry is last shown, enabling identification of 21 CBZ-related products, nine of which were not previously reported in CBZ degradation studies. The approach's simplicity, optimization-free aspects, and ease of use make it a promising tool for the analysis of degradation pathways in environmental contaminants.
Collapse
Affiliation(s)
- Elena Bandini
- Separation Science Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4bis, B-9000 Ghent, Belgium
| | - Kristina Wicht
- Separation Science Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4bis, B-9000 Ghent, Belgium
| | - Maike Felipe Santos Barbetta
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901, Ribeirão Preto, SP, Brazil
| | - Hamed Eghbali
- Packaging and Specialty Plastics R&D, Dow Benelux B.V., Terneuzen, 4530 AA, the Netherlands
| | - Frédéric Lynen
- Separation Science Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4bis, B-9000 Ghent, Belgium.
| |
Collapse
|
11
|
Millbern Z, Trettin A, Wu R, Demmler M, Vinueza NR. Synthetic dyes: A mass spectrometry approach and applications. MASS SPECTROMETRY REVIEWS 2024; 43:327-344. [PMID: 36353972 DOI: 10.1002/mas.21818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/03/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Synthetic dyes are found in a wide variety of applications today, including but not limited to textiles, foods, and medicine. The analysis of these molecules is pertinent to several fields such as forensics, environmental monitoring, and quality control, all of which require the sensitivity and selectivity of analysis provided by mass spectrometry (MS). Recently, there has been an increase in the implementation of MS evaluation of synthetic dyes by various methods, with the majority of research thus far falling under electrospray ionization and moving toward direct ionization methods. This review covers an overview of the chemistry of synthetic dyes needed for the understanding of MS sample preparation and spectral results, current fields of application, ionization methods, and fragmentation trends and works that have been reported in recent years.
Collapse
Affiliation(s)
- Zoe Millbern
- Department of Textile Engineering, Chemistry, and Science, North Carolina State University, Raleigh, North Carolina, USA
| | - Alison Trettin
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina, USA
| | - Rachel Wu
- Department of Textile Engineering, Chemistry, and Science, North Carolina State University, Raleigh, North Carolina, USA
| | - Morgan Demmler
- Department of Textile Engineering, Chemistry, and Science, North Carolina State University, Raleigh, North Carolina, USA
| | - Nelson R Vinueza
- Department of Textile Engineering, Chemistry, and Science, North Carolina State University, Raleigh, North Carolina, USA
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
12
|
P Rayaroth M, Aubry O, Rabat H, Marilleau E, Gru Y, Hong D, Brault P. Degradation and transformation of carbamazepine in aqueous medium under non-thermal plasma oxidation process. CHEMOSPHERE 2024; 352:141449. [PMID: 38354864 DOI: 10.1016/j.chemosphere.2024.141449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/22/2023] [Accepted: 02/10/2024] [Indexed: 02/16/2024]
Abstract
Carbamazepine (CBZ) is a pharmaceutical compound detected in various water resources. With a view to removing this contaminant, the applicability of non-thermal plasma (NTP) oxidation process has been widely tested in recent years. This study utilized NTP from a dielectric barrier discharge reactor in the treatment of CBZ. NTP on the surface of a water sample containing 25 mg.L-1 of CBZ resulted in a removal efficiency of over 90% with an energy yield of 0.19 g. (kWh)-1. On the other hand, a rapid reduction in pH and an increase of conductivity and nitrate/nitrite ions concentration were observed during the degradation. The applied voltage amplitude significantly affected the removal efficiency and the energy yield as the degradation efficiency was 55%, 70%, and 72% respectively with an applied voltage of 8, 10, and 12 kV. The water matrices containing inorganic anions such as chloride and carbonate ions reduced the removal efficiency by scavenging the reactive species. Accordingly, a reduction in the removal efficiency was observed in tap water. The high-resolution mass spectrometry (HRMS) results revealed that both reactive oxygen and nitrogen species take part in the reaction process which yields many intermediate products including aromatic nitro-products. This study concluded that NTP can effectively degrade CBZ in both pure and tap water, but special attention must be paid to changes in the water quality parameters (pH, conductivity, and nitrate/nitrite ions) and the fate of nitro products.
Collapse
Affiliation(s)
- Manoj P Rayaroth
- GREMI, UMR 7344, CNRS, Université d'Orléans, 45067 Orléans, France; Department of Environmental Science, School of Science, GITAM (Deemed to be) University, Visakhapatnam, 530045, India.
| | - Olivier Aubry
- GREMI, UMR 7344, CNRS, Université d'Orléans, 45067 Orléans, France.
| | - Hervé Rabat
- GREMI, UMR 7344, CNRS, Université d'Orléans, 45067 Orléans, France
| | - Eloi Marilleau
- INOVALYS Vannes, 5 rue Denis Papin CS 20080, 56892 Saint-Avé, France
| | - Yvan Gru
- INOVALYS Nantes, Route de Gachet BP52703, 44327 Nantes Cedex 3, France; INOVALYS Tours, 3 rue de l'Aviation BP67357, 37073 Tours Cedex, France
| | - Dunpin Hong
- GREMI, UMR 7344, CNRS, Université d'Orléans, 45067 Orléans, France
| | - Pascal Brault
- GREMI, UMR 7344, CNRS, Université d'Orléans, 45067 Orléans, France
| |
Collapse
|
13
|
Barros de Souza A, Ali I, van de Goor T, Dewil R, Cabooter D. Comprehensive two-dimensional liquid chromatography with high resolution mass spectrometry to investigate the photoelectrochemical degradation of environmentally relevant pharmaceuticals and their degradation products in water. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:120023. [PMID: 38181683 DOI: 10.1016/j.jenvman.2024.120023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/26/2023] [Accepted: 01/02/2024] [Indexed: 01/07/2024]
Abstract
The widespread presence of organic micropollutants in the environment reflects the inability of traditional wastewater treatment plants to remove them. In this context, advanced oxidation processes (AOPs) have emerged as promising quaternary wastewater treatment technologies since they efficiently degrade recalcitrant components by generating highly reactive free radicals. Nonetheless, the chemical characterization of potentially harmful byproducts is essential to avoid the contamination of natural water bodies with hazardous substances. Given the complexity of wastewater matrices, the implementation of comprehensive analytical methodologies is required. In this work, the simultaneous photoelectrochemical degradation of seven environmentally relevant pharmaceuticals and one metabolite from the EU Watch List 2020/1161 was examined in ultrapure water and simulated wastewater, achieving excellent removal efficiencies (overall >95%) after 180 min treatment. The reactor unit was linked to an online LC sample manager, allowing for automated sampling every 15 min and near real-time process monitoring. Online comprehensive two-dimensional liquid chromatography (LC × LC) coupled with high resolution mass spectrometry (HRMS) was subsequently used to tentatively identify degradation products after photoelectrochemical degradation. Two reversed-phase liquid chromatography (RPLC) columns were used: an SB-C18 column operated with 5 mM ammonium formate at pH 5.8 (1A) and methanol (1B) as the mobile phases in the first dimension and an SB-Aq column using acidified water at pH 3.1 (2A) and acetonitrile (2B) as the mobile phases in the second dimension. This resulted in a five-fold increase in peak capacity compared to one-dimensional LC while maintaining the same total analysis time of 50 min. The LC x LC method allowed the tentative identification of 12 venlafaxine, 7 trimethoprim and 10 ciprofloxacin intermediates. Subsequent toxicity predictions suggested that some of these byproducts were potentially harmful. This study presents an effective hybrid technology for the simultaneous removal of pharmaceuticals from contaminated wastewater matrices and demonstrates how multidimensional liquid chromatography techniques can be applied to better understand the degradation mechanisms after the treatment of micropollutants with AOPs.
Collapse
Affiliation(s)
- Allisson Barros de Souza
- Agilent Technologies Deutschland, Hewlett-Packard-Strasse 8, 76337, Waldbronn, Germany; KU Leuven, Department of Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis, Herestraat 49, 3000, Leuven, Belgium
| | - Izba Ali
- InOpSys - Mobiele Waterzuivering voor Chemie en Farma, Maanstraat 9b, 2800, Mechelen, Belgium; KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, J. De Nayerlaan 5, 2860, Sint-Katelijne-Waver, Belgium
| | - Tom van de Goor
- Agilent Technologies Deutschland, Hewlett-Packard-Strasse 8, 76337, Waldbronn, Germany
| | - Raf Dewil
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, J. De Nayerlaan 5, 2860, Sint-Katelijne-Waver, Belgium; University of Oxford, Department of Engineering Science, Parks Road, Oxford, OX1 3PJ, United Kingdom
| | - Deirdre Cabooter
- KU Leuven, Department of Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis, Herestraat 49, 3000, Leuven, Belgium.
| |
Collapse
|
14
|
Shi Y, Zhang Y, Song G, Sun Y, Ding G. Efficient removal of organic pollutants by activation of peroxydisulfate with the magnetic CoFe 2O 4/carbon nanotube composite. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:6835-6846. [PMID: 38153579 DOI: 10.1007/s11356-023-31567-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 12/11/2023] [Indexed: 12/29/2023]
Abstract
A magnetic composite of CoFe2O4 and carbon nanotube (CNT) was prepared using the solvothermal approach and then employed for the activation of peroxydisulfate (PDS) to degrade reactive black 5 (RB5) and other organic pollutants. Characterization results of the composite catalyst revealed the successful loading of spherical CoFe2O4 particles on CNTs, possessing abundant porosity as well as magnetic separation capability. Under the degradation conditions of 0.2 g/L CoFe2O4-CNT dosage and 4 mM PDS dosage, the removal efficiencies of 10 mg/L RB5 and other pollutants were in the range of 94.5 to ~ 100%. The effects of pH, co-existing ions/humic acid, and water matrices as well as the reusability of the catalyst were also investigated in detail. Furthermore, the degradation mechanism and pathway were proposed based on quenching experiments, LC-MS analysis, and density functional theory (DFT) calculations, and the toxicity of the degradation products was evaluated in the quantitative structure-activity relationship approach.
Collapse
Affiliation(s)
- Yawei Shi
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Yi Zhang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Guobin Song
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Ya Sun
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Guanghui Ding
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China.
| |
Collapse
|
15
|
Jiang X, Zhou B, Wang J. Super-wetting and self-cleaning polyvinyl alcohol/sodium alginate nanofiber membrane decorated with MIL-88A(Fe) for efficient oil/water emulsion separation and dye degradation. Int J Biol Macromol 2023; 253:127205. [PMID: 37804898 DOI: 10.1016/j.ijbiomac.2023.127205] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/19/2023] [Accepted: 09/30/2023] [Indexed: 10/09/2023]
Abstract
Membrane separation is considered an effective approach to water purification. Nevertheless, membrane fouling dramatically decreases the separation efficiency and lifetime of membranes, thus limiting its further development and application. Herein, a multifunctional self-cleaning MIL-88A(Fe) decorated polyvinyl alcohol/sodium alginate (MIL-88A(Fe)@PVA-SA) nanofiber membrane was prepared by electrospinning and in-situ growth methods for the separation of oil/water emulsions and photo-Fenton degradation of dyes. The membrane possesses superhydrophilicity with a water contact angle (WCA) of 0° and superoleophobicity with underwater oil contact angle (UCA) of 161.7°, and exhibits superior separation efficiency (>99.5 %) and permeation flux (1140-2455 L/m2/h) for different oil/water emulsions. Moreover, the membrane exhibited an outstanding photo-Fenton performance under visible light, with degradation efficiencies (~99.9 %) towards methylene blue (MB) and reactive red 24 (RR24) within 90 min. Importantly, the membrane can be easily regenerated by simple rinsing and photo-Fenton self-cleaning treatment. In this study, MIL-88A(Fe)@PVA-SA nanofiber membrane has a promising application in dye removal and oil/water separation, providing a new idea to develop novel membrane materials.
Collapse
Affiliation(s)
- Xiaodong Jiang
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; College of Textiles and Clothing, Qingdao University, Qingdao 266071, China
| | - Baoming Zhou
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China.
| | - Jiankun Wang
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; School of Textile Science and Engineering, Yantai Nanshan University, Yantai 265713, China.
| |
Collapse
|
16
|
Rayaroth MP, Aravind UK, Boczkaj G, Aravindakumar CT. Singlet oxygen in the removal of organic pollutants: An updated review on the degradation pathways based on mass spectrometry and DFT calculations. CHEMOSPHERE 2023; 345:140203. [PMID: 37734498 DOI: 10.1016/j.chemosphere.2023.140203] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/23/2023]
Abstract
The degradation of pollutants by a non-radical pathway involving singlet oxygen (1O2) is highly relevant in advanced oxidation processes. Photosensitizers, modified photocatalysts, and activated persulfates can generate highly selective 1O2 in the medium. The selective reaction of 1O2 with organic pollutants results in the evolution of different intermediate products. While these products can be identified using mass spectrometry (MS) techniques, predicting a proper degradation mechanism in a 1O2-based process is still challenging. Earlier studies utilized MS techniques in the identification of intermediate products and the mechanism was proposed with the support of theoretical calculations. Although some reviews have been reported on the generation of 1O2 and its environmental applications, a proper review of the degradation mechanism by 1O2 is not yet available. Hence, we reviewed the possible degradation pathways of organic contaminants in 1O2-mediated oxidation with the support of density functional theory (DFT). The Fukui function (FF, f-, f+, and f0), HOMO-LUMO energies, and Gibbs free energies obtained using DFT were used to identify the active site in the molecule and the degradation mechanism, respectively. Electrophilic addition, outer sphere type single electron transfer (SET), and addition to the hetero atoms are the key mechanisms involved in the degradation of organic contaminants by 1O2. Since environmental matrices contain several contaminants, it is difficult to experiment with all contaminants to identify their intermediate products. Therefore, the DFT studies are useful for predicting the intermediate compounds during the oxidative removal of the contaminants, especially for complex composition wastewater.
Collapse
Affiliation(s)
- Manoj P Rayaroth
- Bigelow Laboratory for Ocean Sciences, 60 Bigelow Dr, East Boothbay, ME, 04544, USA.
| | - Usha K Aravind
- School of Environmental Studies, Cochin University of Science & Technology (CUSAT), Kochi 682022, Kerala, India
| | - Grzegorz Boczkaj
- Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Department of Sanitary Engineering, 80-233, Gdansk, G. Narutowicza 11/12 Str, Poland; EkoTech Center, Gdansk University of Technology, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland
| | - Charuvila T Aravindakumar
- School of Environmental Sciences, Mahatma Gandhi University, Kottayam 686560, Kerala, India; Inter University Instrumentation Centre (IUIC), Mahatma Gandhi University (MGU), Kottayam 686560, Kerala, India.
| |
Collapse
|
17
|
Abedini E, Roudgar-Amoli M, Alizadeh A, Shariatinia Z. S-scheme heterojunctions based on novel Sm 2CeMnO 6 double perovskite oxide and g-C 3N 4 with excellent photocatalytic dye degradation performances. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:114956-114984. [PMID: 37878171 DOI: 10.1007/s11356-023-30227-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/28/2023] [Indexed: 10/26/2023]
Abstract
It has become of utmost importance to preserve marine life and human health by protecting aquatic environments from contaminants. Therefore, using photocatalytic materials in treatment of contaminated water is a promising and innovative technique. Novel double perovskite Sm2CeMnO6 was synthesized through a modified Pechini sol-gel method. Also, urea and melamine were utilized to synthesize graphitic carbon nitride (g-C3N4). Combination of Sm2CeMnO6 and g-C3N4 produced several S-scheme heterojunction materials in diverse components ratios. Average crystallite sizes of Sm2CeMnO6 and Sm2CeMnO6/g-C3N4 (20:80) samples were calculated by Debye-Scherrer and Williamson-Hall methods to be 19.77, 22.72 nm and 42.01, 43.73 nm, respectively. The coexistence of g-C3N4 (002) with a d-spacing of 0.325 nm and Sm2CeMnO6 planes of (222), (111), and (400) with spacing values of 0.314, 0.302, and 0.294 nm, respectively, was depicted in the HR-TEM image of the Sm2CeMnO6/g-C3N4 (20:80). The estimated bandgaps for the g-C3N4, Sm2CeMnO6, and Sm2CeMnO6/g-C3N4 (20:80) were 2.70, 2.60, and 2.65 eV, respectively. Their application was investigated in photocatalytic degradation of methylene blue (MB) dye as typical pollutant. The estimated degradation pathway of MB was also provided through LC-MS analysis. Under the identical conditions, the best photocatalytic performance was found for Sm2CeMnO6/g-C3N4 (20:80) composite. Using response surface methodology (RSM), operational parameters of the photocatalytic degradation were modeled and optimized by the best composite through central composite design approach. Applying optimized parameters led to 96% degradation of MB (8 mg/L) at pH 10 under 120 min visible light irradiation (λ > 365 nm) using 0.15 g of Sm2CeMnO6/g-C3N4 (20:80) composite in 100 mL aqueous solution. Due to low intrinsic charge transfer resistance, modified Eg, and good performance in e‒/h+ pairs production, Sm2CeMnO6/g-C3N4 (20:80) nanocomposite was introduced as a promising S-scheme photocatalyst.
Collapse
Affiliation(s)
- Ebrahim Abedini
- Department of Chemistry, Amirkabir University of Technology (Tehran Polytechnic), P.O. Box, Tehran, 15875-4413, Iran
| | - Mostafa Roudgar-Amoli
- Department of Chemistry, Amirkabir University of Technology (Tehran Polytechnic), P.O. Box, Tehran, 15875-4413, Iran
| | - Amin Alizadeh
- Department of Chemistry, Amirkabir University of Technology (Tehran Polytechnic), P.O. Box, Tehran, 15875-4413, Iran
| | - Zahra Shariatinia
- Department of Chemistry, Amirkabir University of Technology (Tehran Polytechnic), P.O. Box, Tehran, 15875-4413, Iran.
| |
Collapse
|
18
|
Mengesha DN, Shiferraw BT, Kim H. Modification of the electronic structure of g-C 3N 4 using urea to enhance the visible light-assisted degradation of organic pollutants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:102910-102926. [PMID: 37676452 DOI: 10.1007/s11356-023-29692-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/31/2023] [Indexed: 09/08/2023]
Abstract
Graphitic carbon nitride has been proven to be a good candidate for using solar energy for photo-induced pollutant degradation. However, the high photo-induced holes-electron recombination rate, unfavorable morphology, and textural properties limited their application. In this study, we present a novel g-C3N4 with a novel electronic structure and physiochemical properties by introducing a single nitrogen in the graphitic network of the g-C3N4 through a novel method involving step-by-step co-polycondensation of melamine and urea. Through extensive characterization using techniques such as XPS, UPS-XPS, Raman, XRD, FE-SEM, TEM, and N2 adsorption-desorption, we analyze the electronic and crystallographic properties, as well as the morphology and textural features of the newly prepared g-C3N4 (N-g-C3N4). This material exhibits a lower C/N ratio of 0.62 compared to conventional g-C3N4 and a reduced band gap of 2.63 eV. The newly prepared g-C3N4 demonstrates a distinct valance band maxima that enhances its photo-induced oxidation potential, improving photocatalytic activity in degrading various organic pollutants. We thoroughly investigate the photocatalytic degradation performance of N-g-C3N4 for Congo red (CR) and sulfamethoxazole (SMX), and removal of up to 90 and 86% was attained after 2 h at solution pH of 5.5 for CR and SMX. The influence of different parameters was examined to understand the degradation mechanism and the influence of reactive oxygenated species. The catalytic performance is also evaluated in the degradation of various organic pollutants, and it showed a good performance.
Collapse
Affiliation(s)
- Daniel N Mengesha
- Department of Energy Science and Technology, Environmental Waste Recycle Institute, Myongji University, Yongin, Gyeonggi-do, 17058, Republic of Korea
- Department of Civil and Environmental Engineering and Institute of Construction and Environmental Engineering, Seoul National University, 1 Gwanak-ro Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Bezawit T Shiferraw
- Department of Energy Science and Technology, Environmental Waste Recycle Institute, Myongji University, Yongin, Gyeonggi-do, 17058, Republic of Korea
| | - Hern Kim
- Department of Energy Science and Technology, Environmental Waste Recycle Institute, Myongji University, Yongin, Gyeonggi-do, 17058, Republic of Korea.
| |
Collapse
|
19
|
Singh K, Maurya S, Gupta S, Ranjan N, Ramanathan G, Bhattacharya S. Effect of the Standardized ZnO/ZnO-GO Filter Element Substrate driven Advanced Oxidation Process on Textile Industry Effluent Stream: Detailed Analysis of Photocatalytic Degradation Kinetics. ACS OMEGA 2023; 8:28615-28627. [PMID: 37576672 PMCID: PMC10413481 DOI: 10.1021/acsomega.3c03122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 07/14/2023] [Indexed: 08/15/2023]
Abstract
A simple process of synthesizing coated filter element substrates (FES) containing zinc oxide (ZnO) nanorods and ZnO graphene-oxide nanocomposite for a pilot-scale industrial dye-effluent treatment plant is proposed. This work reports a detailed analysis of the photocatalysis mechanism on real industrial effluent streams containing a mixture of dyes. The analysis is very relevant for conducting advanced oxidation process-assisted effluent remediation at a field-level treatment operation. Estimation of the dye concentration shows nearly complete (≥98%) degradation from an initial dye sample concentration. A detailed study for the analysis of the initial reactive dyes and their degradation products was performed for quantification and identification of the degradation products through various spectral techniques. A design of the remediation mechanism through degradation pathways is proposed for characterizing the organic compounds in the degraded dye products. A regeneration and reusability study was performed on the FES presenting the durability of the FES-designed synthesis process originally for 11 cycles and regenerated FES for six cycles for achieving a threshold of 60% degradation efficiency. The experimental results demonstrate the efficacy of FES through the designed immobilized approach for the complete remediation of textile dye effluents for a 4 h treatment plant process and the consistent operability of the FES for the combined dye wastewater treatment operations.
Collapse
Affiliation(s)
- Kirtiman Singh
- Microsystems
Fabrication Lab, Department of Design, Indian
Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Shiwangi Maurya
- Department
of Chemistry, Indian Institute of Technology
Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Surabhi Gupta
- Department
of Medicinal Chemistry, National Institute
of Pharmaceutical Education and Research-Raebareli, Lucknow 226002, Uttar Pradesh, India
| | - Nihar Ranjan
- Department
of Medicinal Chemistry, National Institute
of Pharmaceutical Education and Research-Raebareli, Lucknow 226002, Uttar Pradesh, India
| | - Gurunath Ramanathan
- Department
of Chemistry, Indian Institute of Technology
Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Shantanu Bhattacharya
- Department
of Mechanical Engineering, Indian Institute
of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| |
Collapse
|
20
|
Chand M, Barthwal S, Rawat AS, Khanuja M, Rawat S. Enhancing Photocatalytic Efficiency of Spent Tea Leaf Powder on ZnIn 2S 4 Incorporation: Role of Surface Charge on Dye Degradation. ACS OMEGA 2023; 8:17880-17890. [PMID: 37251171 PMCID: PMC10210206 DOI: 10.1021/acsomega.3c00955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/21/2023] [Indexed: 05/31/2023]
Abstract
Photocatalytic degradation of dye contaminants using nanocomposite adsorbents has emerged as a promising solution for wastewater treatment. Owing to its abundant availability, eco-friendly composition, biocompatibility, and strong adsorption activity, spent tea leaf (STL) powder has been extensively explored as a viable dye-adsorbent material. In this work, we report spectacular enhancement in the dye-degradation properties of STL powder on incorporation of ZnIn2S4 (ZIS). The STL/ZIS composite was synthesized using a novel, benign, and scalable aqueous chemical solution method. Comparative degradation and reaction kinetics studies were performed onto an anionic dye, Congo red (CR), and two cationic dyes, Methylene blue (MB) and Crystal violet (CV). The degradation efficiencies of CR, MB, and CV dyes were obtained to be 77.18, 91.29, and 85.36%, respectively, using the STL/ZIS (30%) composite sample after the 120 min experiment. The spectacular improvement in the degradation efficiency of the composite was attributed to its slower charge transfer resistance (as concluded by the EIS study) and optimized surface charge (as concluded by ζ potential study). Scavenger tests and reusability tests deciphered the active species (•O2-) and reusability of the composite samples, respectively. To the best of our knowledge, this is the first report to demonstrate improvement in the degradation efficiency of STL powder on ZIS incorporation.
Collapse
Affiliation(s)
- Mool Chand
- Department
of Physics, Hemvati Nandan Bahuguna Garhwal
University (A Central University), Garhwal, Srinagar, Uttarakhand 246174, India
| | - Swapnil Barthwal
- Department
of Energy Science and Engineering, Indian
Institute of Technology (IIT) Delhi, New Delhi 110016, India
| | - Arun Singh Rawat
- Department
of Physics, Hemvati Nandan Bahuguna Garhwal
University (A Central University), Garhwal, Srinagar, Uttarakhand 246174, India
| | - Manika Khanuja
- Center
for Nanoscience and Nanotechnology, Jamia
Millia Islamia, New Delhi 110025, India
| | - Seema Rawat
- Department
of Physics, Zakir Hussain Delhi College, Jawahar Lal Nehru Marg, New Delhi 110002, India
| |
Collapse
|
21
|
Costante MR, García Einschlag FS. Assessment of key processes that govern the degradation of mixtures in photo-Fenton systems. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
22
|
Synthesis of Ag2CrO4/Ag/Fe3O4/RGO nanocomposite as a suitable photocatalyst for degradation of methylene blue in aqueous media: RSM modeling, kinetic and energy consumption studies. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
23
|
Construction of novel CdS@CuS/g-C3N4 heterojunctions for efficient visible light-driven photo-Fenton degradation performance. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Jung J, Kim J, Yoon S, Kumar Reddy PA, Hwang Y, Bae S. The role of Fe dissolution in olivine-hydroxylamine-induced Fenton reaction for enhanced oxidative degradation of organic pollutant. CHEMOSPHERE 2022; 306:135557. [PMID: 35780991 DOI: 10.1016/j.chemosphere.2022.135557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
In this study, a dye pollutant (methyl orange, MO) was effectively oxidized in a hydroxylamine (HA)-assisted Fenton system using various Al/Si/Fe- and Fe-containing minerals. The fastest degradation kinetics of MO were observed in the olivine-HA Fenton system, whereas other Al/Si/Fe and Fe-rich minerals (magnetite and lepidocrocite) demonstrated much slower degradation kinetics. The degradation rate constants were proportional to dissolved Fe(II) quantities in mineral suspensions (R2 = 0.98), indicating the crucial role of dissolved Fe(II) quantity in HA-assisted Fenton reactions. Radical scavenging and electron spin resonance results revealed that MO was dominantly oxidized by ·HO produced in the olivine-HA Fenton system. The continuous production of aqueous Fe(II) via direct Fe(II) dissolution at a pH of 3 and further Fe dissolution from the reductive dissolution of surface Fe(III) by HA was the main driving force for efficient MO degradation. Furthermore, lowering the pH by the addition of hydroxylamine hydrochloride resulted in the effective removal of MO under various pH conditions (3-9), indicating the additional advantage of HA use in Fenton reactions. Liquid chromatography-mass spectroscopy analysis revealed that the cleavage of C-N and C-C bonds, demethylation, hydroxylation, and dehydroxylation were the main processes for MO oxidation in the olivine-HA Fenton system.
Collapse
Affiliation(s)
- Jueun Jung
- Department of Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Joohyun Kim
- Department of Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea; School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Sunho Yoon
- Department of Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - P Anil Kumar Reddy
- Department of Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Yuhoon Hwang
- Department of Environmental Engineering, Seoul National University of Science and Technology, 01811, Seoul, Republic of Korea
| | - Sungjun Bae
- Department of Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea.
| |
Collapse
|
25
|
Mengesha DN, Kim H. Electronic structure modulation of multi-walled carbon nanotubes using azo dye for inducing non-radical reaction: Effect of graphitic nitrogen and structural defect. CHEMOSPHERE 2022; 307:136023. [PMID: 35973492 DOI: 10.1016/j.chemosphere.2022.136023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/27/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Multiwalled carbon nanotube (MWCNT) have a great potential for advanced oxidation process as a metal free catalyst. However, there catalytic activity is very low and needs to be appropriately tuned. Herein, we demonstrate a novel synthesis method for tuning the defect and surface functionality of MWCNT using azo dyes and the catalytic performance was tested for the degradation of different organic contaminates using PMS as an oxidant. The content, type of heteroatom functional groups, and the defect parameters were optimized by varying the pH and concentration of the organic dye. The quenching effect showed that singlet oxygen (1O2) is the primary reactive species generated by graphitic nitrogen, which can be boosted by the degree of graphitic structure disruption in MWCNT. The Linear sweep voltammetry (LSV) also confirmed that extrinsic doping enhanced the non-radical degradation by increasing the direct charge transfer rate from MB to PMS. Moreover, the designed catalyst showed a fast degradation performance with 35.1 kJ/mol activation energy and achieved the highest dye degradation rate and even surpassed some state-of-the-art metal-based and metal-free catalysts. The effect of inorganic anions study has also confirmed its industrial applicability.
Collapse
Affiliation(s)
- Daniel N Mengesha
- Department of Energy Science and Technology, Environmental Waste Recycle Institute, Myongji University, Yongin, Gyeonggi-do 17058, Republic of Korea
| | - Hern Kim
- Department of Energy Science and Technology, Environmental Waste Recycle Institute, Myongji University, Yongin, Gyeonggi-do 17058, Republic of Korea.
| |
Collapse
|
26
|
Gunawan G, Prasetya NBA, Haris A, Pratista E. Ferrate synthesis using NaOCl and its application for dye removal. OPEN CHEM 2022. [DOI: 10.1515/chem-2022-0223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Abstract
Ferrate salt is a powerful oxidant for dye degradation. This work demonstrates a new method for degrading dyes containing Fe(vi) by synthesizing NaOCl from the electrolysis of table salt. NaOCl is then reacted with Fe(OH)3 in an alkaline condition to form ferrate. Electrolysis of table salt was successfully carried out using platinum as an anode and zinc as a cathode. The obtained ferrate was characterized by using Fourier transform infrared, UV-Vis, and X-ray diffraction spectroscopy. The ferrate solution has a maximum wavelength of 505 nm with a characteristic purple color. Furthermore, the ferrate produced was utilized to remove methylene blue (MB), remazol black blue (RBB), and methyl orange (MO) dyes with varying contact times. The degraded dyes were then analyzed using LC/MS. The results showed that ferrate was effective to remove dyes with an optimum contact time of 60 min that follows an order one reaction. In this study, MB showed a percent degradation close to 100% with the fastest decolorization rate compared with MO and RBB. This research provides new insights into the benefits of table salt as a base material for NaOCl through electrolysis for synthesizing ferrate, used in dye removal applications.
Collapse
Affiliation(s)
- Gunawan Gunawan
- Department of Chemistry, Faculty of Science and Mathematics, Diponegoro University , Semarang 50275 , Central Java , Indonesia
| | - Nor Basid Adiwibawa Prasetya
- Department of Chemistry, Faculty of Science and Mathematics, Diponegoro University , Semarang 50275 , Central Java , Indonesia
| | - Abdul Haris
- Department of Chemistry, Faculty of Science and Mathematics, Diponegoro University , Semarang 50275 , Central Java , Indonesia
| | - Eka Pratista
- Department of Chemistry, Faculty of Science and Mathematics, Diponegoro University , Semarang 50275 , Central Java , Indonesia
| |
Collapse
|
27
|
Dynamics of Diffusion- and Immobilization-Limited Photocatalytic Degradation of Dyes by Metal Oxide Nanoparticles in Binary or Ternary Solutions. Catalysts 2022. [DOI: 10.3390/catal12101254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Photocatalytic degradation employing metal oxides, such as TiO2 nanoparticles, as catalysts is an important technique for the removal of synthetic dyes from wastewater under light irradiation. The basic principles of photocatalysis of dyes, the effects of the intrinsic photoactivity of a catalyst, and the conventional non-fundamental factors are well established. Recently reported photocatalysis studies of dyes in single, binary, and ternary solute solutions opened up a new perspective on competitive photocatalytic degradation of the dyes. There has not been a review on the photocatalytic behavior of binary or ternary solutions of dyes. In this regard, this current review article summarizes the photocatalytic behavior of methylene, rhodamine B, and methyl orange in their binary or ternary solutions. This brief overview introduces the importance of the dynamics of immobilization and reactivity of the dyes, the vital roles of molecular conformation and functional groups on their diffusion onto the catalyst surface, and photocatalytic degradation, and provides an understanding of the simultaneous photocatalytic processes of multiple dyes in aqueous systems.
Collapse
|
28
|
Srivastava P, Al-Obaidi SA, Webster G, Weightman AJ, Sapsford DJ. Towards passive bioremediation of dye-bearing effluents using hydrous ferric oxide wastes: Mechanisms, products and microbiology. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 317:115332. [PMID: 35617861 DOI: 10.1016/j.jenvman.2022.115332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/14/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
A novel, circular economy-inspired approach for the "passive" (non-powered and reagent-free) treatment of dye-bearing effluent is presented. The treatment utilises the biogeochemical interaction of dye-bearing wastewater with hydrous ferric oxide (HFO) bearing sludges. The work presented demonstrates for the first time the reuse of HFO-rich waste sludges from potable water and mine water treatment. The waste was used directly without modification or reagent addition, as media/substrate in simple flow-through reactors for the decolourisation and biodegradation of methyl orange (MO) and mixed dyes textile effluent. Three phases of exploratory proof of concept work were undertaken. Columns containing HFO sludges were challenged with solution of MO, and MO amended with glycerol (Phase I), MO in a synthetic textile effluent recipe (Phase II), and real mixed textile effluent containing a mixture of dyes (Phase III). After an initial lag period extensive decolourisation of dye was observed in all cases at rates comparable with pure strains and engineered bioreactor processes, with evidence of biodegradation beyond simple cleavage of the mono azo chromophore and mineralisation. The microbiology of the initial sludge samples in both cases exhibited a diverse range of iron oxidising and reducing bacteria. However, post experiment the microbiology of sludge evolved from being dominated by Proteobacteria to being dominated by Firmicutes. Distinct changes in the microbial community structure were observed in post-treatment MWTS and WTWS where genera capable of iron and sulphate reduction and/or aromatic amine degradation were identified. Average nitrogen removal rates for the columns ranged from 27.8 to 194 g/m3/day which is higher than engineered sequential anaerobic-aerobic bioreactor. Postulated mechanisms for the fast anaerobic decolourisation, biodegradation, and mineralisation of the dyes (as well nitrogen transformations) include various direct and indirect enzymatic and metabolic reactions, as well as reductive attack by continuously regenerated reductants such as Fe(II), HFO bound Fe(II), FeS, and HS-. The ability of iron reducers to degrade aromatic rings is also considered important in the further biodegradation and complete mineralisation of organic carbon. The study reveals that abundant and ubiquitous HFO-rich waste sludges, can be used without amendment, as a substrate in simple flow-through bioremediation system for the decolourisation and partial biodegradation of dyes in textile effluent.
Collapse
Affiliation(s)
- Pallavee Srivastava
- School of Engineering, Cardiff University, Queen's Building, The Parade, Cardiff, CF24 3AA, United Kingdom.
| | - Safaa A Al-Obaidi
- School of Engineering, Cardiff University, Queen's Building, The Parade, Cardiff, CF24 3AA, United Kingdom
| | - Gordon Webster
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, United Kingdom
| | - Andrew J Weightman
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, United Kingdom
| | - Devin J Sapsford
- School of Engineering, Cardiff University, Queen's Building, The Parade, Cardiff, CF24 3AA, United Kingdom
| |
Collapse
|
29
|
Auramine O UV Photocatalytic Degradation on TiO2 Nanoparticles in a Heterogeneous Aqueous Solution. Catalysts 2022. [DOI: 10.3390/catal12090975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Amongst the environmental issues throughout the world, organic synthetic dyes continue to be one of the most important subjects in wastewater remediation. In this paper, the photocatalytic degradation of the dimethylmethane fluorescent dye, Auramine O (AO), was investigated in a heterogeneous aqueous solution with 100 nm anatase TiO2 nanoparticles (NPs) under 365 nm light irradiation. The effect of irradiation time was systematically studied, and photolysis and adsorption of AO on TiO2 NPs were also evaluated using the same experimental conditions. The kinetics of AO photocatalytic degradation were pseudo-first order, according to the Langmuir–Hinshelwood model, with a rate constant of 0.048 ± 0.002 min−1. A maximum photocatalytic efficiency, as high as 96.2 ± 0.9%, was achieved from a colloidal mixture of 20 mL (17.78 μmol L−3) AO solution in the presence of 5 mg of TiO2 NPs. The efficiency of AO photocatalysis decreased nonlinearly with the initial concentration and catalyst dosage. Based on the effect of temperature, the activation energy of AO photocatalytic degradation was estimated to be 4.63 kJ mol−1. The effect of pH, additional scavengers, and H2O2 on the photocatalytic degradation of AO was assessed. No photocatalytic degradation products of AO were observed using UV–visible and Fourier transform infrared spectroscopy, confirming that the final products are volatile small molecules.
Collapse
|
30
|
Bhatti MA, Gilani SJ, Shah AA, Channa IA, Almani KF, Chandio AD, Halepoto IA, Tahira A, Bin Jumah MN, Ibupoto ZH. Effective Removal of Methylene Blue by Surface Alteration of TiO 2 with Ficus Carica Leaf Extract under Visible Light. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12162766. [PMID: 36014631 PMCID: PMC9416792 DOI: 10.3390/nano12162766] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 07/27/2022] [Accepted: 08/05/2022] [Indexed: 05/17/2023]
Abstract
The present study describes the use of a leaf extract from Ficus carica as a source of natural antioxidants for the surface alteration of bulk titanium dioxide (TiO2) in two steps. First, the hydro-thermal treatment of the bulk TiO2 material was carried out and followed by thermal annealing at 300 °C for 3 h in air. The role of the leaf extract of Ficus carica on the performance of the bulk TiO2 material for the removal of methylene blue (MB) was also studied. Various analytical techniques such as powder X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) were used to explore the crystalline structure, morphology, and composition. The bulk TiO2 material after the leaf-extract treatment exhibited mixed anatase and rutile phases, a flower-like morphology, and Ti, O, and C were its main elements. The average crystallite size was also calculated, and the obtained values for the bulk TiO2 material, 18.11 nm, and the treated bulk TiO2 material with various amounts, 5, 10, and 15 mL, of leaf extract were 16.4, 13.16, and 10.29 nm respectively. Moreover, Fourier-transform infrared spectroscopy validated the typical metal-oxygen bonds and strengthened the XRD results. The bulk TiO2 material chemically treated with Ficus carica has shown outstanding activity towards the degradation of MB under sunlight. The 15 mL of Ficus carica extract significantly enhanced the photocatalytic activity of the bulk TiO2 material towards the degradation of MB. The dye degradation efficiency was found to be 98.8%, which was experimentally proven by the Fourier Transform Infrared spectroscopoyy (FTIR) analysis. The obtained performance of the bulk TiO2 material with Ficus carica revealed excellent surface modifying properties for poorly-performing photocatalysts towards the degradation of synthetic dyes when used in their pristine form. The presented approach suggests that Ficus carica could be of great interest for tuning the surface properties of materials, either in the form of nano-size or bulk-phase in a particular application.
Collapse
Affiliation(s)
- Muhammad Ali Bhatti
- Institute of Environmental Sciences, University of Sindh Jamshoro, Jamshoro 76080, Sindh, Pakistan
| | - Sadaf Jamal Gilani
- Department of Basic Health Sciences, Preparatory Year, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Aqeel Ahmed Shah
- Thin Film and Wet Chemistry Lab, Department of Metallurgical Engineering, NED University of Engineering and Technology, Karachi 75270, Sindh, Pakistan
| | - Iftikhar Ahmed Channa
- Thin Film and Wet Chemistry Lab, Department of Metallurgical Engineering, NED University of Engineering and Technology, Karachi 75270, Sindh, Pakistan
| | - Khalida Faryal Almani
- Institute of Environmental Sciences, University of Sindh Jamshoro, Jamshoro 76080, Sindh, Pakistan
| | - Ali Dad Chandio
- Thin Film and Wet Chemistry Lab, Department of Metallurgical Engineering, NED University of Engineering and Technology, Karachi 75270, Sindh, Pakistan
| | - Imran Ali Halepoto
- Institute of Physics, University of Sindh, Jamshoro 76080, Sindh, Pakistan
| | - Aneela Tahira
- Dr. M.A Kazi Institute of Chemistry, University of Sindh, Jamshoro 76080, Sindh, Pakistan
| | - May Nasser Bin Jumah
- Biology Department, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
- Environment and Biomaterial Unit, Health Sciences Research Center, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
- Saudi Society for Applied Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Zafar Hussain Ibupoto
- Dr. M.A Kazi Institute of Chemistry, University of Sindh, Jamshoro 76080, Sindh, Pakistan
- Correspondence:
| |
Collapse
|
31
|
Removal of Methyl Violet from Aqueous Solution by Adsorption onto Halloysite Nanoclay: Experiment and Theory. TOXICS 2022; 10:toxics10080445. [PMID: 36006124 PMCID: PMC9412486 DOI: 10.3390/toxics10080445] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/24/2022] [Accepted: 08/01/2022] [Indexed: 11/25/2022]
Abstract
Methyl Violet (MV) was removed from aqueous solutions by adsorption onto halloysite nanoclay (HNC) employing equilibrium, kinetics, thermodynamic data, molecular modellingR (MD), and Monte Carlo (MC) simulations. The chosen experimental variables were pH, temperature, starting MV concentration, contact time, and adsorbent dosage. The adsorption rate was determined to increase with increasing contact time, initial dye concentration, pH, and temperature. The Langmuir, Freundlich, Temkin, and Dubinin–Radushkevich (D-R) isotherms were utilized to determine the adsorption capacity of HNC. The Langmuir equation matched equilibrium data better than the other models, whereas the pseudo-second-order model better described kinetic data, and thermodynamic analyses revealed that the adsorption process was spontaneous, endothermic, and physisorption-based. This study focused on two distinct molecular mechanics-based theoretical approaches (MC and MD). These techniques enabled a molecular comprehension of the interaction between the MV molecule and the halloysite surface. Theoretical results were consistent with experimental findings. The outcomes revealed that HNC is an excellent dye adsorbent for industrial effluents.
Collapse
|
32
|
den Uijl MJ, van der Wijst YJHL, Groeneveld I, Schoenmakers PJ, Pirok BWJ, van Bommel MR. Combining Photodegradation in a Liquid-Core-Waveguide Cell with Multiple-Heart-Cut Two-Dimensional Liquid Chromatography. Anal Chem 2022; 94:11055-11061. [PMID: 35905498 PMCID: PMC9366730 DOI: 10.1021/acs.analchem.2c01928] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Photodegradation greatly affects everyday life. It poses
challenges
when food deteriorates or when objects of cultural heritage fade,
but it can also create opportunities applied in advanced oxidation
processes in water purification. Studying photodegradation, however,
can be difficult because of the time needed for degradation, the inaccessibility
of pure compounds, and the need to handle samples manually. A novel
light-exposure cell, based on liquid-core-waveguide (LCW) technology,
was embedded in a multiple-heart-cut two-dimensional liquid chromatography
system by coupling the LCW cell to the multiple-heart-cut valve. The
sample was flushed from the heart-cut loops into the cell by an isocratic
pump. Samples were then irradiated using different time intervals
and subsequently transferred by the same isocratic pump to a second-dimension
sample loop. The mixture containing the transformation products was
then subjected to the second-dimension separation. In the current
setup, about 30–40% of the selected fraction was transferred.
Multiple degradation products could be monitored. Degradation was
found to be faster when a smaller sample amount was introduced (0.3
μg as compared to 1.5 μg). The system was tested with
three applications, that is, fuchsin, a 19th-century synthetic organic
colorant, annatto, a lipophilic food dye, and vitamin B complex.
Collapse
Affiliation(s)
- Mimi J den Uijl
- van 't Hoff Institute for Molecular Sciences, Analytical-Chemistry Group, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.,Centre for Analytical Sciences Amsterdam (CASA), Amsterdam, The Netherlands
| | - Yorn J H L van der Wijst
- van 't Hoff Institute for Molecular Sciences, Analytical-Chemistry Group, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.,Centre for Analytical Sciences Amsterdam (CASA), Amsterdam, The Netherlands
| | - Iris Groeneveld
- Centre for Analytical Sciences Amsterdam (CASA), Amsterdam, The Netherlands.,Amsterdam Institute for Molecular and Life Sciences, Division of Bioanalytical Chemistry, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081HZ Amsterdam, The Netherlands
| | - Peter J Schoenmakers
- van 't Hoff Institute for Molecular Sciences, Analytical-Chemistry Group, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.,Centre for Analytical Sciences Amsterdam (CASA), Amsterdam, The Netherlands
| | - Bob W J Pirok
- van 't Hoff Institute for Molecular Sciences, Analytical-Chemistry Group, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.,Centre for Analytical Sciences Amsterdam (CASA), Amsterdam, The Netherlands
| | - Maarten R van Bommel
- van 't Hoff Institute for Molecular Sciences, Analytical-Chemistry Group, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.,Centre for Analytical Sciences Amsterdam (CASA), Amsterdam, The Netherlands.,Amsterdam School for Heritage, Memory and Material Culture, Conservation and Restoration of Cultural Heritage, University of Amsterdam, P.O. Box 94552, 1090 GN, Amsterdam, The Netherlands
| |
Collapse
|
33
|
Karakurt H, Kartal OE. Investigation of photocatalytic activity of TiO 2 nanotubes synthesized by hydrothermal method. CHEM ENG COMMUN 2022. [DOI: 10.1080/00986445.2022.2103683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Hüseyin Karakurt
- Department of Chemical Engineering, Inonu University, Malatya, Turkey
| | - Ozlem Esen Kartal
- Department of Chemical Engineering, Inonu University, Malatya, Turkey
| |
Collapse
|
34
|
Yuan D, Liu G, Qi F, Wang J, Kou Y, Cui Y, Bai M, Li X. Kinetic study on degradation of micro-organics by different UV-based advanced oxidation processes in EfOM matrix. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:45314-45327. [PMID: 35143007 DOI: 10.1007/s11356-022-19087-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Effluent organic matter (EfOM) contains a large number of substances that are harmful to both the environment and human health. To avoid the negative effects of organic matter in EfOM, advanced treatment of organic matter is an urgent task. Four typical oxidants (H2O2, PS, PMS, NaClO) and UV-combined treatments were used to treat micro-contaminants in the presence or absence of EfOM, because the active radical species produced in these UV-AOPs are highly reactive with organic contaminants. However, the removal efficiency of trace contaminants was greatly affected by the presence of EfOM. The degradation kinetics of two representative micro-contaminants (benzoic acid (BA) and para chlorobenzoic acid (pCBA)) was significantly reduced in the presence of EfOM, compared to the degradation kinetics in its absence. Using the method of competitive kinetics, with BA, pCBA, and 1,4-dimethoxybenzene (DMOB) as probes, the radicals (HO·, SO4-·, ClO·) proved to be the key to reaction species in advanced oxidation processes. UV irradiation on EfOM was not primarily responsible for the degradation of micro-contaminants. The second-order rate constants of the EfOM with radicals were determined to be (5.027 ± 0.643) × 102 (SO4-·), (3.192 ± 0.153) × 104 (HO·), and 1.35 × 106 (ClO·) (mg C/L)-1 s-1. In addition, this study evaluated the production of three radicals based on the concept of Rct, which can better analyze its reaction mechanism.
Collapse
Affiliation(s)
- Donghai Yuan
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Guangyu Liu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Fei Qi
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Jinggang Wang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yingying Kou
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
| | - Yanqi Cui
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Minghui Bai
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Xinyu Li
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| |
Collapse
|
35
|
Use of a residue containing chromium(VI) for dye decomposition using an advanced oxidative process. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
Wu S, Yang Y, Deng S, Cao H, Liu Y, Yang T, Wu D, Wang C, Ma Z. A novel preparation process of straw-based iron material for enhanced persulfate activation of reactive black 5 degradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:34174-34185. [PMID: 35034317 DOI: 10.1007/s11356-022-18679-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
In this study, a new straw-iron composite material (ST@Fe) was synthesized through impregnation and freeze-drying process for persulfate (PS) activation to degrade reactive black 5 (RB5). Scanning electron microscope, Brunauer-Emmett-Teller, Fourier transform infrared spectrometry, and X-ray photoelectron spectroscopy confirmed that straw owns huge pore structure and varieties of organic functional groups, including hydroxyl carboxyl groups, which could effectively adsorb and complex iron ions. The interaction between the active iron particles in ST@Fe and straw generated Fe2+ for PS activation, effectively degrading over 94.80% of RB5 at an initial concentration of 20 ppm in 100 min with a specific degradation capacity of 18.97 min-1 per unit of iron ions. ST@Fe/PS system demonstrated high tolerance in a wide initial pH range, which could gradually attack the RB5 molecular structure and significantly reduce the mineralization of water. Quenching experiments and electron paramagnetic resonance demonstrated the efficient generation of ROS including sulfate radicals, hydroxyl radicals, and singlet oxygen, and confirmed the dominance of sulfate radicals in the degradation process. The continuous degradation capacity and reusability of ST@Fe were also evaluated, which proved that the contaminant could be effectively degraded even after multiple cycles in the simulated textile wastewater, indicating its potential for use in practical remediation. This work provided a new method for the preparation of modified functional materials for the degradation of organic pollutants in textile wastewater and posed a novel strategy for the utilization of waste biomass.
Collapse
Affiliation(s)
- Shuxuan Wu
- Key Laboratory of Poyang Lake Environment and Resource Utilization Ministry of Education School of Resources Environmental & Chemical Engineering, Nanchang University, Nanchang, 330031, China
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yu Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Sheng Deng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Huali Cao
- Key Laboratory of Poyang Lake Environment and Resource Utilization Ministry of Education School of Resources Environmental & Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Yunyan Liu
- Key Laboratory of Poyang Lake Environment and Resource Utilization Ministry of Education School of Resources Environmental & Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Tianxue Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Daishe Wu
- Key Laboratory of Poyang Lake Environment and Resource Utilization Ministry of Education School of Resources Environmental & Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Chuqiao Wang
- School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang, 330013, China
| | - Zhifei Ma
- Key Laboratory of Poyang Lake Environment and Resource Utilization Ministry of Education School of Resources Environmental & Chemical Engineering, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
37
|
Abdel-Salam MO, Yoon T. Cobalt-ferrite/Ag-fMWCNT hybrid nanocomposite catalyst for efficient degradation of synthetic organic dyes via peroxymonosulfate activation. ENVIRONMENTAL RESEARCH 2022; 205:112424. [PMID: 34838758 DOI: 10.1016/j.envres.2021.112424] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/12/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Abstract
The activation of peroxymonosulfate (PMS) by nanocatalysts has shown promise as an effective wastewater treatment protocol. Magnetic CoFe2O4/Ag-nanoparticles (NPs) anchored on functionalized multiwalled carbon nanotubes (fMWCNTs), a support material, were synthesized using a one-pot solvothermal method. The surface morphologies and physicochemical properties of the CoFe2O4/Ag-fMWCNT hybrid nanocomposite catalyst were investigated by powder X-ray diffraction analysis, field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, high-resolution transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and nitrogen adsorption-desorption isotherms. The activity of the nanocomposite combined with PMS (serving as an activator) toward the degradation of rhodamine B, methylene blue, methyl orange, and methyl red was investigated. The obtained optimal 0.02 g CoFe2O4/Ag-fMWCNTs exhibited the highest PMS activation performance, with a removal percentage of 100% for 20 ppm dye concentration at pH 6.5 within 14 min. In addition, the rhodamine B degradation product was investigated by analyzing the intermediate products by liquid chromatography/mass spectrometry (LC-MS). The homogeneous distribution of CoFe2O4/Ag NPs on fMWCNTs accelerated PMS activation and enhanced the catalytic degradation of dyes. The effects of the reaction parameters on the dye degradation efficiency were investigated by using different nanocatalysts (fMWCNTs, CoFe2O4/fMWCNTs, and CoFe2O4/Ag-fMWCNTs) as well as by varying the pH (3-11), dye concentration (10-50 mg/l), catalyst dose (0.002-0.3 g), and PMS dose (0.02-0.1 g). Quenching experiments revealed that sulfate radicals are primarily responsible for rhodamine B degradation. A plausible mechanism for catalytic PMS activation was also proposed. Complete decolorization occurred within the first few minutes of the reaction. Furthermore, the catalytic activity of the CoFe2O4/Ag-fMWCNT/PMS hybrid nanocomposite remained stable after five successive cycles. This study verifies the applicability of CoFe2O4/Ag-fMWCNTs as an ultrafast catalyst for the complete removal of persistent organic pollutants via PMS activation, revealing their promising application in wastewater treatment.
Collapse
Affiliation(s)
- M O Abdel-Salam
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea; Nanotechnology Research Center, Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo PO, 11727, Cairo, Egypt.
| | - Taeho Yoon
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| |
Collapse
|
38
|
Wu M, Lu L, Yang Y, Chang Y, Chen R, Li Y, Du J, Tao C, Liu Z, Liu Y, Gou L, Pan S, Ran D, Li J. A triethanolamine-assisted fabrication of stable Sb doped-SnO2/Ti electrode for electrocatalytic oxidation of rhodamine B. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
39
|
Introducing a flexible and Y-shaped tricarboxylic acid linker into functional complex: Photocatalytic dye degradation. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
40
|
Arora A, Sunaina, Wadhwa R, Jha M. Conversion of scrap iron into ultrafine α-Fe 2O 3 nanorods for the efficient visible light photodegradation of ciprofloxacin. NEW J CHEM 2022. [DOI: 10.1039/d2nj00245k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The present study illustrates a feasible approach of utilizing scrap iron for the synthesis of iron(ii) oxide.
Collapse
Affiliation(s)
- Arushi Arora
- Institute of Nano Science & Technology, Knowledge City, Sector 81, Mohali, Punjab-140306, India
| | - Sunaina
- Institute of Nano Science & Technology, Knowledge City, Sector 81, Mohali, Punjab-140306, India
| | - Ritika Wadhwa
- Institute of Nano Science & Technology, Knowledge City, Sector 81, Mohali, Punjab-140306, India
| | - Menaka Jha
- Institute of Nano Science & Technology, Knowledge City, Sector 81, Mohali, Punjab-140306, India
| |
Collapse
|
41
|
Meshram AA, Sontakke SM. Rapid reduction of real-time industry effluent using novel CuO/MIL composite. CHEMOSPHERE 2022; 286:131939. [PMID: 34426271 DOI: 10.1016/j.chemosphere.2021.131939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
In this study, a series of novel metal organic framework based composite materials was synthesized using a facile combustion synthesis method. The synthesized materials were characterized using standard analytical techniques for crystallite size, surface functional groups, surface area, porosity, optical properties, and particle size. The increase in the amount of CuO in the composite material resulted decrease in surface area and pore volume. The band-gap energy of the synthesized composites reduced with increase in the amount of CuO. Among the composite, 0.9 CuO:0.1 MIL displayed least emission intensity indicating lower electron-hole recombination and thereby superior charge separation of the material. The increase in the amount of CuO NPs in the composite resulted in increase in the average particle size and decrease in the zeta potential. As an application, the NaBH4-mediated reduction of Methyl orange dye was studied using the synthesized materials. The increased amount of CuO in the composite resulted in the higher activity of the material. Highest activity was observed with the composite containing 9:1 ratio of CuO and MIL, and this material was further used to investigate the reduction of methylene blue, Rhodamine B, 4-nitrophenol, 2-nitrophenol, and 2, 4-dichlorophenol. The material exhibited excellent activity for all the selected organic pollutants. Finally, the composite containing 9:1 ratio of CuO and MIL was employed for the reduction of a real-time industry effluent and the observed results were encouraging. The reusability aspect of the synthesized material was investigated. Based on the LC-MS analysis, a possible reduction mechanism is proposed.
Collapse
Affiliation(s)
- Anjali A Meshram
- Sharad's Lab (δ-Alpha Research Group), Department of Chemical Engineering, Birla Institute of Technology and Science, Pilani, K. K. Birla Goa Campus, Goa, 403726, India
| | - Sharad M Sontakke
- Sharad's Lab (δ-Alpha Research Group), Department of Chemical Engineering, Birla Institute of Technology and Science, Pilani, K. K. Birla Goa Campus, Goa, 403726, India.
| |
Collapse
|
42
|
Fabbri D, Bianco Prevot A. Analytical control in advanced oxidation processes: Surrogate models and indicators vs traditional methods. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
43
|
Floating Carbon-Doped TiO2 Photocatalyst with Metallic Underlayers Investigation for Polluted Water Treatment under Visible-Light Irradiation. Catalysts 2021. [DOI: 10.3390/catal11121454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In the current study, we analysed the influence of metallic underlayers on carbon-doped TiO2 films for RhB decomposition and Salmonella typhimurium inactivation under visible-light irradiation. All the experiments were divided into two parts. First, layered M/C-doped-TiO2 film structures (M = Ni, Nb, Cu) were prepared by magnetron sputtering technique on borosilicate glass substrates in the two-step deposition process. The influence of metal underlayer on the formation of the carbon-doped TiO2 films was characterised by X-ray diffractometer, scanning electron microscope, and atomic force microscope. The comparison between the visible-light assisted photocatalytic activity of M/C-doped TiO2 structures was performed by the photocatalytic bleaching tests of Rhodamine B dye aqueous solution. The best photocatalytic performance was observed for Ni/C-doped-TiO2 film combination. During the second part of the study, the Ni/C-doped-TiO2 film combination was deposited on high-density polyethylene beads which were selected as a floating substrate. The morphology and surface chemical analyses of the floating photocatalyst were performed. The viability and membrane permeability of Salmonella typhimurium were tested in cycling experiments under UV-B and visible-light irradiation. Three consecutive photocatalytic treatments of fresh bacteria suspensions with the same set of floating photocatalyst showed promising results, as after the third 1 h-long treatment bacteria viability was still reduced by 90% and 50% for UV-B and visible-light irradiation, respectively. The membrane permeability and ethidium fluorescence results suggest that Ni underlayer might have direct and indirect effect on the bacteria inactivation process. Additionally, relatively low loss of the photocatalyst efficiency suggests that floating C-doped TiO2 photocatalyst with the Ni underlayer might be seen as the possible solution for the used photocatalyst recovery issue.
Collapse
|
44
|
Homaeigohar S, Liu Q, Kordbacheh D. Biomedical Applications of Antiviral Nanohybrid Materials Relating to the COVID-19 Pandemic and Other Viral Crises. Polymers (Basel) 2021; 13:2833. [PMID: 34451371 PMCID: PMC8401873 DOI: 10.3390/polym13162833] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/12/2021] [Accepted: 08/20/2021] [Indexed: 01/19/2023] Open
Abstract
The COVID-19 pandemic has driven a global research to uncover novel, effective therapeutical and diagnosis approaches. In addition, control of spread of infection has been targeted through development of preventive tools and measures. In this regard, nanomaterials, particularly, those combining two or even several constituting materials possessing dissimilar physicochemical (or even biological) properties, i.e., nanohybrid materials play a significant role. Nanoparticulate nanohybrids have gained a widespread reputation for prevention of viral crises, thanks to their promising antimicrobial properties as well as their potential to act as a carrier for vaccines. On the other hand, they can perform well as a photo-driven killer for viruses when they release reactive oxygen species (ROS) or photothermally damage the virus membrane. The nanofibers can also play a crucial protective role when integrated into face masks and personal protective equipment, particularly as hybridized with antiviral nanoparticles. In this draft, we review the antiviral nanohybrids that could potentially be applied to control, diagnose, and treat the consequences of COVID-19 pandemic. Considering the short age of this health problem, trivially the relevant technologies are not that many and are handful. Therefore, still progressing, older technologies with antiviral potential are also included and discussed. To conclude, nanohybrid nanomaterials with their high engineering potential and ability to inactivate pathogens including viruses will contribute decisively to the future of nanomedicine tackling the current and future pandemics.
Collapse
Affiliation(s)
- Shahin Homaeigohar
- School of Science and Engineering, University of Dundee, Dundee DD1 4HN, UK;
| | - Qiqi Liu
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China;
| | - Danial Kordbacheh
- School of Science and Engineering, University of Dundee, Dundee DD1 4HN, UK;
| |
Collapse
|
45
|
Li F, Zhao H, Shao R, Zhang X, Yu H. Enhanced Fenton Reaction for Xenobiotic Compounds and Lignin Degradation Fueled by Quinone Redox Cycling by Lytic Polysaccharide Monooxygenases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7104-7114. [PMID: 34130454 DOI: 10.1021/acs.jafc.1c01684] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The Fenton reaction is considered to be of great significance in the initial attack of lignocellulose in wood-decaying fungi. Quinone redox cycling is the main way to induce the Fenton reaction in fungi. We show that lytic polysaccharide monooxygenases (LPMOs), through LPMO-catalyzed oxidation of hydroquinone, can efficiently cooperate with glucose dehydrogenase (GDH) to achieve quinone redox cycling. The LPMO/GDH system can enhance Fe3+-reducing activity, H2O2 production, and hydroxyl radical generation, resulting in a fueled Fenton reaction. The system-generated hydroxyl radicals exhibited a strong capacity to decolorize different synthetic dyes and degrade lignin. Our results reveal a potentially critical connection between LPMOs and the Fenton reaction, suggesting that LPMOs could be involved in xenobiotic compound and lignin degradation in fungi. This new role of LPMOs may be exploited for application in biorefineries.
Collapse
Affiliation(s)
- Fei Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Honglu Zhao
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ruijian Shao
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaoyu Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hongbo Yu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
46
|
Li H, Yang Z, Lu S, Su L, Wang C, Huang J, Zhou J, Tang J, Huang M. Nano-porous bimetallic CuCo-MOF-74 with coordinatively unsaturated metal sites for peroxymonosulfate activation to eliminate organic pollutants: Performance and mechanism. CHEMOSPHERE 2021; 273:129643. [PMID: 33497983 DOI: 10.1016/j.chemosphere.2021.129643] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/03/2021] [Accepted: 01/09/2021] [Indexed: 06/12/2023]
Abstract
The importance of clean water resources for maintaining sustainable development of society is self-evident. In this study, bimetallic metal-organic framework (CuCo-MOF-74) was synthesized and characterized by XRD, FT-IR, SEM, TEM, BET, and XPS techniques. The structural analysis results revealed that CuCo-MOF-74 was nano-porous materials with coordinatively unsaturated metal sites. With the addition of PMS, Cu1Co1-MOF-74 exhibited high activity for methylene blue (MB) removal (100% degradation) within 30 min under low 50 mg/L catalyst dosage. The effects of catalyst dosage, PMS dosage, MB concentration, initial pH, and common anions were evaluated. Quenching reactions and EPR studies revealed the coexistence of sulfate radical (SO4•-), hydroxyl radical (·OH), and singlet oxygen (1O2), which was attributed to the potential in-situ recycling of cobalt and copper species (Co(III)→Co(II), Cu(II)→Cu(I))). Fukui index (f0) and dual descriptor (Δf) by Density functional theory (DFT) calculations were applied to predict the most reactive sites of MB. Meanwhile, the possible degradation pathway of MB was proposed with the help of oxidative intermediates identified by UPLC-MS.
Collapse
Affiliation(s)
- Huanxuan Li
- Hangzhou Dianzi University, College Materials & Environmental Engineering, Hangzhou, 310018, PR China.
| | - Zongxiang Yang
- Hangzhou Dianzi University, College Materials & Environmental Engineering, Hangzhou, 310018, PR China
| | - Shun Lu
- Hangzhou Dianzi University, College Materials & Environmental Engineering, Hangzhou, 310018, PR China
| | - Liya Su
- Hangzhou Dianzi University, College Materials & Environmental Engineering, Hangzhou, 310018, PR China
| | - Chunhui Wang
- Hangzhou Dianzi University, College Materials & Environmental Engineering, Hangzhou, 310018, PR China
| | - Jingang Huang
- Hangzhou Dianzi University, College Materials & Environmental Engineering, Hangzhou, 310018, PR China
| | - Jie Zhou
- Hangzhou Dianzi University, College Materials & Environmental Engineering, Hangzhou, 310018, PR China
| | - Junhong Tang
- Hangzhou Dianzi University, College Materials & Environmental Engineering, Hangzhou, 310018, PR China.
| | - Mingzhi Huang
- School of Environment, South China Normal University, Guangzhou, 510006, China
| |
Collapse
|
47
|
Kamaluddin MR, Zamri NII, Kusrini E, Prihandini WW, Mahadi AH, Usman A. Photocatalytic activity of kaolin–titania composites to degrade methylene blue under UV light irradiation; kinetics, mechanism and thermodynamics. REACTION KINETICS MECHANISMS AND CATALYSIS 2021. [DOI: 10.1007/s11144-021-01986-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
48
|
Khodayari A, Sohrabnezhad S. Fabrication of MIL-53(Al)/Ag/AgCl plasmonic nanocomposite: An improved metal organic framework based photocatalyst for degradation of some organic pollutants. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122087] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
49
|
Bhat AP, Gogate PR. Degradation of nitrogen-containing hazardous compounds using advanced oxidation processes: A review on aliphatic and aromatic amines, dyes, and pesticides. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123657. [PMID: 33264866 DOI: 10.1016/j.jhazmat.2020.123657] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/29/2020] [Accepted: 08/01/2020] [Indexed: 06/12/2023]
Abstract
Nitrogen-containing amino and azo compounds are widely used in textile, agricultural and chemical industries. Most of these compounds have been demonstrated to be resistant to conventional degradation processes. Advanced oxidation processes can be effective to mineralize nitrogen-containing compounds and improve the efficacy of overall treatment schemes. Due to a global concern for the occurrence of toxic and hazardous amino-compounds and their harmful degradation products in water, it is important to develop technologies that focus on all the aspects of their degradation. Our focus is to present a state-of-the-art review on the degradation of several amine- and azo-based compounds using advanced oxidation processes. The categories reviewed are aromatic amines, aliphatic amines, N-containing dyes and N-containing pesticides. Data has been compiled for degradation efficiencies of each process, reaction mechanisms focusing on specific attack of oxidants on N atoms, the effect of process parameters like pH, initial concentration, time of treatment, etc. and identification of intermediates. Several AOPs have been compared to provide a systematic overview of available literature that will drive essential aspects of future research on amine-based compounds. Ozone is observed to be highly reactive to most amines, dyes and pesticides, followed by Fenton processes. Degradation of amines is highly sensitive to pH and mechanisms differ at different pH values. Cavitation is a promising alternative pre-treatment method for cost reduction. Hybrid methods under optimized conditions are demonstrated to give synergistic effects and must be tailored for specific effluents in question. In conclusion, even though nitrogen-containing compounds are recalcitrant in nature, the use of advanced oxidation processes at carefully established optimum conditions can yield highly efficient degradation of the compounds.
Collapse
Affiliation(s)
- Akash P Bhat
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai, 400019, India
| | - Parag R Gogate
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai, 400019, India.
| |
Collapse
|
50
|
Yaghoubi-berijani M, Bahramian B. Preparation and measurement of properties of BiOBr/BiOCl/PANI ternary nanocomposite for highly efficient visible light photocatalytic applications. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04394-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|