1
|
Dietrich S, Dollinger A, Wieser A, Haisch C. Optimization of MALDI Matrices and Their Preparation for the MALDI-TOF MS Analysis of Oligonucleotides. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2025; 39:e10061. [PMID: 40342176 PMCID: PMC12059521 DOI: 10.1002/rcm.10061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/24/2025] [Accepted: 04/24/2025] [Indexed: 05/11/2025]
Abstract
RATIONALE The reproducibility of the analysis of oligonucleotides using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) remains a significant challenge. This is mainly attributed to factors such as the choice and application of the matrix, as well as the inhomogeneity of the sample spots. Although previous studies have explored various parameters, such as ionic and sugar-based matrices, and different spotting methods, none have comprehensively integrated these factors into a unified approach. METHODS Various matrices for the analysis of oligonucleotides and the effects of diverse variables, including different matrices, solvent compositions, additives, and application techniques, on the analytical performance of these matrices were investigated. Mass spectrometry analysis was conducted by a MALDI-TOF MS in linear negative mode. RESULTS Our research systematically evaluates the combined effects of diverse variables to enhance the analytical performance of MALDI-TOF MS in oligonucleotide analysis. We focused on the standard deviation of mass-to-charge ratios and the signal-to-noise (S/N) ratios. Out of 48 samples, only 19 met the S/N criteria, which is that the signals must be detectable over the whole mass range of interest (4-10 kDa). CONCLUSIONS The ionic matrix 6-aza-2-thiothymine (ATT) with 1-methylimidazole resulted consistently in a reduced standard deviation and achieved high mass precisions. Additionally, we observed that the S/N ratios and mass precision of 3-hydroxypicolinic acid (3-HPA) varied significantly depending on the solvent composition and the presence of additives.
Collapse
Affiliation(s)
- Susanne Dietrich
- Chair of Analytical ChemistryTUM School of Natural Sciences, Technical University of MunichMunichGermany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMPImmunology, Infection and Pandemic ResearchFrankfurtGermany
| | - Anja Dollinger
- Chair of Analytical ChemistryTUM School of Natural Sciences, Technical University of MunichMunichGermany
- Institute of Infectious Diseases and Tropical MedicineLMU University Hospital, LMU MunichMunichGermany
| | - Andreas Wieser
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMPImmunology, Infection and Pandemic ResearchFrankfurtGermany
- Institute of Infectious Diseases and Tropical MedicineLMU University Hospital, LMU MunichMunichGermany
- German Center for Infection Research (DZIF), Partner SiteMunichGermany
- Max von Pettenkofer Institute, Faculty of MedicineLudwig‐Maximilians University MunichMunichGermany
| | - Christoph Haisch
- Chair of Analytical ChemistryTUM School of Natural Sciences, Technical University of MunichMunichGermany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMPImmunology, Infection and Pandemic ResearchFrankfurtGermany
| |
Collapse
|
2
|
Sobiech M. Computer-Assisted Strategies as a Tool for Designing Green Monomer-Based Molecularly Imprinted Materials. Int J Mol Sci 2024; 25:12912. [PMID: 39684622 DOI: 10.3390/ijms252312912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/25/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Molecularly imprinted polymers (MIPs) are defined as artificial receptors due to their selectivity and specificity. Their advantageous properties compared to biological alternatives have sparked interest among scientists, as detailed in numerous review papers. Currently, there is significant attention on adhering to the principles of green chemistry and environmental protection. In this context, MIP research groups have focused on developing eco-friendly procedures. The application of "greener" monomers and reagents, along with the utilization of computational methodologies for design and property analysis, are two activities that align with the green chemistry principles for molecularly imprinted technology. This review discusses the application of computational methodologies in the preparation of MIPs based on eco-friendly non-acrylic/vinylic monomers and precursors, such as alkoxysilanes, ionic liquids, deep eutectic solvents, bio-based molecules-specifically saccharides, and biomolecules like proteins. It provides a brief introduction to MIP materials, the green aspects of MIP production, and the application of computational simulations. Following this, brief descriptions of the studied monomers, molecular simulation studies of green monomer-based MIPs, and computational strategies are presented. Finally, conclusions and an outlook on the future directions of computational analysis in the production of green imprinted materials are pointed out. To the best of my knowledge, this work is the first to combine these two aspects of MIP green chemistry principles.
Collapse
Affiliation(s)
- Monika Sobiech
- Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| |
Collapse
|
3
|
Hong H, Habib A, Bi L, Qais DS, Wen L. Hollow Cathode Discharge Ionization Mass Spectrometry: Detection, Quantification and Gas Phase Ion-Molecule Reactions of Explosives and Related Compounds. Crit Rev Anal Chem 2024; 54:148-174. [PMID: 35467991 DOI: 10.1080/10408347.2022.2067467] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Mass spectrometry (MS) has become an essential analytical method in every sector of science and technology. Because of its unique ability to provide direct molecular structure information on analytes, an extra method is rarely required. This review describes fabrication of a variable-pressure hollow cathode discharge (HCD) ion source for MS in detection, quantification and investigation of gas-phase ion molecule reactions of explosives and related compounds using air as a carrier gas. The HCD ion source has been designed in such a way that by altering the ion source pressures, the system can generate both HCD and conventional GD. This design enables for the selective detection and quantification of explosives at trace to ultra-trace levels. The pressure-dependent HCD ion source has also been used to investigate ion-molecule reactions in the gas phase of explosives and related compounds. The mechanism of ion formation in explosive reactions is also discussed.
Collapse
Affiliation(s)
- Huanhuan Hong
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang, China
- China Innovation Instrument Co., Ltd, Ningbo, Zhejiang, China
| | - Ahsan Habib
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang, China
- Department of Chemistry, University of Dhaka, Dhaka, Bangladesh
| | - Lei Bi
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang, China
- China Innovation Instrument Co., Ltd, Ningbo, Zhejiang, China
| | | | - Luhong Wen
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang, China
- China Innovation Instrument Co., Ltd, Ningbo, Zhejiang, China
| |
Collapse
|
4
|
Zhao J, Quinto M, Zakia F, Li D. Microextraction of essential oils: A review. J Chromatogr A 2023; 1708:464357. [PMID: 37696126 DOI: 10.1016/j.chroma.2023.464357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/13/2023]
Abstract
Liquid phase microextraction (LPME) and solid phase microextraction (SPME) are popular extraction techniques for sample preparation due to their green and highly efficient single-step extraction efficiency. With the increasing attention to essential oils, their evaluation and analysis are significant in analytical sciences. In this review, starting from a brief description of the recent advances in the last decade, the attention has been focused on the up-to-date research works and applications based on liquid and solid phase microextraction for essential oil analyses. Particular attention has been given to the approaches using ionic liquids, eutectic solvents, gas flow assisted, and novel composite materials. In the end, the technological convergence of novel microextraction of essential oils in the future has been prospected.
Collapse
Affiliation(s)
- Jinhua Zhao
- Department of Chemistry, Analysis and Inspection Center, Yanbian University, Park Road 977, Yanji, Jilin, China
| | - Maurizio Quinto
- Department of Chemistry, Analysis and Inspection Center, Yanbian University, Park Road 977, Yanji, Jilin, China; Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Via Napoli 25, Foggia 71122, Italy
| | - Fatima Zakia
- Department of Chemistry, Analysis and Inspection Center, Yanbian University, Park Road 977, Yanji, Jilin, China
| | - Donghao Li
- Department of Chemistry, Analysis and Inspection Center, Yanbian University, Park Road 977, Yanji, Jilin, China; Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University, Park Road 977, Yanji, Jilin, China.
| |
Collapse
|
5
|
Abdelhamid HN. Removal of Carbon Dioxide using Zeolitic Imidazolate Frameworks: Adsorption and Conversion via Catalysis. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hani Nasser Abdelhamid
- Advanced Multifunctional Materials Laboratory, Department of Chemistry Assiut University Assiut Egypt
- Proteomics Laboratory for Clinical Research and Materials Science, Department of Chemistry Assiut University Assiut Egypt
- Nanotechnology Research Centre (NTRC) The British University in Egypt Cairo Egypt
| |
Collapse
|
6
|
Monopoli A, Ventura G, Aloia A, Ciriaco F, Nacci A, Cataldi TRI, Calvano CD. Synthesis and Investigation of Novel CHCA-Derived Matrices for Matrix-Assisted Laser Desorption/Ionization Mass Spectrometric Analysis of Lipids. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27082565. [PMID: 35458772 PMCID: PMC9028824 DOI: 10.3390/molecules27082565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/13/2022] [Accepted: 04/13/2022] [Indexed: 11/16/2022]
Abstract
A significant area of study and upgrading for increasing sensitivity and general performances of matrix-assisted laser-desorption ionization (MALDI) mass spectrometry (MS) is related to matrix design. Several efforts have been made to address the challenge of low-mass-region interference-free for metabolomics analysis and specifically for lipidomics. To this aim, rationally designed matrices as 4-chloro-α-cyanocinnamic acid (ClCCA) were introduced and reported to provide enhanced analytical performances. We have taken this rational design one step further by developing and optimizing new MALDI matrices with a range of modifications on the CHCA core, involving different functionalities and substituents. Of particular interest was the understanding of the electron-withdrawing (e.g., nitro-) or donating (e.g., methoxy-) effects along with the extent of conjugation on the ionization efficiency. In the present work, ten matrices were designed on a reasonable basis, synthesized, and characterized by NMR and UV spectroscopies and laser desorption ionization. With the assistance of these putative MALDI matrices, samples containing phospholipids (PL), and neutral di-/tri-acylglycerols (DAG, TAG) were investigated using milk, fish, blood, and human plasma extracts. In comparison with CHCA and ClCCA, four of them, viz. [(2E,4E)-2-cyano-5-(4-methoxyphenyl)penta-2,4-dienoic acid] (1), [(2E,4E)-2-cyano-5-(4-nitrophenyl)penta-2,4-dienoic acid] (2), [(E)-2-cyano-3-(6-methoxynaphthalen-2-yl)acrylic acid] (6) and [(E)-2-cyano-3-(naphthalen-2-yl)acrylic acid] (7) displayed good to even excellent performances as MALDI matrices in terms of ionization capability, interference-free spectra, S/N ratio, and reproducibility. Especially compound 7 (cyano naphthyl acrylic acid, CNAA) was the election matrix for PL analysis and matrix 2 (cyano nitrophenyl dienoic acid, CNDA) for neutral lipids such as DAG and TAG in positive ion mode.
Collapse
Affiliation(s)
- Antonio Monopoli
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy; (G.V.); (A.A.); (F.C.); (A.N.); (T.R.I.C.)
- Correspondence: (A.M.); (C.D.C.); Tel.: +39-080-5443589 (A.M.); +39-080-5442018 (C.D.C.); Fax: +39-080-5442026 (A.M. & C.D.C.)
| | - Giovanni Ventura
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy; (G.V.); (A.A.); (F.C.); (A.N.); (T.R.I.C.)
| | - Andrea Aloia
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy; (G.V.); (A.A.); (F.C.); (A.N.); (T.R.I.C.)
| | - Fulvio Ciriaco
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy; (G.V.); (A.A.); (F.C.); (A.N.); (T.R.I.C.)
| | - Angelo Nacci
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy; (G.V.); (A.A.); (F.C.); (A.N.); (T.R.I.C.)
- CNR—Istituto di Chimica dei Composti Organometallici (ICCOM), Bari Section, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy
| | - Tommaso R. I. Cataldi
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy; (G.V.); (A.A.); (F.C.); (A.N.); (T.R.I.C.)
- Centro Interdipartimentale di Ricerca S.M.A.R.T., Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy
| | - Cosima D. Calvano
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy; (G.V.); (A.A.); (F.C.); (A.N.); (T.R.I.C.)
- Centro Interdipartimentale di Ricerca S.M.A.R.T., Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy
- Correspondence: (A.M.); (C.D.C.); Tel.: +39-080-5443589 (A.M.); +39-080-5442018 (C.D.C.); Fax: +39-080-5442026 (A.M. & C.D.C.)
| |
Collapse
|
7
|
Kobylis P, Kasprzyk M, Nowacki A, Caban M. An investigation of the ionicity of selected ionic liquid matrices used for matrix-assisted laser desorption/ionization. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Recent progress on the modifications of ultra-small perovskite nanomaterials for sensing applications. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116432] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
9
|
Harvey DJ. ANALYSIS OF CARBOHYDRATES AND GLYCOCONJUGATES BY MATRIX-ASSISTED LASER DESORPTION/IONIZATION MASS SPECTROMETRY: AN UPDATE FOR 2015-2016. MASS SPECTROMETRY REVIEWS 2021; 40:408-565. [PMID: 33725404 DOI: 10.1002/mas.21651] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/24/2020] [Indexed: 06/12/2023]
Abstract
This review is the ninth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2016. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented over 30 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show no sign of deminishing. © 2020 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
10
|
Qiao Z, Lissel F. MALDI Matrices for the Analysis of Low Molecular Weight Compounds: Rational Design, Challenges and Perspectives. Chem Asian J 2021; 16:868-878. [PMID: 33657276 PMCID: PMC8251880 DOI: 10.1002/asia.202100044] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/24/2021] [Indexed: 02/03/2023]
Abstract
The analysis of low molecular weight (LMW) compounds is of great interest to detect small pharmaceutical drugs rapidly and sensitively, or to trace and understand metabolic pathways. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) plays a central role in the analysis of high molecular weight (bio)molecules. However, its application for LMW compounds is restricted by spectral interferences in the low m/z region, which are produced by conventional organic matrices. Several strategies regarding sample preparation have been investigated to overcome this problem. A different rationale is centred on developing new matrices which not only meet the fundamental requirements of good absorption and high ionization efficiency, but are also vacuum stable and "MALDI silent", i. e., do not give matrix-related signals in the LMW area. This review gives an overview on the rational design strategies used to develop matrix systems for the analysis of LMW compounds, focusing on (i) the modification of well-known matrices, (ii) the search for high molecular weight matrices, (iii) the development of binary, hybrid and nanomaterial-based matrices, (iv) the advance of reactive matrices and (v) the progress made regarding matrices for negative or dual polarity mode.
Collapse
Affiliation(s)
- Zhi Qiao
- Institute of Macromolecular Chemistry, Leibniz Institute for Polymer Research Dresden, Hohe Str. 6, 01069 Dresden (Germany) Faculty of Chemistry and Food ChemistryDresden University of Technology, Mommsenstr. 401062DresdenGermany
| | - Franziska Lissel
- Institute of Macromolecular Chemistry, Leibniz Institute for Polymer Research Dresden, Hohe Str. 6, 01069 Dresden (Germany) Faculty of Chemistry and Food ChemistryDresden University of Technology, Mommsenstr. 401062DresdenGermany
- Institute of Organic Chemistry and Macromolecular ChemistryFriedrich Schiller University JenaHumboldtstr. 1007743JenaGermany
| |
Collapse
|
11
|
Tammekivi E, Ghiami-Shomami A, Tshepelevitsh S, Trummal A, Ilisson M, Selberg S, Vahur S, Teearu A, Lõkov M, Peets P, Pagano T, Leito I. Experimental and Computational Study of Aminoacridines as MALDI(-)-MS Matrix Materials for the Analysis of Complex Samples. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1080-1095. [PMID: 33726494 DOI: 10.1021/jasms.1c00037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Monoaminoacridines (1-, 2-, 3-, 4-, and 9-aminoacridine) were studied for suitability as matrices in the negative ion mode matrix-assisted laser desorption/ionization mass spectrometry (MALDI(-)-MS) analysis of various samples. This is the first study to examine 1-, 2-, and 4-aminoacridine as potential matrix material candidates for MALDI(-)-MS. In addition, spectral (UV-Vis absorption and fluorescence), proton transfer-related (basicity and autoprotolysis), and crystallization properties of these compounds were characterized experimentally and/or computationally. For testing the capabilities of these aminoacridines as matrix materials, four samples related to cultural heritage materials-stearic acid, colophony resin, dyer's madder dye, and a resinous case-study sample from a shipwreck-were analyzed with MALDI(-)-MS. A novel algorithm (implemented as an executable Python script) for MS data analysis was developed to compare the five matrix materials and to help mass spectrometrists rapidly identify peaks originating from the sample and matrix material. It was determined that all five of the studied aminoacridines can successfully be used as matrix materials in MALDI(-)-MS analysis. As an interesting finding, in several cases, the best mass spectra were obtained by using a relatively small amount of matrix material mixed with an excess amount of sample. 3- and 4-aminoacridine outperformed the other aminoacridines in the ease of obtaining acceptable spectra, average number of ions identified in the mass spectra, and low dependence of the sample-to-matrix mass ratio on experimental results.
Collapse
Affiliation(s)
- Eliise Tammekivi
- University of Tartu, Institute of Chemistry, Ravila 14a, 50411 Tartu, Estonia
| | - Ali Ghiami-Shomami
- University of Tartu, Institute of Chemistry, Ravila 14a, 50411 Tartu, Estonia
| | - Sofja Tshepelevitsh
- University of Tartu, Institute of Chemistry, Ravila 14a, 50411 Tartu, Estonia
| | - Aleksander Trummal
- National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Mihkel Ilisson
- University of Tartu, Institute of Chemistry, Ravila 14a, 50411 Tartu, Estonia
| | - Sigrid Selberg
- University of Tartu, Institute of Chemistry, Ravila 14a, 50411 Tartu, Estonia
| | - Signe Vahur
- University of Tartu, Institute of Chemistry, Ravila 14a, 50411 Tartu, Estonia
| | - Anu Teearu
- University of Tartu, Institute of Chemistry, Ravila 14a, 50411 Tartu, Estonia
| | - Märt Lõkov
- University of Tartu, Institute of Chemistry, Ravila 14a, 50411 Tartu, Estonia
| | - Pilleriin Peets
- University of Tartu, Institute of Chemistry, Ravila 14a, 50411 Tartu, Estonia
| | - Todd Pagano
- Department of Science & Mathematics, Rochester Institute of Technology, 14623 Rochester, New York, United States
| | - Ivo Leito
- University of Tartu, Institute of Chemistry, Ravila 14a, 50411 Tartu, Estonia
| |
Collapse
|
12
|
Abdelhamid HN, Badr G. Nanobiotechnology as a platform for the diagnosis of COVID-19: a review. NANOTECHNOLOGY FOR ENVIRONMENTAL ENGINEERING 2021; 6:19. [PMCID: PMC7988262 DOI: 10.1007/s41204-021-00109-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/21/2021] [Indexed: 12/12/2022]
Abstract
A sensitive method for diagnosing co ronavi rus d isease 2019 (COVID-19) is highly required to fight the current and future global health threats due to s evere a cute r espiratory s yndrome c oronavirus 2 (SARS-CoV 2). However, most of the current methods exhibited high false‐negative rates, resulting in patient misdiagnosis and impeding early treatment. Nanoparticles show promising performance and great potential to serve as a platform for diagnosing viral infection in a short time and with high sensitivity. This review highlighted the potential of nanoparticles as platforms for the diagnosis of COVID-19. Nanoparticles such as gold nanoparticles, magnetic nanoparticles, and graphene (G) were applied to detect SARS-CoV 2. They have been used for molecular-based diagnosis methods and serological methods. Nanoparticles improved specificity and shorten the time required for the diagnosis. They may be implemented into small devices that facilitate the self-diagnosis at home or in places such as airports and shops. Nanoparticles-based methods can be used for the analysis of virus-contaminated samples from a patient, surface, and air. The advantages and challenges were discussed to introduce useful information for designing a sensitive, fast, and low-cost diagnostic method. This review aims to present a helpful survey for the lesson learned from handling this outbreak to prepare ourself for future pandemic.
Collapse
Affiliation(s)
- Hani Nasser Abdelhamid
- Advanced Multifunctional Materials Laboratory, Department of Chemistry, Faculty of Science, Assiut University, Assiut, Egypt
| | - Gamal Badr
- Laboratory of Immunology, Zoology Department, Faculty of Science, Assiut University, Assiut, Egypt
| |
Collapse
|
13
|
Li G, Lv Y, Chen M, Ye X, Niu Z, Bai H, Lei H, Ma Q. Post-Chromatographic Dicationic Ionic Liquid-Based Charge Complexation for Highly Sensitive Analysis of Anionic Compounds by Ultra-High-Performance Supercritical Fluid Chromatography Coupled with Electrospray Ionization Mass Spectrometry. Anal Chem 2020; 93:1771-1778. [PMID: 33382576 DOI: 10.1021/acs.analchem.0c04612] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A green analytical strategy has been developed for the analysis of 10 perfluorinated compounds (PFCs) incorporating supramolecular solvent (SUPRAS)-based extraction and ultra-high-performance supercritical fluid chromatography (UHPSFC)-tandem mass spectrometry. The SUPRAS was prepared through self-assembly of reverse micelles by mixing heptanol, tetrahydrofuran, and water at optimized volume ratios. An imidazolium-based germinal dicationic ionic liquid (DIL), 1,1-bis(3-methylimidazolium-1-yl) butylene difluoride ([C4(MIM)2]F2), was dissolved in the make-up solvent of UHPSFC and introduced post-column but before the electrospray ionization source. After chromatographic separation on a Torus DIOL analytical column (100 mm × 2.1 mm, 1.7 μm), the PFC analytes associated with the DIL reagent through charge complexation. The formation of positively charged complexes resulted in improved ionization efficiency and analytical sensitivity. Enhancement in signal intensity by one to two magnitudes was achieved in the positive ionization mode compared to the negative ionization mode without using the dicationic ion-pairing reagent. The developed protocol was applied to 32 samples of real textiles and 6 samples of real food packaging materials, which exhibited great potential for the analysis of anionic compounds.
Collapse
Affiliation(s)
- Guoping Li
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China.,School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yueguang Lv
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meng Chen
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Xiwen Ye
- Technology Center of Qingdao Customs District, Qingdao 266002, China
| | - Zengyuan Niu
- Technology Center of Qingdao Customs District, Qingdao 266002, China
| | - Hua Bai
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Haimin Lei
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Qiang Ma
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| |
Collapse
|
14
|
|
15
|
Direct Immersion Single-Drop Microextraction and Continuous-Flow Microextraction for the Determination of Manganese in Tonic Drinks and Seafood Samples. FOOD ANAL METHOD 2020. [DOI: 10.1007/s12161-020-01794-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
16
|
Abdelhamid HN, Wu HF. A New Binary Matrix for Specific Detection of Mercury(II) Using Matrix-Assisted Laser Desorption Ionization Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:2617-2622. [PMID: 31659719 DOI: 10.1007/s13361-019-02324-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/29/2019] [Accepted: 08/10/2019] [Indexed: 06/10/2023]
Abstract
The development of simple, low-cost, and specific detection method for mercury (Hg(II)) ions in aqueous media using matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) is a challenge due to matrix interferences and acidity that destroy weak interactions. Herein, a new binary matrix consists of mefenamic acid, and thymine (T) is applied for simple and specific detection of Hg(II) in aqueous solution and blood sample. Mass spectra show metal-to-ligand ratio of 1:2 (Hg(II):T) in which Hg(II) ions are bound to two T molecules and two water molecules, i.e., [Hg(T)2(H2O)2]. The method is simple and fast, and requires cheap reagents. In addition, the spectra show extremely specific signals for Hg(II) ions and insignificant signals in case of other competing metal ions. The concept of our protocol can be applied for other metals. The new matrix may be used for the analysis of small molecules with minimal interferences peaks.
Collapse
Affiliation(s)
- Hani Nasser Abdelhamid
- Department of Chemistry, National Sun Yat-Sen University, 70, Lien-Hai Road, Kaohsiung, 80424, Taiwan.
- Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, 70, Lien-Hai Road, Kaohsiung, 80424, Taiwan.
- Advanced Multifunctional Materials Laboratory, Department of Chemistry, Assiut University, Assiut, 71515, Egypt.
| | - Hui-Fen Wu
- Department of Chemistry, National Sun Yat-Sen University, 70, Lien-Hai Road, Kaohsiung, 80424, Taiwan.
- Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, 70, Lien-Hai Road, Kaohsiung, 80424, Taiwan.
- Advanced Multifunctional Materials Laboratory, Department of Chemistry, Assiut University, Assiut, 71515, Egypt.
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, 100, Shih-Chuan 1st Road, Kaohsiung, 80708, Taiwan.
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, 70, Lien-Hai Road, Kaohsiung, 80424, Taiwan.
| |
Collapse
|
17
|
Dowaidar M, Nasser Abdelhamid H, Hällbrink M, Langel Ü, Zou X. Chitosan enhances gene delivery of oligonucleotide complexes with magnetic nanoparticles-cell-penetrating peptide. J Biomater Appl 2019; 33:392-401. [PMID: 30223733 DOI: 10.1177/0885328218796623] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Gene-based therapies, including the delivery of oligonucleotides, offer promising methods for the treatment of cancer cells. However, they have various limitations including low efficiency. Herein, cell-penetrating peptides (CPPs)-conjugated chitosan-modified iron oxide magnetic nanoparticles (CPPs-CTS@MNPs) with high biocompatibility as well as high efficiency were tested for the delivery of oligonucleotides such as plasmid pGL3, splice correction oligonucleotides, and small-interfering RNA. A biocompatible nanocomposite, in which CTS@MNPs was incorporated in non-covalent complex with CPPs-oligonucleotide, is developed. Modifying the surface of magnetic nanoparticles with cationic chitosan-modified iron oxide improved the performance of magnetic nanoparticles-CPPs for oligonucleotide delivery. CPPs-CTS@MNPs complexes enhance oligonucleotide transfection compared to CPPs@MNPs or CPPs. The hydrophilic character of CTS@MNPs improves complexation with plasmid pGL3, splice correction oligonucleotides, and small-interfering RNA payload, which consequently resulted in not only strengthening the colloidal stability of the constructed complex but also improving their biocompatibility. Transfection using PF14-splice correction oligonucleotides-CTS@MNPs showed sixfold increase of the transfection compared to splice correction oligonucleotides-PF14 that showed higher transfection than the commercially available lipid-based vector Lipofectamine™ 2000. Nanoscaled CPPs-CTS@MNPs comprise a new family of biomaterials that can circumvent some of the limitations of CPPs or magnetic nanoparticles.
Collapse
Affiliation(s)
- Moataz Dowaidar
- 1 Department of Biochemistry and Biophysics, Stockholm University
| | - Hani Nasser Abdelhamid
- 2 Department of Chemistry, Faculty of Science, Assuit University Assuit, Egypt.,3 Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden
| | | | - Ülo Langel
- 1 Department of Biochemistry and Biophysics, Stockholm University
| | - Xiaodong Zou
- 3 Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden
| |
Collapse
|
18
|
Nanoparticle-based surface assisted laser desorption ionization mass spectrometry: a review. Mikrochim Acta 2019; 186:682. [DOI: 10.1007/s00604-019-3770-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 08/16/2019] [Indexed: 12/28/2022]
|
19
|
Wang HX, Zhao YW, Li Z, Liu BS, Zhang D. Development and Application of Aptamer-Based Surface-Enhanced Raman Spectroscopy Sensors in Quantitative Analysis and Biotherapy. SENSORS (BASEL, SWITZERLAND) 2019; 19:E3806. [PMID: 31484403 PMCID: PMC6749344 DOI: 10.3390/s19173806] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/16/2019] [Accepted: 08/31/2019] [Indexed: 12/16/2022]
Abstract
Surface-enhanced Raman scattering (SERS) is one of the most special and important Raman techniques. An apparent Raman signal can be observed when the target molecules are absorbed onto the surface of the SERS substrates, especially on the "hot spots" of the substrates. Early research focused on exploring the highly active SERS substrates and their detection applications in label-free SERS technology. However, it is a great challenge to use these label-free SERS sensors for detecting hydrophobic or non-polar molecules, especially in complex systems or at low concentrations. Therefore, antibodies, aptamers, and antimicrobial peptides have been used to effectively improve the target selectivity and meet the analysis requirements. Among these selective elements, aptamers are easy to use for synthesis and modifications, and their stability, affinity and specificity are extremely good; they have been successfully used in a variety of testing areas. The combination of SERS detection technology and aptamer recognition ability not only improved the selection accuracy of target molecules, but also improved the sensitivity of the analysis. Variations of aptamer-based SERS sensors have been developed and have achieved satisfactory results in the analysis of small molecules, pathogenic microorganism, mycotoxins, tumor marker and other functional molecules, as well as in successful photothermal therapy of tumors. Herein, we present the latest advances of the aptamer-based SERS sensors, as well as the assembling sensing platforms and the strategies for signal amplification. Furthermore, the existing problems and potential trends of the aptamer-based SERS sensors are discussed.
Collapse
Affiliation(s)
- Hai-Xia Wang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yu-Wen Zhao
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zheng Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Bo-Shi Liu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Di Zhang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
20
|
Kobylis P, Lis H, Stepnowski P, Caban M. Spectroscopic verification of ionic matrices for MALDI analysis. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.03.137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Lv Y, Bai H, Yang J, He Y, Ma Q. Direct Mass Spectrometry Analysis Using In-Capillary Dicationic Ionic Liquid-Based in Situ Dispersive Liquid–Liquid Microextraction and Sonic-Spray Ionization. Anal Chem 2019; 91:6661-6668. [DOI: 10.1021/acs.analchem.9b00597] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Yueguang Lv
- Chinese Academy of Inspection and Quarantine, Beijing 100176, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hua Bai
- Chinese Academy of Inspection and Quarantine, Beijing 100176, P. R. China
| | - Jingkui Yang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yujian He
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Qiang Ma
- Chinese Academy of Inspection and Quarantine, Beijing 100176, P. R. China
| |
Collapse
|
22
|
Analytical applications and physicochemical properties of ionic liquid-based hybrid materials: A review. Anal Chim Acta 2019; 1054:1-16. [DOI: 10.1016/j.aca.2018.10.061] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 10/23/2018] [Accepted: 10/25/2018] [Indexed: 12/14/2022]
|
23
|
Zhao X, Ma G, Wu D, Cai P, Pan Y. A novel strategy to utilize ethylene glycol-ionic liquids for the selective precipitation of polysaccharides. J Sep Sci 2019; 42:1757-1767. [PMID: 30811846 DOI: 10.1002/jssc.201801297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/15/2019] [Accepted: 02/15/2019] [Indexed: 12/16/2022]
Abstract
In the present work, three hydrophilic ionic liquids based on the combination between imidazolium cations attached with ethylene glycol polymers of various lengths and hexafluorophosphate anion were designed and synthesized for the separation of polysaccharides. By employing dextran 100 kDa as model compound, the effects of ionic liquid content, solvent/anti-solvent volume, and temperature on its recovery efficiency were investigated systematically. The ability of these ionic liquids to precipitate dextran 100 kDa, increases with the elongation of ethylene glycol polymer chain. The established ionic liquid-based precipitation system was successfully applied to selectively precipitate polysaccharides from water extracts of three traditional Chinese medicines and the precipitation could be achieved in about 15 min. In addition, the different precipitation responses of acidic, neutral, and basic polysaccharides in the ionic liquid-based precipitation system and theoretical calculations both suggested that the selective precipitation of polysaccharides was probably mediated by interaction between ionic liquids and polysaccharides. The proposed strategy facilitated the isolation and purification of polysaccharides and may trigger a novel application of ionic liquids in carbohydrate research.
Collapse
Affiliation(s)
- Xiaoyong Zhao
- Department of Chemistry, Zhejiang University, Hangzhou, P. R. China
| | - Ge Ma
- Department of Chemistry, Zhejiang University, Hangzhou, P. R. China
| | - Datong Wu
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, P. R. China
| | - Pengfei Cai
- Department of Chemistry, Zhejiang University, Hangzhou, P. R. China
| | - Yuanjiang Pan
- Department of Chemistry, Zhejiang University, Hangzhou, P. R. China
| |
Collapse
|
24
|
Zhao X, Cai P, Sun C, Pan Y. Application of ionic liquids in separation and analysis of carbohydrates: State of the art and future trends. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.12.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
25
|
Magnetic silica nanoparticles for use in matrix-assisted laser desorption ionization mass spectrometry of labile biomolecules such as oligosaccharides, amino acids, peptides and nucleosides. Mikrochim Acta 2019; 186:104. [DOI: 10.1007/s00604-018-3208-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 12/23/2018] [Indexed: 10/27/2022]
|
26
|
Tian Y, Feng J, Wang X, Luo C, Sun M. Ionic liquid-functionalized silica aerogel as coating for solid-phase microextraction. J Chromatogr A 2019; 1583:48-54. [DOI: 10.1016/j.chroma.2018.11.018] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 11/02/2018] [Accepted: 11/14/2018] [Indexed: 12/13/2022]
|
27
|
Zhao Q, Chu H, Zhao B, Liang Z, Zhang L, Zhang Y. Advances of ionic liquids-based methods for protein analysis. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.09.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
28
|
Du KZ, Chen Y, Li J, Tang G, Tian F, He J, Chang Y. Quantification of eight active ingredients in crude and processed radix polygoni multiflori applying miniaturized matrix solid-phase dispersion microextraction followed by UHPLC. J Sep Sci 2018; 41:3486-3495. [PMID: 30028075 DOI: 10.1002/jssc.201800342] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/29/2018] [Accepted: 07/13/2018] [Indexed: 01/20/2023]
Abstract
A rapid, efficient, and green sample preparation method has been developed to extract eight active ingredients (gallic acid, catechins, epicatechin, polydatin, 2,3,5,4'-tetrahydroxystilbene-2-O-β-d-glucoside, resveratrol, emodin, and physcion) in radix polygoni multiflori by miniaturized matrix solid-phase dispersion microextraction. Simple and sensitive ultra high performance liquid chromatography combined with ultraviolet detection has been applied to analyze the multiple compounds. The best results were obtained by adding 25 mg sample into 25 mg adsorbent and grinding for 2 min with disorganized silica as adsorbent and 1 mL 150 mM 1-dodecyl-3-methylimidazolium bromide as a green eluting solvent. Good linearity (r2 > 0.998) for each analyte was obtained by this method. The intra-day and inter-day precision (RSD) were both below 5.31%, and the recoveries of the analytes ranged from 93.3 to 100.0%. This simple miniaturized matrix solid-phase dispersion microextraction method for analyzing the compounds in radix polygoni multiflori needs a short time and requires little sample and reagent. Thus, this method is far more eco-friendly and efficient than traditional extraction methods (reflux and ultrasound-assisted extraction). The present investigation provided a promising method for the fast preparation and discrimination of chemical differences in crude and processed radix polygoni multiflori.
Collapse
Affiliation(s)
- Kun-Ze Du
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Formula of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Ministry of Education, Tianjin, China
| | - Ying Chen
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Formula of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Ministry of Education, Tianjin, China
| | - Jin Li
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Formula of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Ministry of Education, Tianjin, China
| | - Ge Tang
- Department of Nephrology. The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Fei Tian
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Formula of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Ministry of Education, Tianjin, China
| | - Jun He
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Formula of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Ministry of Education, Tianjin, China
| | - Yanxu Chang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Formula of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Ministry of Education, Tianjin, China
| |
Collapse
|
29
|
Abdelhamid HN. Ionic Liquid-Assisted Laser Desorption/Ionization-Mass Spectrometry: Matrices, Microextraction, and Separation. Methods Protoc 2018; 1:E23. [PMID: 31164566 PMCID: PMC6526421 DOI: 10.3390/mps1020023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/13/2018] [Accepted: 06/15/2018] [Indexed: 12/16/2022] Open
Abstract
Ionic liquids (ILs) have advanced a variety of applications, including matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS). ILs can be used as matrices and solvents for analyte extraction and separation prior to analysis using laser desorption/ionization-mass spectrometry (LDI-MS). Most ILs show high stability with negligible sublimation under vacuum, provide high ionization efficiency, can be used for qualitative and quantitative analyses with and without internal standards, show high reproducibility, form homogenous spots during sampling, and offer high solvation efficiency for a wide range of analytes. Ionic liquids can be used as solvents and pseudo-stationary phases for extraction and separation of a wide range of analytes, including proteins, peptides, lipids, carbohydrates, pathogenic bacteria, and small molecules. This review article summarizes the recent advances of ILs applications using MALDI-MS. The applications of ILs as matrices, solvents, and pseudo-stationary phases, are also reviewed.
Collapse
|
30
|
Nanoparticle assisted laser desorption/ionization mass spectrometry for small molecule analytes. Mikrochim Acta 2018; 185:200. [DOI: 10.1007/s00604-018-2687-8] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 01/18/2018] [Indexed: 12/14/2022]
|
31
|
Khabaz F, Zhang Y, Xue L, Quitevis EL, Maginn EJ, Khare R. Temperature Dependence of Volumetric and Dynamic Properties of Imidazolium-Based Ionic Liquids. J Phys Chem B 2018; 122:2414-2424. [DOI: 10.1021/acs.jpcb.7b12236] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Yong Zhang
- Department
of Chemical and Biomolecular Engineering, University of Notre Dame, Notre
Dame, Indiana 46556, United States
| | | | | | - Edward J. Maginn
- Department
of Chemical and Biomolecular Engineering, University of Notre Dame, Notre
Dame, Indiana 46556, United States
| | | |
Collapse
|
32
|
Shishov A, Bulatov A, Locatelli M, Carradori S, Andruch V. Application of deep eutectic solvents in analytical chemistry. A review. Microchem J 2017. [DOI: 10.1016/j.microc.2017.07.015] [Citation(s) in RCA: 255] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
33
|
Wu D, Cai P, Zhao X, Kong Y, Pan Y. Recent progress of task-specific ionic liquids in chiral resolution and extraction of biological samples and metal ions. J Sep Sci 2017; 41:373-384. [DOI: 10.1002/jssc.201700848] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 08/25/2017] [Accepted: 08/26/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Datong Wu
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center; Changzhou University; Changzhou China
- Department of Chemistry; Zhejiang University; Hangzhou China
| | - Pengfei Cai
- Department of Chemistry; Zhejiang University; Hangzhou China
| | - Xiaoyong Zhao
- Department of Chemistry; Zhejiang University; Hangzhou China
| | - Yong Kong
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center; Changzhou University; Changzhou China
| | - Yuanjiang Pan
- Department of Chemistry; Zhejiang University; Hangzhou China
| |
Collapse
|
34
|
Surface tuning laser desorption/ionization mass spectrometry (STLDI-MS) for the analysis of small molecules using quantum dots. Anal Bioanal Chem 2017; 409:4943-4950. [DOI: 10.1007/s00216-017-0433-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 05/20/2017] [Accepted: 05/25/2017] [Indexed: 12/11/2022]
|
35
|
Pang L, Yang P, Pang R, Lu X, Xiao J, Li S, Zhang H, Zhao J. Ionogel-Based Ionic Liquid Coating for Solid-Phase Microextraction of Organophosphorus Pesticides from Wine and Juice Samples. FOOD ANAL METHOD 2017. [DOI: 10.1007/s12161-017-0997-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Zhao X, Shen S, Wu D, Cai P, Pan Y. Novel ionic liquid matrices for qualitative and quantitative detection of carbohydrates by matrix assisted laser desorption/ionization mass spectrometry. Anal Chim Acta 2017; 985:114-120. [PMID: 28864181 DOI: 10.1016/j.aca.2017.07.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/25/2017] [Accepted: 07/10/2017] [Indexed: 10/19/2022]
Abstract
Analysis of carbohydrates based on matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is still challenging and researchers have been devoting themselves to efficient matrices discovery. In the present study, the design, synthesis, qualitative and quantitative performance of non-derivative ionic liquid matrices (ILMs) were reported. DHB/N-methylaniline (N-MA) and DHB/N-ethylaniline (N-EA), performing best for carbohydrate detection, have been screened out. The limit of detection for oligosaccharide provided by DHB/N-MA and DHB/N-EA were as low as 10 fmol. DHB/N-MA and DHB/N-EA showed significantly higher ion generation efficiency than DHB. The comparison of capacity to probe polysaccharide between these two ILMs and DHB also revealed their powerful potential. Their outstanding performance were probably due to lower proton affinities and stronger UV absorption at λ = 355 nm. What is more, taking DHB/N-MA as an example, quantitative analysis of fructo-oligosaccharide mixtures extracted and identified from rice noodles has been accomplished sensitively using an internal standard method. Overall, DHB/N-MA and DHB/N-EA exhibited excellent performance and might be significant sources as the carbohydrate matrices.
Collapse
Affiliation(s)
- Xiaoyong Zhao
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Shanshan Shen
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Datong Wu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Pengfei Cai
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Yuanjiang Pan
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
37
|
Analysis of phenolic acids by ionic liquid-in-water microemulsion liquid chromatography coupled with ultraviolet and electrochemical detector. J Chromatogr A 2017; 1499:132-139. [DOI: 10.1016/j.chroma.2017.03.086] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/23/2017] [Accepted: 03/31/2017] [Indexed: 02/07/2023]
|
38
|
Organic matrices, ionic liquids, and organic matrices@nanoparticles assisted laser desorption/ionization mass spectrometry. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.01.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
39
|
Byliński H, Gębicki J, Dymerski T, Namieśnik J. Direct Analysis of Samples of Various Origin and Composition Using Specific Types of Mass Spectrometry. Crit Rev Anal Chem 2017; 47:340-358. [DOI: 10.1080/10408347.2017.1298986] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Hubert Byliński
- Faculty of Chemistry, Department of Analytical Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | - Jacek Gębicki
- Faculty of Chemistry, Department of Chemical and Process Engineering, Gdańsk University of Technology, Gdańsk, Poland
| | - Tomasz Dymerski
- Faculty of Chemistry, Department of Analytical Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | - Jacek Namieśnik
- Faculty of Chemistry, Department of Analytical Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| |
Collapse
|
40
|
Yang M, Hong K, Li X, Ge F, Tang Y. Freezing temperature controlled deep eutectic solvent dispersive liquid–liquid microextraction based on solidification of floating organic droplets for rapid determination of benzoylureas residual in water samples with assistance of metallic salt. RSC Adv 2017. [DOI: 10.1039/c7ra11030h] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A hydrophobic deep eutectic solvent worked as an extractant to extract benzoylureas with assistance of FeCl3 contained dispersive-demulsified solvent.
Collapse
Affiliation(s)
- Miyi Yang
- Institute of Chinese Materia China Academy of Chinese Medical Science
- Beijing 100700
- China
| | - Kun Hong
- Institute of Chinese Materia China Academy of Chinese Medical Science
- Beijing 100700
- China
| | - Xiaoqiang Li
- Institute of Chinese Materia China Academy of Chinese Medical Science
- Beijing 100700
- China
| | - Fangji Ge
- Institute of Chinese Materia China Academy of Chinese Medical Science
- Beijing 100700
- China
| | - Yuqing Tang
- Institute of Chinese Materia China Academy of Chinese Medical Science
- Beijing 100700
- China
| |
Collapse
|
41
|
Kumaran S, Abdelhamid HN, Wu HF. Quantification analysis of protein and mycelium contents upon inhibition of melanin for Aspergillus niger: a study of matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS). RSC Adv 2017. [DOI: 10.1039/c7ra03741d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Mass spectrometry (MS) provides a simple discrimination method for microorganisms.
Collapse
Affiliation(s)
- Sekar Kumaran
- Department of Chemistry and Center for Nanoscience and Nanotechnology
- National Sun Yat-Sen University
- Kaohsiung
- Taiwan
- School of Pharmacy
| | - Hani Nasser Abdelhamid
- Department of Chemistry and Center for Nanoscience and Nanotechnology
- National Sun Yat-Sen University
- Kaohsiung
- Taiwan
- School of Pharmacy
| | - Hui-Fen Wu
- Department of Chemistry and Center for Nanoscience and Nanotechnology
- National Sun Yat-Sen University
- Kaohsiung
- Taiwan
- School of Pharmacy
| |
Collapse
|
42
|
Abdelhamid HN, Lin YC, Wu HF. Magnetic nanoparticle modified chitosan for surface enhanced laser desorption/ionization mass spectrometry of surfactants. RSC Adv 2017. [DOI: 10.1039/c7ra05982e] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Chitosan (CTS) modified magnetic nanoparticles (CTS@Fe3O4MNPs) offer dual functions for the detection of surfactants using surface enhanced laser desorption/ionization mass spectrometry (SELDI-MS).
Collapse
Affiliation(s)
- Hani Nasser Abdelhamid
- Department of Chemistry
- National Sun Yat-Sen University
- Kaohsiung
- Taiwan
- Department of Chemistry
| | - Yu Chih Lin
- Department of Chemistry
- National Sun Yat-Sen University
- Kaohsiung
- Taiwan
| | - Hui-Fen Wu
- Department of Chemistry
- National Sun Yat-Sen University
- Kaohsiung
- Taiwan
- School of Pharmacy
| |
Collapse
|
43
|
Zhang Y, Mei M, Ouyang T, Huang X. Preparation of a new polymeric ionic liquid-based sorbent for stir cake sorptive extraction of trace antimony in environmental water samples. Talanta 2016; 161:377-383. [DOI: 10.1016/j.talanta.2016.08.063] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 08/16/2016] [Accepted: 08/21/2016] [Indexed: 12/11/2022]
|
44
|
Abdelhamid HN, Talib A, Wu HF. One pot synthesis of gold - carbon dots nanocomposite and its application for cytosensing of metals for cancer cells. Talanta 2016; 166:357-363. [PMID: 28213245 DOI: 10.1016/j.talanta.2016.11.030] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 11/13/2016] [Accepted: 11/14/2016] [Indexed: 01/01/2023]
Abstract
Cytosensing of biological transition metals is paramount important for cancer research. One-pot synthesis of the nanocomposite of carbon dots (CDs) and gold nanoparticles (AuNPs) is reported and has been applied for metal cytosensing. The nanocomposite (GCDs) is synthesized using citric acid (CA) and L-cysteine as precursors in the presence of chloroauric acid. The synthesis procedure exhibits many advantages including simple one step, green approach (solvent free method) and requires cheap chemical precursors. The current procedure produces uniform carbon dots (<3nm) and assist the formation of AuNPs without using extra reducing agent. GCDs nanoparticles have UV absorbance matching with the wavelength of N2 laser (337nm). The synergistic effect of the large surface area of GCDs and the maximum absorbance at 337nm offers an effective and promising application for surface enhanced laser desorption/ionization mass spectrometry (SELDI-MS) of biological metals (Fe2+, Fe3+ and Cu2+ ions) for cancer cells. SELDI-MS using GCDs offers a sensitive method, shows selective detection, and provides simultaneous cytosensing of biological metals (Fe2+, Fe3+ and Cu2+) of cancer cells. The metals are detected after complexation with mefenamic acid (MFA) which provides multi-functions (chelating agent, internal calibrant and co-matrix) for LDI-MS.
Collapse
Affiliation(s)
| | - Abuo Talib
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University and Academia Sinica, Kaohsiung, 80424, Taiwan
| | - Hui-Fen Wu
- Department of Chemistry and Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, Kaohsiung, 70, Lien-Hai Road, Kaohsiung, 80424, Taiwan; School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 807, Taiwan; Institue of Medical Science and Technology, National Sun Yat-Sen University, 80424, Taiwan; Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University and Academia Sinica, Kaohsiung, 80424, Taiwan.
| |
Collapse
|
45
|
Casado-Carmona FA, Alcudia-León MDC, Lucena R, Cárdenas S, Valcárcel M. Magnetic nanoparticles coated with ionic liquid for the extraction of endocrine disrupting compounds from waters. Microchem J 2016. [DOI: 10.1016/j.microc.2016.05.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|