1
|
Zielinska Z, Oldak L, Gorodkiewicz E. Biosensing systems for the detection of biomarkers of neurodegenerative diseases: A review. Talanta 2025; 284:127247. [PMID: 39586209 DOI: 10.1016/j.talanta.2024.127247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/23/2024] [Accepted: 11/18/2024] [Indexed: 11/27/2024]
Abstract
Neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS) are pathologies associated with neuronal disorders and degradation. They are difficult to detect in their early stages, when it is crucial for appropriate treatment to be implemented. Currently, many biosensors are being developed to enable the determination of compounds characteristic of the aforementioned diseases. This review includes a de-scription of the structure of biosensors, as well as their applications in many areas of qualitative and quantitative analysis, with particular emphasis on diagnostics. The structures of biosensors that can potentially be used for the diagnosis of AD, PD and MS are discussed, as well as their characteristics, which depend on the technique used for the analysis and the type of recognition element capable of specifically binding a given biomarker. A description is also given of biosensors classified according to the type of sample used for quantitative determinations.
Collapse
Affiliation(s)
- Zuzanna Zielinska
- Doctoral School of Exact and Natural Science, Faculty of Chemistry, Bioanalysis Laboratory, University of Bialystok, Ciolkowskiego 1K, 15-245, Bialystok, Poland.
| | - Lukasz Oldak
- Bioanalysis Laboratory, Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245, Bialystok, Poland.
| | - Ewa Gorodkiewicz
- Bioanalysis Laboratory, Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245, Bialystok, Poland.
| |
Collapse
|
2
|
Khatami SH, Khanifar H, Movahedpour A, Taheri-Anganeh M, Ehtiati S, Khanifar H, Asadi A. Electrochemical biosensors in early detection of Parkinson disease. Clin Chim Acta 2025; 565:120001. [PMID: 39424121 DOI: 10.1016/j.cca.2024.120001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder affecting the motor system, with symptoms including tremors, rigidity, bradykinesia, and postural instability. Affecting over six million people globally, PD's pathophysiology is marked by the loss of dopaminergic neurons in the substantia nigra. Early diagnosis is crucial for effective management, yet current methods are limited by low sensitivity, high cost, and the need for advanced equipment. Electrochemical biosensors have emerged as promising tools for early PD diagnosis, converting biological reactions into measurable electrical signals for evaluating PD biomarkers. Advances in nanotechnology and material science have led to innovative sensing platforms with enhanced sensitivity and selectivity. Key biomarkers such as alpha-synuclein (α-syn), dopamine (DA), and microRNAs (miRNAs) have been targeted using these biosensors. For instance, gold nanoparticle-modified graphene immunosensors have shown ultra-sensitive detection of α-syn, while graphene-based biosensors have demonstrated high sensitivity for DA detection. Additionally, nanobiosensors for miR-195 and electrochemical aptasensors have shown potential for early PD diagnosis. The integration of nanomaterials like gold nanoparticles, quantum dots, and carbon nanotubes has further advanced the field, enhancing electrochemical activity and sensitivity. These developments offer a reliable, rapid, and cost-effective approach for early PD diagnosis, paving the way for better management and treatment. Continued research is essential for the commercialization and clinical integration of these biosensors, ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Seyyed Hossein Khatami
- Student Research Committee, Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Hamed Khanifar
- Department of Electrical and Computer Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - Ahmad Movahedpour
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Sajad Ehtiati
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hadi Khanifar
- Department of Internal Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| | - Amir Asadi
- Psychiatry and Behavioral Sciences Research Center, Addiction Institute, and Department of Psychiatry, School of Medicine, Mazandaran University of Medical Sciences, Sari,Iran.
| |
Collapse
|
3
|
Huang Z, Zhang L, Dou Y, Liu X, Song S, Jiang H, Fan C. Electrochemical Biosensor for Point-of-Care Testing of Low-Abundance Biomarkers of Neurological Diseases. Anal Chem 2024; 96:10332-10340. [PMID: 38865206 DOI: 10.1021/acs.analchem.4c01278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
The neurofilament protein light chain (NEFL) is a potential biomarker of neurodegenerative diseases, and interleukin-6 (IL-6) is also closely related to neuroinflammation. Especially, NEFL and IL-6 are the two most low-abundance known protein markers of neurological diseases, making their detection very important for the early diagnosis and prognosis prediction of such kinds of diseases. Nevertheless, quantitative detection of low concentrations of NEFL and IL-6 in serum remains quite difficult, especially in the point-of-care test (POCT). Herein, we developed a portable, sensitive electrochemical biosensor combined with smartphones that can be applied to multiple scenarios for the quantitative detection of NEFL and IL-6, meeting the need of the POCT. We used a double-antibody sandwich configuration combined with polyenzyme-catalyzed signal amplification to improve the sensitivity of the biosensor for the detection of NEFL and IL-6 in sera. We could detect NEFL as low as 5.22 pg/mL and IL-6 as low as 3.69 pg/mL of 6 μL of serum within 2 h, demonstrating that this electrochemical biosensor worked well with serum systems. Results also showed its superior detection capabilities over those of high-sensitivity ELISA for serum samples. Importantly, by detecting NEFL and IL-6 in sera, the biosensor showed its potential for the POCT model detection of all known biomarkers of neurological diseases, making it possible for the mass screening of patients with neurodegenerative diseases.
Collapse
Affiliation(s)
- Ziyue Huang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Zhang
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yanzhi Dou
- Shanghai Institute of Microsystem and Information Technology, Chinse Academy of Sciences, Shanghai 200050, China
| | - Xue Liu
- Institute of Materiobiology, College of Science, Shanghai University, Shanghai 200444, China
| | - Shiping Song
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- Institute of Materiobiology, College of Science, Shanghai University, Shanghai 200444, China
| | - Hong Jiang
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Chunhai Fan
- Institute of Materiobiology, College of Science, Shanghai University, Shanghai 200444, China
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
4
|
Luo Q, Qiu Z, Liang H, Huang F, Wei C, Cui J, Song Z, Tang Q, Liao X, Liu Z, Wang J, Gao F. Proximity hybridization induced molecular machine for signal-on electrochemical detection of α-synuclein oligomers. Talanta 2024; 271:125720. [PMID: 38309112 DOI: 10.1016/j.talanta.2024.125720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/05/2024]
Abstract
α-synuclein oligomer is a marker of Parkinson's disease. The traditional enzyme-linked immunosorbent assay for α-synuclein oligomer detection is not conducive to large-scale application due to its time-consuming, high cost and poor stability. Recently, DNA-based biosensors have been increasingly used in the detection of disease markers due to their high sensitivity, simplicity and low cost. In this study, based on the DNAzyme-driven DNA bipedal walking method, we developed a signal-on electrochemical sensor for the detection of α-syn oligomers. Bipedal DNA walkers have a larger walking area and faster walking kinetics, providing higher amplification efficiency compared to conventional DNA walkers. The DNA walker is driven via an Mg2+-dependent DNAzyme, and the binding-induced DNA walker will continuously clamp the MB, resulting in the proliferation of Fc confined near the GE surface. The linear range and limit of detection were 1 fg/mL to 10 pg/mL and 0.57 fg/mL, respectively. The proposed signal-on electrochemical sensing strategy is more selective. It will play a significant role in the sensitive and precise electrochemical analysis of other proteins.
Collapse
Affiliation(s)
- Qisheng Luo
- The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China
| | - Zhili Qiu
- School of Pharmacy, Xuzhou Medical University, 221004, Xuzhou, China
| | - Hongqu Liang
- The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China
| | - Fa Huang
- The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China
| | - Chen Wei
- The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China
| | - Jiuying Cui
- West Guangxi Key Laboratory for Prevention and Treatment of High-incidence Diseases, Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China
| | - Zichun Song
- West Guangxi Key Laboratory for Prevention and Treatment of High-incidence Diseases, Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China
| | - Qianli Tang
- The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China
| | - Xianjiu Liao
- West Guangxi Key Laboratory for Prevention and Treatment of High-incidence Diseases, Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China.
| | - Zhao Liu
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Xuzhou Medical University, 221004, Xuzhou, China.
| | - Jiangbo Wang
- Department of Neurology, Xuzhou Central Hospital, 221004, Xuzhou, China; Xuzhou Institute of Cardiovascular Disease, 221004, Xuzhou, China.
| | - Fenglei Gao
- School of Pharmacy, Xuzhou Medical University, 221004, Xuzhou, China.
| |
Collapse
|
5
|
Pilvenyte G, Ratautaite V, Boguzaite R, Samukaite-Bubniene U, Plausinaitis D, Ramanaviciene A, Bechelany M, Ramanavicius A. Molecularly imprinted polymers for the recognition of biomarkers of certain neurodegenerative diseases. J Pharm Biomed Anal 2023; 228:115343. [PMID: 36934618 DOI: 10.1016/j.jpba.2023.115343] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/25/2023] [Accepted: 03/12/2023] [Indexed: 03/14/2023]
Abstract
The appearance of the biomarkers in body fluids like blood, urine, saliva, tears, etc. can be used for the identification of many diseases. This article aimed to summarize the studies about electrochemical biosensors with molecularly imprinted polymers as sensitive and selective layers on the electrode to detect protein-based biomarkers of such neurodegenerative diseases as Alzheimer's disease, Parkinson's disease, and stress. The main attention in this article is focused on the detection methods of amyloid-β oligomers and p-Tau which are representative biomarkers for Alzheimer's disease, α-synuclein as the biomarker of Parkinson's disease, and α-amylase and lysozyme as the biomarkers of stress using molecular imprinting technology. The research methods, the application of different electrodes, the influence of the polymers, and the established detection limits are reviewed and compared.
Collapse
Affiliation(s)
- Greta Pilvenyte
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology, Saulėtekio av. 3, LT-10257 Vilnius, Lithuania
| | - Vilma Ratautaite
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology, Saulėtekio av. 3, LT-10257 Vilnius, Lithuania; Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania.
| | - Raimonda Boguzaite
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology, Saulėtekio av. 3, LT-10257 Vilnius, Lithuania
| | - Urte Samukaite-Bubniene
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology, Saulėtekio av. 3, LT-10257 Vilnius, Lithuania; Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania
| | - Deivis Plausinaitis
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania
| | - Almira Ramanaviciene
- NanoTechnas - Center of Nanotechnology and Materials Science, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania
| | - Mikhael Bechelany
- Institut Européen des Membranes, IEM, UMR 5635, University of Montpellier, CNRS, ENSCM, 34090 Montpellier, France
| | - Arunas Ramanavicius
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology, Saulėtekio av. 3, LT-10257 Vilnius, Lithuania; Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania.
| |
Collapse
|
6
|
Carneiro P, Loureiro JA, Delerue-Matos C, Morais S, Pereira MDC. Nanostructured label–free electrochemical immunosensor for detection of a Parkinson's disease biomarker. Talanta 2023; 252:123838. [DOI: 10.1016/j.talanta.2022.123838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/02/2022] [Accepted: 08/08/2022] [Indexed: 10/15/2022]
|
7
|
Rouhi N, Akhgari A, Orouji N, Nezami A, Rahimzadegan M, Kamali H. Recent progress in the graphene-based biosensing approaches for the detection of Alzheimer's biomarkers. J Pharm Biomed Anal 2023; 222:115084. [DOI: 10.1016/j.jpba.2022.115084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/15/2022] [Accepted: 09/26/2022] [Indexed: 12/01/2022]
|
8
|
Chougale A, Vedante S, Kulkarni G, Patnawar S. Recent Progress on Biosensors for the Early Detection of Neurological Disorders. ChemistrySelect 2022. [DOI: 10.1002/slct.202203155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Amit Chougale
- Department of Chemical Engineering University of Adelaide SA Australia 5000
| | - Shruti Vedante
- Department of Chemical Engineering University of Adelaide SA Australia 5000
| | - Guruprasad Kulkarni
- Department of Biotechnology Kolhapur Institute of Technology's College of Engineering Kolhapur Maharashtra India 416234
| | - Sneha Patnawar
- Department of Biotechnology Kolhapur Institute of Technology's College of Engineering Kolhapur Maharashtra India. 416234
| |
Collapse
|
9
|
Design strategies, current applications and future perspective of aptasensors for neurological disease biomarkers. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Karaboğa MNS, Sezgintürk MK. Biosensor approaches on the diagnosis of neurodegenerative diseases: Sensing the past to the future. J Pharm Biomed Anal 2022; 209:114479. [PMID: 34861607 DOI: 10.1016/j.jpba.2021.114479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/05/2021] [Accepted: 11/14/2021] [Indexed: 12/12/2022]
Abstract
Early diagnosis of neurodegeneration-oriented diseases that develop with the aging world is essential for improving the patient's living conditions as well as the treatment of the disease. Alzheimer's and Parkinson's diseases are prominent examples of neurodegeneration characterized by dementia leading to the death of nerve cells. The clinical diagnosis of these diseases only after the symptoms appear, delays the treatment process. Detection of biomarkers, which are distinctive molecules in biological fluids, involved in neurodegeneration processes, has the potential to allow early diagnosis of neurodegenerative diseases. Studies on biosensors, whose main responsibility is to detect the target analyte with high specificity, has gained momentum in recent years with the aim of high detection of potential biomarkers of neurodegeneration process. This study aims to provide an overview of neuro-biosensors developed on the basis of biomarkers identified in biological fluids for the diagnosis of neurodegenerative diseases such as Alzheimer's disease (AD), and Parkinson's disease (PD), and to provide an overview of the urgent needs in this field, emphasizing the importance of early diagnosis in the general lines of the neurodegeneration pathway. In this review, biosensor systems developed for the detection of biomarkers of neurodegenerative diseases, especially in the last 5 years, are discussed.
Collapse
|
11
|
Kim JH, Suh YJ, Park D, Yim H, Kim H, Kim HJ, Yoon DS, Hwang KS. Technological advances in electrochemical biosensors for the detection of disease biomarkers. Biomed Eng Lett 2021; 11:309-334. [PMID: 34466275 PMCID: PMC8396145 DOI: 10.1007/s13534-021-00204-w] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/13/2021] [Accepted: 08/20/2021] [Indexed: 12/15/2022] Open
Abstract
With an increasing focus on health in contemporary society, interest in the diagnosis, treatment, and prevention of diseases has grown rapidly. Accordingly, the demand for biosensors for the early diagnosis of disease is increasing. However, the measurement range of existing electrochemical sensors is relatively high, which is not suitable for early disease diagnosis, requiring the detection of small amounts of biocomponents. Various attempts have been made to overcome this and amplify the signal, including binding with various labeling molecules, such as DNA, enzymes, nanoparticles, and carbon materials. Efforts are also being made to increase the sensitivity of electrochemical sensors, and the combination of nanomaterials, materials, and biotechnology offers the potential to increase sensitivity in a variety of ways. Recent studies suggest that electrochemical sensors can be a powerful tool in providing comprehensive insights into the targeting and detection of disease-associated biomarkers. Significant advances in nanomaterial and biomolecule approaches for improved sensitivity have resulted in the development of electrochemical biosensors capable of detecting multiple biomarkers in real time in clinically relevant samples. In this review, we have discussed the recent studies on electrochemical sensors for detection of diseases such as diabetes, degenerative diseases, and cancer. Further, we have highlighted new technologies to improve sensitivity using various materials, including DNA, enzymes, nanoparticles, and carbon materials.
Collapse
Affiliation(s)
- Jae Hyun Kim
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, Kyung Hee University, Kyungheedae-ro 26, Dongdaemun-gu, Seoul, 02447 Republic of Korea
| | - Young Joon Suh
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, Kyung Hee University, Kyungheedae-ro 26, Dongdaemun-gu, Seoul, 02447 Republic of Korea
| | - Dongsung Park
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, Kyung Hee University, Kyungheedae-ro 26, Dongdaemun-gu, Seoul, 02447 Republic of Korea
- School of Biomedical Engineering, Korea University, Seoul, 02841 Republic of Korea
| | - Hyoju Yim
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, Kyung Hee University, Kyungheedae-ro 26, Dongdaemun-gu, Seoul, 02447 Republic of Korea
| | - Hongrae Kim
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, Kyung Hee University, Kyungheedae-ro 26, Dongdaemun-gu, Seoul, 02447 Republic of Korea
- School of Biomedical Engineering, Korea University, Seoul, 02841 Republic of Korea
| | - Hye Jin Kim
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, Kyung Hee University, Kyungheedae-ro 26, Dongdaemun-gu, Seoul, 02447 Republic of Korea
| | - Dae Sung Yoon
- School of Biomedical Engineering, Korea University, Seoul, 02841 Republic of Korea
| | - Kyo Seon Hwang
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, Kyung Hee University, Kyungheedae-ro 26, Dongdaemun-gu, Seoul, 02447 Republic of Korea
| |
Collapse
|
12
|
Hanif S, Muhammad P, Niu Z, Ismail M, Morsch M, Zhang X, Li M, Shi B. Nanotechnology‐Based Strategies for Early Diagnosis of Central Nervous System Disorders. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Sumaira Hanif
- Henan-Macquarie University Joint Centre for Biomedical Innovation School of Life Sciences Henan University Kaifeng Henan 475004 China
| | - Pir Muhammad
- Henan-Macquarie University Joint Centre for Biomedical Innovation School of Life Sciences Henan University Kaifeng Henan 475004 China
| | - Zheng Niu
- Province's Key Lab of Brain Targeted Bionanomedicine School of Pharmacy Henan University Kaifeng Henan 475004 China
| | - Muhammad Ismail
- Henan-Macquarie University Joint Centre for Biomedical Innovation School of Life Sciences Henan University Kaifeng Henan 475004 China
| | - Marco Morsch
- Department of Biomedical Sciences Macquarie University Centre for Motor Neuron Disease Research Macquarie University NSW 2109 Australia
| | - Xiaoju Zhang
- Department of Respiratory and Critical Care Medicine Henan Provincial People's Hospital Zhengzhou Henan 450003 China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine The Third Affiliated Hospital Sun Yat-sen University Guangzhou Guangdong 510630 China
| | - Bingyang Shi
- Department of Biomedical Sciences Faculty of Medicine & Health & Human Sciences Macquarie University NSW 2109 Australia
| |
Collapse
|
13
|
Murti BT, Putri AD, Huang YJ, Wei SM, Peng CW, Yang PK. Clinically oriented Alzheimer's biosensors: expanding the horizons towards point-of-care diagnostics and beyond. RSC Adv 2021; 11:20403-20422. [PMID: 35479927 PMCID: PMC9033966 DOI: 10.1039/d1ra01553b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/28/2021] [Indexed: 12/30/2022] Open
Abstract
The development of minimally invasive and easy-to-use sensor devices is of current interest for ultrasensitive detection and signal recognition of Alzheimer's disease (AD) biomarkers. Over the years, tremendous effort has been made on diagnostic platforms specifically targeting neurological markers for AD in order to replace the conventional, laborious, and invasive sampling-based approaches. However, the sophistication of analytical outcomes, marker inaccessibility, and material validity strongly limit the current strategies towards effectively predicting AD. Recently, with the promising progress in biosensor technology, the realization of a clinically applicable sensing platform has become a potential option to enable early diagnosis of AD and other neurodegenerative diseases. In this review, various types of biosensors, which include electrochemical, fluorescent, plasmonic, photoelectrochemical, and field-effect transistor (FET)-based sensor configurations, with better clinical applicability and analytical performance towards AD are highlighted. Moreover, the feasibility of these sensors to achieve point-of-care (POC) diagnosis is also discussed. Furthermore, by grafting nanoscale materials into biosensor architecture, the remarkable enhancement in durability, functionality, and analytical outcome of sensor devices is presented. Finally, future perspectives on further translational and commercialization pathways of clinically driven biosensor devices for AD are discussed and summarized.
Collapse
Affiliation(s)
- Bayu Tri Murti
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University Taipei Taiwan
- Semarang College of Pharmaceutical Sciences (STIFAR) Semarang City Indonesia
| | - Athika Darumas Putri
- Semarang College of Pharmaceutical Sciences (STIFAR) Semarang City Indonesia
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Pharmacy, Taipei Medical University Taipei Taiwan
| | - Yi-June Huang
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University Taipei Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University Taipei Taiwan
| | - Shih-Min Wei
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University Taipei Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University Taipei Taiwan
| | - Chih-Wei Peng
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University Taipei Taiwan
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University Taipei Taiwan
| | - Po-Kang Yang
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University Taipei Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University Taipei Taiwan
- Department of Biomedical Sciences and Engineering, National Central University Chung-li Taiwan
| |
Collapse
|
14
|
|
15
|
Ullah H, Di Minno A, Santarcangelo C, Khan H, Daglia M. Improvement of Oxidative Stress and Mitochondrial Dysfunction by β-Caryophyllene: A Focus on the Nervous System. Antioxidants (Basel) 2021; 10:546. [PMID: 33915950 PMCID: PMC8066981 DOI: 10.3390/antiox10040546] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/19/2021] [Accepted: 03/28/2021] [Indexed: 02/05/2023] Open
Abstract
Mitochondrial dysfunction results in a series of defective cellular events, including decreased adenosine triphosphate (ATP) production, enhanced reactive oxygen species (ROS) output, and altered proteastasis and cellular quality control. An enhanced output of ROS may damage mitochondrial components, such as mitochondrial DNA and elements of the electron transport chain, resulting in the loss of proper electrochemical gradient across the mitochondrial inner membrane and an ensuing shutdown of mitochondrial energy production. Neurons have an increased demand for ATP and oxygen, and thus are more prone to damage induced by mitochondrial dysfunction. Mitochondrial dysfunction, damaged electron transport chains, altered membrane permeability and Ca2+ homeostasis, and impaired mitochondrial defense systems induced by oxidative stress, are pathological changes involved in neurodegenerative disorders. A growing body of evidence suggests that the use of antioxidants could stabilize mitochondria and thus may be suitable for preventing neuronal loss. Numerous natural products exhibit the potential to counter oxidative stress and mitochondrial dysfunction; however, science is still looking for a breakthrough in the treatment of neurodegenerative disorders. β-caryophyllene is a bicyclic sesquiterpene, and an active principle of essential oils derived from a large number of spices and food plants. As a selective cannabinoid receptor 2 (CB2) agonist, several studies have reported it as possessing numerous pharmacological activities such as antibacterial (e.g., Helicobacter pylori), antioxidant, anti-inflammatory, analgesic (e.g., neuropathic pain), anti-neurodegenerative and anticancer properties. The present review mainly focuses on the potential of β-caryophyllene in reducing oxidative stress and mitochondrial dysfunction, and its possible links with neuroprotection.
Collapse
Affiliation(s)
- Hammad Ullah
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (H.U.); (A.D.M.); (C.S.)
| | - Alessandro Di Minno
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (H.U.); (A.D.M.); (C.S.)
- CEINGE-Biotecnologie Avanzate, 80131 Naples, Italy
| | - Cristina Santarcangelo
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (H.U.); (A.D.M.); (C.S.)
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan; or
| | - Maria Daglia
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (H.U.); (A.D.M.); (C.S.)
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
16
|
Li S, Kerman K. Electrochemical biosensors for biometal-protein interactions in neurodegenerative diseases. Biosens Bioelectron 2021; 179:113035. [PMID: 33578115 DOI: 10.1016/j.bios.2021.113035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 01/12/2021] [Accepted: 01/21/2021] [Indexed: 12/20/2022]
Abstract
Electrochemical biosensors have been adopted into a wide range of applications in the study of biometal-protein interactions in neurodegenerative diseases. Transition metals such as zinc, copper, and iron that are significant to biological functions have been shown to have strong implications in the progressive neural degeneration in Alzheimer's disease (AD), Parkinson's disease (PD), and prion protein diseases. This review presents a summative examination of the progress made in the design, fabrication, and applications of electrochemical biosensors in recent literature at understanding the metal-protein interactions in neurodegenerative diseases. The focus will be drawn on disease-causing biomarkers such as amyloid-β (Aβ) and tau proteins for AD, α-synuclein (α-syn) for PD, and prion proteins (PrP). Topics such as the use of electrochemical biosensing in monitoring biometal-induced conformational changes, elucidation of complexation motifs, production of reactive oxygen species (ROS) as well as the influence on downstream biomolecular interactions will be discussed. Major results and important concepts presented in these studies will be summarized in the hope to spark inspiration for the next generation of electrochemical sensors.
Collapse
Affiliation(s)
- Shaopei Li
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada
| | - Kagan Kerman
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada.
| |
Collapse
|
17
|
A nanospherical conjugated microporous polymer-graphene nanosheets modified molecularly imprinted electrochemical sensor for high sensitivity detection of α-Synuclein. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.113994] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
18
|
An Electrochemical Immunosensor Based on a Self-Assembled Monolayer Modified Electrode for Label-Free Detection of α-Synuclein. SENSORS 2020; 20:s20030617. [PMID: 31979160 PMCID: PMC7038178 DOI: 10.3390/s20030617] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/18/2020] [Accepted: 01/19/2020] [Indexed: 12/12/2022]
Abstract
This research demonstrated the development of a simple, cost-effective, and label-free immunosensor for the detection of α-synuclein (α-Syn) based on a cystamine (CYS) self-assembled monolayer (SAM) decorated fluorine-doped tin oxide (FTO) electrode. CYS-SAM was formed onto the FTO electrode by the adsorption of CYS molecules through the head sulfur groups. The free amine (–NH2) groups at the tail of the CYS-SAM enabled the immobilization of anti-α-Syn-antibody, which concurrently allowed the formation of immunocomplex by covalent bonding with α-Syn-antigen. The variation of the concentrations of the attached α-Syn at the immunosensor probe induced the alternation of the current and the charge transfer resistance (Rct) for the redox response of [Fe(CN)6]3−/4−, which displayed a linear dynamic range from 10 to 1000 ng/mL with a low detection limit (S/N = 3) of ca. 3.62 and 1.13 ng/mL in differential pulse voltammetry (DPV) and electrochemical impedance spectra (EIS) measurements, respectively. The immunosensor displayed good reproducibility, anti-interference ability, and good recoveries of α-Syn detection in diluted human serum samples. The proposed immunosensor is a promising platform to detect α-Syn for the early diagnose of Parkinson’s disease, which can be extended for the determination of other biologically important biomarkers.
Collapse
|
19
|
Carneiro P, Morais S, do Carmo Pereira M. Biosensors on the road to early diagnostic and surveillance of Alzheimer's disease. Talanta 2020; 211:120700. [PMID: 32070618 DOI: 10.1016/j.talanta.2019.120700] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/21/2019] [Accepted: 12/28/2019] [Indexed: 12/22/2022]
Abstract
Alzheimer's disease is a debilitating and largely untreatable condition with subtle onset and slow progression over an extensive period of time, which culminate in increasing levels of disability. As Alzheimer's disease prevalence is expected to grow exponentially in the upcoming decades, there is an urgency to develop analytical technologies for the sensitive, reliable and cost-effective detection of Alzheimer's disease biomarkers. Biosensors are powerful analytical devices that translate events of biological recognition on physical or chemical transducers into electrical, thermal or optical signals. The high sensitivity and selectivity of biosensors associated with easy, rapid and low-cost determination of analytes have made this discipline one of the most intensively studied in the past decades. This review centers on recent advances, challenges and trends of Alzheimer's disease biosensing particularly in the effort to combine the unique properties of nanomaterials with biorecognition elements. In the last decade, impressive progresses have been made towards the development of biosensors, mainly electrochemical and optical, for detection of Alzheimer's disease biomarkers in the pico- and femto-molar range. Nonetheless, advances in multiplexed detection, robustness, stability and specificity are still necessary to ensure an accurate and differentiated diagnosis of this disease.
Collapse
Affiliation(s)
- Pedro Carneiro
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; REQUIMTE-LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, R. Dr. António Bernardino de Almeida 431, 4200-072, Porto, Portugal
| | - Simone Morais
- REQUIMTE-LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, R. Dr. António Bernardino de Almeida 431, 4200-072, Porto, Portugal.
| | - Maria do Carmo Pereira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| |
Collapse
|
20
|
Lima D, Hacke ACM, Inaba J, Pessôa CA, Kerman K. Electrochemical detection of specific interactions between apolipoprotein E isoforms and DNA sequences related to Alzheimer's disease. Bioelectrochemistry 2019; 133:107447. [PMID: 32006858 DOI: 10.1016/j.bioelechem.2019.107447] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 12/14/2019] [Accepted: 12/15/2019] [Indexed: 12/26/2022]
Abstract
Apolipoprotein E4 (ApoE4) has a key role on the onset and progression of Alzheimer's disease (AD), since it favours the deposition of toxic amyloid-beta (Aβ) aggregates in the brain. These effects might result from the interaction between ApoE4 and specific DNA promoters related to cellular autophagy pathways and to the expression of neuroprotective proteins, like sirtuin-1. Herein, we modified gold electrodes with mixed self-assembled monolayers of 6-mercapto-1-hexanol and thiolated DNA oligonucleotides related to CLEAR (associated with autophagic processes that enable the clearance of toxic species, such as Aβ) and SirT1 (related to the expression of sirtuin-1) promoter sequences. The interactions of the immobilized DNA sequences with isoforms of ApoE (ApoE4/ApoE3/ApoE2) were investigated by differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS) measurements. By monitoring current and charge transfer resistance (Rct) variations, CLEAR showed to interact specifically with ApoE4, whereas SirT1 showed a higher affinity to ApoE4 compared to ApoE3 and ApoE2. To the best of our knowledge, this is the first report about the application of electrochemical techniques to investigate the sequence-specific interaction between ApoE isoforms and CLEAR and SirT1 oligonucleotides.
Collapse
Affiliation(s)
- Dhésmon Lima
- Department of Chemistry, Universidade Estadual de Ponta Grossa, Av. General Carlos Cavalcanti, 4748, 84030-900 Ponta Grossa, PR, Brazil
| | - Ana Carolina M Hacke
- Department of Chemistry, Universidade Estadual de Ponta Grossa, Av. General Carlos Cavalcanti, 4748, 84030-900 Ponta Grossa, PR, Brazil
| | - Juliana Inaba
- Department of Chemistry, Universidade Estadual de Ponta Grossa, Av. General Carlos Cavalcanti, 4748, 84030-900 Ponta Grossa, PR, Brazil
| | - Christiana A Pessôa
- Department of Chemistry, Universidade Estadual de Ponta Grossa, Av. General Carlos Cavalcanti, 4748, 84030-900 Ponta Grossa, PR, Brazil
| | - Kagan Kerman
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, M1C 1A4 Toronto, ON, Canada.
| |
Collapse
|
21
|
Electrochemical biosensors for the detection and study of α-synuclein related to Parkinson's disease - A review. Anal Chim Acta 2019; 1089:32-39. [PMID: 31627816 DOI: 10.1016/j.aca.2019.09.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 09/01/2019] [Accepted: 09/04/2019] [Indexed: 12/11/2022]
Abstract
Parkinson's disease (PD) is a long-term degenerative disorder that affects predominately dopaminergic neurons in the substantia nigra, which mainly control movement. Alpha-synuclein (α-syn) is a major constituent of Lewy bodies that are reported to be the most important toxic species in the brain of PD patients. In this critical review, we highlight novel electrochemical biosensors that have been recently developed utilizing aptamers and antibodies in connection with various nanomaterials to study biomarkers related to PD such as α-syn. We also review several research articles that have utilized electrochemical biosensors to study the interaction of α-syn with biometals as well as small molecules such as clioquinol, (-)-epigallocatechin-3-gallate (EGCG) and baicalein. Due to the significant advances in nanomaterials in the past decade, electrochemical biosensors capable of detecting multiple biomarkers in clinically relevant samples in real-time have been achieved. This may facilitate the path towards commercialization of electrochemical biosensors for clinical applications and high-throughput screening of small molecules for structure-activity relationship (SAR) studies.
Collapse
|
22
|
DNA repair and neurological disease: From molecular understanding to the development of diagnostics and model organisms. DNA Repair (Amst) 2019; 81:102669. [PMID: 31331820 DOI: 10.1016/j.dnarep.2019.102669] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In both replicating and non-replicating cells, the maintenance of genomic stability is of utmost importance. Dividing cells can repair DNA damage during cell division, tolerate the damage by employing potentially mutagenic DNA polymerases or die via apoptosis. However, the options for accurate DNA repair are more limited in non-replicating neuronal cells. If DNA damage is left unresolved, neuronal cells die causing neurodegenerative disorders. A number of pathogenic variants of DNA repair proteins have been linked to multiple neurological diseases. The current challenge is to harness our knowledge of fundamental properties of DNA repair to improve diagnosis, prognosis and treatment of such debilitating disorders. In this perspective, we will focus on recent efforts in identifying novel DNA repair biomarkers for the diagnosis of neurological disorders and their use in monitoring the patient response to therapy. These efforts are greatly facilitated by the development of model organisms such as zebrafish, which will also be summarised.
Collapse
|
23
|
Xu Y, Sun L, Wang X, Zhu S, You J, Zhao XE, Bai Y, Liu H. Integration of stable isotope labeling derivatization and magnetic dispersive solid phase extraction for measurement of neurosteroids by in vivo microdialysis and UHPLC-MS/MS. Talanta 2019; 199:97-106. [DOI: 10.1016/j.talanta.2019.02.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 01/28/2019] [Accepted: 02/03/2019] [Indexed: 12/12/2022]
|
24
|
Sonuç Karaboğa MN, Sezgintürk MK. Cerebrospinal fluid levels of alpha-synuclein measured using a poly-glutamic acid-modified gold nanoparticle-doped disposable neuro-biosensor system. Analyst 2019; 144:611-621. [DOI: 10.1039/c8an01279b] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A gold nanoparticle and polyglutamic acid-modified ITO-based biosensor system to detect alpha-synuclein, an important biomarker of Parkinson's disease.
Collapse
|
25
|
Carbone ME, Ciriello R, Moscarelli P, Boraldi F, Bianco G, Guerrieri A, Bochicchio B, Pepe A, Quaglino D, Salvi AM. Interactions between elastin-like peptides and an insulating poly(ortho-aminophenol) membrane investigated by AFM and XPS. Anal Bioanal Chem 2018; 410:4925-4941. [DOI: 10.1007/s00216-018-1142-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 04/19/2018] [Accepted: 05/14/2018] [Indexed: 01/04/2023]
|
26
|
Li D, Scarano S, Lisi S, Palladino P, Minunni M. Real-Time Tau Protein Detection by Sandwich-Based Piezoelectric Biosensing: Exploring Tubulin as a Mass Enhancer. SENSORS 2018; 18:s18040946. [PMID: 29565824 PMCID: PMC5948773 DOI: 10.3390/s18040946] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/16/2018] [Accepted: 03/19/2018] [Indexed: 02/01/2023]
Abstract
Human tau protein is one of the most advanced and accepted biomarkers for AD and tauopathies diagnosis in general. In this work, a quartz crystal balance (QCM) immunosensor was developed for the detection of human tau protein in buffer and artificial cerebrospinal fluid (aCSF), through both direct and sandwich assays. Starting from a conventional immuno-based sandwich strategy, two monoclonal antibodies recognizing different epitopes of tau protein were used, achieving a detection limit for the direct assay in nanomolar range both in HBES-EP and aCSF. Afterward, for exploring alternative specific receptors as secondary recognition elements for tau protein biosensing, we tested tubulin and compared its behavior to a conventional secondary antibody in the sandwich assay. Tau–tubulin binding has shown an extended working range coupled to a signal improvement in comparison with the conventional secondary antibody-based approach, showing a dose–response trend at lower tau concentration than is usually investigated and closer to the physiological levels in the reference matrix for protein tau biomarker. Our results open up new and encouraging perspectives for the use of tubulin as an alternative receptor for tau protein with interesting features due to the possibility of taking advantage of its polymerization and reversible binding to this key hallmark of Alzheimer’s disease.
Collapse
Affiliation(s)
- Dujuan Li
- College of Life Information Science & Instrument Engineering, Hangzhou Dianzi University, 115 Wenyi Rd, Hangzhou 310000, China.
| | - Simona Scarano
- Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3-13, Sesto Fiorentino, 50019 Firenze, Italy.
| | - Samuele Lisi
- Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3-13, Sesto Fiorentino, 50019 Firenze, Italy.
| | - Pasquale Palladino
- Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3-13, Sesto Fiorentino, 50019 Firenze, Italy.
| | - Maria Minunni
- Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3-13, Sesto Fiorentino, 50019 Firenze, Italy.
| |
Collapse
|
27
|
Role of the cell membrane interface in modulating production and uptake of Alzheimer's beta amyloid protein. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1639-1651. [PMID: 29572033 DOI: 10.1016/j.bbamem.2018.03.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/13/2018] [Accepted: 03/14/2018] [Indexed: 12/22/2022]
Abstract
The beta amyloid protein (Aβ) plays a central role in Alzheimer's disease (AD) pathogenesis and its interaction with cell membranes in known to promote mutually disruptive structural perturbations that contribute to amyloid deposition and neurodegeneration in the brain. In addition to protein aggregation at the membrane interface and disruption of membrane integrity, growing reports demonstrate an important role for the membrane in modulating Aβ production and uptake into cells. The aim of this review is to highlight and summarize recent literature that have contributed insight into the implications of altered membrane composition on amyloid precursor protein (APP) proteolysis, production of Aβ, its internalization in to cells via permeabilization and receptor mediated uptake. Here, we also review the various membrane model systems and experimental tools used for probing Aβ-membrane interactions to investigate the key mechanistic aspects underlying the accumulation and toxicity of Aβ in AD.
Collapse
|
28
|
Aghili Z, Nasirizadeh N, Divsalar A, Shoeibi S, Yaghmaei P. A highly sensitive miR-195 nanobiosensor for early detection of Parkinson’s disease. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:32-40. [DOI: 10.1080/21691401.2017.1411930] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Zahra Aghili
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Navid Nasirizadeh
- Department of Textile and Polymer Engineering, Yazd Branch, Islamic Azad University, Yazd, Iran
| | - Adeleh Divsalar
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Shahram Shoeibi
- Food and Drug Reference Control Laboratories Center, Food and Drug Organization, Ministry of Health and Medical Education (MOH), Tehran, Iran
| | - Parichehreh Yaghmaei
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
29
|
Study of Alzheimer's Disease-Related Biophysical Kinetics with a Microslit-Embedded Cantilever Sensor in a Liquid Environment. SENSORS 2017; 17:s17081819. [PMID: 28783132 PMCID: PMC5579575 DOI: 10.3390/s17081819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/03/2017] [Accepted: 08/05/2017] [Indexed: 11/17/2022]
Abstract
A microsized slit-embedded cantilever sensor (slit cantilever) was fabricated and evaluated as a biosensing platform in a liquid environment. In order to minimize the degradation caused by viscous damping, a 300 × 100 µm2 (length × width) sized cantilever was released by a 5 µm gap-surrounding and vibrated by an internal piezoelectric-driven self-actuator. Owing to the structure, when the single side of the slit cantilever was exposed to liquid a significant quality factor (Q = 35) could be achieved. To assess the sensing performance, the slit cantilever was exploited to study the biophysical kinetics related to Aβ peptide. First, the quantification of Aβ peptide with a concentration of 10 pg/mL to 1 μg/mL was performed. The resonant responses exhibited a dynamic range from 100 pg/mL to 100 ng/mL (−56.5 to −774 ΔHz) and a dissociation constant (KD) of binding affinity was calculated as 1.75 nM. Finally, the Aβ self-aggregation associated with AD pathogenesis was monitored by adding monomeric Aβ peptides. As the concentration of added analyte increased from 100 ng/mL to 10 µg/mL, both the frequency shift values (−813 to −1804 ΔHz) and associate time constant increased. These results showed the excellent sensing performance of the slit cantilever overcoming a major drawback in liquid environments to become a promising diagnostic tool candidate.
Collapse
|
30
|
Lisi S, Scarano S, Fedeli S, Pascale E, Cicchi S, Ravelet C, Peyrin E, Minunni M. Toward sensitive immuno-based detection of tau protein by surface plasmon resonance coupled to carbon nanostructures as signal amplifiers. Biosens Bioelectron 2017; 93:289-292. [DOI: 10.1016/j.bios.2016.08.078] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/22/2016] [Accepted: 08/23/2016] [Indexed: 11/28/2022]
|
31
|
|
32
|
Azimzadeh M, Nasirizadeh N, Rahaie M, Naderi-Manesh H. Early detection of Alzheimer's disease using a biosensor based on electrochemically-reduced graphene oxide and gold nanowires for the quantification of serum microRNA-137. RSC Adv 2017. [DOI: 10.1039/c7ra09767k] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Serum miR-137 is quantified for the early detection of Alzheimer's disease using a electrochemically reduced graphene oxide and gold nanowire modified electrode.
Collapse
Affiliation(s)
- Mostafa Azimzadeh
- Stem Cell Biology Research Center
- Yazd Reproductive Sciences Institute
- Shahid Sadoughi University of Medical Sciences
- Yazd
- Iran
| | - Navid Nasirizadeh
- Department of Textile and Polymer Engineering
- Yazd Branch
- Islamic Azad University
- Yazd
- Iran
| | - Mahdi Rahaie
- Department of Life Science Engineering
- Faculty of New Sciences and Technologies
- University of Tehran
- Tehran
- Iran
| | - Hossein Naderi-Manesh
- Department of Nanobiotechnology/Biophysics
- Faculty of Biological Sciences
- Tarbiat Modares University
- Tehran
- Iran
| |
Collapse
|
33
|
Abstract
Reactive species play an important role in physiological functions. Overproduction of reactive species, notably reactive oxygen (ROS) and nitrogen (RNS) species along with the failure of balance by the body's antioxidant enzyme systems results in destruction of cellular structures, lipids, proteins, and genetic materials such as DNA and RNA. Moreover, the effects of reactive species on mitochondria and their metabolic processes eventually cause a rise in ROS/RNS levels, leading to oxidation of mitochondrial proteins, lipids, and DNA. Oxidative stress has been considered to be linked to the etiology of many diseases, including neurodegenerative diseases (NDDs) such as Alzheimer diseases, Amyotrophic lateral sclerosis, Friedreich's ataxia, Huntington's disease, Multiple sclerosis, and Parkinson's diseases. In addition, oxidative stress causing protein misfold may turn to other NDDs include Creutzfeldt-Jakob disease, Bovine Spongiform Encephalopathy, Kuru, Gerstmann-Straussler-Scheinker syndrome, and Fatal Familial Insomnia. An overview of the oxidative stress and mitochondrial dysfunction-linked NDDs has been summarized in this review.
Collapse
Affiliation(s)
- Md Torequl Islam
- a Northeast Biotechnology Network (RENORBIO), Postgraduate Program in Biotechnology , Federal University of Piauí (UFPI) , Teresina , Brazil.,b Department of Pharmacy, Faculty of Science and Engineering , Southern University Bangladesh (SUB) , Chittagong , Bangladesh
| |
Collapse
|
34
|
Detecting Alzheimer's disease biomarkers: From antibodies to new bio-mimetic receptors and their application to established and emerging bioanalytical platforms – A critical review. Anal Chim Acta 2016; 940:21-37. [DOI: 10.1016/j.aca.2016.08.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 08/07/2016] [Accepted: 08/08/2016] [Indexed: 11/17/2022]
|