1
|
Shi X, Zhu W, Zeng Q, Luo Y, Chen Z, Lin Y. Selective-excitation-based method for measurement of NMR relaxation time. Anal Chim Acta 2025; 1335:343465. [PMID: 39643316 DOI: 10.1016/j.aca.2024.343465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/30/2024] [Accepted: 11/20/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND Relaxation time provides invaluable insights into the molecular structure, interactions, and dynamics in nuclear magnetic resonance spectroscopy. However, conventional relaxation-time measurement techniques produce inaccurate relaxation times when the spectral peaks overlap because of the narrow chemical-shift range and J-coupled splitting. While the combination of pure-shift methods can solve this issue, they are not widely used due to their inherent drawbacks such as low sensitivity and long acquisition time. There is a great need for a feasible and sensitive method to measure the relaxation time for overlapping peaks. (87). RESULTS This study proposes a new method that combines selective excitation with a conventional relaxation-time measurement method, named GEM-IR/CPMG, to accurately measure the longitudinal and transverse relaxation times in the samples with overlapping peaks. The method has a similar acquisition time as the conventional method with small sensitivity loss. The feasibility and effectiveness of the method were demonstrated through experiments using three types of samples: 1-bromobutane, a mixture of butanol and butyric acid, and 17β-estradiol. The results show that the relaxation times measured by this method are in general agreement with the results of the conventional method. In addition, to demonstrate the advantages of the method for low-concentration samples, a sample of estradiol at 8 mM was measured with the results obtained matching the high concentration. (125). SIGNIFICANCE The GEM-IR/CPMG method eliminates interference from overlapping peaks in proton relaxation-time measurement and preserves the crucial coupling information of the sample, thus allowing accurate measurement of the relaxation time. Moreover, it selectively excites the spin of interest in a single scan, demonstrating a minor loss of spectral sensitivity and facilitating the measurement of low-concentration samples, making it widely applicable to chemical analyses. (62).
Collapse
Affiliation(s)
- Xiaoqi Shi
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005, China
| | - Wen Zhu
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005, China
| | - Qing Zeng
- Russell H. Morgan Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yao Luo
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005, China
| | - Zhong Chen
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005, China
| | - Yanqin Lin
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
2
|
Mallikourti V, Ross PJ, Maier O, Guzman-Gutierrez G, Franko E, Lurie DJ, Broche LM, Macleod MJ. Field-Cycling MRI for Identifying Minor Ischemic Stroke Below 0.2 T. Radiology 2024; 312:e232972. [PMID: 39189899 DOI: 10.1148/radiol.232972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Background Field-cycling imaging (FCI) is a new technology developed at the University of Aberdeen that measures change in T1 relaxation time constant of tissues over a range of low magnetic field strengths (0.2-200 mT) by rapidly switching between different fields during the pulse sequence. This provides new sources of contrast, including some invisible to clinical MRI scanners, and may be a useful alternative imaging modality for stroke. Purpose To test whether a prototype whole-body FCI scanner can be used to identify infarct regions in patients with subacute ischemic stroke. Materials and Methods This prospective study screened consecutive adult patients admitted to a single center stroke unit from February 2018 to March 2020 and April to December 2021. Included participants with confirmed ischemic stroke underwent FCI 1-6 days after ictus. FCI scans were obtained at four to six evolution fields between 0.2 mT and 0.2 T, with five evolution times from 5 to 546 msec. T1 maps were generated. The Wilcoxon signed-rank test was used to compare infarct region and contralateral unaffected brain, and Spearman rank correlation was used to examine associations between infarct to contralateral tissue contrast ratio and field strengths. Two independent readers blinded to clinical images rated the FCI scans. Results Nine participants (mean age, 62 years ± 16 [SD]; all male) successfully completed FCI. FCI scans below 0.2 T exhibited hyperintense T1 regions corresponding to the infarct region identified at baseline imaging, visually confirmed with 86% interrater agreement (Cohen κ = 0.69). Infarct to contralateral tissue contrast ratio increased as magnetic field decreased between 0.2 mT and 0.2 T (r[24] = -0.68; P < .001). T1 dispersion slopes differed between infarct and unaffected tissues (median, 0.23 [IQR, 0.18-0.37] vs 0.35 [IQR, 0.27-0.43]; P = .03). Conclusion Whole-brain FCI can be used to identify subacute ischemic stroke by T1 relaxation mechanisms at field strengths as low as 0.2 mT. Research Registry no. 1813 Published under a CC BY 4.0 license. Supplemental material is available for this article.
Collapse
Affiliation(s)
- Vasiliki Mallikourti
- From the Aberdeen Biomedical Imaging Centre (V.M., P.J.R., E.F., D.J.L., L.M.B.) and Institute of Medical Sciences (M.J.M.), University of Aberdeen, Polwarth Building, Foresterhill, Aberdeen AB25 2ZD, United Kingdom; Institute of Medical Engineering, Graz University of Technology, Graz, Austria (O.M.); and Acute Stroke Unit, Aberdeen Royal Infirmary, Aberdeen, United Kingdom (G.G.G.)
| | - P James Ross
- From the Aberdeen Biomedical Imaging Centre (V.M., P.J.R., E.F., D.J.L., L.M.B.) and Institute of Medical Sciences (M.J.M.), University of Aberdeen, Polwarth Building, Foresterhill, Aberdeen AB25 2ZD, United Kingdom; Institute of Medical Engineering, Graz University of Technology, Graz, Austria (O.M.); and Acute Stroke Unit, Aberdeen Royal Infirmary, Aberdeen, United Kingdom (G.G.G.)
| | - Oliver Maier
- From the Aberdeen Biomedical Imaging Centre (V.M., P.J.R., E.F., D.J.L., L.M.B.) and Institute of Medical Sciences (M.J.M.), University of Aberdeen, Polwarth Building, Foresterhill, Aberdeen AB25 2ZD, United Kingdom; Institute of Medical Engineering, Graz University of Technology, Graz, Austria (O.M.); and Acute Stroke Unit, Aberdeen Royal Infirmary, Aberdeen, United Kingdom (G.G.G.)
| | - German Guzman-Gutierrez
- From the Aberdeen Biomedical Imaging Centre (V.M., P.J.R., E.F., D.J.L., L.M.B.) and Institute of Medical Sciences (M.J.M.), University of Aberdeen, Polwarth Building, Foresterhill, Aberdeen AB25 2ZD, United Kingdom; Institute of Medical Engineering, Graz University of Technology, Graz, Austria (O.M.); and Acute Stroke Unit, Aberdeen Royal Infirmary, Aberdeen, United Kingdom (G.G.G.)
| | - Edit Franko
- From the Aberdeen Biomedical Imaging Centre (V.M., P.J.R., E.F., D.J.L., L.M.B.) and Institute of Medical Sciences (M.J.M.), University of Aberdeen, Polwarth Building, Foresterhill, Aberdeen AB25 2ZD, United Kingdom; Institute of Medical Engineering, Graz University of Technology, Graz, Austria (O.M.); and Acute Stroke Unit, Aberdeen Royal Infirmary, Aberdeen, United Kingdom (G.G.G.)
| | - David J Lurie
- From the Aberdeen Biomedical Imaging Centre (V.M., P.J.R., E.F., D.J.L., L.M.B.) and Institute of Medical Sciences (M.J.M.), University of Aberdeen, Polwarth Building, Foresterhill, Aberdeen AB25 2ZD, United Kingdom; Institute of Medical Engineering, Graz University of Technology, Graz, Austria (O.M.); and Acute Stroke Unit, Aberdeen Royal Infirmary, Aberdeen, United Kingdom (G.G.G.)
| | - Lionel M Broche
- From the Aberdeen Biomedical Imaging Centre (V.M., P.J.R., E.F., D.J.L., L.M.B.) and Institute of Medical Sciences (M.J.M.), University of Aberdeen, Polwarth Building, Foresterhill, Aberdeen AB25 2ZD, United Kingdom; Institute of Medical Engineering, Graz University of Technology, Graz, Austria (O.M.); and Acute Stroke Unit, Aberdeen Royal Infirmary, Aberdeen, United Kingdom (G.G.G.)
| | - Mary Joan Macleod
- From the Aberdeen Biomedical Imaging Centre (V.M., P.J.R., E.F., D.J.L., L.M.B.) and Institute of Medical Sciences (M.J.M.), University of Aberdeen, Polwarth Building, Foresterhill, Aberdeen AB25 2ZD, United Kingdom; Institute of Medical Engineering, Graz University of Technology, Graz, Austria (O.M.); and Acute Stroke Unit, Aberdeen Royal Infirmary, Aberdeen, United Kingdom (G.G.G.)
| |
Collapse
|
3
|
Kozinenko VP, Kiryutin AS, Yurkovskaya AV. Exploring weak ligand-protein interactions by relaxometry of long-lived spin order. Phys Chem Chem Phys 2024; 26:15968-15977. [PMID: 38775038 DOI: 10.1039/d4cp00582a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Relaxation times of nuclear spins often serve as a valuable source of information on the dynamics of various biochemical processes. Measuring relaxation as a function of the external magnetic field turned out to be extremely useful for the studies of weak ligand-protein interactions. We demonstrate that observing the relaxation of the long-lived spin order instead of longitudinal magnetization extends the capability of this approach. We studied the field-dependent relaxation of the longitudinal magnetization and the singlet order (SO) of methylene protons in alanine-glycine dipeptide and citrate in the presence of human serum albumin (HSA). As a result, SO relaxation proved to be more sensitive to ligand-protein interaction, providing higher relaxation contrast for various HSA concentrations. To assess the parameters of the binding process in more details, we utilized a simple analytical relaxation model to fit the experimental field dependences for both SO and T1 relaxation. We also tested the validity of our approach in the experiments with trimethylsilylpropanoic acid (TSP) used as a competitor in ligand binding with HSA.
Collapse
|
4
|
Croft J, Sandoval DF, Cistola D, Zhang J. Plasma water T 2 detects age-stratified differences in cardiometabolic health among familial CCM patients with Hispanic CCM1 mutation. Metab Brain Dis 2024; 39:885-893. [PMID: 38795261 DOI: 10.1007/s11011-024-01359-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 05/07/2024] [Indexed: 05/27/2024]
Abstract
Cerebral cavernous malformations (CCMs) are abnormal clusters of capillaries in the nervous system. This pilot study analyzed the cardiometabolic health status of individuals with familial CCMs caused by a rare mutation in the CCM1 gene (fCCM1). The aim was to compare plasma water T2 values from individuals with fCCM1 with values from metabolically unhealthy and healthy individuals with no known CCM mutations. This observational, cross-sectional study included 75 participants: 11 fCCM1 patients, 24 metabolically unhealthy and 40 metabolically healthy individuals. Plasma water T2, an early, global and practical marker of cardiometabolic health, was measured in the time domain using benchtop magnetic resonance relaxometry. The results were stratified by age (equal to or less than 45 vs. older than 45 years). Group means were compared using Welch's one-way ANOVA and post hoc Tukey-Kramer tests. Multivariable linear regression, with T2 as the outcome variable, was used to explore associations with age, gender, Hispanic ethnicity and fCCM1 status. In the younger age stratum, the fCCM1 group had a mean plasma water T2 value comparable to the metabolically healthy group (p = 0.6388), but higher than the unhealthy group (p < 0.0001). By contrast, in the older stratum, the mean plasma water T2 value for the fCCM1 group was comparable to the metabolically unhealthy group (p = 0.7819) and lower than the healthy group (p = 0.0005). Multivariable linear regression revealed that age and the interaction between age and fCCM1 status were significant predictors of T2, even after adjusting for gender and Hispanic ethnicity. Plasma water T2 shows potential as a biomarker for assessing the health status of individuals with fCCM1. Further research is needed to validate these preliminary observations and elucidate the association between CCMs and cardiometabolic health.
Collapse
Affiliation(s)
- Jacob Croft
- Center of Cancer Research, Department of Molecular and Translation Medicine Texas Tech University Health Science Center El Paso, El Paso, TX, 79905, USA
| | - Diana F Sandoval
- Center of Diabetes and Metabolic Syndrome, Department of Molecular and Translation Medicine Texas Tech University Health Science Center El Paso, El Paso, TX, 79905, USA
| | - David Cistola
- Center of Diabetes and Metabolic Syndrome, Department of Molecular and Translation Medicine Texas Tech University Health Science Center El Paso, El Paso, TX, 79905, USA
| | - Jun Zhang
- Center of Cancer Research, Department of Molecular and Translation Medicine Texas Tech University Health Science Center El Paso, El Paso, TX, 79905, USA.
- Department of Biomedical Sciences, Texas Tech University Health Science Center, 5001 El Paso Drive, El Paso, TX, 79905, USA.
| |
Collapse
|
5
|
Pellizzari J, Soong R, Downey K, Biswas RG, Kock FC, Steiner K, Goerling B, Haber A, Decker V, Busse F, Simpson M, Simpson A. Slice through the water-Exploring the fundamental challenge of water suppression for benchtop NMR systems. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2024; 62:463-473. [PMID: 38282484 DOI: 10.1002/mrc.5431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/01/2023] [Accepted: 01/02/2024] [Indexed: 01/30/2024]
Abstract
Benchtop NMR provides improved accessibility in terms of cost, space, and technical expertise. In turn, this encourages new users into the field of NMR spectroscopy. Unfortunately, many interesting samples in education and research, from beer to whole blood, contain significant amounts of water that require suppression in 1H NMR in order to recover sample information. However, due to the significant reduction in chemical shift dispersion in benchtop NMR systems, the sample signals are much closer to the water resonance compared to those in a corresponding high-field NMR spectrum. Therefore, simply translating solvent suppression experiments intended for high-field NMR instruments to benchtop NMR systems without careful consideration can be problematic. In this study, the effectiveness of several popular water suppression schemes was evaluated for benchtop NMR applications. Emphasis is placed on pulse sequences with no, or few, adjustable parameters making them easy to implement. These fall into two main categories: (1) those based on Pre-SAT including Pre-SAT, PURGE, NOESY-PR, and g-NOESY-PR and (2) those based on binomial inversion including JRS and W5-WATERGATE. Among these schemes, solvent suppression sequences based on Pre-SAT offer a general approach for easy solvent suppression for samples with higher analyte concentrations (sucrose standard and Redbull™). However, for human urine, binomial-like sequences were required. In summary, it is demonstrated that highly efficient water suppression approaches can be implemented on benchtop NMR systems in a simple manner, despite the limited spectral dispersion, further illustrating the potential for widespread implementation of these approaches in education and research.
Collapse
Affiliation(s)
| | - Ronald Soong
- University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Katelyn Downey
- University of Toronto Scarborough, Toronto, Ontario, Canada
| | | | - Flavio C Kock
- University of Toronto Scarborough, Toronto, Ontario, Canada
| | | | | | | | | | | | - Myrna Simpson
- University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Andre Simpson
- University of Toronto Scarborough, Toronto, Ontario, Canada
| |
Collapse
|
6
|
Telfah A, Bahti A, Kaufmann K, Ebel E, Hergenröder R, Suter D. Low-field NMR with multilayer Halbach magnet and NMR selective excitation. Sci Rep 2023; 13:21092. [PMID: 38036555 PMCID: PMC10689796 DOI: 10.1038/s41598-023-47689-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/16/2023] [Indexed: 12/02/2023] Open
Abstract
This study introduces a low-field NMR spectrometer (LF-NMR) featuring a multilayer Halbach magnet supported by a combined mechanical and electrical shimming system. This setup offers improved field homogeneity and sensitivity compared to spectrometers relying on typical Halbach and dipole magnets. The multilayer Halbach magnet was designed and assembled using three nested cylindrical magnets, with an additional inner Halbach layer that can be rotated for mechanical shimming. The coils and shim-kernel of the electrical shimming system were constructed and coated with layers of zirconia, thermal epoxy, and silver-paste resin to facilitate passive heat dissipation and ensure mechanical and thermal stability. Furthermore, the 7-channel shim coils were divided into two parts connected in parallel, resulting in a reduction of joule heating temperatures from 96.2 to 32.6 °C. Without the shimming system, the Halbach magnet exhibits a field inhomogeneity of approximately 140 ppm over the sample volume. The probehead was designed to incorporate a solenoidal mini coil, integrated into a single planar board. This design choice aimed to enhance sensitivity, minimize [Formula: see text] inhomogeneity, and reduce impedance discrepancies, transmission loss, and signal reflections. Consequently, the resulting linewidth of water within a 3 mm length and 2.4 mm inner diameter sample volume was 4.5 Hz. To demonstrate the effectiveness of spectral editing in LF-NMR applications at 29.934 MHz, we selectively excited hydroxyl and/or methyl protons in neat acetic acid using optimal control pulses calculated through the Krotov algorithm.
Collapse
Affiliation(s)
- Ahmad Telfah
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44139, Dortmund, Germany
- Nanotechnology Center, The University of Jordan, Amman, 11942, Jordan
- Department of Physics, University of Nebraska at Omaha, Omaha, NE, 68182, USA
| | - Ahmed Bahti
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44139, Dortmund, Germany.
- Experimental Physics III, TU Dortmund University, 44227, Dortmund, Germany.
| | - Katharina Kaufmann
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44139, Dortmund, Germany
| | - Enno Ebel
- Fachhochschule Dortmund-University of Applied Sciences and Arts, 44139, Dortmund, Germany
| | - Roland Hergenröder
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44139, Dortmund, Germany
| | - Dieter Suter
- Experimental Physics III, TU Dortmund University, 44227, Dortmund, Germany.
| |
Collapse
|
7
|
Croft J, Sandoval DF, Cistola D, Zhang J. Plasma water T2 detects age-stratified differences in cardiometabolic health among familial CCM patients with Hispanic CCM1 mutation. RESEARCH SQUARE 2023:rs.3.rs-3253817. [PMID: 37674713 PMCID: PMC10479402 DOI: 10.21203/rs.3.rs-3253817/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Introduction Cerebral cavernous malformations (CCMs) are abnormal clusters of capillaries in the nervous system. This pilot study analyzed the cardiometabolic health status of individuals with familial CCMs caused by a rare mutation in the CCM1 gene (fCCM1). The aim was to compare plasma water T2 values from individuals with fCCM1 with values from metabolically unhealthy and healthy individuals with no known CCM mutations. Design This observational, cross-sectional study included 75 participants: 11 fCCM1 patients, 24 metabolically unhealthy and 40 metabolically healthy individuals. Plasma water T2, an early, global and practical marker of cardiometabolic health, was measured in the time domain using benchtop magnetic resonance relaxometry. The results were stratified by age (equal to or less than 45 vs. older than 45 years). Group means were compared using Welch's one-way ANOVA and post hoc Tukey-Kramer tests. Multivariable linear regression, with T2 as the outcome variable, was used to explore associations with age, gender, Hispanic ethnicity and fCCM1 status. Results In the younger age stratum, the fCCM1 group had a mean plasma water T2 value comparable to the metabolically healthy group (p=0.6388), but higher than the unhealthy group (p<0.0001). By contrast, in the older stratum, the mean plasma water T2 value for the fCCM1 group was comparable to the metabolically unhealthy group (p=0.7819) and lower than the healthy group (p=0.0005). Multivariable linear regression revealed that age and the interaction between age and fCCM1 status were significant predictors of T2, even after adjusting for gender and Hispanic ethnicity. Conclusion Plasma water T2 shows potential as a biomarker for assessing the health status of individuals with fCCM1. Further research is needed to validate these preliminary observations and elucidate the association between CCMs and cardiometabolic health.
Collapse
Affiliation(s)
- Jacob Croft
- Texas Tech University Health Sciences Center
| | | | | | | |
Collapse
|
8
|
Alcicek S, Put P, Kubrak A, Alcicek FC, Barskiy D, Gloeggler S, Dybas J, Pustelny S. Zero- to low-field relaxometry of chemical and biological fluids. Commun Chem 2023; 6:165. [PMID: 37542142 PMCID: PMC10403525 DOI: 10.1038/s42004-023-00965-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/26/2023] [Indexed: 08/06/2023] Open
Abstract
Nuclear magnetic resonance (NMR) relaxometry is an analytical method that provides information about molecular environments, even for NMR "silent" molecules (spin-0), by analyzing the properties of NMR signals versus the magnitude of the longitudinal field. Conventionally, this technique is performed at fields much higher than Earth's magnetic field, but our work focuses on NMR relaxometry at zero and ultra-low magnetic fields (ZULFs). Operating under such conditions allows us to investigate slow (bio)chemical processes occurring on a timescale from milliseconds to seconds, which coincide with spin evolution. ZULFs also minimize T2 line broadening in heterogeneous samples resulting from magnetic susceptibility. Here, we use ZULF NMR relaxometry to analyze (bio)chemical compounds containing 1H-13C, 1H-15N, and 1H-31P spin pairs. We also detected high-quality ULF NMR spectra of human whole-blood at 0.8 μT, despite a shortening of spin relaxation by blood proteomes (e.g., hemoglobin). Information on proton relaxation times of blood, a potential early biomarker of inflammation, can be acquired in under a minute using inexpensive, portable/small-size NMR spectrometers based on atomic magnetometers.
Collapse
Affiliation(s)
- Seyma Alcicek
- Goethe University Frankfurt, University Hospital, Institute of Neuroradiology, 60528, Frankfurt am Main, Germany.
- Institute of Physics Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University in Kraków, 30-348, Kraków, Poland.
| | - Piotr Put
- Institute of Physics Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University in Kraków, 30-348, Kraków, Poland
| | - Adam Kubrak
- Faculty of Chemistry, Jagiellonian University in Kraków, 30-387, Krakow, Poland
| | - Fatih Celal Alcicek
- Jagiellonian Center for Experimental Therapeutics, Jagiellonian University in Kraków, 30-348, Kraków, Poland
| | - Danila Barskiy
- Helmholtz Institute Mainz, GSI Helmholtz Center for Heavy Ion Research GmbH, 55128, Mainz, Germany
- Institute of Physics, Johannes Gutenberg-Universität, 55128, Mainz, Germany
| | - Stefan Gloeggler
- Max Planck Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
| | - Jakub Dybas
- Jagiellonian Center for Experimental Therapeutics, Jagiellonian University in Kraków, 30-348, Kraków, Poland
| | - Szymon Pustelny
- Institute of Physics Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University in Kraków, 30-348, Kraków, Poland.
| |
Collapse
|
9
|
Dreyer F, Yang Q, Alnajjar B, Kruger D, Blumich B, Anders J. A Portable Chip-Based NMR Relaxometry System With Arbitrary Phase Control for Point-of-Care Blood Analysis. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2023; 17:831-842. [PMID: 37335792 DOI: 10.1109/tbcas.2023.3287281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
In this article, we present a portable NMR relaxometry system optimized for the point-of-care analysis of body liquids such as blood. The presented system is centered on an NMR-on-a-chip transceiver ASIC, a reference frequency generator with arbitrary phase control, and a custom-designed miniaturized NMR magnet with a field strength of 0.29 T and a total weight of 330 g. The NMR-ASIC co-integrates a low-IF receiver, a power amplifier, and a PLL-based frequency synthesizer on a total chip area of 1100 × 900 μm 2. The arbitrary reference frequency generator enables the use of conventional CPMG and inversion sequences, as well as modified water-suppression sequences. Moreover, it is used to implement an automatic frequency lock to correct temperature-induced magnetic field drifts. Proof-of-concept measurements on NMR phantoms and human blood samples show an excellent concentration sensitivity of v[Formula: see text] = 2.2 mM/[Formula: see text]. This very good performance renders the presented system an ideal candidate for the future NMR-based point-of-care detection of biomarkers such as the blood glucose concentration.
Collapse
|
10
|
Low-field time-domain NMR relaxometry for studying polymer hydration and mobilization in sodium alginate matrix tablets. Carbohydr Polym 2023; 299:120215. [PMID: 36876817 DOI: 10.1016/j.carbpol.2022.120215] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/26/2022] [Accepted: 10/08/2022] [Indexed: 11/09/2022]
Abstract
Sodium alginate is used in various industries, including food, pharmaceutical, and agriculture. Matrix systems, e.g., tablets, and granules, are macro samples with incorporated active substances. During hydration, they are neither equilibrated nor homogenous. Phenomena occurring during hydration of such systems are complex, determine their functional properties and hence require multimodal analysis. Still, there's a lack of comprehensive view. The study aimed to obtain unique characteristics of the sodium alginate matrix during hydration, particularly considering polymer mobilization phenomena using low-field time-domain NMR relaxometry in H2O and D2O. An increase in total signal during 4 h of hydration in D2O of ca. 30 μV resulted from polymer/water mobilization. Modes in T1-T2 maps and changes in their amplitudes reflected physicochemical state of the polymer/water system: e.g. air-dry polymer mode (T1/T2 ~ 600) and two mobilized polymer/water modes (at T1/T2 ~ 40 and T1/T2 ~ 20). The study describes the approach to evaluating the hydration of the sodium alginate matrix in terms of the temporal evolution of proton pools: those existing in the matrix before hydration and those entering the matrix from the bulk water. It provides data complementary to spatially resolved methods like MRI and microCT.
Collapse
|
11
|
Flouri D, Darby JRT, Holman SL, Cho SKS, Dimasi CG, Perumal SR, Ourselin S, Aughwane R, Mufti N, Macgowan CK, Seed M, David AL, Melbourne A, Morrison JL. Placental MRI Predicts Fetal Oxygenation and Growth Rates in Sheep and Human Pregnancy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203738. [PMID: 36031385 PMCID: PMC9596844 DOI: 10.1002/advs.202203738] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/05/2022] [Indexed: 06/09/2023]
Abstract
Magnetic resonance imaging (MRI) assessment of fetal blood oxygen saturation (SO2 ) can transform the clinical management of high-risk pregnancies affected by fetal growth restriction (FGR). Here, a novel MRI method assesses the feasibility of identifying normally grown and FGR fetuses in sheep and is then applied to humans. MRI scans are performed in pregnant ewes at 110 and 140 days (term = 150d) gestation and in pregnant women at 28+3 ± 2+5 weeks to measure feto-placental SO2 . Birth weight is collected and, in sheep, fetal blood SO2 is measured with a blood gas analyzer (BGA). Fetal arterial SO2 measured by BGA predicts fetal birth weight in sheep and distinguishes between fetuses that are normally grown, small for gestational age, and FGR. MRI feto-placental SO2 in late gestation is related to fetal blood SO2 measured by BGA and body weight. In sheep, MRI feto-placental SO2 in mid-gestation is related to fetal SO2 later in gestation. MRI feto-placental SO2 distinguishes between normally grown and FGR fetuses, as well as distinguishing FGR fetuses with and without normal Doppler in humans. Thus, a multi-compartment placental MRI model detects low placental SO2 and distinguishes between small hypoxemic fetuses and normally grown fetuses.
Collapse
Affiliation(s)
- Dimitra Flouri
- School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonSE1 7EUUK
- Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonWC1E 6BTUK
| | - Jack R. T. Darby
- Early Origins of Adult Health Research GroupHealth and Biomedical InnovationUniSA Clinical and Health SciencesUniversity of South AustraliaAdelaideSA 5001Australia
| | - Stacey L. Holman
- Early Origins of Adult Health Research GroupHealth and Biomedical InnovationUniSA Clinical and Health SciencesUniversity of South AustraliaAdelaideSA 5001Australia
| | - Steven K. S. Cho
- Early Origins of Adult Health Research GroupHealth and Biomedical InnovationUniSA Clinical and Health SciencesUniversity of South AustraliaAdelaideSA 5001Australia
- Department of PhysiologyThe Hospital for Sick ChildrenUniversity of TorontoTorontoON M5G 1X8Canada
| | - Catherine G. Dimasi
- Early Origins of Adult Health Research GroupHealth and Biomedical InnovationUniSA Clinical and Health SciencesUniversity of South AustraliaAdelaideSA 5001Australia
| | - Sunthara R. Perumal
- South Australian Health & Medical Research InstitutePreclinicalImaging & Research LaboratoriesAdelaideSA 5001Australia
| | - Sebastien Ourselin
- School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonSE1 7EUUK
| | - Rosalind Aughwane
- Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonWC1E 6BTUK
- Elizabeth Garrett Anderson Institute for Women's HealthUniversity College LondonLondonWC1E 6AUUK
| | - Nada Mufti
- Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonWC1E 6BTUK
- Elizabeth Garrett Anderson Institute for Women's HealthUniversity College LondonLondonWC1E 6AUUK
| | - Christopher K. Macgowan
- Division of Translational MedicineThe Hospital for Sick ChildrenUniversity of TorontoTorontoON M5G 1X8Canada
- Department of Medical BiophysicsUniversity of TorontoTorontoON M5S 1A1Canada
| | - Mike Seed
- Department of PaediatricsDivision of CardiologyThe Hospital for Sick ChildrenUniversity of TorontoTorontoON M5G 1X8Canada
- Department of Diagnostic ImagingThe Hospital for Sick ChildrenUniversity of TorontoTorontoON M5G 1X8Canada
| | - Anna L. David
- Elizabeth Garrett Anderson Institute for Women's HealthUniversity College LondonLondonWC1E 6AUUK
- NIHR Biomedical Research CentreUniversity College London HospitalsLondonW1T 7DNUK
| | - Andrew Melbourne
- School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonSE1 7EUUK
- Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonWC1E 6BTUK
- Early Origins of Adult Health Research GroupHealth and Biomedical InnovationUniSA Clinical and Health SciencesUniversity of South AustraliaAdelaideSA 5001Australia
| | - Janna L. Morrison
- Early Origins of Adult Health Research GroupHealth and Biomedical InnovationUniSA Clinical and Health SciencesUniversity of South AustraliaAdelaideSA 5001Australia
| |
Collapse
|
12
|
Investigation of 1H nuclear magnetic resonance relaxometry to screen metabolic syndrome and diabetes. ANAL SCI 2022; 38:899-905. [PMID: 35438426 DOI: 10.1007/s44211-022-00113-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/23/2022] [Indexed: 11/01/2022]
Abstract
The purpose of this study was to investigate and compare the abilities of 1H nuclear magnetic resonance (NMR) transverse relaxation constant time (T2) and longitudinal relaxation constant time (T1) to screen people at the risk of diabetes and metabolic syndrome. Human blood samples were collected for NMR detection and biochemical examinations. Bivariate correlations, categorical analyses were performed to explore the relationship between NMR relaxation time and metabolic biomarkers. Results show that NMR relaxation time of human serum correlated well with some biomarkers associated with diabetes and metabolic syndrome. Statistically significant differences in NMR relaxation time between subjects with normal and poor metabolic health were observed. NMR relaxation time, especially T2, can be used to screen people at risk of diabetes and metabolic syndrome.
Collapse
|
13
|
Wang J, Lu R, Bazzi L, Jiang X, Chen Y, Wu Z, Yang Q, Ni Z, Yi H, Xiao D. Optimized radio frequency coil for noninvasive magnetic resonance relaxation detection of human finger. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 335:107125. [PMID: 34954546 DOI: 10.1016/j.jmr.2021.107125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/11/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
Noninvasive NMR measurement of human tissues, such as fingers, to achieve early detection for metabolic diseases is of important significance. The NMR relaxation measurements have a wide application prospect due to simplicity, portability, and low cost, as the static magnetic field is not required to be highly homogeneous. However, the inhomogeneous radiofrequency (RF) magnetic field (B1) results in errors in the magnetic resonance relaxation times. This is inevitable in in-vivo localized human tissue measurements with a portable MR scanner, as signals from tissues close to the edge of RF coil are excited with a different B1 field amplitude. A novel RF coil termed T coil with high B1 field homogeneity is presented. Numerical simulation and phantom measurements were implemented. The novel RF coil was compared with a regular solenoid coil and a variable width coil. In-vivo experiments were performed. The T coil has a better B1 field homogeneity than the regular solenoid coil and the variable width coil, producing more accurate magnetic resonance relaxation times. Improved detection accuracy has been achieved with the T coil. This work may promote the development of noninvasive human tissue diagnosis based on NMR relaxation methods.
Collapse
Affiliation(s)
- Junnan Wang
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 210096, China; School of Mechanical Engineering, Southeast University, Nanjing 210096, China
| | - Rongsheng Lu
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 210096, China; School of Mechanical Engineering, Southeast University, Nanjing 210096, China; National Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China.
| | - Layale Bazzi
- Department of Physics, University of Windsor, Canada
| | - Xiaowen Jiang
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 210096, China; School of Mechanical Engineering, Southeast University, Nanjing 210096, China
| | - Yi Chen
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 210096, China; School of Mechanical Engineering, Southeast University, Nanjing 210096, China
| | - Zhengxiu Wu
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 210096, China; School of Mechanical Engineering, Southeast University, Nanjing 210096, China
| | - Qing Yang
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 210096, China; School of Mechanical Engineering, Southeast University, Nanjing 210096, China
| | - Zhonghua Ni
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 210096, China; School of Mechanical Engineering, Southeast University, Nanjing 210096, China
| | - Hong Yi
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 210096, China; School of Mechanical Engineering, Southeast University, Nanjing 210096, China
| | - Dan Xiao
- Department of Physics, University of Windsor, Canada
| |
Collapse
|
14
|
Shomaji S, Masna NVR, Ariando D, Deb Paul S, Horace-Herron K, Forte D, Mandal S, Bhunia S. Detecting Dye-Contaminated Vegetables Using Low-Field NMR Relaxometry. Foods 2021; 10:foods10092232. [PMID: 34574342 PMCID: PMC8469677 DOI: 10.3390/foods10092232] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 11/27/2022] Open
Abstract
Dyeing vegetables with harmful compounds has become an alarming public health issue over the past few years. Excessive consumption of these dyed vegetables can cause severe health hazards, including cancer. Copper sulfate, malachite green, and Sudan red are some of the non-food-grade dyes widely used on vegetables by untrusted entities in the food supply chain to make them look fresh and vibrant. In this study, the presence and quantity of dye-based adulteration in vegetables are determined by applying 1H-nuclear magnetic resonance (NMR) relaxometry. The proposed technique was validated by treating some vegetables in-house with different dyes and then soaking them in various solvents. The resulting solutions were collected and analyzed using NMR relaxometry. Specifically, the effective transverse relaxation time constant, T2,eff, of each solution was estimated using a Carr–Purcell–Meiboom–Gill (CPMG) pulse sequence. Finally, the estimated time constants (i.e., measured signatures) were compared with a library of existing T2,eff data to detect and quantify the presence of unwanted dyes. The latter consists of data-driven models of transverse decay times for various concentrations of each water-soluble dye. The time required to analyze each sample using the proposed approach is dye-dependent but typically no longer than a few minutes. The analysis results can be used to generate warning flags if the detected dye concentrations violate widely accepted standards for food dyes. The proposed low-cost detection approach can be used in various stages of a produce supply chain, including consumer household.
Collapse
|
15
|
Tracking oxidation-induced alterations in fibrin clot formation by NMR-based methods. Sci Rep 2021; 11:15691. [PMID: 34344919 PMCID: PMC8333047 DOI: 10.1038/s41598-021-94401-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022] Open
Abstract
Plasma fibrinogen is an important coagulation factor and susceptible to post-translational modification by oxidants. We have reported impairment of fibrin polymerization after exposure to hypochlorous acid (HOCl) and increased methionine oxidation of fibrinogen in severely injured trauma patients. Molecular dynamics suggests that methionine oxidation poses a mechanistic link between oxidative stress and coagulation through protofibril lateral aggregation by disruption of AαC domain structures. However, experimental evidence explaining how HOCl oxidation impairs fibrinogen structure and function has not been demonstrated. We utilized polymerization studies and two dimensional-nuclear magnetic resonance spectrometry (2D-NMR) to investigate the hypothesis that HOCl oxidation alters fibrinogen conformation and T2 relaxation time of water protons in the fibrin gels. We have demonstrated that both HOCl oxidation of purified fibrinogen and addition of HOCl-oxidized fibrinogen to plasma fibrinogen solution disrupted lateral aggregation of protofibrils similarly to competitive inhibition of fibrin polymerization using a recombinant AαC fragment (AαC 419–502). DOSY NMR measurement of fibrinogen protons demonstrated that the diffusion coefficient of fibrinogen increased by 17.4%, suggesting the oxidized fibrinogen was more compact and fast motion in the prefibrillar state. 2D-NMR analysis reflected that water protons existed as bulk water (T2) and intermediate water (T2i) in the control plasma fibrin. Bulk water T2 relaxation time was increased twofold and correlated positively with the level of HOCl oxidation. However, T2 relaxation of the oxidized plasma fibrin gels was dominated by intermediate water. Oxidation induced thinner fibers, in which less water is released into the bulk and water fraction in the hydration shell was increased. We have confirmed that T2 relaxation is affected by the self-assembly of fibers and stiffness of the plasma fibrin gel. We propose that water protons can serve as an NMR signature to probe oxidative rearrangement of the fibrin clot.
Collapse
|
16
|
Sadighi M, Şişman M, Açıkgöz BC, Eroğlu HH, Eyüboğlu BM. Low-frequency conductivity tensor imaging with a single current injection using DT-MREIT. Phys Med Biol 2021; 66:055011. [PMID: 33472190 DOI: 10.1088/1361-6560/abddcf] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Diffusion tensor-magnetic resonance electrical impedance tomography (DT-MREIT) is an imaging modality to obtain low-frequency anisotropic conductivity distribution employing diffusion tensor imaging and MREIT techniques. DT-MREIT is based on the linear relationship between the conductivity and water self-diffusion tensors in a porous medium, like the brain white matter. Several DT-MREIT studies in the literature provide cross-sectional anisotropic conductivity images of tissue phantoms, canine brain, and the human brain. In these studies, the conductivity tensor images are reconstructed using the diffusion tensor and current density data acquired by injecting two linearly independent current patterns. In this study, a novel reconstruction algorithm is devised for DT-MREIT to reconstruct the conductivity tensor images using a single current injection. Therefore, the clinical applicability of DT-MREIT can be improved by reducing the total acquisition time, the number of current injection cables, and contact electrodes to half by decreasing the number of current injection patterns to one. The proposed method is evaluated utilizing simulated measurements and physical experiments. The results obtained show the successful reconstruction of the anisotropic conductivity distribution using the proposed single current DT-MREIT.
Collapse
Affiliation(s)
- Mehdi Sadighi
- Department of Electrical and Electronics Engineering, Middle East Technical University, 06800 Ankara, Turkey
| | | | | | | | | |
Collapse
|
17
|
Rudszuck T, Nirschl H, Guthausen G. Perspectives in process analytics using low field NMR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2021; 323:106897. [PMID: 33518174 DOI: 10.1016/j.jmr.2020.106897] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
Low field NMR is a powerful analytical tool which creates an enormous added value in process analytics. Based on specific applications in process analytics and perspectives for low field NMR in form of spectroscopy, relaxation, diffusion, and imaging in quality control, diverse applications and technical realizations like spectrometers, time domain NMR, mobile NMR sensors and MRI will be discussed.
Collapse
Affiliation(s)
- T Rudszuck
- Institute for Mechanical Engineering and Mechanics, KIT, 76131 Karlsruhe, Germany
| | - H Nirschl
- Institute for Mechanical Engineering and Mechanics, KIT, 76131 Karlsruhe, Germany
| | - G Guthausen
- Institute for Mechanical Engineering and Mechanics, KIT, 76131 Karlsruhe, Germany; Engler-Bunte Institut, Water Science and Technology, KIT, 76131 Karlsruhe, Germany
| |
Collapse
|
18
|
Put P, Pustelny S, Budker D, Druga E, Sjolander TF, Pines A, Barskiy DA. Zero- to Ultralow-Field NMR Spectroscopy of Small Biomolecules. Anal Chem 2021; 93:3226-3232. [DOI: 10.1021/acs.analchem.0c04738] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Piotr Put
- M. Smoluchowski Institute of Physics, Jagiellonian University in Kraków, Łojasiewicza 11, Kraków 30-348, Poland
| | - Szymon Pustelny
- M. Smoluchowski Institute of Physics, Jagiellonian University in Kraków, Łojasiewicza 11, Kraków 30-348, Poland
| | - Dmitry Budker
- Helmholtz-Institut Mainz, GSI Helmholtzzentrum für Schwerionenforschung, 55128 Mainz, Germany
- Johannes Gutenberg-Universität, 55128 Mainz, Germany
- Department of Physics, University of California at Berkeley, Berkeley, California 94720-7300, United States
| | - Emanuel Druga
- Department of Chemistry, University of California at Berkeley, Berkeley, California 94720-1462, United States
| | - Tobias F. Sjolander
- Department of Chemistry, University of California at Berkeley, Berkeley, California 94720-1462, United States
| | - Alexander Pines
- Department of Chemistry, University of California at Berkeley, Berkeley, California 94720-1462, United States
| | - Danila A. Barskiy
- Helmholtz-Institut Mainz, GSI Helmholtzzentrum für Schwerionenforschung, 55128 Mainz, Germany
- Johannes Gutenberg-Universität, 55128 Mainz, Germany
- Department of Chemistry, University of California at Berkeley, Berkeley, California 94720-1462, United States
| |
Collapse
|
19
|
The application of in utero magnetic resonance imaging in the study of the metabolic and cardiovascular consequences of the developmental origins of health and disease. J Dev Orig Health Dis 2020; 12:193-202. [PMID: 33308364 PMCID: PMC8162788 DOI: 10.1017/s2040174420001154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Observing fetal development in utero is vital to further the understanding of later-life diseases. Magnetic resonance imaging (MRI) offers a tool for obtaining a wealth of information about fetal growth, development, and programming not previously available using other methods. This review provides an overview of MRI techniques used to investigate the metabolic and cardiovascular consequences of the developmental origins of health and disease (DOHaD) hypothesis. These methods add to the understanding of the developing fetus by examining fetal growth and organ development, adipose tissue and body composition, fetal oximetry, placental microstructure, diffusion, perfusion, flow, and metabolism. MRI assessment of fetal growth, organ development, metabolism, and the amount of fetal adipose tissue could give early indicators of abnormal fetal development. Noninvasive fetal oximetry can accurately measure placental and fetal oxygenation, which improves current knowledge on placental function. Additionally, measuring deficiencies in the placenta’s transport of nutrients and oxygen is critical for optimizing treatment. Overall, the detailed structural and functional information provided by MRI is valuable in guiding future investigations of DOHaD.
Collapse
|
20
|
Peng WK, Chen L, Boehm BO, Han J, Loh TP. Molecular phenotyping of oxidative stress in diabetes mellitus with point-of-care NMR system. NPJ Aging Mech Dis 2020; 6:11. [PMID: 33083002 PMCID: PMC7536436 DOI: 10.1038/s41514-020-00049-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 09/09/2020] [Indexed: 12/18/2022] Open
Abstract
Diabetes mellitus is one of the fastest-growing health burdens globally. Oxidative stress, which has been implicated in the pathogenesis of diabetes complication (e.g., cardiovascular event), remains poorly understood. We report a new approach to rapidly manipulate and evaluate the redox states of blood using a point-of-care NMR system. Various redox states of the hemoglobin were mapped out using the newly proposed (pseudo) two-dimensional map known as T1-T2 magnetic state diagram. We exploit the fact that oxidative stress changes the subtle molecular motion of water proton in the blood, and thus inducing a measurable shift in magnetic resonance relaxation properties. We demonstrated the clinical utilities of this technique to rapidly stratify diabetes subjects based on their oxidative status in conjunction to the traditional glycemic level to improve the patient stratification and thus the overall outcome of clinical diabetes care and management.
Collapse
Affiliation(s)
- Weng Kung Peng
- Precision Medicine–Engineering Group, International Iberian Nanotechnology Laboratory, Braga, Portugal
- BioSystems & Micromechanics IRG (BioSyM), Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Lan Chen
- BioSystems & Micromechanics IRG (BioSyM), Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore, Singapore
| | - Bernhard O. Boehm
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Ulm University Medical Centre, Department of Internal Medicine 1, Ulm University, Ulm, Germany
- Imperial College London, London, UK
| | - Jongyoon Han
- BioSystems & Micromechanics IRG (BioSyM), Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore, Singapore
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 36-841, 77 Massachusetts Avenue, Cambridge, MA 02139 USA
- Department of Biological Engineering, Massachusetts Institute of Technology, 36-841, 77 Massachusetts Avenue, Cambridge, MA 02139 USA
| | - Tze Ping Loh
- Department of Laboratory Medicine, National University Hospital, 5 Lower Kent Ridge Road, Singapore, 119074 Singapore
| |
Collapse
|
21
|
Görges A, Benders S, Greferath M, Küppers M, Adams M, Blümich B. Selective magnetic resonance signal suppression by colored Frank excitation. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2020; 317:106776. [PMID: 32622240 DOI: 10.1016/j.jmr.2020.106776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/13/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
Inspired by the growing interest in miniaturized NMR devices and their applications in material science as well as in chemical and biological research, low power rf excitation is explored. 1H NMR spectra have been measured with low power Frank excitation and are compared to spectra obtained by single-pulse excitation. Frank excitation consists of a large number of phase-modulated, constant-amplitude rf-pulses. A Frank sequence is divided into packages of discrete phase wavelets that correspond to a scan across a spectral frequency range. The largely coherent excitation is found experimentally to require less power than white noise excitation. The package structure suggests that individual wavelets can be omitted to skip individual frequency regions in the excitation, converting the white Frank excitation into colored Frank excitation. This work explores different approaches of colored, selective Frank excitation for spectroscopy and imaging. It is motivated by the aim to eliminate the rf amplifier from the NMR spectrometer so as to enable further miniaturization of NMR instruments. Colored Frank excitation bears promise as a low-power modality for solvent signal suppression in spectroscopy and motion tagging in magnetic resonance imaging.
Collapse
Affiliation(s)
- Alexander Görges
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Stefan Benders
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Marcus Greferath
- School of Mathematics and Statistics, University College Dublin, Belfield, Dublin 4, Republic of Ireland
| | - Markus Küppers
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Michael Adams
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Bernhard Blümich
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany.
| |
Collapse
|
22
|
Saini BS, Darby JRT, Portnoy S, Sun L, van Amerom J, Lock MC, Soo JY, Holman SL, Perumal SR, Kingdom JC, Sled JG, Macgowan CK, Morrison JL, Seed M. Normal human and sheep fetal vessel oxygen saturations by T2 magnetic resonance imaging. J Physiol 2020; 598:3259-3281. [PMID: 32372463 DOI: 10.1113/jp279725] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/30/2020] [Indexed: 12/21/2022] Open
Abstract
KEY POINTS Human fetal Doppler ultrasound and invasive blood gas measurements obtained by cordocentesis or at the time of delivery reveal similarities with sheep (an extensively used model for human fetal cardiovascular physiology). Oxygen saturation (SO2 ) measurements in human fetuses have been limited to the umbilical and scalp vessels, providing little information about normal regional SO2 differences in the fetus. Blood T2 MRI relaxometry presents a non-invasive measure of SO2 in the major fetal vessels. This study presents the first in vivo validation of fetal vessel T2 oximetry against the in vitro T2-SO2 relationship using catheterized sheep fetuses and compares the normal SO2 in the major vessels between the human and sheep fetal circulations. Human fetal vessel SO2 by T2 MRI confirms many similarities with the sheep fetal circulation and is able to demonstrate regional differences in SO2 ; in particular the significantly higher SO2 in the left versus right heart. ABSTRACT Blood T2 magnetic resonance imaging (MRI) relaxometry non-invasively measures oxygen saturation (SO2 ) in major vessels but has not been validated in fetuses in vivo. We compared the blood T2-SO2 relationship in vitro (tubes) and in vivo (vessels) in sheep, and measured SO2 across the normal human and sheep fetal circulations by T2. Singleton pregnant ewes underwent surgery to implant vascular catheters. In vitro and in vivo sheep blood T2 measurements were related to corresponding SO2 measured using a blood gas analyser, as well as relating T2 and SO2 of human fetal blood in vitro. MRI oximetry was performed in the major vessels of 30 human fetuses at 36 weeks (term, 40 weeks) and 10 fetal sheep (125 days; term, 150 days). The fidelity of in vivo fetal T2 oximetry was confirmed through comparison of in vitro and in vivo sheep blood T2-SO2 relationships (P = 0.1). SO2 was similar between human and sheep fetuses, as was the fetal oxygen extraction fraction (human, 33 ± 11%; sheep, 34 ± 7%; P = 0.798). The presence of streaming in the human fetal circulation was demonstrated by the SO2 gradient between the ascending aorta (68 ± 10%) and the main pulmonary artery (49 ± 9%; P < 0.001). Human and sheep fetal vessel MRI oximetry based on T2 is a validated approach that confirms the presence of streaming of umbilical venous blood towards the heart and brain. Streaming is important in ensuring oxygen delivery to these organs and its disruption may have important implications for organ development, especially in conditions such as congenital heart disease and fetal growth restriction.
Collapse
Affiliation(s)
- Brahmdeep S Saini
- Institute of Medical Science, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.,Division of Cardiology, The Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada
| | - Jack R T Darby
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Sharon Portnoy
- Translational Medicine, The Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada
| | - Liqun Sun
- Division of Cardiology, The Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada
| | - Joshua van Amerom
- Division of Cardiology, The Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada
| | - Mitchell C Lock
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Jia Yin Soo
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Stacey L Holman
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Sunthara R Perumal
- Preclinical Imaging and Research Laboratories, South Australian Health and Medical Research Institute, Adelaide, South Australia, 5086, Australia
| | - John C Kingdom
- Department of Obstetrics and Gynaecology, Maternal-Fetal Medicine, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada.,Department of Obstetrics and Gynaecology, University of Toronto, Toronto, Ontario, M5G 1E2, Canada
| | - John G Sled
- Translational Medicine, The Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, M5G 1L7, Canada
| | - Christopher K Macgowan
- Translational Medicine, The Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, M5G 1L7, Canada
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Mike Seed
- Institute of Medical Science, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.,Division of Cardiology, The Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada.,Department of Obstetrics and Gynaecology, University of Toronto, Toronto, Ontario, M5G 1E2, Canada
| |
Collapse
|
23
|
Lee DY, Kang S, Lee Y, Kim JY, Yoo D, Jung W, Lee S, Jeong YY, Lee K, Jon S. PEGylated Bilirubin-coated Iron Oxide Nanoparticles as a Biosensor for Magnetic Relaxation Switching-based ROS Detection in Whole Blood. Theranostics 2020; 10:1997-2007. [PMID: 32104497 PMCID: PMC7019166 DOI: 10.7150/thno.39662] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/16/2019] [Indexed: 12/13/2022] Open
Abstract
Rationale: Magnetic relaxation switching (MRSw) induced by target-triggered aggregation or dissociation of superparamagnetic iron oxide nanoparticles (SPIONs) have been utilized for detection of diverse biomarkers. However, an MRSw-based biosensor for reactive oxygen species (ROS) has never been documented. Methods: To this end, we constructed a biosensor for ROS detection based on PEGylated bilirubin (PEG-BR)-coated SPIONs (PEG-BR@SPIONs) that were prepared by simple sonication via ligand exchange. In addition, near infra-red (NIR) fluorescent dye was loaded onto PEG-BR@SPIONs as a secondary option for fluorescence-based ROS detection. Results: PEG-BR@SPIONs showed high colloidal stability under physiological conditions, but upon exposure to the model ROS, NaOCl, in vitro, they aggregated, causing a decrease in signal intensity in T2-weighted MR images. Furthermore, ROS-responsive PEG-BR@SPIONs were taken up by lipopolysaccharide (LPS)-activated macrophages to a much greater extent than ROS-unresponsive control nanoparticles (PEG-DSPE@SPIONs). In a sepsis-mimetic clinical setting, PEG-BR@SPIONs were able to directly detect the concentrations of ROS in whole blood samples through a clear change in T2 MR signals and a 'turn-on' signal of fluorescence. Conclusions: These findings suggest that PEG-BR@SPIONs have the potential as a new type of dual mode (MRSw-based and fluorescence-based) biosensors for ROS detection and could be used to diagnose many diseases associated with ROS overproduction.
Collapse
|
24
|
Abelha TF, Dreiss CA, Green MA, Dailey LA. Conjugated polymers as nanoparticle probes for fluorescence and photoacoustic imaging. J Mater Chem B 2020; 8:592-606. [DOI: 10.1039/c9tb02582k] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In this review, the role of conjugated polymer nanoparticles (CPNs) in emerging bioimaging techniques is described.
Collapse
Affiliation(s)
- Thais Fedatto Abelha
- King's College London
- Institute of Pharmaceutical Science
- London
- UK
- School of Pharmacy
| | - Cécile A. Dreiss
- King's College London
- Institute of Pharmaceutical Science
- London
- UK
| | | | | |
Collapse
|
25
|
Tudorache M, McDonald JL, Bordenave N. Gallic acid reduces the viscosity and water binding capacity of soluble dietary fibers. Food Funct 2020; 11:5866-5874. [DOI: 10.1039/d0fo01200a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Water binding capacity and viscosity of soluble dietary fibers are known to be essential drivers of their nutritional benefits.
Collapse
Affiliation(s)
- Mihaela Tudorache
- School of Chemistry and Biomolecular Sciences
- Faculty of Sciences
- University of Ottawa
- Canada
| | - Jean-Luc McDonald
- School of Nutrition Sciences
- Faculty of Health Sciences
- University of Ottawa
- Canada
| | - Nicolas Bordenave
- School of Chemistry and Biomolecular Sciences
- Faculty of Sciences
- University of Ottawa
- Canada
- School of Nutrition Sciences
| |
Collapse
|
26
|
Tudorache M, Bordenave N. Phenolic compounds mediate aggregation of water-soluble polysaccharides and change their rheological properties: Effect of different phenolic compounds. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.105193] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
27
|
Blümich B. Low-field and benchtop NMR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 306:27-35. [PMID: 31311709 DOI: 10.1016/j.jmr.2019.07.030] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/03/2019] [Accepted: 07/08/2019] [Indexed: 05/28/2023]
Abstract
NMR started at low field. Important discoveries like the first observation of NMR in condensed matter, the spin echo, NMR for chemical analysis, Fourier NMR spectroscopy, 2D NMR spectroscopy and magnetic resonance imaging happened at field strengths considered low today. With time the footprint of the NMR instruments at these field strengths shrunk from the laboratory floor to the tabletop. The first commercial tabletop NMR instruments were compact relaxometers for food analysis followed by mobile relaxometers for materials testing and oil-well exploration culminating in tabletop spectrometers for chemical analysis, capable of performing nearly the whole methodical portfolio of today's high-field instruments. The increasing sensitivity afforded by the lower noise of modern electronics and the unfolding richness of hyperpolarization scenarios along with detection schemes alternative to nuclear induction enable NMR at ultra-low field strengths down to zero applied field, where spin-spin couplings in local fields dominate the residual Zeeman interaction. Miniaturization and cost-reduction of NMR instruments outline current development goals along with the development of smart-phone-like apps to conduct standard NMR analyses.
Collapse
Affiliation(s)
- Bernhard Blümich
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
28
|
Ponte S, Silva Elipe MV, Aboutanios E, Vasini EM, Cobas C. An algorithm for discovery and determination of exponentially decaying components in nuclear magnetic resonance relaxometry data. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2019; 57:878-899. [PMID: 31119783 DOI: 10.1002/mrc.4894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 04/03/2019] [Accepted: 05/10/2019] [Indexed: 06/09/2023]
Abstract
In many branches of physics, the time evolution of various quantities measured in systems passing from excited to equilibrium states, while theoretically very complex, can be in practice well approximated by a sum of exponential decays. Multiexponential relaxometry data analysis is about determining the number of exponential components and their corresponding amplitudes and decay rates, starting from noisy recorded time series, under the assumption of the discreteness of the number of components present. A technique for decomposing a signal modelled as a sum of exponential decays into its components is introduced, consisting of a modified version of the algorithm minimum description length (MDL) + matrix pencil, originally proposed by Lin et al. for the analysis of nuclear magnetic resonance spectroscopy data. The procedure starts by denoising the discrete time-domain signal, and then a number of different decimations are applied, each being followed by an MDL + matrix pencil detection-estimation step, and finally, a postprocessing of the intermediate outcomes is done. The comprised model order estimator eliminates the need of providing prior estimates of the number of components present.
Collapse
Affiliation(s)
- Santi Ponte
- Development Department, Mestrelab Research S.L., Santiago de Compostela, Spain
| | | | - Elias Aboutanios
- School of Electrical Engineering and Telecommunications, UNSW Sidney, Sydney, Australia
| | | | - Carlos Cobas
- Development Department, Mestrelab Research S.L., Santiago de Compostela, Spain
| |
Collapse
|
29
|
Hirakawa K, Koike K, Kanawaku Y, Moriyama T, Sato N, Suzuki T, Furihata K, Ohno Y. Short-time Fourier Transform of Free Induction Decays for the Analysis of Serum Using Proton Nuclear Magnetic Resonance. J Oleo Sci 2019; 68:369-378. [PMID: 30867391 DOI: 10.5650/jos.ess18212] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Proton nuclear magnetic resonance (NMR) is useful for the analysis of biological samples such as serum. Free induction decays (FIDs) are NMR signals that follow a radio-frequency pulse applied at the resonance frequency. Short-time Fourier transform (STFT) is a basic method for time-frequency analyses. The purpose of this study was to ascertain whether the STFT of FIDs enables the sensitive detection of changes and differences in serum properties. FIDs were obtained from serum collected from young, healthy, male volunteers ≤ 40 years of age and seniors ≥ 65 years of age. Temporal changes in the instantaneous amplitudes for the time-domain analysis, fast Fourier transform for frequency-domain analysis, and STFT were applied to the FIDs. The STFT-based spectrogram represented the complex frequency components that changed dynamically over time, indicating that the spectrogram enabled the visualization of the features of an FID. Furthermore, the results of a partial least-squares discriminant analysis demonstrated that the STFT was superior to the other two methods for discriminating between serum from younger and older subjects. In conclusion, the STFT of FIDs obtained from proton NMR measurements was useful for evaluating similarities and dissimilarities in the FIDs obtained from serum samples.
Collapse
Affiliation(s)
- Keiko Hirakawa
- Research Laboratory for Magnetic Resonance, Nippon Medical School
| | - Kaoru Koike
- Department of Primary Care and Emergency Medicine, Kyoto University, Graduate School of Medicine
| | | | - Tsuyoshi Moriyama
- Department of Media and Image Technology, Tokyo Polytechnic University
| | - Norio Sato
- Department of Primary Care and Emergency Medicine, Kyoto University, Graduate School of Medicine
| | - Takao Suzuki
- Department of Primary Care and Emergency Medicine, Kyoto University, Graduate School of Medicine
| | | | - Youkichi Ohno
- Research Laboratory for Magnetic Resonance, Nippon Medical School.,Department of Legal Medicine, Nippon Medical School
| |
Collapse
|
30
|
Grootveld M, Percival B, Gibson M, Osman Y, Edgar M, Molinari M, Mather ML, Casanova F, Wilson PB. Progress in low-field benchtop NMR spectroscopy in chemical and biochemical analysis. Anal Chim Acta 2019; 1067:11-30. [PMID: 31047142 DOI: 10.1016/j.aca.2019.02.026] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/18/2019] [Accepted: 02/19/2019] [Indexed: 02/07/2023]
Abstract
The employment of spectroscopically-resolved NMR techniques as analytical probes have previously been both prohibitively expensive and logistically challenging in view of the large sizes of high-field facilities. However, with recent advances in the miniaturisation of magnetic resonance technology, low-field, cryogen-free "benchtop" NMR instruments are seeing wider use. Indeed, these miniaturised spectrometers are utilised in areas ranging from food and agricultural analyses, through to human biofluid assays and disease monitoring. Therefore, it is both intrinsically timely and important to highlight current applications of this analytical strategy, and also provide an outlook for the future, where this approach may be applied to a wider range of analytical problems, both qualitatively and quantitatively.
Collapse
Affiliation(s)
- Martin Grootveld
- Chemistry for Health/Bioanalytical Sciences Research Group, Leicester School of Pharmacy, De Montfort University, Leicester, LE1 9BH, UK
| | - Benita Percival
- Chemistry for Health/Bioanalytical Sciences Research Group, Leicester School of Pharmacy, De Montfort University, Leicester, LE1 9BH, UK
| | - Miles Gibson
- Chemistry for Health/Bioanalytical Sciences Research Group, Leicester School of Pharmacy, De Montfort University, Leicester, LE1 9BH, UK
| | - Yasan Osman
- Chemistry for Health/Bioanalytical Sciences Research Group, Leicester School of Pharmacy, De Montfort University, Leicester, LE1 9BH, UK
| | - Mark Edgar
- Department of Chemistry, University of Loughborough, Epinal Way, Loughborough, LE11 3TU, UK
| | - Marco Molinari
- School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
| | - Melissa L Mather
- Department of Electronic and Electrical Engineering, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | | | - Philippe B Wilson
- Chemistry for Health/Bioanalytical Sciences Research Group, Leicester School of Pharmacy, De Montfort University, Leicester, LE1 9BH, UK.
| |
Collapse
|
31
|
Percival BC, Grootveld M, Gibson M, Osman Y, Molinari M, Jafari F, Sahota T, Martin M, Casanova F, Mather ML, Edgar M, Masania J, Wilson PB. Low-Field, Benchtop NMR Spectroscopy as a Potential Tool for Point-of-Care Diagnostics of Metabolic Conditions: Validation, Protocols and Computational Models. High Throughput 2018; 8:ht8010002. [PMID: 30591692 PMCID: PMC6480726 DOI: 10.3390/ht8010002] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/13/2018] [Accepted: 12/13/2018] [Indexed: 01/08/2023] Open
Abstract
Novel sensing technologies for liquid biopsies offer promising prospects for the early detection of metabolic conditions through omics techniques. Indeed, high-field nuclear magnetic resonance (NMR) facilities are routinely used for metabolomics investigations on a range of biofluids in order to rapidly recognise unusual metabolic patterns in patients suffering from a range of diseases. However, these techniques are restricted by the prohibitively large size and cost of such facilities, suggesting a possible role for smaller, low-field NMR instruments in biofluid analysis. Herein we describe selected biomolecule validation on a low-field benchtop NMR spectrometer (60 MHz), and present an associated protocol for the analysis of biofluids on compact NMR instruments. We successfully detect common markers of diabetic control at low-to-medium concentrations through optimised experiments, including α-glucose (≤2.8 mmol/L) and acetone (25 µmol/L), and additionally in readily accessible biofluids, particularly human urine. We present a combined protocol for the analysis of these biofluids with low-field NMR spectrometers for metabolomics applications, and offer a perspective on the future of this technique appealing to ‘point-of-care’ applications.
Collapse
Affiliation(s)
- Benita C Percival
- Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, UK.
| | - Martin Grootveld
- Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, UK.
| | - Miles Gibson
- Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, UK.
| | - Yasan Osman
- Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, UK.
| | - Marco Molinari
- Department of Chemical Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK.
| | - Fereshteh Jafari
- Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, UK.
| | - Tarsem Sahota
- Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, UK.
| | - Mark Martin
- Greater Manchester NHS Trust, Stepping Hill Hospital, Poplar Grove, Hazel Grove, Stockport SK2 7JE, UK.
| | | | - Melissa L Mather
- Department of Electrical and Electronic Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
| | - Mark Edgar
- Department of Chemistry, University of Loughborough, Epinal Way, Loughborough LE11 3TU, UK.
| | - Jinit Masania
- Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, UK.
| | - Philippe B Wilson
- Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, UK.
| |
Collapse
|
32
|
Patel V, Dwivedi AK, Deodhar S, Mishra I, Cistola DP. Aptamer-based search for correlates of plasma and serum water T 2: implications for early metabolic dysregulation and metabolic syndrome. Biomark Res 2018; 6:28. [PMID: 30237882 PMCID: PMC6142358 DOI: 10.1186/s40364-018-0143-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 08/29/2018] [Indexed: 12/13/2022] Open
Abstract
Background Metabolic syndrome is a cluster of abnormalities that increases the risk for type 2 diabetes and atherosclerosis. Plasma and serum water T2 from benchtop nuclear magnetic resonance relaxometry are early, global and practical biomarkers for metabolic syndrome and its underlying abnormalities. In a prior study, water T2 was analyzed against ~ 130 strategically selected proteins and metabolites to identify associations with insulin resistance, inflammation and dyslipidemia. In the current study, the analysis was broadened ten-fold using a modified aptamer (SOMAmer) library, enabling an unbiased search for new proteins correlated with water T2 and thus, metabolic health. Methods Water T2 measurements were recorded using fasting plasma and serum from non-diabetic human subjects. In parallel, plasma samples were analyzed using a SOMAscan assay that employed modified DNA aptamers to determine the relative concentrations of 1310 proteins. A multi-step statistical analysis was performed to identify the biomarkers most predictive of water T2. The steps included Spearman rank correlation, followed by principal components analysis with variable clustering, random forests for biomarker selection, and regression trees for biomarker ranking. Results The multi-step analysis unveiled five new proteins most predictive of water T2: hepatocyte growth factor, receptor tyrosine kinase FLT3, bone sialoprotein 2, glucokinase regulatory protein and endothelial cell-specific molecule 1. Three of the five strongest predictors of water T2 have been previously implicated in cardiometabolic diseases. Hepatocyte growth factor has been associated with incident type 2 diabetes, and endothelial cell specific molecule 1, with atherosclerosis in subjects with diabetes. Glucokinase regulatory protein plays a critical role in hepatic glucose uptake and metabolism and is a drug target for type 2 diabetes. By contrast, receptor tyrosine kinase FLT3 and bone sialoprotein 2 have not been previously associated with metabolic conditions. In addition to the five most predictive biomarkers, the analysis unveiled other strong correlates of water T2 that would not have been identified in a hypothesis-driven biomarker search. Conclusions The identification of new proteins associated with water T2 demonstrates the value of this approach to biomarker discovery. It provides new insights into the metabolic significance of water T2 and the pathophysiology of metabolic syndrome. Electronic supplementary material The online version of this article (10.1186/s40364-018-0143-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vipulkumar Patel
- 1Nanoparticle Diagnostics Laboratory, Institute for Cardiovascular & Metabolic Diseases, University of North Texas Health Science Center, Fort Worth, TX 76107 USA.,2Center of Emphasis in Diabetes & Metabolism, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905 USA
| | - Alok K Dwivedi
- 3Division of Biostatistics & Epidemiology, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905 USA
| | - Sneha Deodhar
- 1Nanoparticle Diagnostics Laboratory, Institute for Cardiovascular & Metabolic Diseases, University of North Texas Health Science Center, Fort Worth, TX 76107 USA
| | - Ina Mishra
- 1Nanoparticle Diagnostics Laboratory, Institute for Cardiovascular & Metabolic Diseases, University of North Texas Health Science Center, Fort Worth, TX 76107 USA.,2Center of Emphasis in Diabetes & Metabolism, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905 USA
| | - David P Cistola
- 1Nanoparticle Diagnostics Laboratory, Institute for Cardiovascular & Metabolic Diseases, University of North Texas Health Science Center, Fort Worth, TX 76107 USA.,2Center of Emphasis in Diabetes & Metabolism, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905 USA
| |
Collapse
|
33
|
Mishra I, Jones C, Patel V, Deodhar S, Cistola DP. Early detection of metabolic dysregulation using water T 2 analysis of biobanked samples. Diabetes Metab Syndr Obes 2018; 11:807-818. [PMID: 30538517 PMCID: PMC6260129 DOI: 10.2147/dmso.s180655] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND The ability to use frozen biobanked samples from cohort studies and clinical trials is critically important for biomarker discovery and validation. Here we investigated whether plasma and serum water transverse relaxation times (T2) from frozen biobanked samples could be used as biomarkers for metabolic syndrome (MetS) and its underlying conditions, specifically insulin resistance, dyslipidemia, and subclinical inflammation. METHODS Plasma and serum aliquots from 44 asymptomatic, non-diabetic human subjects were biobanked at -80°C for 7-9 months. Water T2 measurements were recorded at 37°C on 50 µL of unmodified plasma or serum using benchtop nuclear magnetic resonance relaxometry. The T2 values for freshly drawn and once-frozen-thawed ("frozen") samples were compared using Huber M-values (M), Lin concordance correlation coefficients (ρc), and Bland-Altman plots. Water T2 values from frozen plasma and serum samples were compared with >130 metabolic biomarkers and analyzed using multi-variable linear/logistic regression and ROC curves. RESULTS Frozen plasma water T2 values were highly correlated with fresh (M=0.94, 95% CI 0.89, 0.97) but showed a lower level of agreement (ρc=0.74, 95% CI 0.62, 0.82) because of an average offset of -5.6% (-7.1% for serum). Despite the offset, frozen plasma water T2 was strongly correlated with markers of hyperinsulinemia, dyslipidemia, and inflammation and detected these conditions with 89% sensitivity and 91% specificity (100%/63% for serum). Using optimized cut points, frozen plasma and serum water T2 detected hyperinsulinemia, dyslipidemia, and inflammation in 23 of 44 subjects, including nine with an early stage of metabolic dysregulation that did not meet the clinical thresholds for prediabetes or MetS. CONCLUSION Plasma and serum water T2 values from once-frozen-thawed biobanked samples detect metabolic dysregulation with high sensitivity and specificity. However, the cut points for frozen biobanked samples must be calibrated independent of those for freshly drawn plasma and serum.
Collapse
Affiliation(s)
- Ina Mishra
- Nanoparticle Diagnostics Laboratory, Institute for Cardiovascular and Metabolic Diseases, Department of Physiology & Anatomy, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA,
- Center of Emphasis in Diabetes & Metabolism, Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, 79905, USA,
| | - Clinton Jones
- Nanoparticle Diagnostics Laboratory, Institute for Cardiovascular and Metabolic Diseases, Department of Physiology & Anatomy, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA,
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Vipulkumar Patel
- Nanoparticle Diagnostics Laboratory, Institute for Cardiovascular and Metabolic Diseases, Department of Physiology & Anatomy, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA,
- Center of Emphasis in Diabetes & Metabolism, Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, 79905, USA,
| | - Sneha Deodhar
- Nanoparticle Diagnostics Laboratory, Institute for Cardiovascular and Metabolic Diseases, Department of Physiology & Anatomy, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA,
| | - David P Cistola
- Nanoparticle Diagnostics Laboratory, Institute for Cardiovascular and Metabolic Diseases, Department of Physiology & Anatomy, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA,
- Center of Emphasis in Diabetes & Metabolism, Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, 79905, USA,
| |
Collapse
|
34
|
Robinson MD, Mishra I, Deodhar S, Patel V, Gordon KV, Vintimilla R, Brown K, Johnson L, O'Bryant S, Cistola DP. Water T 2 as an early, global and practical biomarker for metabolic syndrome: an observational cross-sectional study. J Transl Med 2017; 15:258. [PMID: 29258604 PMCID: PMC5738216 DOI: 10.1186/s12967-017-1359-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 12/06/2017] [Indexed: 02/08/2023] Open
Abstract
Background Metabolic syndrome (MetS) is a highly prevalent condition that identifies individuals at risk for type 2 diabetes mellitus and atherosclerotic cardiovascular disease. Prevention of these diseases relies on early detection and intervention in order to preserve pancreatic β-cells and arterial wall integrity. Yet, the clinical criteria for MetS are insensitive to the early-stage insulin resistance, inflammation, cholesterol and clotting factor abnormalities that characterize the progression toward type 2 diabetes and atherosclerosis. Here we report the discovery and initial characterization of an atypical new biomarker that detects these early conditions with just one measurement. Methods Water T2, measured in a few minutes using benchtop nuclear magnetic resonance relaxometry, is exquisitely sensitive to metabolic shifts in the blood proteome. In an observational cross-sectional study of 72 non-diabetic human subjects, the association of plasma and serum water T2 values with over 130 blood biomarkers was analyzed using bivariate, multivariate and logistic regression. Results Plasma and serum water T2 exhibited strong bivariate correlations with markers of insulin, lipids, inflammation, coagulation and electrolyte balance. After correcting for confounders, low water T2 values were independently and additively associated with fasting hyperinsulinemia, dyslipidemia and subclinical inflammation. Plasma water T2 exhibited 100% sensitivity and 87% specificity for detecting early insulin resistance in normoglycemic subjects, as defined by the McAuley Index. Sixteen normoglycemic subjects with early metabolic abnormalities (22% of the study population) were identified by low water T2 values. Thirteen of the 16 did not meet the harmonized clinical criteria for metabolic syndrome and would have been missed by conventional screening for diabetes risk. Low water T2 values were associated with increases in the mean concentrations of 6 of the 16 most abundant acute phase proteins and lipoproteins in plasma. Conclusions Water T2 detects a constellation of early abnormalities associated with metabolic syndrome, providing a global view of an individual’s metabolic health. It circumvents the pitfalls associated with fasting glucose and hemoglobin A1c and the limitations of the current clinical criteria for metabolic syndrome. Water T2 shows promise as an early, global and practical screening tool for the identification of individuals at risk for diabetes and atherosclerosis. Electronic supplementary material The online version of this article (10.1186/s12967-017-1359-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michelle D Robinson
- Nanoparticle Diagnostics Laboratory, Institute for Cardiovascular & Metabolic Diseases, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA.,Department of Clinical Laboratory Science, College of Allied Health Sciences, East Carolina University, Greenville, NC, 27834, USA.,Department of Biochemistry & Molecular Biology, The Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA.,The East Carolina Diabetes & Obesity Institute, East Carolina University, Greenville, NC, 27834, USA
| | - Ina Mishra
- Nanoparticle Diagnostics Laboratory, Institute for Cardiovascular & Metabolic Diseases, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA.,Center of Emphasis in Diabetes & Metabolism, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, 79905, USA
| | - Sneha Deodhar
- Nanoparticle Diagnostics Laboratory, Institute for Cardiovascular & Metabolic Diseases, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Vipulkumar Patel
- Nanoparticle Diagnostics Laboratory, Institute for Cardiovascular & Metabolic Diseases, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA.,Center of Emphasis in Diabetes & Metabolism, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, 79905, USA
| | - Katrina V Gordon
- Nanoparticle Diagnostics Laboratory, Institute for Cardiovascular & Metabolic Diseases, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Raul Vintimilla
- Center for Alzheimer's & Neurodegenerative Diseases Research, Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Kim Brown
- Center for Alzheimer's & Neurodegenerative Diseases Research, Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Leigh Johnson
- Center for Alzheimer's & Neurodegenerative Diseases Research, Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Sid O'Bryant
- Center for Alzheimer's & Neurodegenerative Diseases Research, Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - David P Cistola
- Nanoparticle Diagnostics Laboratory, Institute for Cardiovascular & Metabolic Diseases, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA. .,Department of Clinical Laboratory Science, College of Allied Health Sciences, East Carolina University, Greenville, NC, 27834, USA. .,Department of Biochemistry & Molecular Biology, The Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA. .,The East Carolina Diabetes & Obesity Institute, East Carolina University, Greenville, NC, 27834, USA. .,Center of Emphasis in Diabetes & Metabolism, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, 79905, USA.
| |
Collapse
|
35
|
Blümich B, Singh K. Desktop NMR and Its Applications From Materials Science To Organic Chemistry. Angew Chem Int Ed Engl 2017; 57:6996-7010. [PMID: 29230908 DOI: 10.1002/anie.201707084] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Indexed: 12/19/2022]
Abstract
NMR spectroscopy is an indispensable method of analysis in chemistry, which until recently suffered from high demands for space, high costs for acquisition and maintenance, and operational complexity. This has changed with the introduction of compact NMR spectrometers suitable for small-molecule analysis on the chemical workbench. These spectrometers contain permanent magnets giving rise to proton NMR frequencies between 40 and 80 MHz. The enabling technology is to make small permanent magnets with homogeneous fields. Tabletop instruments with inhomogeneous fields have been in use for over 40 years for characterizing food and hydrogen-containing materials by relaxation and diffusion measurements. Related NMR instruments measure these parameters in the stray field outside the magnet. They are used to inspect the borehole walls of oil wells and to test objects nondestructively. The state-of-the-art of NMR spectroscopy, imaging and relaxometry with compact instruments is reviewed.
Collapse
Affiliation(s)
- Bernhard Blümich
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Aachen, Germany
| | - Kawarpal Singh
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
36
|
Blümich B, Singh K. NMR mit Tischgeräten und deren Anwendungen von der Materialwissenschaft bis zur organischen Chemie. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201707084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Bernhard Blümich
- Institut für Technische und Makromolekulare Chemie; RWTH Aachen University; Aachen Deutschland
| | - Kawarpal Singh
- Institut für Technische und Makromolekulare Chemie; RWTH Aachen University; Aachen Deutschland
| |
Collapse
|