1
|
He WB, Hou S, Zeng LY, Tang HB, Tong X, Wu CZ, Liu X, Tan G, Guo LQ, Lin JF. Proteomics analysis of enzyme systems and pathway changes during the moromi fermentation of soy sauce mash. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5735-5750. [PMID: 38441287 DOI: 10.1002/jsfa.13398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/31/2024] [Accepted: 03/05/2024] [Indexed: 03/20/2024]
Abstract
BACKGROUND During the brewing of soy sauce, the conversion of multiple substances is driven by various microorganisms and their secreted enzyme systems. Soy sauce mash is an important source of enzyme systems during moromi fermentation, but the changes of enzyme systems in soy sauce mash during moromi fermentation are poorly understood. In order to explore the predominant enzyme systems existing during moromi fermentation and to explain the characteristics of the enzyme system changes, an enzymatic activities assay and 4D-label-free proteomics analysis were conducted on soy sauce mash at different stages of fermentation. RESULTS The activities of hydrolytic enzymes in soy sauce mash decreased continuously throughout the fermentation process, while most of the characteristic physicochemical substances in soy sauce mash supernatant had already accumulated at the early stage of fermentation. Four hydrolytic enzymes were found to be positively correlated with important physicochemical indexes by principal component analysis and Pearson correlation analysis. The proteomics analysis revealed three highly upregulated enzymes and two enzymes that were present in important metabolic pathways throughout the fermentation process. Furthermore, it was found that Aspergillus oryzae was able to accumulate various nutrients in the soy sauce mash by downregulating most of its metabolic pathways. CONCLUSION Enzymes present with excellent properties during the moromi fermentation period could be obtained from these results. Meanwhile, the characterization of the metabolic pathways of microorganisms during the moromi fermentation period was revealed. The results provide a basis for more scientific and purposeful improvement of moromi fermentation in the future. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wen-Bin He
- College of Food Science, South China Agricultural University, Guangzhou, China
- Research Center for Microecological Agents of Guangdong Province, Guangzhou, China
| | - Sha Hou
- Foshan Haitian (Gaoming) Flavouring & Food Co. Ltd, Foshan, China
| | - Long-Ying Zeng
- College of Food Science, South China Agricultural University, Guangzhou, China
- Research Center for Microecological Agents of Guangdong Province, Guangzhou, China
| | - Hong-Biao Tang
- College of Food Science, South China Agricultural University, Guangzhou, China
- Research Center for Microecological Agents of Guangdong Province, Guangzhou, China
| | - Xing Tong
- Foshan Haitian (Gaoming) Flavouring & Food Co. Ltd, Foshan, China
| | - Chang-Zheng Wu
- Foshan Haitian (Gaoming) Flavouring & Food Co. Ltd, Foshan, China
| | - Xiang Liu
- Foshan Haitian (Gaoming) Flavouring & Food Co. Ltd, Foshan, China
| | - Ge Tan
- College of Food Science, South China Agricultural University, Guangzhou, China
- Research Center for Microecological Agents of Guangdong Province, Guangzhou, China
| | - Li-Qiong Guo
- College of Food Science, South China Agricultural University, Guangzhou, China
- Research Center for Microecological Agents of Guangdong Province, Guangzhou, China
| | - Jun-Fang Lin
- College of Food Science, South China Agricultural University, Guangzhou, China
- Research Center for Microecological Agents of Guangdong Province, Guangzhou, China
| |
Collapse
|
2
|
Jia W, Wu X. Potential biomarkers analysis and protein internal mechanisms by cold plasma treatment: Is proteomics effective to elucidate protein-protein interaction network and biochemical pathway? Food Chem 2023; 426:136664. [PMID: 37352708 DOI: 10.1016/j.foodchem.2023.136664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/19/2023] [Accepted: 06/16/2023] [Indexed: 06/25/2023]
Abstract
New market trends of meat flavor, tenderness, and color quality indicators have prompted the research on meat preservation as a crucial topic to received attention. Present research about the effects of irradiation, cold plasma technology on meat is incomplete. There are strongly recommended that proteomics techniques be jointly to enhance the coverage of internal meat molecules for meat research. By identifying meat proteins, detecting biological functions, and quantifying the protein segments of specific meat biomarkers, which can be provided for the information of diagnostic components in preservative technologies. The current review provides scientific findings on various control strategies: (i) combine the data-independent acquisition to provide a reference for the meat molecular mechanism and rapid identification; (ii) design molecular networks biological functions assessment model; (iii) molecular investigations of cold plasma techniques and underlying mechanisms; (iv) explore the X-rays and γ-rays treatment in meat preservation and myoglobin change mechanism more comprehensively.
Collapse
Affiliation(s)
- Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an 710021, China.
| | - Xinyu Wu
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| |
Collapse
|
3
|
Parastar H, Tauler R. Big (Bio)Chemical Data Mining Using Chemometric Methods: A Need for Chemists. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.201801134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hadi Parastar
- Department of Chemistry Sharif University of Technology Tehran Iran
| | - Roma Tauler
- Department of Environmental Chemistry IDAEA-CSIC 08034 Barcelona Spain
| |
Collapse
|
4
|
Zou D, Coudron TA, Wu H, Zhang L, Wang M, Xu W, Xu J, Song L, Xiao X. Differential Proteomics Analysis Unraveled Mechanisms of Arma chinensis Responding to Improved Artificial Diet. INSECTS 2022; 13:insects13070605. [PMID: 35886781 PMCID: PMC9319121 DOI: 10.3390/insects13070605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/25/2022] [Accepted: 06/28/2022] [Indexed: 12/03/2022]
Abstract
Simple Summary Arma chinensis Fallou is a predaceous stink bug that can effectively control many kinds of agricultural and forest pests, such as fall armyworm, cotton bollworm and Colorado potato beetle. An insect-free artificial diet comprising chicken egg, tuna fish and raw pig liver was developed for A. chinensis. Several biological characteristics were diminished for A. chinensis reared on the artificial diet compared to the pupae of Chinese oak silk moth. Changes in the formulation of the diet were made in response to the transcriptome results and tested using biological characteristics. Several parameters were improved over 6 generations, although the improved artificial diet remained inferior to the pupae of Chinese oak silk moth regarding egg viability, fecundity, body weight, and nymphal development time. The current study reported the differential proteomic analysis revealing the mechanism of A. chinensis responding to the improved artificial diet. This information will be used to optimize the formulation of the artificial diet and decrease the cost of mass rearing in A. chinensis. Abstract The development of artificial diets could considerably simplify and reduce the cost of mass rearing of natural enemies compared to conventional rearing methods. However, improvement of artificial diets can be tedious, convoluted and often uncertain. For accelerating diet development, a better method that can offer informative feedback to target deficiencies in diet improvement is required. Our previous research demonstrated several biological characteristics were diminished in the insect predator, Arma chinensis Fallou, fed on an artificial diet formulated with the aid of transcriptomic methods compared to the Chinese oak silk moth pupae. The present study reports differential proteomic analysis by iTRAQ-PRM, which unravels the molecular mechanism of A. chinensis responding to improvements in the artificial diet. Our study provides multivariate proteomic data and provides comprehensive sequence information in studying A. chinensis. Further, the physiological roles of the differentially expressed proteins and pathways enable us to explain several biological differences between natural prey-fed and improved diet-fed A. chinensis, and subsequent proposed reformulation optimizations to artificial diets.
Collapse
Affiliation(s)
- Deyu Zou
- Mass Production Base of Natural Enemy Insects of Tianjin Academy of Agricultural Sciences, Institute of Plant Protection, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China; (D.Z.); (W.X.); (J.X.)
| | - Thomas A. Coudron
- Biological Control of Insects Research Laboratory, USDA-Agricultural Research Service, Columbia, MO 65203-3535, USA;
| | - Huihui Wu
- College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin 300392, China; (L.S.); (X.X.)
- Correspondence: ; Tel.: +86-22-23781319
| | - Lisheng Zhang
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.Z.); (M.W.)
| | - Mengqing Wang
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.Z.); (M.W.)
| | - Weihong Xu
- Mass Production Base of Natural Enemy Insects of Tianjin Academy of Agricultural Sciences, Institute of Plant Protection, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China; (D.Z.); (W.X.); (J.X.)
| | - Jingyang Xu
- Mass Production Base of Natural Enemy Insects of Tianjin Academy of Agricultural Sciences, Institute of Plant Protection, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China; (D.Z.); (W.X.); (J.X.)
| | - Liuxiao Song
- College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin 300392, China; (L.S.); (X.X.)
| | - Xuezhuang Xiao
- College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin 300392, China; (L.S.); (X.X.)
| |
Collapse
|
5
|
|
6
|
Bahmani M, O’Lone CE, Juhász A, Nye-Wood M, Dunn H, Edwards IB, Colgrave ML. Application of Mass Spectrometry-Based Proteomics to Barley Research. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8591-8609. [PMID: 34319719 PMCID: PMC8389776 DOI: 10.1021/acs.jafc.1c01871] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Barley (Hordeum vulgare) is the fourth most cultivated crop in the world in terms of production volume, and it is also the most important raw material of the malting and brewing industries. Barley belongs to the grass (Poaceae) family and plays an important role in food security and food safety for both humans and livestock. With the global population set to reach 9.7 billion by 2050, but with less available and/or suitable land for agriculture, the use of biotechnology tools in breeding programs are of considerable importance in the quest to meet the growing food gap. Proteomics as a member of the "omics" technologies has become popular for the investigation of proteins in cereal crops and particularly barley and its related products such as malt and beer. This technology has been applied to study how proteins in barley respond to adverse environmental conditions including abiotic and/or biotic stresses, how they are impacted during food processing including malting and brewing, and the presence of proteins implicated in celiac disease. Moreover, proteomics can be used in the future to inform breeding programs that aim to enhance the nutritional value and broaden the application of this crop in new food and beverage products. Mass spectrometry analysis is a valuable tool that, along with genomics and transcriptomics, can inform plant breeding strategies that aim to produce superior barley varieties. In this review, recent studies employing both qualitative and quantitative mass spectrometry approaches are explored with a focus on their application in cultivation, manufacturing, processing, quality, and the safety of barley and its related products.
Collapse
Affiliation(s)
- Mahya Bahmani
- Australian
Research Council Centre of Excellence for Innovations in Peptide and
Protein Science, Edith Cowan University, School of Science, 270 Joondalup
Drive, Joondalup, Western
Australia 6027, Australia
| | - Clare E. O’Lone
- Australian
Research Council Centre of Excellence for Innovations in Peptide and
Protein Science, Edith Cowan University, School of Science, 270 Joondalup
Drive, Joondalup, Western
Australia 6027, Australia
| | - Angéla Juhász
- Australian
Research Council Centre of Excellence for Innovations in Peptide and
Protein Science, Edith Cowan University, School of Science, 270 Joondalup
Drive, Joondalup, Western
Australia 6027, Australia
| | - Mitchell Nye-Wood
- Australian
Research Council Centre of Excellence for Innovations in Peptide and
Protein Science, Edith Cowan University, School of Science, 270 Joondalup
Drive, Joondalup, Western
Australia 6027, Australia
| | - Hugh Dunn
- Australian
Research Council Centre of Excellence for Innovations in Peptide and
Protein Science, Edith Cowan University, School of Science, 270 Joondalup
Drive, Joondalup, Western
Australia 6027, Australia
| | - Ian B. Edwards
- Edstar
Genetics Pty Ltd, SABC - Loneragan Building, Murdoch University, 90 South Street, Murdoch, Western Australia 6150, Australia
| | - Michelle L. Colgrave
- Australian
Research Council Centre of Excellence for Innovations in Peptide and
Protein Science, Edith Cowan University, School of Science, 270 Joondalup
Drive, Joondalup, Western
Australia 6027, Australia
- CSIRO
Agriculture and Food, 306 Carmody Road, St. Lucia, Queensland 4067, Australia
- Phone: +61-7-3214-2697. . Fax: +61-7-3214-2900
| |
Collapse
|
7
|
Silva B, Costa ACO, Tchewonpi SS, Bönick J, Huschek G, Gonzaga LV, Fett R, Baldermann S, Rawel HM. Comparative quantification and differentiation of bracatinga (Mimosa scabrella Bentham) honeydew honey proteins using targeted peptide markers identified by high-resolution mass spectrometry. Food Res Int 2021; 141:109991. [PMID: 33641949 DOI: 10.1016/j.foodres.2020.109991] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 10/22/2022]
Abstract
Honey traceability is an important topic, especially for honeydew honeys, due to the increased incidence of adulteration. This study aimed to establish specific markers to quantify proteins in honey. A proteomics strategy to identify marker peptides from bracatinga honeydew honey was therefore developed. The proteomics approach was based on initial untargeted identification of honey proteins and peptides by LC-ESI-Triple-TOF-MS/MS, which identified the major royal jelly proteins (MRJP) presence. Afterwards, the peptides were selected by the in silico digestion. The marker peptides were quantified by the developed targeted LC-QqQ-MS/MS method, which provided good linearity and specificity, besides recoveries between 92 and 100% to quantify peptides from bracatinga honeydew honey. The uniqueness and high response in mass spectrometry were backed by further complementary protein analysis (SDS-PAGE). The selected marker peptides EALPHVPIFDR (MRJP 1), ILGANVK (MRJP 2), TFVTIER (MRJP 3), QNIDVVAR (MRJP 4), FINNDYNFNEVNFR (MRJP 5) and LLQPYPDWSWTK (MRJP 7), quantified by LC-QqQ-MS/MS, highlighted that the content of QNIDVVAR from MRJP 4 could be used to differentiate bracatinga honeydew honey from floral honeys (p < 0.05) as a potential marker for its authentication. Finally, principal components analysis highlighted the QNIDVVAR content as a good descriptor of the analyzed bracatinga honeydew honey samples.
Collapse
Affiliation(s)
- Bibiana Silva
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianopolis, SC, Brazil; Institute of Nutritional Science, University of Potsdam, Nuthetal OT Bergholz-Rehbrücke, Germany
| | | | - Sorel Sagu Tchewonpi
- Institute of Nutritional Science, University of Potsdam, Nuthetal OT Bergholz-Rehbrücke, Germany
| | - Josephine Bönick
- IGV - Institut für Getreideverarbeitung GmbH, Nuthetal OT Bergholz-Rehbrücke, Germany
| | - Gerd Huschek
- IGV - Institut für Getreideverarbeitung GmbH, Nuthetal OT Bergholz-Rehbrücke, Germany
| | - Luciano Valdemiro Gonzaga
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Roseane Fett
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Susanne Baldermann
- Institute of Nutritional Science, University of Potsdam, Nuthetal OT Bergholz-Rehbrücke, Germany; Leibniz Institute of Vegetable and Ornamental Crops, Grossbeeren, Germany
| | - Harshadrai M Rawel
- Institute of Nutritional Science, University of Potsdam, Nuthetal OT Bergholz-Rehbrücke, Germany.
| |
Collapse
|
8
|
Stachniuk A, Sumara A, Montowska M, Fornal E. LIQUID CHROMATOGRAPHY-MASS SPECTROMETRY BOTTOM-UP PROTEOMIC METHODS IN ANIMAL SPECIES ANALYSIS OF PROCESSED MEAT FOR FOOD AUTHENTICATION AND THE DETECTION OF ADULTERATIONS. MASS SPECTROMETRY REVIEWS 2021; 40:3-30. [PMID: 31498909 DOI: 10.1002/mas.21605] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This review offers an overview of the current status and the most recent advances in liquid chromatography-mass spectrometry (LC-MS) techniques with both high-resolution and low-resolution tandem mass analyzers applied to the identification and detection of heat-stable species-specific peptide markers of meat in highly processed food products. We present sets of myofibrillar and sarcoplasmic proteins, which turned out to be the source of 105 heat-stable peptides, detectable in processed meat using LC-MS/MS. A list of heat-stable species-specific peptides was compiled for eleven types of white and red meat including chicken, duck, goose, turkey, pork, beef, lamb, rabbit, buffalo, deer, and horse meat, which can be used as markers for meat authentication. Among the 105 peptides, 57 were verified by multiple reaction monitoring, enabling identification of each species with high specificity and selectivity. The most described and monitored species by LC-MS/MS so far are chicken and pork with 26 confirmed heat-stable peptide markers for each meat. In thermally processed samples, myosin, myoglobin, hemoglobin, l-lactase dehydrogenase A and β-enolase are the main protein sources of heat-stable markers. © 2019 John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- Anna Stachniuk
- Department of Pathophysiology, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090, Lublin, Poland
| | - Agata Sumara
- Department of Pathophysiology, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090, Lublin, Poland
| | - Magdalena Montowska
- Department of Meat Technology, Poznan University of Life Sciences, ul. Wojska Polskiego 31, 60-624, Poznan, Poland
| | - Emilia Fornal
- Department of Pathophysiology, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090, Lublin, Poland
| |
Collapse
|
9
|
Current Trends in Proteomic Advances for Food Allergen Analysis. BIOLOGY 2020; 9:biology9090247. [PMID: 32854310 PMCID: PMC7563520 DOI: 10.3390/biology9090247] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/19/2020] [Accepted: 08/22/2020] [Indexed: 12/13/2022]
Abstract
Food allergies are a global food challenge. For correct food labelling, the detection and quantification of allergens are necessary. However, novel product formulations and industrial processes produce new scenarios, which require much more technological developments. For this purpose, OMICS technologies, especially proteomics, seemed to be relevant in this context. This review summarises the current knowledge and studies that used proteomics to study food allergens. In the case of the allergenic proteins, a wide variety of isoforms, post-translational modifications and other structural changes during food processing can increase or decrease the allergenicity. Most of the plant-based food allergens are proteins with biological functions involved in storage, structure, and plant defence. The allergenicity of these proteins could be increased by the presence of heavy metals, air pollution, and pesticides. Targeted proteomics like selected/multiple reaction monitoring (SRM/MRM) have been very useful, especially in the case of gluten from wheat, rye and barley, and allergens from lentil, soy, and fruit. Conventional 1D and 2-DE immunoblotting have been further widely used. For animal-based food allergens, the widely used technologies are 1D and 2-DE immunoblotting followed by MALDI-TOF/TOF, and more recently LC-MS/MS, which is becoming useful to assess egg, fish, or milk allergens. The detection and quantification of allergenic proteins using mass spectrometry-based proteomics are promising and would contribute to greater accuracy, therefore improving consumer information.
Collapse
|
10
|
Creydt M, Fischer M. Food authentication in real life: How to link nontargeted approaches with routine analytics? Electrophoresis 2020; 41:1665-1679. [PMID: 32249434 DOI: 10.1002/elps.202000030] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/19/2020] [Accepted: 03/23/2020] [Indexed: 12/20/2022]
Abstract
In times of increasing globalization and the resulting complexity of trade flows, securing food quality is an increasing challenge. The development of analytical methods for checking the integrity and, thus, the safety of food is one of the central questions for actors from science, politics, and industry. Targeted methods, for the detection of a few selected analytes, still play the most important role in routine analysis. In the past 5 years, nontargeted methods that do not aim at individual analytes but on analyte profiles that are as comprehensive as possible have increasingly come into focus. Instead of investigating individual chemical structures, data patterns are collected, evaluated and, depending on the problem, fed into databases that can be used for further nontargeted approaches. Alternatively, individual markers can be extracted and transferred to targeted methods. Such an approach requires (i) the availability of authentic reference material, (ii) the corresponding high-resolution laboratory infrastructure, and (iii) extensive expertise in processing and storing very large amounts of data. Probably due to the requirements mentioned above, only a few methods have really established themselves in routine analysis. This review article focuses on the establishment of nontargeted methods in routine laboratories. Challenges are summarized and possible solutions are presented.
Collapse
Affiliation(s)
- Marina Creydt
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Hamburg, Germany
| | - Markus Fischer
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Hamburg, Germany
| |
Collapse
|
11
|
Sha XM, Hu ZZ, Xu H, Zhang LZ, Tu ZC. Identification and analysis of characteristic tryptic peptides from porcine gelatin extracted with multi-stage batch processing. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Tsironi T, Anjos L, Pinto PI, Dimopoulos G, Santos S, Santa C, Manadas B, Canario A, Taoukis P, Power D. High pressure processing of European sea bass (Dicentrarchus labrax) fillets and tools for flesh quality and shelf life monitoring. J FOOD ENG 2019. [DOI: 10.1016/j.jfoodeng.2019.05.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
13
|
Skouridou V, Tomaso H, Rau J, Bashammakh AS, El-Shahawi MS, Alyoubi AO, O'Sullivan CK. Duplex PCR-ELONA for the detection of pork adulteration in meat products. Food Chem 2019; 287:354-362. [PMID: 30857710 DOI: 10.1016/j.foodchem.2019.02.095] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 02/08/2019] [Accepted: 02/21/2019] [Indexed: 01/22/2023]
Abstract
In this work, a duplex PCR-Enzyme Linked Oligonucleotide Assay (ELONA) is reported for the sensitive and reliable detection of pork adulteration in beef and chicken products, two of the most widely consumed meat types in the world. The strategy relies on the use of species-specific tailed primers for duplex amplification and simple dilution of the PCR reactions for direct colorimetric detection via hybridization, eliminating the need for any other post-amplification steps. A high sensitivity was achieved, with as low as 71-188 pg of genomic DNA able to be detected using mixtures of control DNA from each species. The strategy was validated using DNA add-mixtures as well as DNA extracted from raw meat mixtures and 0.5-1% w/w pork could be easily detected when mixed with beef or chicken. The proposed approach is simple, sensitive and cost-effective compared to equivalent commercial kits suitable for detecting adulterant pork levels in meat products.
Collapse
Affiliation(s)
- Vasso Skouridou
- Interfibio, Nanobiotechnology & Bioanalysis Group, Departament d'Enginyeria Química, Universitat Rovira i Virgili, Avinguda Països Catalans 26, 43007 Tarragona, Spain.
| | - Herbert Tomaso
- Friedrich-Loeffler-Institut, Institute of Bacterial Infections and Zoonoses, Naumburger Strasse 96a, 07743 Jena, Germany
| | - Jörg Rau
- Chemical and Veterinary Investigation Office Stuttgart, Schaflandstrasse 3/2, 70736 Fellbach, Germany
| | - Abdulaziz S Bashammakh
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, 21589 Jeddah, Saudi Arabia
| | - Mohammad S El-Shahawi
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, 21589 Jeddah, Saudi Arabia
| | - Abdulrahman O Alyoubi
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, 21589 Jeddah, Saudi Arabia
| | - Ciara K O'Sullivan
- Interfibio, Nanobiotechnology & Bioanalysis Group, Departament d'Enginyeria Química, Universitat Rovira i Virgili, Avinguda Països Catalans 26, 43007 Tarragona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain.
| |
Collapse
|
14
|
Fornal E, Montowska M. Species-specific peptide-based liquid chromatography-mass spectrometry monitoring of three poultry species in processed meat products. Food Chem 2019; 283:489-498. [PMID: 30722903 DOI: 10.1016/j.foodchem.2019.01.074] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 12/28/2018] [Accepted: 01/08/2019] [Indexed: 12/23/2022]
Abstract
The detection of adulteration and mislabeling of food products, including intensively processed meat, is a challenge which needs urgent solutions to protect consumers' rights. The aim of the study was to demonstrate the feasibility of species-specific peptide-based LC-MS methods for monitoring duck, goose and chicken in processed meat products. Food commodities of various compositions, subjected to various treatments, including homogenization, cooking, roasting, drying, and sterilization during production, were examined to ensure that MS-based methods are resistant to matrix composition changes. A qualitative LC-QQQ multiple reaction monitoring (MRM) method was developed which allows high-confidence monitoring of duck, goose and chicken meat (ten specific peptides), simultaneously with beef and pork (seven peptides), in the presence of turkey meat, in highly processed food. The developed LC-MS methods can be used for food authentication, monitoring of the food composition conformity with label statements and detection of adulteration of poultry-containing food products.
Collapse
Affiliation(s)
- Emilia Fornal
- Department of Pathophysiology, Medical University of Lublin, ul Jaczewskiego 8b, 20-090 Lublin, Poland.
| | - Magdalena Montowska
- Department of Meat Technology, Poznan University of Life Sciences, ul Wojska Polskiego 31, 60-624 Poznan, Poland.
| |
Collapse
|
15
|
Afshari R, Pillidge CJ, Dias DA, Osborn AM, Gill H. Cheesomics: the future pathway to understanding cheese flavour and quality. Crit Rev Food Sci Nutr 2018; 60:33-47. [DOI: 10.1080/10408398.2018.1512471] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Roya Afshari
- School of Science, RMIT University, Bundoora, Victoria, Australia
| | | | - Daniel A. Dias
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - A. Mark Osborn
- School of Science, RMIT University, Bundoora, Victoria, Australia
| | - Harsharn Gill
- School of Science, RMIT University, Bundoora, Victoria, Australia
| |
Collapse
|
16
|
Bräcker J, Brockmeyer J. Characterization and Detection of Food Allergens Using High-Resolution Mass Spectrometry: Current Status and Future Perspective. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:8935-8940. [PMID: 30080969 DOI: 10.1021/acs.jafc.8b02265] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Allergic reactions to food are among the major food safety concerns in industrialized countries, and it is estimated that approximately 5% of the population suffers from immunoglobulin-E-mediated food allergy. High-resolution mass spectrometry has become one of the most important techniques for the molecular characterization of allergens, including structural modification, degradation in the gastrointestinal environment, or identification of suitable marker peptides for the development of novel analytical approaches, in the past decade. This perspective aims to briefly summarize the current situation and discuss future developments.
Collapse
Affiliation(s)
- Julia Bräcker
- Institute of Biochemistry and Technical Biochemistry, Department of Food Chemistry , University of Stuttgart , Allmandring 5b , 70569 Stuttgart , Germany
| | - Jens Brockmeyer
- Institute of Biochemistry and Technical Biochemistry, Department of Food Chemistry , University of Stuttgart , Allmandring 5b , 70569 Stuttgart , Germany
| |
Collapse
|
17
|
Mora L, Gallego M, Toldrá F. New approaches based on comparative proteomics for the assessment of food quality. Curr Opin Food Sci 2018. [DOI: 10.1016/j.cofs.2018.01.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
18
|
Tauler R, Parastar H. Big (Bio)Chemical Data Mining Using Chemometric Methods: A Need for Chemists. Angew Chem Int Ed Engl 2018; 61:e201801134. [DOI: 10.1002/anie.201801134] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Roma Tauler
- IDAEA-CSIC Environmental Chemistry Jordi Girona 18-26 08034 Barcelona SPAIN
| | | |
Collapse
|