1
|
Aggarwal T, Wang L, Gutierrez B, Guven H, Erguven H, Cho S, Izgu EC. A Small-Molecule Approach Enables RNA Aptamers to Function as Sensors for Reactive Inorganic Targets. Angew Chem Int Ed Engl 2025; 64:e202421936. [PMID: 39666858 PMCID: PMC11914935 DOI: 10.1002/anie.202421936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 12/14/2024]
Abstract
Fluorescent light-up aptamer (FLAP) systems are promising (bio)sensing platforms that are genetically encodable. However, FLAP-mediated detection of each distinct target necessitates either in vitro selection or engineering of nucleic acid sequences. Furthermore, an aptamer that binds an inorganic target or a chemical species with a short lifetime is challenging to realize. Here, we describe a small-molecule approach that makes it possible for a single FLAP system to detect chemically unique, non-fluorogenic, and reactive inorganics. We developed functionalized pre-ligands of RNA aptamers that bind benzylidene imidazolinones (Baby Spinach, Broccolli, Squash). Reactive inorganics, hydrogen sulfide (H2S/HS-) and hydrogen peroxide (H2O2), can specifically convert these pre-ligands into native ligands that fluoresce with FLAPs. Adaptation of this platform to live cells opened an opportunity for constructing whole-cell sensors: Escherichia coli transformed with a Baby Spinach-encoding plasmid and incubated with pre-ligands generated fluorescence in response to exogenous H2S/HS- or H2O2. Leveraging the functional group reactivity of small molecules eliminates the requirement of in vitro selection of a new aptamer sequence or oligonucleotide scaffold engineering for distinct molecular targets. Our method allows for detecting inorganic, short-lived species, thereby advancing FLAP systems beyond their current capabilities.
Collapse
Affiliation(s)
- Tushar Aggarwal
- Department of Chemistry and Chemical BiologyRutgers UniversityNew BrunswickNJ-08854USA
| | - Liming Wang
- Department of Chemistry and Chemical BiologyRutgers UniversityNew BrunswickNJ-08854USA
| | - Bryan Gutierrez
- Department of Chemistry and Chemical BiologyRutgers UniversityNew BrunswickNJ-08854USA
| | - Hakan Guven
- Department of Chemistry and Chemical BiologyRutgers UniversityNew BrunswickNJ-08854USA
| | - Huseyin Erguven
- Department of Chemistry and Chemical BiologyRutgers UniversityNew BrunswickNJ-08854USA
| | - Sarah Cho
- Department of Chemistry and Chemical BiologyRutgers UniversityNew BrunswickNJ-08854USA
| | - Enver Cagri Izgu
- Department of Chemistry and Chemical BiologyRutgers UniversityNew BrunswickNJ-08854USA
- Cancer Institute of New JerseyRutgers UniversityNew BrunswickNJ-08901USA
- Rutgers Center for Lipid ResearchNew Jersey Institute for FoodNutritionand HealthRutgers UniversityNew BrunswickNJ-08901USA
| |
Collapse
|
2
|
Ansari MA, Verma D, Hamizan MA, Mukherjee MD, Mohd-Naim NF, Ahmed MU. Trends in Aptasensing and the Enhancement of Diagnostic Efficiency and Accuracy. ACS Synth Biol 2025; 14:21-40. [PMID: 39761351 DOI: 10.1021/acssynbio.4c00591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
The field of healthcare diagnostics is navigating complex challenges driven by evolving patient demographics and the rapid advancement of new technologies worldwide. In response to these challenges, these biosensors offer distinctive advantages over traditional diagnostic methods, such as cost-effectiveness, enhanced specificity, and adaptability, making their integration with point-of-care (POC) platforms more feasible. In recent years, aptasensors have significantly evolved in diagnostic capabilities through the integration of emerging technologies such as microfluidics, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) systems, wearable devices, and machine learning (ML), driving progress in precision medicine and global healthcare solutions. Moreover, these advancements not only improve diagnostic accuracy but also hold the potential to revolutionize early detection, reduce healthcare costs, and improve patient outcomes, especially in resource-limited settings. This Account examines key advancements, focusing on how scientific breakthroughs, including artificial intelligence (AI), have improved sensitivity and precision. Additionally, the integration of aptasensors with these technologies has enabled real-time monitoring and data analysis, fostering advances in personalized healthcare. Furthermore, the potential commercialization of aptasensor technologies could increase their availability in clinical settings and support their use as widespread solutions for global health challenges. Hence, this review discusses technological improvements, practical uses, and prospects while also focusing on the challenges surrounding standardization, clinical validation, and interdisciplinary collaboration for widespread application. Finally, ongoing efforts to address these challenges are key to ensure that aptasensors can be effectively implemented in diverse healthcare systems.
Collapse
Affiliation(s)
- Mohd Afaque Ansari
- Biosensors and Nanobiotechnology Laboratory, Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE 1410, Brunei Darussalam
| | - Damini Verma
- Centre For Nanotechnology, Indian Institute of Technology, Roorkee, Uttarakhand 247667, India
| | - Mohd-Akmal Hamizan
- PAPRSB Institute of Health Science, Universiti Brunei Darussalam, Gadong, BE 1410, Brunei Darussalam
| | - Maumita Das Mukherjee
- Amity Institute of Applied Sciences, Amity University, Noida 201301, Uttar Pradesh, India
| | - Noor Faizah Mohd-Naim
- PAPRSB Institute of Health Science, Universiti Brunei Darussalam, Gadong, BE 1410, Brunei Darussalam
| | - Minhaz Uddin Ahmed
- Biosensors and Nanobiotechnology Laboratory, Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE 1410, Brunei Darussalam
| |
Collapse
|
3
|
Costanzo H, den Hartog M, Gooch J, Frascione N. Towards the Development of an Optical Biosensor for the Detection of Human Blood for Forensic Analysis. SENSORS (BASEL, SWITZERLAND) 2024; 24:7081. [PMID: 39517977 PMCID: PMC11548090 DOI: 10.3390/s24217081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/28/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Blood is a common biological fluid in forensic investigations, offering significant evidential value. Currently employed presumptive blood tests often lack specificity and are sample destructive, which can compromise downstream analysis. Within this study, the development of an optical biosensor for detecting human red blood cells (RBCs) has been explored to address such limitations. Aptamer-based biosensors, termed aptasensors, offer a promising alternative due to their high specificity and affinity for target analytes. Aptamers are short, single-stranded DNA or RNA sequences that form stable three-dimensional structures, allowing them to bind to specific targets selectively. A nanoflare design has been employed within this work, consisting of a quenching gold nanoparticle (AuNP), DNA aptamer sequences, and complementary fluorophore-labelled flares operating through a fluorescence resonance energy transfer (FRET) mechanism. In the presence of RBCs, the aptamer-flare complex is disrupted, restoring fluorescence and indicating the presence of blood. Two aptamers, N1 and BB1, with a demonstrated binding affinity to RBCs, were selected for inclusion within the nanoflare. This study aimed to optimise three features of the design: aptamer conjugation to AuNPs, aptamer hybridisation to complementary flares, and flare displacement in the presence of RBCs. Fluorescence restoration was achieved with both the N1 and BB1 nanoflares, demonstrating the potential for a functional biosensor to be utilised within the forensic workflow. It is hoped that introducing such an aptasensor could enhance the forensic workflow. This aptasensor could replace current tests with a specific and sensitive reagent that can be used for real-time detection, improving the standard of forensic blood analysis.
Collapse
Affiliation(s)
| | | | | | - Nunzianda Frascione
- Department of Analytical, Environmental & Forensic Sciences, King’s College London, London SE1 9NH, UK; (H.C.); (M.d.H.); (J.G.)
| |
Collapse
|
4
|
Tungsirisurp S, Frascione N. Enhancing Target Detection: A Fluorescence-Based Streptavidin-Bead Displacement Assay. BIOSENSORS 2024; 14:509. [PMID: 39451722 DOI: 10.3390/bios14100509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024]
Abstract
Fluorescence-based aptasensors have been regarded as innovative analytical tools for the detection and quantification of analytes in many fields, including medicine and therapeutics. Using DNA aptamers as the biosensor recognition component, conventional molecular beacon aptasensor designs utilise target-induced structural switches of the DNA aptamers to generate a measurable fluorescent signal. However, not all DNA aptamers undergo sufficient target-specific conformational changes for significant fluorescence measurements. Here, the use of complementary 'antisense' strands is proposed to enable fluorescence measurement through strand displacement upon target binding. Using a published target-specific DNA aptamer against the receptor binding domain of SARS-CoV-2, we designed a streptavidin-aptamer bead complex as a fluorescence displacement assay for target detection. The developed assay demonstrates a linear range from 50 to 800 nanomolar (nM) with a limit of detection calculated at 67.5 nM and a limit of quantification calculated at 204.5 nM. This provides a 'fit-for-purpose' model assay for the detection and quantification of any target of interest by adapting and functionalising a suitable target-specific DNA aptamer and its complementary antisense strand.
Collapse
Affiliation(s)
- Sireethorn Tungsirisurp
- Department of Analytical, Environmental & Forensic Sciences, Faculty of Life Sciences & Medicine, King's College London, London SE1 9NH, UK
| | - Nunzianda Frascione
- Department of Analytical, Environmental & Forensic Sciences, Faculty of Life Sciences & Medicine, King's College London, London SE1 9NH, UK
| |
Collapse
|
5
|
Costanzo H, Gooch J, Tungsirisurp S, Frascione N. The Development and Characterisation of ssDNA Aptamers via a Modified Cell-SELEX Methodology for the Detection of Human Red Blood Cells. Int J Mol Sci 2024; 25:1814. [PMID: 38339091 PMCID: PMC10855528 DOI: 10.3390/ijms25031814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/25/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Blood is one of the most commonly found biological fluids at crime scenes, with the detection and identification of blood holding a high degree of evidential value. It can provide not only information about the nature of the crime but can also lead to identification via DNA profiling. Presumptive tests for blood are usually sensitive but not specific, so small amounts of the substrate can be detected, but false-positive results are often encountered, which can be misleading. Novel methods for the detection of red blood cells based on aptamer-target interactions may be able to overcome these issues. Aptamers are single-stranded DNA or RNA sequences capable of undergoing selective antigen association due to three-dimensional structure formation. The use of aptamers as a target-specific moiety poses several advantages and has the potential to replace antibodies within immunoassays. Aptamers are cheaper to produce, display no batch-to-batch variation and can allow for a wide range of chemical modifications. They can help limit cross-reactivity, which is a hindrance to current forensic testing methods. Within this study, a modified Systematic Evolution of Ligands by Exponential Enrichment (SELEX) process was used to generate aptamers against whole red blood cells. Obtained aptamer pools were analysed via massively parallel sequencing to identify viable sequences that demonstrate a high affinity for the target. Using bioinformatics platforms, aptamer candidates were identified via their enrichment profiles. Binding characterisation was also conducted on two selected aptamer candidates via fluorescent microscopy and qPCR to visualise and quantify aptamer binding. The potential for these aptamers is broad as they can be utilised within a range of bioassays for not only forensic applications but also other analytical science and medical applications. Potential future work includes the incorporation of developed aptamers into a biosensing platform that can be used at crime scenes for the real-time detection of human blood.
Collapse
Affiliation(s)
| | | | | | - Nunzianda Frascione
- Department of Analytical, Environmental & Forensic Sciences, Faculty of Life Sciences & Medicine, King’s College London, London SE1 9NH, UK; (H.C.); (J.G.); (S.T.)
| |
Collapse
|
6
|
Aggarwal T, Wang L, Gutierrez B, Guven H, Erguven H, Izgu EC. A Small-Molecule Approach to Bypass In Vitro Selection of New Aptamers: Designer Pre-Ligands Turn Baby Spinach into Sensors for Reactive Inorganic Targets. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.29.551132. [PMID: 38168427 PMCID: PMC10760011 DOI: 10.1101/2023.07.29.551132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Fluorescent light-up aptamer (FLAP) systems are promising biosensing platforms that can be genetically encoded. Here, we describe how a single FLAP that works with specific organic ligands can detect multiple, structurally unique, non-fluorogenic, and reactive inorganic targets. We developed 4-O-functionalized benzylidene imidazolinones as pre-ligands with suppressed fluorescent binding interactions with the RNA aptamer Baby Spinach. Inorganic targets, hydrogen sulfide (H2S) or hydrogen peroxide (H2O2), can specifically convert these pre-ligands into the native benzylidene imidazolinones, and thus be detected with Baby Spinach. Adaptation of this approach to live cells opened a new opportunity for top-down construction of whole-cell sensors: Escherichia coli transformed with a Baby Spinach-encoding plasmid and incubated with pre-ligands generated fluorescence in response to exogenous H2S or H2O2. Our approach eliminates the requirement of in vitro selection of a new aptamer sequence for molecular target detection, allows for the detection of short-lived targets, thereby advancing FLAP systems beyond their current capabilities. Leveraging the functional group reactivity of small molecules can lead to cell-based sensors for inorganic molecular targets, exploiting a new synergism between synthetic organic chemistry and synthetic biology.
Collapse
Affiliation(s)
- Tushar Aggarwal
- Department of Chemistry and Chemical Biology, Rutgers University, New Brunswick, NJ 08854, USA
| | - Liming Wang
- Department of Chemistry and Chemical Biology, Rutgers University, New Brunswick, NJ 08854, USA
| | - Bryan Gutierrez
- Department of Chemistry and Chemical Biology, Rutgers University, New Brunswick, NJ 08854, USA
| | - Hakan Guven
- Department of Chemistry and Chemical Biology, Rutgers University, New Brunswick, NJ 08854, USA
| | - Huseyin Erguven
- Department of Chemistry and Chemical Biology, Rutgers University, New Brunswick, NJ 08854, USA
| | - Enver Cagri Izgu
- Department of Chemistry and Chemical Biology, Rutgers University, New Brunswick, NJ 08854, USA
- Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ 08901, USA
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ 08901, USA
| |
Collapse
|
7
|
Mir TUG, Wani AK, Akhtar N, Katoch V, Shukla S, Kadam US, Hong JC. Advancing biological investigations using portable sensors for detection of sensitive samples. Heliyon 2023; 9:e22679. [PMID: 38089995 PMCID: PMC10711145 DOI: 10.1016/j.heliyon.2023.e22679] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/29/2023] [Accepted: 11/16/2023] [Indexed: 01/14/2024] Open
Abstract
Portable biosensors are emerged as powerful diagnostic tools for analyzing intricately complex biological samples. These biosensors offer sensitive detection capabilities by utilizing biomolecules such as proteins, nucleic acids, microbes or microbial products, antibodies, and enzymes. Their speed, accuracy, stability, specificity, and low cost make them indispensable in forensic investigations and criminal cases. Notably, portable biosensors have been developed to rapidly detect toxins, poisons, body fluids, and explosives; they have proven invaluable in forensic examinations of suspected samples, generating efficient results that enable effective and fair trials. One of the key advantages of portable biosensors is their ability to provide sensitive and non-destructive detection of forensic samples without requiring extensive sample preparation, thereby reducing the possibility of false results. This comprehensive review provides an overview of the current advancements in portable biosensors for the detection of sensitive materials, highlighting their significance in advancing investigations and enhancing sensitive sample detection capabilities.
Collapse
Affiliation(s)
- Tahir ul Gani Mir
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
- State Forensic Science Laboratory, Srinagar, Jammu and Kashmir, 190001, India
| | - Atif Khurshid Wani
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Nahid Akhtar
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Vaidehi Katoch
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Saurabh Shukla
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Ulhas Sopanrao Kadam
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, South Korea
| | - Jong Chan Hong
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, South Korea
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
8
|
Tungsirisurp S, O'Reilly R, Napier R. Nucleic acid aptamers as aptasensors for plant biology. TRENDS IN PLANT SCIENCE 2023; 28:359-371. [PMID: 36357246 DOI: 10.1016/j.tplants.2022.10.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 09/23/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Our knowledge of cell- and tissue-specific quantification of phytohormones is heavily reliant on laborious mass spectrometry techniques. Genetically encoded biosensors have allowed spatial and some temporal quantification of phytohormones intracellularly, but there is still limited information on their intercellular distributions. Here, we review nucleic acid aptamers as an emerging biosensing platform for the detection and quantification of analytes with high affinity and specificity. Options for DNA aptamer technology are explained through selection, sequencing analysis and techniques for evaluating affinity and specificity, and we focus on previously developed DNA aptamers against various plant analytes. We suggest how these tools might be applied in planta for quantification of molecules of interest both intracellularly and intercellularly.
Collapse
Affiliation(s)
| | - Rachel O'Reilly
- School of Chemistry, University of Birmingham, Birmingham B15 2TT, UK
| | - Richard Napier
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|
9
|
Futane A, Narayanamurthy V, Jadhav P, Srinivasan A. Aptamer-based rapid diagnosis for point-of-care application. MICROFLUIDICS AND NANOFLUIDICS 2023; 27:15. [PMID: 36688097 PMCID: PMC9847464 DOI: 10.1007/s10404-022-02622-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/31/2022] [Indexed: 05/31/2023]
Abstract
Aptasensors have attracted considerable interest and widespread application in point-of-care testing worldwide. One of the biggest challenges of a point-of-care (POC) is the reduction of treatment time compared to central facilities that diagnose and monitor the applications. Over the past decades, biosensors have been introduced that offer more reliable, cost-effective, and accurate detection methods. Aptamer-based biosensors have unprecedented advantages over biosensors that use natural receptors such as antibodies and enzymes. In the current epidemic, point-of-care testing (POCT) is advantageous because it is easy to use, more accessible, faster to detect, and has high accuracy and sensitivity, reducing the burden of testing on healthcare systems. POCT is beneficial for daily epidemic control as well as early detection and treatment. This review provides detailed information on the various design strategies and virus detection methods using aptamer-based sensors. In addition, we discussed the importance of different aptamers and their detection principles. Aptasensors with higher sensitivity, specificity, and flexibility are critically discussed to establish simple, cost-effective, and rapid detection methods. POC-based aptasensors' diagnostic applications are classified and summarised based on infectious and infectious diseases. Finally, the design factors to be considered are outlined to meet the future of rapid POC-based sensors.
Collapse
Affiliation(s)
- Abhishek Futane
- Fakulti Kejuruteraan Elektronik Dan Kejuruteraan Komputer, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, Durian Tunggal, 76100 Melaka, Malaysia
| | - Vigneswaran Narayanamurthy
- Advance Sensors and Embedded Systems (ASECs), Centre for Telecommunication Research and Innovation, Fakulti Teknologi Kejuruteraan Elektrik Dan Elektronik, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, Durian Tunggal, 76100 Melaka, Malaysia
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Pramod Jadhav
- Faculty of Civil Engineering Technology, Universiti Malaysia Pahang (UMP) Lebuhraya Tun Razak, Gambang, 26300 Kuantan, Pahang Malaysia
- InnoFuTech, No 42/12, 7Th Street, Vallalar Nagar, Chennai, Tamil Nadu 600072 India
| | - Arthi Srinivasan
- Faculty of Chemical and Process Engineering Technology, University Malaysia Pahang (UMP), Lebuhraya Tun Razak, Gambang, 26300 Kunatan, Pahang Malaysia
| |
Collapse
|
10
|
Eksin E, Senturk H, Erdem A. Aptasensor for Impedimetric Detection of Lysozyme. Methods Mol Biol 2023; 2570:197-204. [PMID: 36156784 DOI: 10.1007/978-1-0716-2695-5_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The impedimetric detection of a protein, lysozyme (LYS), was carried out herein by aptamer-immobilized single-use pencil graphite electrodes (PGEs). The aptamer was immobilized onto electrochemically activated surface of electrode without using any chemical agents, or any types of nanomaterials. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) techniques were applied to analyze the electrochemical behavior of unmodified PGE and aptamer immobilized PGE. The interaction of aptamer with its target protein, LYS, was then investigated by EIS. The limit of detection for LYS was found to be 1.44 μg/mL (equals to 100.65 nM). The developed aptasensor specific to LYS presented high selectivity against to bovine serum albumin and thrombin.
Collapse
Affiliation(s)
- Ece Eksin
- Faculty of Pharmacy, Analytical Chemistry Department, Ege University, Bornova, Izmir, Turkey
| | - Huseyin Senturk
- Faculty of Pharmacy, Analytical Chemistry Department, Ege University, Bornova, Izmir, Turkey
| | - Arzum Erdem
- Faculty of Pharmacy, Analytical Chemistry Department, Ege University, Bornova, Izmir, Turkey.
| |
Collapse
|
11
|
Preparation and Validation of Ultra-sensitive Aptamers by Computer Simulation and Site-Specific Mutation. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02396-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
12
|
Tang T, Liu Y, Jiang Y. Recent Progress on Highly Selective and Sensitive Electrochemical Aptamer-based Sensors. Chem Res Chin Univ 2022; 38:866-878. [PMID: 35530120 PMCID: PMC9069955 DOI: 10.1007/s40242-022-2084-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/10/2022] [Indexed: 12/31/2022]
Abstract
Highly selective, sensitive, and stable biosensors are essential for the molecular level understanding of many physiological activities and diseases. Electrochemical aptamer-based (E-AB) sensor is an appealing platform for measurement in biological system, attributing to the combined advantages of high selectivity of the aptamer and high sensitivity of electrochemical analysis. This review summarizes the latest development of E-AB sensors, focuses on the modification strategies used in the fabrication of sensors and the sensing strategies for analytes of different sizes in biological system, and then looks forward to the challenges and prospects of the future development of electrochemical aptamer-based sensors.
Collapse
Affiliation(s)
- Tianwei Tang
- College of Chemistry, Beijing Normal University, Beijing, 100875 P. R. China
| | - Yinghuan Liu
- College of Chemistry, Beijing Normal University, Beijing, 100875 P. R. China
| | - Ying Jiang
- College of Chemistry, Beijing Normal University, Beijing, 100875 P. R. China
- Beijing National Laboratory for Molecular Sciences, Beijing, 100190 P. R. China
| |
Collapse
|
13
|
Unlocking the potential of forensic traces: Analytical approaches to generate investigative leads. Sci Justice 2022; 62:310-326. [PMID: 35598924 DOI: 10.1016/j.scijus.2022.03.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 03/17/2022] [Accepted: 03/19/2022] [Indexed: 11/21/2022]
Abstract
Forensic investigation involves gathering the information necessary to understand the criminal events as well as linking objects or individuals to an item, location or other individual(s) for investigative purposes. For years techniques such as presumptive chemical tests, DNA profiling or fingermark analysis have been of great value to this process. However, these techniques have their limitations, whether it is a lack of confidence in the results obtained due to cross-reactivity, subjectivity and low sensitivity; or because they are dependent on holding reference samples in a pre-existing database. There is currently a need to devise new ways to gather as much information as possible from a single trace, particularly from biological traces commonly encountered in forensic casework. This review outlines the most recent advancements in the forensic analysis of biological fluids, fingermarks and hair. Special emphasis is placed on analytical methods that can expand the information obtained from the trace beyond what is achieved in the usual practices. Special attention is paid to those methods that accurately determine the nature of the sample, as well as how long it has been at the crime scene, along with individualising information regarding the donor source of the trace.
Collapse
|
14
|
|
15
|
Designing of Nanomaterials-Based Enzymatic Biosensors: Synthesis, Properties, and Applications. ELECTROCHEM 2021. [DOI: 10.3390/electrochem2010012] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Among the many biological entities employed in the development of biosensors, enzymes have attracted the most attention. Nanotechnology has been fostering excellent prospects in the development of enzymatic biosensors, since enzyme immobilization onto conductive nanostructures can improve characteristics that are crucial in biosensor transduction, such as surface-to-volume ratio, signal response, selectivity, sensitivity, conductivity, and biocatalytic activity, among others. These and other advantages of nanomaterial-based enzymatic biosensors are discussed in this work via the compilation of several reports on their applications in different industrial segments. To provide detailed insights into the state of the art of this technology, all the relevant concepts around the topic are discussed, including the properties of enzymes, the mechanisms involved in their immobilization, and the application of different enzyme-derived biosensors and nanomaterials. Finally, there is a discussion around the pressing challenges in this technology, which will be useful for guiding the development of future research in the area.
Collapse
|
16
|
Trends in Gunshot Residue Detection by Electrochemical Methods for Forensic Purpose. JOURNAL OF ANALYSIS AND TESTING 2021. [DOI: 10.1007/s41664-020-00152-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
17
|
Bor G, Man E, Ugurlu O, Ceylan AE, Balaban S, Durmus C, Pinar Gumus Z, Evran S, Timur S. in vitro
Selection of Aptamer for Imidacloprid Recognition as Model Analyte and Construction of a Water Analysis Platform. ELECTROANAL 2020. [DOI: 10.1002/elan.202000075] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Gulsah Bor
- Department of Biochemistry Faculty of Science Ege University 35100 Izmir Turkey
| | - Ezgi Man
- Department of Biochemistry Faculty of Science Ege University 35100 Izmir Turkey
| | - Ozge Ugurlu
- Department of Biochemistry Faculty of Science Ege University 35100 Izmir Turkey
| | - Ayse Elcin Ceylan
- Department of Biochemistry Faculty of Science Ege University 35100 Izmir Turkey
| | - Simge Balaban
- Department of Biochemistry Faculty of Science Ege University 35100 Izmir Turkey
| | - Ceren Durmus
- Department of Biochemistry Faculty of Science Ege University 35100 Izmir Turkey
| | - Z. Pinar Gumus
- Central Research Test and Analysis Laboratory Application and Research Center Ege University 35100 Izmir Turkey
| | - Serap Evran
- Department of Biochemistry Faculty of Science Ege University 35100 Izmir Turkey
| | - Suna Timur
- Department of Biochemistry Faculty of Science Ege University 35100 Izmir Turkey
- Central Research Test and Analysis Laboratory Application and Research Center Ege University 35100 Izmir Turkey
| |
Collapse
|
18
|
Rabiee N, Ahmadi S, Arab Z, Bagherzadeh M, Safarkhani M, Nasseri B, Rabiee M, Tahriri M, Webster TJ, Tayebi L. Aptamer Hybrid Nanocomplexes as Targeting Components for Antibiotic/Gene Delivery Systems and Diagnostics: A Review. Int J Nanomedicine 2020; 15:4237-4256. [PMID: 32606675 PMCID: PMC7314593 DOI: 10.2147/ijn.s248736] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 04/01/2020] [Indexed: 12/11/2022] Open
Abstract
With the passage of time and more advanced societies, there is a greater emergence and incidence of disease and necessity for improved treatments. In this respect, nowadays, aptamers, with their better efficiency at diagnosing and treating diseases than antibodies, are at the center of attention. Here, in this review, we first investigate aptamer function in various fields (such as the detection and remedy of pathogens, modification of nanoparticles, antibiotic delivery and gene delivery). Then, we present aptamer-conjugated nanocomplexes as the main and efficient factor in gene delivery. Finally, we focus on the targeted co-delivery of genes and drugs by nanocomplexes, as a new exciting approach for cancer treatment in the decades ahead to meet our growing societal needs.
Collapse
Affiliation(s)
- Navid Rabiee
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Sepideh Ahmadi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeynab Arab
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | | | - Moein Safarkhani
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Behzad Nasseri
- Chemical Engineering Department and Bioengineering Division, Hacettepe University, Beytepe, Ankara06800, Turkey
- Chemical Engineering and Applied Chemistry Department, Atilim University, Ankara, Turkey
| | - Mohammad Rabiee
- Biomaterial Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | | | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA02115, USA
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI53233, USA
| |
Collapse
|
19
|
Satoh T, Kouroki S, Kitamura Y, Ihara T, Matsumura K, Iwase S. Detection of prostate-specific antigen in semen using DNA aptamers: an application of nucleic acid aptamers in forensic body fluid identification. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:2703-2709. [PMID: 32930301 DOI: 10.1039/d0ay00371a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In forensics, body fluid identification plays an important role because it aids in reconstructing a crime scene. Therefore, it is essential to develop simple and reliable techniques for body fluid identification. Nucleic acid aptamers are useful tools in analytical chemistry that can be used to improve conventional forensic analytical techniques. They have numerous advantages over antibodies including their low cost, long shelf life, and applicability for chemical modification and PCR amplification. A DNA aptamer against a human prostate-specific antigen (PSA), which is a well-known protein marker for semen identification in forensics, has been reported previously. In this study, as a proof-of-concept for nucleic acid aptamer-based identification of body fluids, we developed a technique of aptamer-based PSA assays for semen identification that employed enzyme-linked oligonucleotide assay (ELONA) and real-time PCR. We evaluated their sensitivity and specificity for semen compared with those for blood, saliva, urine, sweat, and vaginal secretion. The assays have equivalent procedures compared to enzyme-linked immunosorbent assay; their results were consistent with those produced by the conventional immunochromatographic assay. The minimum volume of semen required for detection was 62.5 nL in ELONA and 5 nL in real-time PCR, making this assay applicable for semen detection in actual criminal investigation. Aptamers can be a cost-effective and versatile tool for forensic body fluid identification.
Collapse
Affiliation(s)
- Tetsuya Satoh
- Forensic Science Laboratory, Kumamoto Prefectural Police Headquarters, 6-18-1 Suizenji, Chuo-ku, Kumamoto 862-8610, Japan
| | - Seiya Kouroki
- Forensic Science Laboratory, Kumamoto Prefectural Police Headquarters, 6-18-1 Suizenji, Chuo-ku, Kumamoto 862-8610, Japan
| | - Yusuke Kitamura
- Division of Materials Science and Chemistry, Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Toshihiro Ihara
- Division of Materials Science and Chemistry, Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Kazutoshi Matsumura
- Forensic Science Laboratory, Kumamoto Prefectural Police Headquarters, 6-18-1 Suizenji, Chuo-ku, Kumamoto 862-8610, Japan
| | - Susumu Iwase
- Forensic Science Laboratory, Kumamoto Prefectural Police Headquarters, 6-18-1 Suizenji, Chuo-ku, Kumamoto 862-8610, Japan
| |
Collapse
|
20
|
The Growing Interest in Development of Innovative Optical Aptasensors for the Detection of Antimicrobial Residues in Food Products. BIOSENSORS-BASEL 2020; 10:bios10030021. [PMID: 32138274 PMCID: PMC7146278 DOI: 10.3390/bios10030021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/20/2020] [Accepted: 02/24/2020] [Indexed: 12/26/2022]
Abstract
The presence of antimicrobial residues in food-producing animals can lead to harmful effects on the consumer (e.g., allergies, antimicrobial resistance, toxicological effects) and cause issues in food transformation (i.e., cheese, yogurts production). Therefore, to control antimicrobial residues in food products of animal origin, screening methods are of utmost importance. Microbiological and immunological methods (e.g., ELISA, dipsticks) are conventional screening methods. Biosensors are an innovative solution for the development of more performant screening methods. Among the different kinds of biosensing elements (e.g., antibodies, aptamers, molecularly imprinted polymers (MIP), enzymes), aptamers for targeting antimicrobial residues are in continuous development since 2000. Therefore, this review has highlighted recent advances in the development of aptasensors, which present multiple advantages over immunosensors. Most of the aptasensors described in the literature for the detection of antimicrobial residues in animal-derived food products are either optical or electrochemical sensors. In this review, I have focused on optical aptasensors and showed how nanotechnologies (nanomaterials, micro/nanofluidics, and signal amplification techniques) largely contribute to the improvement of their performance (sensitivity, specificity, miniaturization, portability). Finally, I have explored different techniques to develop multiplex screening methods. Multiplex screening methods are necessary for the wide spectrum detection of antimicrobials authorized for animal treatment (i.e., having maximum residue limits).
Collapse
|
21
|
Yáñez-Sedeño P, Agüí L, Campuzano S, Pingarrón JM. What Electrochemical Biosensors Can Do for Forensic Science? Unique Features and Applications. BIOSENSORS-BASEL 2019; 9:bios9040127. [PMID: 31671772 PMCID: PMC6956127 DOI: 10.3390/bios9040127] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/23/2019] [Accepted: 10/25/2019] [Indexed: 12/20/2022]
Abstract
This article critically discusses the latest advances in the use of voltammetric, amperometric, potentiometric, and impedimetric biosensors for forensic analysis. Highlighted examples that show the advantages of these tools to develop methods capable of detecting very small concentrations of analytes and provide selective determinations through analytical responses, without significant interferences from other components of the samples, are presented and discussed, thus stressing the great versatility and utility of electrochemical biosensors in this growing research field. To illustrate this, the determination of substances with forensic relevance by using electrochemical biosensors reported in the last five years (2015–2019) are reviewed. The different configurations of enzyme or affinity biosensors used to solve analytical problems related to forensic practice, with special attention to applications in complex samples, are considered. Main prospects, challenges to focus, such as the fabrication of devices for rapid analysis of target analytes directly on-site at the crime scene, or their widespread use and successful applications to complex samples of interest in forensic analysis, and future efforts, are also briefly discussed.
Collapse
Affiliation(s)
- Paloma Yáñez-Sedeño
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| | - Lourdes Agüí
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| | - Susana Campuzano
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| | - José Manuel Pingarrón
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| |
Collapse
|
22
|
Celikbas E, Balaban S, Evran S, Coskunol H, Timur S. A Bottom-Up Approach for Developing Aptasensors for Abused Drugs: Biosensors in Forensics. BIOSENSORS 2019; 9:E118. [PMID: 31581533 PMCID: PMC6955935 DOI: 10.3390/bios9040118] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 09/27/2019] [Accepted: 09/30/2019] [Indexed: 02/07/2023]
Abstract
Aptamer-based point-of-care (POC) diagnostics platforms may be of substantial benefit in forensic analysis as they provide rapid, sensitive, user-friendly, and selective analysis tools for detection. Aptasensors have not yet been adapted commercially. However, the significance of the applications of aptasensors in the literature exceeded their potential. Herein, in this review, a bottom-up approach is followed to describe the aptasensor development and application procedure, starting from the synthesis of the corresponding aptamer sequence for the selected analyte to creating a smart surface for the sensitive detection of the molecule of interest. Optical and electrochemical biosensing platforms, which are designed with aptamers as recognition molecules, detecting abused drugs are critically reviewed, and existing and possible applications of different designs are discussed. Several potential disciplines in which aptamer-based biosensing technology can be of greatest value, including forensic drug analysis and biological evidence, are then highlighted to encourage researchers to focus on developing aptasensors in these specific areas.
Collapse
Affiliation(s)
- Eda Celikbas
- Department of Biochemistry, Institute of Natural and Applied Sciences, Ege University, 35100 Bornova, Izmir, Turkey;
| | - Simge Balaban
- Department of Biochemistry, Institute of Natural and Applied Sciences, Ege University, 35100 Bornova, Izmir, Turkey;
| | - Serap Evran
- Department of Biochemistry, Institute of Natural and Applied Sciences, Ege University, 35100 Bornova, Izmir, Turkey;
- Department of Biochemistry, Faculty of Science, Ege University, 35100 Bornova, Izmir, Turkey
| | - Hakan Coskunol
- Department of Mental Health and Diseases, Faculty of Medicine, Ege University, 35100 Bornova, Izmir, Turkey;
| | - Suna Timur
- Department of Biochemistry, Institute of Natural and Applied Sciences, Ege University, 35100 Bornova, Izmir, Turkey;
- Department of Biochemistry, Faculty of Science, Ege University, 35100 Bornova, Izmir, Turkey
- Central Research Testing and Analysis Laboratory Research and Application Center, Ege University, 35100 Bornova, Izmir, Turkey
| |
Collapse
|
23
|
Florea A, Cowen T, Piletsky S, De Wael K. Electrochemical sensing of cocaine in real samples based on electrodeposited biomimetic affinity ligands. Analyst 2019; 144:4639-4646. [PMID: 31250860 DOI: 10.1039/c9an00618d] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A selective electrochemical sensor for direct detection of cocaine was developed based on molecularly imprinted polymers electropolymerized onto graphene-modified electrodes. Palladium nanoparticles were integrated in the sensing layer for the benefit of enhancing the communication between the imprinted sites and the electrode and improving their homogeneous distribution. The molecularly imprinted polymer was synthesized by cyclic voltammetry using p-aminobenzoic acid as a high affinity monomer selected by computational modeling, and cocaine as a template molecule. Experimental parameters related to the electrochemical deposition of palladium nanoparticles, pH, composition of the electropolymerization mixture, extraction and rebinding conditions were studied and optimized. Under optimized conditions, the oxidation peak current varied linearly with cocaine concentration in the range of 100-500 μM, with a detection limit of 50 μM (RSD 0.71%, n = 3). The molecularly imprinted sensor was able to detect cocaine in saliva and river water with good recoveries after sample pretreatment and was successfully applied for screening real street samples for cocaine.
Collapse
Affiliation(s)
- Anca Florea
- University of Antwerp, Department of Chemistry, Groenenborgerlaan 171, B-2020, Belgium.
| | - Todd Cowen
- University of Leicester, Department of Chemistry, LE1 7RH, UK
| | - Sergey Piletsky
- University of Leicester, Department of Chemistry, LE1 7RH, UK
| | - Karolien De Wael
- University of Antwerp, Department of Chemistry, Groenenborgerlaan 171, B-2020, Belgium.
| |
Collapse
|
24
|
Mistek E, Fikiet MA, Khandasammy SR, Lednev IK. Toward Locard's Exchange Principle: Recent Developments in Forensic Trace Evidence Analysis. Anal Chem 2018; 91:637-654. [PMID: 30404441 DOI: 10.1021/acs.analchem.8b04704] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ewelina Mistek
- Department of Chemistry , University at Albany, SUNY , 1400 Washington Avenue , Albany , New York 12222 , United States
| | - Marisia A Fikiet
- Department of Chemistry , University at Albany, SUNY , 1400 Washington Avenue , Albany , New York 12222 , United States
| | - Shelby R Khandasammy
- Department of Chemistry , University at Albany, SUNY , 1400 Washington Avenue , Albany , New York 12222 , United States
| | - Igor K Lednev
- Department of Chemistry , University at Albany, SUNY , 1400 Washington Avenue , Albany , New York 12222 , United States
| |
Collapse
|
25
|
Samokhvalov AV, Safenkova IV, Zherdev AV, Dzantiev BB. The registration of aptamer-ligand (ochratoxin A) interactions based on ligand fluorescence changes. Biochem Biophys Res Commun 2018; 505:536-541. [PMID: 30269817 DOI: 10.1016/j.bbrc.2018.09.109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 09/17/2018] [Indexed: 12/12/2022]
Abstract
The fluorescent properties of ligands can change when they bind to specific receptors. Modulated by the transition of the ligand from the free to the bound state, fluorescence makes it possible both to detect this ligand and quantitatively register its binding. We characterized the interaction of ochratoxin A (OTA) with the specific G-quadruplex aptamer through excitation-emission matrix fluorescence spectroscopy. It was shown that the formation of the complex changes the OTA fluorescence spectrum both in the region of the main peak at λex/λem 380/430 nm and in the region of peak at λex/λem 265/425 nm. At pH 8.5 and OTA concentration of 30 nM, this peak is smaller in intensity than the main peak of fluorescence. The formation of the complex with the aptamer leads to an increase of the fluorescence at λex/λem 265/425 nm up to 6.5 times, which makes it up to 4.9 times more intense than fluorescence at 380/430 nm. Fluorescence of the G-quadruplex aptamer (donor) takes part in increasing of the OTA (acceptor) emission at λex/λem 265/425 nm due to the resonance energy transfer. The concentration regularities of the modulated fluorescence of OTA at λex/λem 265/425 nm have been studied. Their correspondence to the calculations of complexation conducted on the basis of the dissociation constant is shown.
Collapse
Affiliation(s)
- Alexey V Samokhvalov
- A.N. Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071, Moscow, Russia
| | - Irina V Safenkova
- A.N. Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071, Moscow, Russia
| | - Anatoly V Zherdev
- A.N. Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071, Moscow, Russia
| | - Boris B Dzantiev
- A.N. Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071, Moscow, Russia.
| |
Collapse
|